WorldWideScience

Sample records for small particle pollutants

  1. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  2. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  3. Superconductivity of small particles

    International Nuclear Information System (INIS)

    Leavens, C.R.; Fenton, E.W.

    1981-01-01

    The Eliashberg gap equations are used to investigate the contribution of surface-phonon softening to the size dependence of the superconducting transition temperature (T/sub c/) of small metallic particles. Because of our limited quantitative knowledge of phonon spectra and electron-phonon coupling in the surface region, the effect cannot be calculated with certainty. Previous calculations which agree with experiment depend on a fortuitous choice of input parameters which cannot be justified at present. For this reason the absence of any observable size effect for T/sub c/ in Pb is especially important. This null effect is obtained in Pb if the electron-phonon coupling strength is the same in the surface region as in the bulk. This assumption can be tested experimentally because it means that the energy gap of Pb should not be independent of particle size but rather should increase significantly with decreasing radius. Hence, measurement of the size dependence of the energy gap for well-characterized small particles of Pb could provide information regarding the importance of the phonon-softening mechanism, at least for Pb

  4. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  5. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-01-01

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  6. Turbulent diffusion of small particles

    International Nuclear Information System (INIS)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley

  7. Magnetic particles as tracers of industrial pollution

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Kapička, Aleš; Jordanova, Neli; Fialová, Hana

    č. 26 (2002), s. 131-132 ISSN 1590-2595. [Fundamental rock magnetism and environmental applications. Erice, 26.06.2002-01.07.2002] Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetic particles * industrial pollution * fly ashes * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  9. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  10. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  11. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  12. Small violations of particle statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1992-01-01

    This paper reports on the particle statistics menagerie for identical particles (in 3 + 1 dimensions) which consists of fermions (all states totally antisymmetric), bosons (all states totally symmetric), parafermions of order p (all representations of the symmetric group with Young tableaux having at most p boxes in a row) and parabosons of order p (all representations with at most p boxes in a column). p = 1 for parafermions is the same as Fermi, and p = 1 for parabosons is the same as Bose. These possibilities were derived in a general way by Doplicher, Haag and Roberts, who found one other case, infinite statistics for which all representations of the symmetric group occur, but did not give an algebra which leads to this statistics

  13. Light scattering by small particles

    CERN Document Server

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties

  14. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  15. Deliquescence and efflorescence of small particles.

    Science.gov (United States)

    McGraw, Robert; Lewis, Ernie R

    2009-11-21

    We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem.

  16. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  17. Electromagnetic wave scattering by many small particles

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2007-01-01

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated

  18. On the analysis of small particles

    International Nuclear Information System (INIS)

    Vis, R.D.

    2002-01-01

    The analysis of small, micrometer or even submicrometer sized, particles represents a challenging problem. The whole analytical procedure, including quality assurance and control, needs careful planning. Even the sampling itself is in many cases not trivial at all and the question as to whether the sample is representative for the suite of particles on wants to measure is sometimes difficult to assess. The question of representativity is even more important if one performs single particle analysis. Only large numbers of such analyses will lead to meaningful and interpretable results. In this contribution a few aspects of the various steps in the analytical protocol will be described. Starting point is that it is the elemental composition of the particle that is of interest

  19. Small Particles Intact Capture Experiment (SPICE)

    Science.gov (United States)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  20. Alpha particle radiography of small insects

    International Nuclear Information System (INIS)

    Chingshen Su

    1993-01-01

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope 244 Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52 o C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author)

  1. Particle pollution changes the atmospheric circulation

    International Nuclear Information System (INIS)

    Kristjansson, Jon Egill; Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens; Roeed, Lars Petter

    2002-01-01

    Industrial emissions and combustion of fossil fuels create large amounts of sulfate- and carbon containing soot particles. These mix with natural particles to change the natural aerosols. Such anthropogenic changes in the aerosols may have a great impact on the climate of the earth. Altered properties of the aerosols may change the atmosphere's absorption and reflection of solar radiation and contribute to heating or cooling. This is the direct effect. Changes in the properties of aerosols may also affect the number and size of recently formed cloud droplets. This may change the ability of the clouds to reflect solar radiation and to produce precipitation. This is the indirect effect. Recent research at the University of Oslo shows that anthropogenic particles significantly change the atmospheric circulation, in particular in the tropics, but also at European latitudes

  2. Dispersion of small particles in a tornado

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1975-05-01

    Based on 22 years of tornado statistics for South Carolina and Georgia, the probability of a tornado of Class F3 or greater striking a point at the Savannah River Plant is calculated to be approximately 14 x 10 -5 per year. These statistics show that Class F3 tornados (0.56-psi pressure drop and winds of 158 to 206 mph), are the most frequently occurring but cause only 23 percent of the damage compared with all classes of tornadoes. F4 tornadoes (1.10-psi pressure drop and winds of 207 to 260 mph) constitute only 20 percent of the total, but cause 63 percent of the damage. A Gaussian diffusion model is used to calculate the ground level concentration (ratio of concentration to source mass chi/Q) as a function of distance downwind should a tornado strike a point within the Savannah River Plant (SRP). The particles released to the atmosphere are assumed to be 1 to 3-μm diameter. For the calculations, two cases of possible small particle pickup are considered. In Case I a unit source of small particles is assumed to be injected into the tornado core and transported into the thunderstorm. In Case II, the cluster of particles is assumed to exit the side of the tornado core below the thunderstorm cloud. Several different stabilization heights within the thunderstorm, different horizontal wind speeds, and different turbulence dissipation rates are assumed for the calculations. (U.S.)

  3. Scattering by ensembles of small particles

    International Nuclear Information System (INIS)

    Gustafson, B. Aa. S.

    1980-11-01

    With the advent of high altitude rockets and of space probes, evidence has accumulated that several particle types coexiste in the interplanetary medium. It also became apparent that the zodiacal light is not produced by particles with previously known scattering characteristics. However, the scattering is here shown to be consistent with the hypothesis that presolar interstellar grains accumulate into comets which through fragmentation provide a major component of the interplanetary dust complex. Cometary debris - zodiscal light particles - are therefore modeled as conglomerates of elongated core-mantle particles. Light scattering characteristics of the conglomerates are investigated using a micro-wave analogue method. Approximate theoretical methods for prediction and interpretation of the electro-magnetic scattering patterns are developed and are found to compare favorably with the experimental results and with observations of the zodiacal light. The model is also found to be consistent with comet- and impactdata. Dynamical considerations predicts a small particle component rapidly receding from the Sun, an identification with the B-meteoroids is tentatively suggested. (author)

  4. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  5. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  6. Protamine precipitation of two reovirus particle types from polluted waters.

    OpenAIRE

    Adams, D J; Ridinger, D N; Spendlove, R S; Barnett, B B

    1982-01-01

    Two forms of virus particle are released from reovirus-infected cell cultures, infectious reovirus and potentially infectious reovirus (PIV). PIV particle forms have a complete outer coat and are not infectious until the outer coat is altered or removed. The PIV concentration in polluted waters, however, has not been determined. Protamine sulfate precipitation, using 0.25% fetal bovine serum and 0.005% protamine sulfate for the first precipitation of the sample and 0.0025% for the second, was...

  7. RF electrodynamics in small particles of oxides - a review

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2008-01-01

    Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...

  8. Fireworks induced particle pollution: A spatio-temporal analysis

    Science.gov (United States)

    Kumar, M.; Singh, R. K.; Murari, V.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2016-11-01

    Diwali-specific firework induced particle pollution was measured in terms of aerosol mass loading, type, optical properties and vertical distribution. Entire nation exhibited an increase in particulate concentrations specifically in Indo-Gangetic Plain (IGP). Aerosol surface mass loading at middle IGP revealed an increase of 56-121% during festival days in comparison to their background concentrations. Space-borne measurements (Aqua and Terra-MODIS) typically identified IGP with moderate to high AOD (0.3-0.8) during pre-festive days which transmutes to very high AOD (0.4-1.8) during Diwali-day with accumulation of aerosol fine mode fractions (0.3-1.0). Most of the aerosol surface monitoring stations exhibited increase in PM2.5 especially on Diwali-day while PM10 exhibited increase on subsequent days. Elemental compositions strongly support K, Ba, Sr, Cd, S and P to be considered as firework tracers. The upper and middle IGP revealed dominance of absorbing aerosols (OMI-AI: 0.80-1.40) while CALIPSO altitude-orbit-cross-section profiles established the presence of polluted dust which eventually modified with association of smoke and polluted continental during extreme fireworks. Diwali-specific these observations have implications on associating fireworks induced particle pollution and human health while inclusion of these observations should improve regional air quality model.

  9. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    Science.gov (United States)

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characteristics and applications of small, portable gaseous air pollution monitors.

    Science.gov (United States)

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed

  11. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    Science.gov (United States)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  12. [Particle pollution effects on the risk of cardiovascular diseases].

    Science.gov (United States)

    Massamba, V K; Coppieters, Y; Mercier, G; Collart, P; Levêque, A

    2014-02-01

    The effects of air pollution on health are quite well-documented and the influence of particulate pollution on morbidity and mortality from myocardial infarction and stroke is increasingly evident. The objective of this literature review is to identify and synthesize articles on the impact of air pollution by PM10 and PM2.5 of myocardial infarction and stroke. A total of 14 studies were reported on the effects of PM10 and five on the effects of PM2.5. Nine out of 14 studies for PM10 and two studies of five for PM2.5 have found a significant association with myocardial infarction and/or stroke. Particle composition according to location, study period and population must be considered in interpreting the results on the health effects of air pollution. The integration of these elements is important for decision making in tune with social and economic conditions specific to each environment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Turbulent resuspension of small nondeformable particles

    International Nuclear Information System (INIS)

    Lazaridis, M.; Drossinos, Y.

    1998-01-01

    An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al 2 O 3 particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment

  14. Collection of large and small food particles by Bosmina

    International Nuclear Information System (INIS)

    Bleiwas, A.H.; Stokes, P.M.

    1985-01-01

    The rate of collection by Bosmina of large and small food particles was measured with 14 C-labeled algae and checked by visual observation. Bosmina collected and ingested a large alga, Cosmarium, about six times faster than a small one, Chlorella. This is consistent with the observation of DeMott and Kerfoot that Bosmina has two modes of feeding: small-particle filtering and large-particle grasping

  15. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  16. Redox properties of small semiconductor particles

    International Nuclear Information System (INIS)

    Liver, N.; Nitzan, A.

    1992-01-01

    The size dependence of electrical and thermodynamic quantities of intermediate-sized semiconductor particles in an electrolyte solution with a given redox pair are studied. The equilibrium constant for this system is then derived based on the relationship of the electrolytic redox components to the size, charges, and concentration of the semiconductor particles. 25 refs., 9 figs., 1 tab

  17. Accelerators: the large slings of small particles

    International Nuclear Information System (INIS)

    Crozon, M.

    1987-01-01

    This paper reviews the different types of accelerators, of particles or heavy ions, which have been developed or are in project, their performance, their limits, which noting briefly the technologies used [fr

  18. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays

    Science.gov (United States)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Cruz Minguillón, Mari; Pey, Jorge; Rodriguez, Sergio; Vicente Miró, José; Felis, Carles; Gibbons, Wes

    The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L'Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO 2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m -3), aluminium (as Al 2O 3 from around 600 to 2200 ng m -3), titanium (from 200 to 700 ng m -3), magnesium (from 100 to 500 ng m -3), lead (from 17 to 379 ng m -3), barium (from 39 to 322 ng m -3), strontium (from 3 to 112 ng m -3), copper (from 12 to 71 ng m -3), and antimony (from 1 to 52 ng m -3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.

  19. Absorption and scattering of light by small particles

    CERN Document Server

    Bohren, Craig F

    1983-01-01

    Absorption and Scattering of Light by Small Particles. Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include:. * Classical theor

  20. Characterizing and controlling industrial dust: a case study in small particle measurement.

    Science.gov (United States)

    Combes, Richard S; Warren, D Alan

    2005-07-01

    Instrumentation used to measure characteristics of fine particles entrained in gas or suspended in aerosols provides information needed to develop valid regulations for emission sources and to support the design of control technologies. This case study offers a brief history of "micromeritics," a term used by early researchers to describe the science of small particles, and the related invention of laboratory instruments for characterizing very fine particles. The historical view provides insights into the role that Progressive Era government agencies played in advancing esoteric science and applying this knowledge to the regulation of workplace air pollution. Micromeritics instrumentation developed in conjunction with federal research now has many commercial applications worldwide, with characterizing airborne pollutants only a minor one. However, the continuing advances in the micromeritics field provide important laboratory measurement capabilities to environmental research organizations, such as the National Institute for Occupational Safety and Health (NIOSH).

  1. Acoustic interaction forces between small particles in an ideal fluid

    DEFF Research Database (Denmark)

    Silva, Glauber T.; Bruus, Henrik

    2014-01-01

    We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...

  2. Two particle correlations in small systems

    CERN Document Server

    Palmeiro Pazos, Brais

    2015-01-01

    The present report summarizes the work on the Summer Student project within the ALICE Collaboration. The aim of the project is to study the two-particle correlations in peripheral Pb-Pb collisions with the ALICE detector. The first part of this project is the development of a Toy Monte Carlo (MC) generator to reproduce and understand the Physics behind and probe the analysis in a controlled data set. Then, once the Toy MC is fully understood, it is possible to move to real data where some unexpected effects might appear and should be comprehended in order to have the whole physical picture of the peripheral Pb-Pb collisions.

  3. Methods to reduce mercury pollution in small gold mining operations

    OpenAIRE

    Pantoja-Timarán, F.; Álvarez-Rodríguez, R.; Rodríguez-Avelló, A. S.

    2005-01-01

    The use of mercury for gold beneficiation is still a current practice in small mining operations, mainly in underdeveloped countries, due to the low investment required and necessity of easy to operate systems. But the lack of basic protections makes unavoidable the high pollution of water streams, soils, and in fact, human bodies. Some improvements have been done at site like that related to the removal of the mercury from the amalgam, that usually was done in the open air and now have been ...

  4. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    Science.gov (United States)

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  5. Fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    1982-01-01

    Studies are reported in these areas: double resonance in fluorescent and Raman scattering; surface enhanced Raman scattering; fluorescence by molecules embedded in small particles; fluorescence by a liquid droplet; and fluorescence by conical pits in surfaces

  6. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  7. A device for transferring, in particular, small particles

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a transfer device, in particular for transferring small particles, comprising a helical channel made in the tube inner surface, a device for causing the tube to rotate about its longitudinal axis, a rotating joint adapted to close one of the tube extremities, a device for inserting a substance in the form of granules or of fluid particles into said tube through said joint, and a device for collecting and discharging said substance at the tube opposite end. This can applied to the transfer of small spherical particles e.g. of fuel [fr

  8. Air pollution, asthma and allergy - the importance of different types of particles

    International Nuclear Information System (INIS)

    Ormstad, Heidi; Loevik, Martinus

    2002-01-01

    Particulate air pollution has been much discussed in Norway during the last few years. Coarse particles from asphalt are likely to have quite different properties than the far smaller particles from diesel exhaust. On the basis of data from the literature and our own research, we discuss the health problem of different types of particles with a focus on allergy and respiratory symptoms. Diesel exhaust particles have well-documented adverse effects in relation to allergic airway disease. They increase symptoms load in already allergic individuals and also seem to contribute to the increased prevalence of allergy. PM 10 is today measured on the basis of weight, not on number. Diesel exhaust particles are much smaller than road surface particles; hence PM 10 measurements reflect road surface dust pollution more than exhaust particles. Focus should now be given to diesel exhaust particles in order to reduce the adverse health effects of particulate air pollution in Norwegian cities. (author)

  9. Behavior of small ferromagnetic particles in traveling magnetic field

    Science.gov (United States)

    Deych, V. G.; Terekhov, V. P.

    1985-03-01

    Forces and moments acting on a magnetizable body in a traveling magnetic field are calculated for a body with dimensions much smaller than the wavelength of the magnetic field. It is assumed that a particle of given linear dimension does not have a constant magnetic moment. The material of a particle is characterized by its magnetic permeability and electrical conductivity. The hypothesis that rotation plays a major role in the behavior of small particles is confirmed and the fact that a small particle rolls on a plane, without sliding, when the surface is perfectly rough, in the opposite direction from which the magnetic field travels is explained. Calculations are based on the magnetohydrodynamic equations for a quasi steady magnetic field, and the induced Foucault eddy currents are considered. The results are applicable to transport of ferrofluids and to such metallurgical devices as separators.

  10. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  11. Methods to reduce mercury pollution is small gold mining operations

    International Nuclear Information System (INIS)

    Pantoja-Timaran, F.; Alvarez-Rodriguez, R.; Rodriguez-Avello, A. S.

    2005-01-01

    The use of mercury for gold beneficiation is still a current practice in small mining operations, mainly in underdeveloped countries, due to the low investment required and necessity of easy to operate systems. But the lack of basic protections makes unavoidable the high pollution of water streams, soils, and in fact, human bodies. some improvements have been done at site like that related to the removal of the mercury from the amalgam, that usually was done in the open air, and now have been changed to the utilization of artisan iron retorts which considerable reduce the emissions of mercury vapors to the atmosphere, but there are still high losses of mercury into the waste solids or tailings coming from the amalgamation process (nearly most of the total weight of the ore treated). In order to reduce the mercury losses into the tailings from the process, this research work has been based in the use of cheap systems, available to the isolated miners, to proof that it is feasible to get an important reduction of the losses and the pollution. the procedure has been accomplished by means of washing the ores with alkaline or detergent agents, together with the use of activated mercury purified by electrowinning in a simple device, easily manufactured in site by the own workers. It is also proven herewith that controlling the time of amalgamation and the total amount of mercury used could reduce the total pollution, and in addition, the gold recovery would be improved. This investigation reports the possibility of a reduction of mercury losses down to 2.4 g per 100 of gold produced (case of rich ores like LaBruja), with gold recovery up to 94%; and 8,6 g per 100 g of gold produced (from ores with average grades like La Gruesa), and gold recoveries in the range of 92%. All that is about 20 to 100 times lower than data reported in current bibliography. The introduction of a previous step of the ore concentration in shaking tables, decreases the total amount of solids for

  12. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  13. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  14. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollutants.

    Science.gov (United States)

    Hilliges, R; Endres, M; Tiffert, A; Brenner, E; Marks, T

    2017-03-01

    Urban runoff is known to transport a significant pollutant load consisting of e.g. heavy metals, salts and hydrocarbons. Interactions between solid and dissolved compounds, proper understanding of particle size distribution, dissolved pollutant fractions and seasonal variations is crucial for the selection and development of appropriate road runoff treatment devices. Road runoff at an arterial road in Augsburg, Germany, has been studied for 3.5 years. A strong seasonal variation was observed, with increased heavy metal concentrations with doubled and tripled median concentrations for heavy metals during the cold season. Correlation analysis showed that de-icing salt is not the only factor responsible for increased pollutant concentrations in winter. During the cold period, the fraction of dissolved metals was lower compared to the warm season. In road dust, the highest metal concentrations were measured for fine particles. Metals in road runoff were found to show a significant correlation to fine particles SS63 (removal rates.

  15. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  16. STIMULATION OF OXIDANT PRODUCTION IN ALVEOLAR MACROPHAGES BY POLLUTANT AND LATEX PARTICLES

    Science.gov (United States)

    Air pollutant dusts as well as chemically defined particles were examined for their activating effect on oxidant production (O2- and H2O2) in guinea pig alveolar macrophages (AM). Oxidant production was measured as chemiluminescence of albumin-bound luminol. All particles examine...

  17. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  18. Kinetics of small particle activation in supersaturated vapors

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  19. Probing the oxidation kinetics of small permalloy particles

    International Nuclear Information System (INIS)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian

    2017-01-01

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe 2 O 3 /(Ni, Fe) 3 O 4 plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe 2 O 3 to (Ni, Fe) 3 O 4 induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe 2 O 3 to (Ni, Fe) 3 O 4 will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only

  20. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  1. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C

    2017-04-01

    In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (runoff particles contained a higher proportion of nano-scale particles (runoff pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Methods to reduce mercury pollution in small gold mining operations

    Directory of Open Access Journals (Sweden)

    Pantoja-Timarán, F.

    2005-06-01

    Full Text Available The use of mercury for gold beneficiation is still a current practice in small mining operations, mainly in underdeveloped countries, due to the low investment required and necessity of easy to operate systems. But the lack of basic protections makes unavoidable the high pollution of water streams, soils, and in fact, human bodies. Some improvements have been done at site like that related to the removal of the mercury from the amalgam, that usually was done in the open air and now have been changed to the utilization of artisan iron retorts which considerably reduce the emissions of mercury vapors to the atmosphere, but there are still high losses of mercury into the waste solids or tailings coming from the amalgamation process (nearly most of the total weight of the ore treated. In order to reduce the mercury losses into the tailings from the process, this research work has been based in the use of cheap systems, available to the isolated miners, to proof that it is feasible to get an important reduction of the losses and the pollution. The procedure has been accomplished by means of washing the ores with alkaline or detergent agents, together with the use of activated mercury purified by electrowinning in a simple device, easily manufactured in site by the own workers. It is also proven herewith that controlling the time of amalgamation and the total amount of mercury used could reduce the total pollution, and in addition, the gold recovery would be improved. This investigation reports the possibility of a reduction of mercury losses down to 2.4 g per 100 g of gold produced (case of rich ores like La Bruja, with gold recovery up to 94 %; and 8,6 g per 100 g of gold produced (from ores with average grades like La Gruesa, and gold recoveries in the range of 92 %. All that is about 20 to 100 times lower than data reported in current bibliography. The introduction of a previous step of the ore concentration in shaking tables, decreases the total

  3. SQUID sensor application for small metallic particle detection

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  4. Volumetric dispenser for small particles from plural sources

    International Nuclear Information System (INIS)

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-01-01

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles

  5. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas

    Science.gov (United States)

    Zhang, Qunfang; Zhu, Yifang

    2010-01-01

    Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.

  6. Small manufacturing plants, pollution, and poverty : new evidence from Brazil and Mexico

    OpenAIRE

    Dasgupta, Susmita; Lucas, Robert E. B.; Wheeler, David

    1998-01-01

    The authors use new data from Brazil and Mexico to analyze relationships linking economic development, the size distribution of manufacturing plants, and exposure to industrial pollution. For lack of data, prior work in this field has been limited largely to water pollution and medium-size plants. This study examines air pollution and encompasses small plants (with 1 to 20 employees) as well as medium-size and large plants. Four main questions are addressed (with answers from plant-level data...

  7. Pollution-Prevention Information Campaigns for Small Businesses: An Audience Analysis.

    Science.gov (United States)

    Boiarsky, Greg; Long, Marilee; Zimmerman, Donald E.

    1999-01-01

    Explores the results of a random phone survey of 300 small businesses in order to develop a pollution-prevention campaign. Results indicate that respondents understood the concept of pollution prevention and were taking steps to reduce their part in it. Businesses preferred to obtain their information from suppliers, publications, and other…

  8. Air pollution dry deposition: radioisotopes as particles and volatiles

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This study focuses on determining volcanic ash and ambient airborne solids concentrations at various sampling sites subsequent to the Mt. St. Helens' eruption in order to develop an experimental basis for models predicting removal of airborne particles and gases by dry deposition onto outdoor surfaces. In addition, deposition rates were determined using dual tracer techniques in the field and in a wind tunnel in the laboratory

  9. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  10. [Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area].

    Science.gov (United States)

    Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua

    2012-08-01

    Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.

  11. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of atmospheric pollution in Kenitra city (MOROCCO) (Particles and Metals)

    International Nuclear Information System (INIS)

    Zghaid, M.; Noack, Y.; Tahiri, M.; Zahry, F.; Bounakhla, M.; Benyaich, F

    2008-01-01

    Full text: All Recent epidemiological studies show that air pollution in general and especially particulate pollution have a strong influence on human health, particularly on the respiratory and cardio-vascular systems, but also affect the developing fetus. Like developed countries, countries under development are subject to significant air pollution both urban and industrial. The car park is often old, sometimes uncontrolled industrialization, the regulations of atmospheric emissions are infancy and the network monitoring rare. The aim of this work is to focus on the problem of particulate air pollution in Kenitra (50 km north of Rabat, Morocco) by characterizing the pollution in both quantity and quality, to assess the impact potential health and provide decision makers with reliable data. Initial results show that the OMS recommendations, along with European standards on sulfur dioxide as well as PM10 are largely outdated (80 ug / Nm 3 instead of 40 in average). This is also the case for some metals: Lead concentrations are approximately ten times greater than those encountered in urban sites in Europe; nickel is fifteen times higher than the European standard. The metals are mainly present in the thin fraction (particles below 2.5 um). The low proportion of thin particles in the total particles, show the influence of resuspension events and other natural inputs from arid or desert. The SO2 average concentrations are also quite important (60 ug / m 3 ). The concentrations near the site are much higher than those that can be measured on similar sites in Europe. It is more than probable that in this city, the health impacts are not negligible. We will look to continue this work in three aspects: Spatial distribution of particulate pollution in Kenitra; The health impact of air pollution in Kenitra; Cyto-and geno-toxicity of airborne particles in Kenitra [fr

  13. The U.S. Department of Energy pollution prevention program: Applications for small business

    Energy Technology Data Exchange (ETDEWEB)

    Betsch, M.D.

    1997-05-14

    This report shows the benefits small businesses can realize by instituting cost-effective pollution prevention improvements. It is a series of pollution prevention assessments that were conducted at small businesses in Richland, Washington. It describes a technology transfer test of US Department of Energy (USDOE) pollution prevention methods to small businesses through eleven pollution prevention assessments conducted at small businesses in the city of Richland. The assessment method tested was first developed at the USDOE Hanford Site, located in Richland, Washington. Two pilot studies were initially conducted to determine the usefulness of the assessment method for small businesses. Then, four additional pollution prevention assessments were conducted using a refined process. In order to determine the assessment method`s usefulness by different practitioners, a number of the assessments contained in this report were conducted by the undergraduate and graduate students at Washington State University at Tri-Cities as part of their class projects. These students were trained in the pollution prevention assessment process by the author of this report and conducted five small business assessments using the same methods and materials as in the remainder of the study.

  14. The U.S. Department of Energy pollution prevention program: Applications for small business

    International Nuclear Information System (INIS)

    Betsch, M.D.

    1997-01-01

    This report shows the benefits small businesses can realize by instituting cost-effective pollution prevention improvements. It is a series of pollution prevention assessments that were conducted at small businesses in Richland, Washington. It describes a technology transfer test of US Department of Energy (USDOE) pollution prevention methods to small businesses through eleven pollution prevention assessments conducted at small businesses in the city of Richland. The assessment method tested was first developed at the USDOE Hanford Site, located in Richland, Washington. Two pilot studies were initially conducted to determine the usefulness of the assessment method for small businesses. Then, four additional pollution prevention assessments were conducted using a refined process. In order to determine the assessment method's usefulness by different practitioners, a number of the assessments contained in this report were conducted by the undergraduate and graduate students at Washington State University at Tri-Cities as part of their class projects. These students were trained in the pollution prevention assessment process by the author of this report and conducted five small business assessments using the same methods and materials as in the remainder of the study

  15. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    Science.gov (United States)

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  16. Characterization of anthropogenic sediment particles after a transboundary water pollution of river Tisza using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Osan, Janos E-mail: osan@sunserv.kfki.hu; Toeroek, Szabina; Alfoeldy, Balint; Falkenberg, Gerald

    2004-05-21

    At the beginning of 2000, a major mining accident occurred in the Romanian part of the Tisza catchment area due to tailings dam failure releasing huge amounts of heavy metals to the river. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to characterize the anthropogenic particles in river sediment previously selected by single-particle electron probe X-ray microanalysis (EPMA). The trace element composition, heterogeneity and heavy metal speciation of individual particles was studied using synchrotron radiation-based microbeam X-ray emission and absorption methods. Particles were selected only from samples regarded as polluted sediment. White-beam micro X-ray fluorescence ({mu}-XRF) allowed the quantitative determination of heavy metals such as cadmium in individual particles. The maximum observed concentration of cadmium (>700 {mu}g/g) indicates that this highly toxic heavy metal is concentrated in individual anthropogenic particles. Using the combination of micro X-ray absorption near-edge structure and target-transformation principle component analysis, quantitative chemical speciation of copper and zinc was feasible on individual sediment particles. Heavy metals in most of the particles released from the pollution site remained in the sulfide form resulting in a limited mobility of these metals. Based on the information obtained using microanalytical methods, the estimation of the environmental mobility of heavy metals connected to microparticles becomes possible.

  17. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  18. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    Science.gov (United States)

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  19. Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.

    Science.gov (United States)

    Zhang, Qunfang; Zhu, Yifang

    2011-08-01

    This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.

  20. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    Science.gov (United States)

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  1. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    Science.gov (United States)

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  2. Aerosol pollution in urban and industrialized area under marine influence: physical-chemistry of particles

    International Nuclear Information System (INIS)

    Rimetz, J.

    2007-12-01

    Harbors for trade are known as highly urbanized and industrialized areas with important maritime, railway and road traffic. Industries are mainly represented by steel, cement works, and oil refineries. The maritime sector is becoming an even larger source of air pollution. Atmospheric NO x , SO 2 , O 3 levels and chemical analysis of airborne particulate matter were monitored in Dunkerque conurbation in 2005 and 2006. This study was included in the IRENI program. In low-pressure conditions, local pollutants are spread out far away the agglomeration, whereas, in high-pressure regimes, the atmospheric stability and sea-breezes allow an accumulation of pollutants over the urban zone. Size-resolved chemical analyses of particulate matter collected as function of the aerodynamic diameter (D a ) were performed. Ions (Na + , NH 4 + , Cl - , NO 3 - , SO 4 2- ), metals (Fe, Zn, Pb, Cd,...) and organic fraction (EC, OC) are associated with sub- or/and super-micron particles. The size, morphology and chemical species of individual particles collected selectively in the 12O 3 , Fe 3 O 4 , PbO,... containing particles emitted in the Dunkerque harbour area and aged sea-salt aerosol particles (NaCl, NaNO 3 ,...) from long range transport of air masses. Thin organic coatings from natural and anthropogenic origin are observed on the particles by ToF-SIMS imaging. (author)

  3. Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution.

    Science.gov (United States)

    Knox, R B; Suphioglu, C; Taylor, P; Desai, R; Watson, H C; Peng, J L; Bursill, L A

    1997-03-01

    Grass pollen allergens are known to be present in the atmosphere in a range of particle sizes from whole pollen grains (approx. 20 to 55 microns in diameter) to smaller size fractions Lol p 1, immunogold labelling with specific monoclonal antibodies and a high voltage transmission electron-microscopic imaging technique. DECP are visualized as small carbon spheres, each 30-60 nm in diameter, forming fractal aggregates about 1-2 microns in diameter. Here we test our hypothesis and show by in vitro experiments that the major grass pollen allergen, Lol p 1, binds to one defined class of fine particles, DECP. DECP are in the respirable size range, can bind to the major grass pollen allergen Lol p 1 under in vitro conditions and represent a possible mechanism by which allergens can become concentrated in polluted air and thus trigger attacks of asthma.

  4. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  5. Pollution reduction technology program small jet aircraft engines, phase 3

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  6. Urban soil pollution and the playfields of small children

    Science.gov (United States)

    Jartun, M.; Ottesen, R. T.; Steinnes, E.

    2003-05-01

    The chemical composition of urban surface soil in Tromsø, northern Norway has been mapped to describe the environmental load of toxic elements in different parts of the city. Surface soil samples were collected from 275 locations throughout the city center and nearby suburban areas. Natural background concentrations were determined in samples of the local bedrock. Surface soil in younger, suburban parts of the city shows low concentrations of heavy metals, reflecting the local geochemistry. The inner and older parts of the city are generally polluted with lead (Pb), zinc (Zn) and tin (Sn). The most important sources of this urban soil pollution are probably city fires, industrial and domestic waste, traffic, and shipyards. In this paper two different approaches have been used. First, as a result of the general mapping, 852 soil and sand samples from kindergartens and playgrounds were analyzed. In this study concentrations of arsenic (As) up to 1800ppm were found, most likely due to the extensive use of CCA (copper, chromium, arsenic) impregnated wood in sandboxes and other playground equipment. This may represent a significant health risk especially to children having a high oral intake of contaminated sand and soil. Secondly a pattern of tin (Sn) concentrations was found in Tromsøcity with especially high values near shipyards. Further investigation indicated that this pattern most probably reflected the use of the highty toxic tributyltin (TBT). Thus détermination of total Sn in surface soils could be a cost-effective way to localize sources of TBT contamination in the environment.

  7. Air pollution, asthma and allergy - the importance of different types of particles; Luftforurensning, astma og allergi - betydningen av ulike partikler

    Energy Technology Data Exchange (ETDEWEB)

    Ormstad, Heidi; Loevik, Martinus

    2002-07-01

    Particulate air pollution has been much discussed in Norway during the last few years. Coarse particles from asphalt are likely to have quite different properties than the far smaller particles from diesel exhaust. On the basis of data from the literature and our own research, we discuss the health problem of different types of particles with a focus on allergy and respiratory symptoms. Diesel exhaust particles have well-documented adverse effects in relation to allergic airway disease. They increase symptoms load in already allergic individuals and also seem to contribute to the increased prevalence of allergy. PM{sub 10} is today measured on the basis of weight, not on number. Diesel exhaust particles are much smaller than road surface particles; hence PM{sub 10} measurements reflect road surface dust pollution more than exhaust particles. Focus should now be given to diesel exhaust particles in order to reduce the adverse health effects of particulate air pollution in Norwegian cities. (author)

  8. Particulate matter pollution from aviation-related activity at a small airport of the Aegean Sea Insular Region.

    Science.gov (United States)

    Psanis, C; Triantafyllou, E; Giamarelou, M; Manousakas, M; Eleftheriadis, K; Biskos, G

    2017-10-15

    The unprecedented growth in aviation during the last years has resulted in a notable increase of local air pollution related to airports. The impacts of aviation on air quality can be extremely high particularly around airports serving remote insular regions with pristine atmospheric environments. Here we report measurements that show how the atmospheric aerosol is affected by the activity at a small airport in a remote region. More specifically, we provide measurements performed at the airport of Mytilene, Greece, a regional yet international airport that serves the entire island of Lesvos; the third largest island of the country. The measurements show that the activity during landing, taxiing and take-off of the aircrafts accounted for up to a 10-fold increase in particulate matter (PM) mass concentration in the vicinity of the airport. The number concentration of particles having diameters from 10 to 500nm also increased from ca. 4×10 2 to 8×10 5 particlescm -3 , while the mean particle diameter decreased to 20nm when aircrafts were present at the airport. Elemental analysis on particle samples collected simultaneously at the airport and at a remote site 3km away, showed that the former were significantly influenced by combustion sources, and specifically from the engines of the aircrafts. Our results show that despite their small size, local airports serving remote insular regions should be considered as important air pollution hotspots, raising concerns for the exposure of the people working and leaving in their vicinities to hazardous pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fluorescent scattering by molecules embedded in small particles. Progress report, May 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1978-01-01

    A model for the fluorescence and Raman scattering by molecules that comprise or are embedded in small particles was developed and numerical calculations performed. The emphasis during this first year of the contract was on writing and testing the computer programs necessary for numerical calculations and on demonstrating the extent of the potential effects that the geometrical and optical properties of the particle would have on the Raman and fluorescent emissions. For the purpose of demonstrating effects emphasis was focused upon the case of isotropically polarizable molecules that fluoresce or Raman scatter through electric dipole transitions. Some preliminary results are described. One result of these investigations that is of particular significance for remote sensing of pollutants is that it would be a serious mistake to use inelastic scattering techniques such as Raman and fluorescent scattering for quantitative assay of specific molecules in aerosols containing particulates without taking into account the size, structure and refractive index of the particles. A list of publications is included

  10. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps

    International Nuclear Information System (INIS)

    Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore

    2008-01-01

    Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB 7 in the urban runoff sediments ranged between 16 , the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 μm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients

  11. Mercury Pollution Due to Small-Scale Gold Mining in the Philippines: An Economic Analysis

    OpenAIRE

    Orbeta, Aniceto C.; Israel, Danilo C.; Asirot, Jasminda

    2000-01-01

    The study reviews small-scale gold mining in the Philippines and economically assesses mercury pollution and other development problems in the industry. The end purpose is to suggest measures to address the problems and promote better environmental and overall management of small-scale mining. The study has used secondary data from mining institutions and primary data from key informants and small-scale gold miners and processors in the two case study sites.

  12. Mercury Pollution Due to Small-Scale Gold Mining in the Philippines: An Economic Analysis

    OpenAIRE

    Israel, Danilo C.; Asirot, Jasminda

    2002-01-01

    The study reviews small-scale gold mining in the Philippines and economically assesses mercury pollution and other development problems in the industry. The end purpose is to suggest measures to address the problems and promote better environmental and overall management of small-scale mining. The study has used secondary data from mining institutions and primary data from key informants and small-scale gold miners and processors in the two case study sites. brazzer

  13. Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model

    Science.gov (United States)

    Saito, Keisuke; Ogawa, Susumu

    2016-06-01

    On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The

  14. Air pollution and economics: Alternate use of fuels in small scale industries

    International Nuclear Information System (INIS)

    Rao, B.P.S.; Pandit, V.I.

    1999-01-01

    In developing countries the problem of air pollution was recognized earlier, however, it has acquired a greater dimension due to the conventional use of low grade fuels like coal, baggase, rice husk, etc. having high sulphur and ash content. The industrial sources contribute about 30--40% of the total emissions. In India, the small scale industries (low investment group) contribute about 60--80% of the total industrial emissions. These industries are characterized with various environmental pollution problems due to cluster of small scale industries located in sensitive area; use of low grade fuel, primitive processing techniques without emission abatement facilities etc., thus leading to enormous pollution in an confined region. Acute need was felt to reduce the pollution problem associated with small scale industries by use of cleaner fuel so as to reduce the localized problem. The paper presents the emissions associated with use of coal/coke, natural gas, LPG, and propane along with the fuel cost for small scale industrial sector of Agra, Firozabad and Mathura region. The studies carried out would find applicability to meet the air pollution standards based on shift in fuel and associated cost

  15. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optical excitations in small particles and thin films

    International Nuclear Information System (INIS)

    Fuchs, R.

    1980-01-01

    The method of local optics can be used for calculating absorption and scattering of light by a small particle or a thin film. One writes D(r,ω) = epsilon (ω)E(r,ω), and solves Maxwell's equations using standard boundary conditions. A more exact approach is to use a nonlocal dielectric constant epsilon (r-r',ω), which is the same as that of the bulk material, in the expression: D(r,ω) = ∫ epsilon (r-r',ω)E(r',ω)d 3 r'. In such a theory one disregards the modification of the dielectric constant near the surface, and the surface is taken into account approximately by introducing appropriate additional boundary conditions. A still more microscopic or exact method, applicable to a metal, is to write the equation using a dielectric constant epsilon (r,r',ω) which depends on r and r' separately. This dielectric tensor contains information about the modified response near the surface, and includes effects of surface states. Another method, applicable to infrared properties on ionic crystals, relates the optical properties to the normal mode eigenvectors and eigenvalues

  17. Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles.

    Science.gov (United States)

    Shin, Han-Jae; Cho, Hyun Gi; Park, Chang Kyun; Park, Ki Hong; Lim, Heung Bin

    2017-10-01

    Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synthetic organic combustion [SOC] ash, and yellow sand dust [YSD]) and investigated their physicochemical properties and in vitro biological toxicity. DEPs were almost entirely composed of ultrafine particles (UFPs), while the NOC, SOC, and YSD particles were a mixture of UFPs and FPs. The main elements in the DEPs, NOC ash, SOC ash, and YSD were black carbon, silicon, black carbon, and silicon, respectively. DEPs exhibited dose-dependent mutagenicity even at a low dose in Salmonella typhimurium TA 98 and 100 strains in an Ames test for genotoxicity. However, NOC, SOC, and YSD particles did not show any mutagenicity at high doses. The neutral red uptake assay to test cell viability revealed that DEPs showed dose-dependent potent cytotoxicity even at a low concentration. The toxicity of DEPs was relatively higher than that of NOC, SOC, and YSD particles. Therefore, these results indicate that among the four FPs, DEPs showed the highest in vitro biological toxicity. Additional comprehensive research studies such as chemical analysis and in vivo acute and chronic inhalation toxicity tests are necessary to determine and clarify the effects of this air contaminant on human health.

  18. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    Science.gov (United States)

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  19. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    Science.gov (United States)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  20. Assessment of the Atmospheric Suspended Particles Pollution in the Madrid Air Quality Networks

    International Nuclear Information System (INIS)

    Salvador, P.; Artinano, B.

    2000-01-01

    Suspended particles are a very complex type of atmospheric pollution because of their chemical composition and size. In fact, there are a quite high number of particles sources which are linked to different physicochemical processes that determine their size. At present particles smaller than 10 μm are considered the most dangerous, as has been recently pointed out by numerous epidemiologic studies. In this way, more restrictive concentration limit values have been approved in the EU countries, so an assessment of present airborne concentration values and the sources apportionment in their most representative areas is needed. In the Madrid Community a first approaching of these and other aims, has been carried out from an analysis of the Madrid Air Quality networks data. This will contribute to the establishment of concentration levels abatement strategies. (Author) 111 refs

  1. Proposed Pathophysiologic Framework to Explain Some Excess Cardiovascular Death Associated with Ambient Air Particle Pollution: Insights for Public Health Translation

    Science.gov (United States)

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regularory en...

  2. Occupational exposure to airborne particles and other pollutants in an aviation base

    International Nuclear Information System (INIS)

    Buonanno, Giorgio; Bernabei, Manuele; Avino, Pasquale; Stabile, Luca

    2012-01-01

    The occupational exposure to airborne particles and other pollutants in a high performance jet engine airport was investigated. Three spatial scales were considered: i) a downwind receptor site, ii) close to the airstrip, iii) personal monitoring. Particle number, surface area, mass concentrations and distributions were measured as well as inorganic and organic fractions, ionic fractions and Polycyclic Aromatic Hydrocarbons. Particle number distribution measured at a receptor site presents a mode of 80 nm and an average total concentration of 6.5 × 10 3 part. cm −3 ; the chemical analysis shows that all the elements may be attributed to long-range transport from the sea. Particle number concentrations in the proximity of the airstrip show short term peaks during the working day mainly related to takeoff, landing and pre-flight operations of jet engines. Personal exposure of workers highlights a median number concentration of 2.5 × 10 4 part. cm −3 and 1.7 × 10 4 part. cm −3 for crew chief and hangar operator. - Highlights: ► Air quality measures were performed at different spatial scales in an aviation base. ► Exposure to Polycyclic Aromatic Hydrocarbons was estimated. ► Particles at downwind receptor site show a marine origin typical of a coastal site. ► Main exposure peaks are related to pre-flight operations of jet engine aircrafts. ► Crew chief are exposed to highest concentrations even if these were not worrisome. - A negligible impact of a high performance jet engine airport, in terms of airborne particles and other pollutants, was measured through an experimental campaign at three spatial scales.

  3. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    Science.gov (United States)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6-25 nm) decayed faster than larger ones (100-300 nm). Similar decay rates were observed among UFP number, surface, and volume.

  4. Contributions of fuel combustion to pollution by airborne particles in urban and non-urban environments

    International Nuclear Information System (INIS)

    1995-06-01

    The application of ion beam analysis (IBA) techniques to aerosol pollution problems has been used in a number of countries since the late 1970's and early 1980's. The technique, however, had not been tested in Australia. This document is the final report of a project which aimed to establish a fine particle monitoring network covering the greater Wollongong/Sydney/ Newcastle ares, investigate the relationships between fuel combustion and fine particle aerosols in urban and non urban environments, add to the limited database of baseline information on concentrations of fine particles resulting from such processes as fossil fuel burning and industrial manufacturing, identify and quantify sources of fine particles in New South Wales, and introduce into Australia accelerator based IBA techniques for the analysis of filter papers obtained from large scale monitoring networks. These objectives were addressed by the project which identified and quantified some sources of fine particles and established some relationships between fuel combustion and fine aerosols. More work is required to fully quantify relationships between natural and anthropogenic fine particle sources. 24 tabs., 44 figs., 83 refs

  5. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  6. Characterizing ultrafine particles and other air pollutants in and around school buses.

    Science.gov (United States)

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age, window position, driving speed, driving route, and operating conditions. Emissions from idling school buses increased the PNC close to the tailpipe by a factor of up to 26.0. Under some circumstances, tailpipe emissions of idling school buses increased the in-cabin PNC by factors ranging from 1.2 to 5.8 in the 10-30 nm particle size range. Retrofit systems significantly reduced the tailpipe emissions of idling school buses. With both DOC and CFS installed, PNC in tailpipe emissions dropped by 20

  7. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    Science.gov (United States)

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by

  8. Particle (Soot Pollution in Port Harcourt Rivers State, Nigeria—Double Air Pollution Burden? Understanding and Tackling Potential Environmental Public Health Impacts

    Directory of Open Access Journals (Sweden)

    Okhumode H. Yakubu

    2017-12-01

    Full Text Available Residents of Port Harcourt in Rivers State, Nigeria, and its environs have since the last quarter of 2016 been experiencing adverse environmental impacts of particle (soot pollution. This “double air pollution burden”—the unresolved prevailing widespread air pollution and the “added” emergence of particle pollution considered an environmental health threat, led to protests against government inaction in some parts of the state. In February 2017, several months following the onset of the pollution, the government declared an Emergency, and set up a Task Force to investigate and find a solution to the problem. Global research suggests that particle pollution correlates positively with a range of morbidities and an increased risk of mortality among exposed populations. This underscores the need for rigorous implementation of existing environmental legislations established to protect the environment and public health. Nigeria’s rapid response to the 2014–2015 Ebola Virus Disease (EVD and successful prevention of its spread provides some lessons for addressing such environmental health emergencies—strategic action, including effective environmental risk communication, environmental audit, and monitoring is key. Epidemiological studies of the affected population is imperative. A concerted effort by the Rivers State Ministries of Environment and Health, as well as academia and private organizations is required. Public service campaign in terms of government providing up to date information on the existing situation is required.

  9. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2016-06-01

    Full Text Available The assessment of airborne fine particle composition and secondary pollutant characteristics in the case of Augsburg, Germany, during winter (31 January–12 March 2010 is studied on the basis of aerosol mass spectrometry (3 non-refractory components and organic matter, 3 positive matrix factorizations (PMF factors, particle size distributions (PSD, 5 size modes, 5 PMF factors, further air pollutant mass concentrations (7 gases and VOC, black carbon, PM10, PM2.5 and meteorological measurements, including mixing layer height (MLH, with one-hourly temporal resolution. Data were subjectively assigned to 10 temporal phases which are characterised by different meteorological influences and air pollutant concentrations. In each phase hierarchical clustering analysis with the Ward method was applied to the correlations of air pollutants, PM components, PM source contributions and PSD modes and correlations of these data with all meteorological parameters. This analysis resulted in different degrees of sensitivities of these air pollutant data to single meteorological parameters. It is generally found that wind speed (negatively, MLH (negatively, relative humidity (positively and wind direction influence primary pollutant and accumulation mode particle (size range 100–500 nm concentrations. Temperature (negatively, absolute humidity (negatively and also relative humidity (positively are relevant for secondary compounds of PM and particle (PM2.5, PM10 mass concentrations. NO, nucleation and Aitken mode particle and the fresh traffic aerosol concentrations are only weakly dependent on meteorological parameters and thus are driven by emissions. These daily variation data analyses provide new, detailed meteorological influences on air pollutant data with the focus on fine particle composition and secondary pollutant characteristics and can explain major parts of certain PM component and gaseous pollutant exposure.

  10. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  11. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  12. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  13. Is there a contraction of the interatomic distance in small metal particles?

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet

    1990-01-01

    A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...

  14. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  15. The OCAPI collaborative platform: study of two particle pollution episodes in 2016 in Paris

    Science.gov (United States)

    Foret, Gilles; Michoud, Vincent; Formenti, Paola; Gratien, Aline; Beekmann, Matthias; Peinado, Florian; Favez, Olivier; Haeffelin, Martial; Dupont, Jean-Charles; Bodichon, Renaud; Gros, Valérie; Ghersi, Véronique; Meleux, Frédérik; Xuéref-Rémy, Irène

    2017-04-01

    Air pollution and its impacts are subject to an expanded interest since the middle of the 20th century, especially in urban areas which gathered an important part of emission sources. These polluted urban air masses are composed by a complex mixture of gases and aerosols coming from various emission sources (vehicular traffic, industries, residential heating, agricultural activities, natural sources) or chemical processes. To efficiently reduce this pollution and its impacts on population, it is important to understand its drivers, its sources and its impact on human health. To get some insights in Paris air pollution, a collaborative measurement platform called OCAPI ("Observation de la Composition Atmosphérique Parisienne de l'IPSL") has been built and implies several Parisian research laboratories of IPSL institute (CEREA, LSCE, LMD, LISA, LATMOS, LERMA and METIS) as well as public agencies and institutes in charge of Paris air pollution monitoring (AIRPARIF, INERIS). OCAPI platform aims at gathering skills and instruments of these laboratories to measure the composition and dynamics of Paris atmosphere. In this framework, multi-site measurements were performed during two intense particle pollution episodes which occurred in March 2016 and between November and December 2016. These two episodes were characterized by different meteorological conditions and different type of emission sources. Indeed, March episode was related to intense agricultural activities and high ammonium nitrate contribution to aerosol composition; while end of year episode was related to low wind speed, cold conditions and thin boundary layer which favoured the stagnation of locally emitted pollutants. This latter episode was characterized by large contribution of organics in aerosol composition. In this presentation, a study of these two episodes will be presented. We will first present the context and the OCAPI platform. Then, first results of dynamics and aerosol composition

  16. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  17. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  18. Review on urban vegetation and particle air pollution - Deposition and dispersion

    Science.gov (United States)

    Janhäll, Sara

    2015-03-01

    Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.

  19. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  20. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China

    International Nuclear Information System (INIS)

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Rutherford, Shannon; Guo, Lingchuan; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; He, Zhihui; Xu, Yanjun; Ma, Wenjun

    2016-01-01

    Though significant associations between particulate matter (PM) air pollution and cardiovascular diseases have been widely reported, it remains unclear what characteristics, such as particle size and chemical constituents, may be responsible for the effects. A time-series model was applied to examine the cardiovascular effects of particle size (for the period of 2009–2011) and chemical constituents (2007–2010) in Guangzhou, we controlled for potential confounders in the model, such as time trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant associations of cardiovascular mortality with PM_1_0, PM_2_._5 and PM_1; the excess risk (ER) was 6.10% (95% CI: 1.76%, 10.64%), 6.11% (95% CI: 1.76%, 10.64%) and 6.48% (95% CI: 2.10%, 11.06%) for per IQR increase in PM_1_0, PM_2_._5 and PM_1 at moving averages for the current day and the previous 3 days (lag_0_3), respectively. We did not find significant effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. For PM_2_._5 constituents, we found that organic carbon, elemental carbon, sulfate, nitrate and ammonium were significantly associated with cardiovascular mortality, the corresponding ER for an IQR concentration increase at lag_0_3 was 1.13% (95% CI: 0.10%, 2.17%), 2.77% (95% CI: 0.72%, 4.86%), 2.21% (95% CI: 1.05%, 3.38%), 1.98% (95% CI: 0.54%, 3.44%), and 3.38% (95% CI: 1.56%, 5.23%), respectively. These results were robust to adjustment of other air pollutants and they remained consistent in various sensitivity analyses by changing model parameters. Our study suggests that PM_1 and constituents from combustion and secondary aerosols might be important characteristics of PM pollution associated with cardiovascular mortality in Guangzhou. - Highlights: • PM_1_0, PM_2_._5 and PM_1 were significantly associated with cardiovascular mortality. • We did not find significant cardiovascular effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. • PM_1 might be most responsible for

  1. Structure of magnetic particles studied by small angle neutron scattering. [Magnetic colloid particles in stable liquid dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cebula, D J; Charles, S W; Popplewell, J

    1981-03-01

    The purpose of this note is to show how the use of small angle neutron scattering (SANS) can provide fundamental information on the structure of magnetic colloid particles in stable liquid dispersion. A more detailed account elaborating the use of the technique to provide fundamental information on interactions will appear later. This contribution contains some principal results on particle structure. The technique of SANS provides a very sensitive means of measuring particle size by measuring the scattered neutron intensity, I(Q), as a function of scattered wave vector, Q.

  2. Particles with small violations of Fermi or Bose statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1991-01-01

    I discuss the statistics of ''quons'' (pronounced to rhyme with muons), particles whose annihilation and creation operators obey the q-deformed commutation relation (the quon algebra or q-mutator) which interpolates between fermions and bosons. Topics discussed include representations of the quon algebra, proof of the TCP theorem, violation of the usual locality properties, and experimental constraints on violations of the Pauli exclusion principle (i.e., Fermi statistics) and of Bose statistics

  3. Interaction of energetic particles with large and small scale instabilities

    International Nuclear Information System (INIS)

    Guenter, S.; Conway, G.; Graca, S. da; Fahrbach, H.-U.; Forest, C.; Munoz, M. Garcia; Hauff, T.; Hobirk, J.; Igochine, V.; Jenko, F.; Lackner, K.; Lauber, P.; McCarthy, P.; Maraschek, M.; Martin, P.; Poli, E.; Sassenberg, K.; Strumberger, E.; Tardini, G.; Wolfrum, E.; Zohm, H.

    2007-01-01

    Beyond a certain heating power, measured and predicted distributions of neutral beam injection (NBI) driven currents deviate from each other even in the absence of MHD instabilities. The most reasonable explanation is a redistribution of fast NBI ions on a time scale smaller than the current redistribution time. The hypothesis of a redistribution of fast ions by background turbulence is discussed. Direct numerical simulation of fast test particles in a given field of electrostatic turbulence indicates that for reasonable parameters fast and thermal particle diffusion can indeed be similar. High quality plasma edge density profiles on ASDEX Upgrade and the recent extension of the reflectometry system allow for a direct comparison of observed TAE eigenfunctions with theoretical ones as obtained with the linear, gyrokinetic, global stability code LIGKA. These comparisons support the hypothesis of TAE-frequency crossing the continuum at the plasma edge in ASDEX Upgrade H-mode discharges. A new fast ion loss detector with 1 MHz time resolution allows frequency and phase resolved correlation between the observed losses and low frequency magnetic perturbations such as TAE modes and rotating magnetic islands. Whereas losses caused by TAE modes are known to be due to resonances in velocity space, by modelling the particle drift orbits we were able to explain losses caused by magnetic islands as due to island formation and stochasticity in the drift orbits

  4. Development of real time detector for fluorescent particles applied to pollutant transfers characterization

    International Nuclear Information System (INIS)

    Prevost, C.

    1996-06-01

    The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the

  5. Experimental light scattering by small particles in Amsterdam and Granada

    Directory of Open Access Journals (Sweden)

    Volten H.

    2010-06-01

    Full Text Available We report on two light scattering instruments located in Amsterdam and Granada, respectively. These instruments enable measuring scattering matrices as functions of the scattering angle of collections of randomly orieneted irregular particles. In the past decades, the experimental setup located in Amsterdam, The Netherlands, has produced a significant amount of experimental data. Unfortunately, this setup was officially closed a couple of years ago. We also present a modernized descendant of the Dutch experimental setup recently constructed at the Instituto de Astrofísica de Andalucía (IAA in Granada, Spain. We give a brief description of the instruments, and present some representative results.

  6. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  7. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  8. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  9. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no rest...... as to handling of nanoparticles in lab-on-a-chip systems.......We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well...

  10. The Formation of Small Particles and Aggregates in the Rhine Estuary

    NARCIS (Netherlands)

    Eisma, D.; Kalf, J.; Veenhuis, M.

    1980-01-01

    Particulate matter in suspension in the Southern Bight of the North Sea consists mainly of more or less round, often loose aggregates (particles glued together with organic matter) and further of single mineral grains, some small (

  11. Application of spherical fly-ash particles to study spatial deposition of atmospheric pollutants in northen-eastern Estonia

    International Nuclear Information System (INIS)

    Alliksaar, T.

    2000-01-01

    Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)

  12. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  13. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential

  14. [Pollution Level and Source Apportionment of Atmospheric Particles PM₂.₅ in Southwest Suburb of Chengdu in Spring].

    Science.gov (United States)

    Lin, Yu; Ye, Zhi-xiang; Yang, Huai-jin; Zhang, Ju; Yin, Wei-wen; Li, Xiao-fen

    2016-05-15

    In order to understand the characteristics of PM₂.₅ pollution in the atmosphere of Chengdu southwest suburb, PM₂.₅ particles in Chengdu southwest suburb were collected and analyzed from March 18 to March 31st, 2015. The results showed that the daily average concentration of PM₂.₅ in the southwest suburb of Chengdu reached 121.21 µg · m⁻³, and the average daily concentration of 24 samples in 31 PM₂.₅ samples was over 75 µg · m⁻³, the daily excessive rate was 77%, indicating the PM₂.₅ pollution in the study area was serious in March. When studying the relationship between atmospheric and meteorological factors, it was found that there was a significant index correlation between PM₂.₅ concentration and atmospheric visibility, and it had a positive correlation with temperature and humidity, but the correlation was not obvious. NH₄⁺ (16.24%), SO₄²- (12.58%) and NO₃⁻ (9.91%) were dominant in PM₂.₅ The ratio of NO₃⁻/SO₄²⁻ was 0.77, which indicated that the pollution of stationary sources in the southwest suburb was more severe than that of mobile sources. Organic carbon (OC)/elemental carbon (EC) ratios were higher than 2, which indicated the existence of second organic carbon (SOC). Using OC/EC ratio method to estimate the concentration of SOC, it was found that the average concentration of SOC in the southwest suburb of Chengdu in March was 3.49 µ · m⁻³, and the contribution rate of OC was 20.6%, which showed that the main source of OC in the southwest suburb of Chengdu was primary discharge. The correlation analysis of OC and EC showed that the correlation coefficient reached 0.95, indicating that the OC and EC sources were similar and relatively stable, and there was a great impact of local source emissions on Chengdu southwest suburb in spring, and primary discharge played a dominant role, while the contribution of SOC to OC was relatively small, which was consistent with the SOC characteristics obtained

  15. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Energy Technology Data Exchange (ETDEWEB)

    Fruin, S. [California Air Resources Board, Sacramento (United States); University of Southern California, Los Angeles (United States). Keck School of Medicine, Department of Preventive Medicine; Westerdahl, D.; Sax, T. [California Air Resources Board, Sacramento (United States); Sioutas, C. [University of Southern California, Los Angeles (United States). Civil and Environmental Engineering; Fine, P.M. [University of Southern California, Los Angeles (United States). Civil and Environmental Engineering; South Coast Air Quality Management District, Diamond Bar, CA (United States)

    2008-01-15

    Motor vehicles are the dominant source of oxides of nitrogen (NO{sub x}), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction ({approx}6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  16. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    International Nuclear Information System (INIS)

    Fruin, S.; Sioutas, C.

    2008-01-01

    Motor vehicles are the dominant source of oxides of nitrogen (NO x ), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (∼6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  17. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Science.gov (United States)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  18. Differential embryotoxicity of the organic pollutants in rural and urban air particles

    International Nuclear Information System (INIS)

    Mesquita, Sofia R.; Drooge, Barend L. van; Oliveira, Eva; Grimalt, Joan O.; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2015-01-01

    Airborne particulate matter (PM) is a recognized risk factor for human populations. Here we assessed the toxic potential of the organic constituents from PM collected in urban and rural sites during warm and cold periods of 2012/2013, and fractionated into 6 size fractions. The finest PM fraction (<0.5 μm) showed the highest biological activity (dioxin-like activity and fish embryotoxicity) in all samples, and the maximal activity was observed in rural samples from the cold period. Zebrafish embryo transcriptome analysis showed a strong induction of the AhR signaling pathway correlated to PAH concentrations. Oxidative stress-related genes and pancreatic and eye-lens gene markers appeared de-regulated in embryos exposed to urban extracts, whereas exposure to rural extracts affected genes implicated in basic cellular functions. The observed effects can be directly related to air pollution-related human disorders, suggesting different potential adverse outcomes for human populations exposed to air pollution from specific sources. - Highlights: • Embryotoxicity of airborne organic compounds collected in urban and rural areas. • Ultrafine particles (<0.5 μm) accumulated most of the observed toxicity. • Strong seasonal differences in rural areas, probably linked to wood combustion. • Rural and urban samples showed quantitative and qualitative differences in toxicity. • At least one independent toxic modes of action especially linked to urban emissions. - Quantitative and qualitative differences in embryotoxic effects of airborne particulate matter from urban and rural areas.

  19. Lagrangian particle modeling of air pollution transport in southwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Uliasz, M. [Warsaw Univ. of Technology (Poland); Stocker, R.A.; Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Several modeling techniques of various complexity and accuracy are applied in a numerical modeling study of regional air pollution transport being performed within the Measurement Of Haze And Visual Effect (MOHAVE) project. The goal of this study is to assess the impact of the Mohave Power Project (MPP) and other potential sources of air pollution to specific Class I areas located in the desert southwest United States including the Grand Canyon National Park. The Colorado State University team is performing the daily meteorological and dispersion simulations for a year long study using a nonhydrostatic mesoscale meteorological model; the Regional Atmospheric Modeling System (RAMS) coupled with a Lagrangian particle dispersion (LPD) model. The modeling domain covers the southwestern United States with its extremely complex terrain. Two complementary dispersion modeling techniques: a traditional source-oriented approach and receptor-oriented approach are used to calculate concentration and influence function fields, respectively. All computations are performed on two IBM RISC-6000 workstations dedicated to the project. The goal of this paper is to present our design for daily dispersion simulations with an emphasis on influence function calculations using examples from the winter and summer intensive periods of the MOHAVE project.

  20. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  1. Direct radiative effects by anthropogenic particles at a polluted site: Rome (Italy)

    International Nuclear Information System (INIS)

    Bergamo, A.; De Tomasi, F.; Perrone, M.R.

    2008-01-01

    The direct radiative effect (DRE) by all (anthropogenic plus natural) and anthropogenic aerosols is calculated at the solar (0.34 μm) and infrared (4-200 μm) spectral range to better address the annual cycle of the anthropogenic aerosols impact at a site (Rome, Italy) significantly affected by pollution. Aerosol optical and microphysical properties from 2003 AERONET Sun/sky-photometer measurements and solar albedos based on MODIS satellite sensor data constitute the necessary input to radiative transfer simulations. Clear- and all-sky conditions are investigated by adopting ISCCP monthly products for high-, mid-and low-cloud cover. It is shown that monthly mean values of aerosol optical depths by anthropogenic particles (AOD a ) are on average more than 50% of the corresponding all-aerosol-optical-depth (AOD) monthly means. In particular, the AOD a /AOD ratio that varies within the (0.51-0.83) on autumn-winter (A W, October-March), varies within the (0.50-0.71 range on spring-summer (S S, April-September) as a consequence of the larger contribution of natural particles on S S. The surface (sfc), all-sky DRE by anthropogenic particles that is negative all year round at solar wave-lengths, represents on average 60% and 51% of the all-sky sfc-DRE by all aerosols on A W and S S, respectively. The all-sky atmospheric forcing by anthropogenic particles (AF a ) that is positive all year round, is little dependent on seasons: it varies within the (1.0-4.1) W/m 2 and (2.0-4.2) W/m 2 range an A W and S S, respectively. Conversely, the all-sky A F by all aerosols is characterized by a marked seasonality. As a consequence, the atmospheric forcing by anthropogenic particles that on average is 50% of the A F value on A W, decreases down to 36% of the A F value on S S. Infrared aerosols DREs that are positive all year round are significantly smaller than the corresponding absolute values of solar DREs. Clouds decrease on average ToA- and sfc-DRE absolute values by anthropogenic

  2. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  3. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Science.gov (United States)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  4. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  5. Fluorescent scattering by molecules embedded in small particles. Progress report, February 1, 1981-January 31, 1982

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1982-01-01

    In earlier work a model of fluorescent and Raman scattering by active molecules represented as classical electric dipoles embedded in small particles was developed. The intensity and angular distribution of the inelastically scattered radiation was shown to depend on the geometric and optical properties of the particle. The model was originally developed for particles having spherical shape and later extended to concentric spheres, cylinders, and prolate spheroids. The active molecules were originally assumed to be isotropically polarizable. The model has been recently extended to certain types of anisotropically polarizable molecules. The model had also been applied to particles having internal structure

  6. Electromagnetic scattering by a polydispersion of small charged cosmic dust particles

    Directory of Open Access Journals (Sweden)

    M. Kocifaj

    2011-09-01

    Full Text Available Some recent studies on extended red emissions suggest the presence of very small dust particles in the Universe. The sizes of these particles vary from 1 nm to some tens of nanometers, thus situating them deeply in the Rayleigh region if computations are made for visible or near infrared. The optical response of such particles can be a function of the surface charge. In this study we analyse the effect of surface electric potential on the total optical thickness and scattering phase function of the cosmic dust particles. The results are compared with those obtained for electrically neutral dust.

  7. Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder

    Science.gov (United States)

    Gong, Haijun; Dilip, J. J. S.; Yang, Li; Teng, Chong; Stucker, Brent

    2017-12-01

    The particle size distribution and powder morphology of metallic powders have an important effect on powder bed fusion based additive manufacturing processes, such as selective laser melting (SLM). The process development and parameter optimization require a fundamental understanding of the influence of powder on SLM. This study introduces a pre-alloyed titanium alloy Ti-6Al-4V powder, which has a certain amount of small particles, for SLM. The influence of small particle inclusion is investigated through microscopy of surface topography, elemental and microstructural analysis, and mechanical testing, compared to the Ti-6Al-4V powder provided by SLM machine vendor. It is found that the small particles inclusion in Ti-6Al-4V powder has a noticeable effect on extra laser energy absorption, which may develop imperfections and deteriorate the SLM fatigue performance.

  8. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    Science.gov (United States)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air

  9. Air pollution control and decreasing new particle formation lead to strong climate warming

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-02-01

    Full Text Available The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN, which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000 and future (year 2100 conditions. The present-day total aerosol forcing is increased from −1.0 W m−2 to −1.6 W m−2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m−2 to +1.4 W m−2. Two climate feedbacks are studied, resulting in additional negative forcings of −0.1 W m−2 (+10% DMS emissions in year 2100 and −0.5 W m−2 (+50% BVOC emissions in year 2100. With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  10. Air pollution control and decreasing new particle formation lead to strong climate warming

    Science.gov (United States)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  11. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Science.gov (United States)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  12. The Diffusion Process in Small Particles and Brownian Motion

    Science.gov (United States)

    Khoshnevisan, M.

    Albert Einstein in 1926 published his book entitled ''INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT''. He investigated the process of diffusion in an undissociated dilute solution. The diffusion process is subject to Brownian motion. Furthermore, he elucidated the fact that the heat content of a substance will change the position of the single molecules in an irregular fashion. In this paper, I have shown that in order for the displacement of the single molecules to be proportional to the square root of the time, and for v/2 - v 1 Δ =dv/dx , (where v1 and v2 are the concentrations in two cross sections that are separated by a very small distance), ∫ - ∞ ∞ Φ (Δ) dΔ = I and I/τ ∫ - ∞ ∞Δ2/2 Φ (Δ) dΔ = D conditions to hold, then equation (7a) D =√{ 2 D }√{ τ} must be changed to Δ =√{ 2 D }√{ τ} . I have concluded that D =√{ 2 D }√{ τ} is an unintended error, and it has not been amended for almost 90 years in INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 1926 publication.

  13. Dynamics of pollutant indicators during flood events in a small river under strong anthropogenic pressures

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the

  14. Localization in small fcc-particles with surface irregularities and disorder

    International Nuclear Information System (INIS)

    Bucher, J.P.; Bloomfield, L.A.

    1991-01-01

    A numerical eigenvector analysis is used to investigate Anderson localization in small fcc-particles of N = 309 and N = 147 atoms. Special attention is given to the way size and surface roughness of the particles influence the localization behavior. States begin to localize in a non-exponential regime several lattice spacings from the center of localization and finally converge to a fully exponentially-localized regime for strong disorder. For smooth surface particles, it is found that the states localize first at the band bottom and a mobility edge can clearly be defined for increasing disorder. This doesn't seem to be the case for the rougher particles, where the band middle and the band bottom show similar behavior towards localization. Although particles with surface irregularities show an onset of localization for smaller values of the disorder than smooth particles, the localization length is greater. (orig.)

  15. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    Science.gov (United States)

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  16. On the spatial distribution of small heavy particles in homogeneous shear turbulence

    Science.gov (United States)

    Nicolai, C.; Jacob, B.; Piva, R.

    2013-08-01

    We report on a novel experiment aimed at investigating the effects induced by a large-scale velocity gradient on the turbulent transport of small heavy particles. To this purpose, a homogeneous shear flow at Reλ = 540 and shear parameter S* = 4.5 is set-up and laden with glass spheres whose size d is comparable with the Kolmogorov lengthscale η of the flow (d/η ≈ 1). The particle Stokes number is approximately 0.3. The analysis of the instantaneous particle fields by means of Voronoï diagrams confirms the occurrence of intense turbulent clustering at small scales, as observed in homogeneous isotropic flows. It also indicates that the anisotropy of the velocity fluctuations induces a preferential orientation of the particle clusters. In order to characterize the fine-scale features of the dispersed phase, spatial correlations of the particle field are employed in conjunction with statistical tools recently developed for anisotropic turbulence. The scale-by-scale analysis of the particle field clarifies that isotropy of the particle distribution is tendentially recovered at small separations, even though the signatures of the mean shear persist down to smaller scales as compared to the fluid velocity field.

  17. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution.

    Science.gov (United States)

    Chen, Rui; Hu, Bin; Liu, Ying; Xu, Jianxun; Yang, Guosheng; Xu, Diandou; Chen, Chunying

    2016-12-01

    Air pollution constitutes the major threat to human health, whereas their adverse impacts and underlying mechanisms of different particular matters are not clearly defined. Ultrafine particles (UFPs) are high related to the anthropogenic emission sources, i.e. combustion engines and power plants. Their composition, source, typical characters, oxidative effects, potential exposure routes and health risks were thoroughly reviewed. UFPs play a major role in adverse impacts on human health and require further investigations in future toxicological research of air pollution. Unlike PM2.5, UFPs may have much more impacts on human health considering loads of evidences emerging from particulate matters and nanotoxicology research fields. The knowledge of nanotoxicology contributes to the understanding of toxicity mechanisms of airborne UFPs in air pollution. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    Science.gov (United States)

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  19. Transport of particles, drops, and small organisms in density stratified fluids

    Science.gov (United States)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  20. Morphology determination of small particles by electron microscopy and electrical conduction measurements

    International Nuclear Information System (INIS)

    Robrieux, B.; Desrousseaux, G.; Renou, A.; Gillet, M.

    1989-01-01

    In this paper, we show that it is possible to deduce the actual morphology of small particle condensed onto an insulator by combining the granularity analysis from electron micrographs and the electrical sheet conductance of the deposit on its substrate. Assuming the particles are truncated ellipsoids, we determine the excentricity and the contact angle with the substrate for Au on amorphous carbon and MgO substrates. (orig.)

  1. A remark on the sign change of the four-particle azimuthal cumulant in small systems

    Science.gov (United States)

    Bzdak, Adam; Ma, Guo-Liang

    2018-06-01

    The azimuthal cumulants, c2 { 2 } and c2 { 4 }, originating from the global conservation of transverse momentum in the presence of hydro-like elliptic flow are calculated. We observe the sign change of c2 { 4 } for small number of produced particles. This is in a qualitative agreement with the recent ATLAS measurement of multi-particle azimuthal correlations with the subevent cumulant method.

  2. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa; Mochrie, S. G. J.; Peppin, S. S. L.; Wettlaufer, J. S.

    2011-01-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  3. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  4. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  5. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    Science.gov (United States)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  6. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Directory of Open Access Journals (Sweden)

    L. Renbaum-Wolff

    2013-01-01

    Full Text Available Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions. The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η ranging between 10−3 and 103 Pascal seconds (Pa s in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures.

  7. Equilibrium Eulerian approach for predicting the thermal field of a dispersion of small particles

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, J. [University of Illinois, Urbana-Champaign, IL (United States). Center for Simulation of Advanced Rockets; Balachandar, S. [University of Illinois, Urbana-Champaign, IL (United States). Dept. of Theoretical and Applied Mechanics

    2005-02-01

    The equilibrium Eulerian method [J. Ferry, S. Balachandar, A fast Eulerian method for disperse two-phase flow, Int. J. Multiphase Flow 27 (7) (2001) 1199-1226] provides an accurate approximation to the velocity field of sufficiently small dispersed particles in a turbulent fluid. In particular, it captures the important physics of particle response to turbulent flow, such as preferential concentration and turbophoresis. It is therefore employed as an efficient alternative to solving a PDE to determine the particle velocity field. Here we explore two possible extensions of this method to determine the particle temperature field accurately and efficiently, as functions of the underlying fluid velocity and temperature fields. Both extensions are theoretically shown to be highly accurate for asymptotically small particles. Their behavior for finite-size particles is assessed in a DNS of turbulent channel flow (Re{sub {tau}} = 150) with a passive temperature field (Pr = 1). Here it is found that although the order of accuracy of the two extensions is the same, the constant factor by which one is superior to the other can be quite large, so the less accurate extension is appropriate only in the case of a very small mechanical-to-thermal response time ratio. (Author)

  8. Using digital images to measure and discriminate small particles in cotton

    Science.gov (United States)

    Taylor, Robert A.; Godbey, Luther C.

    1991-02-01

    Inages from conventional video systems are being digitized in coraputers for the analysis of small trash particles in cotton. The method has been developed to automate particle counting and area measurements for bales of cotton prepared for market. Because the video output is linearly proportional to the amount of light reflected the best spectral band for optimum particle discrimination should be centered at the wavelength of maximum difference between particles and their surroundings. However due to the spectral distribution of the illumination energy and the detector sensitivity peak image performance bands were altered. Reflectance from seven mechanically cleaned cotton lint samples and trash removed were examined for spectral contrast in the wavelength range of camera sensitivity. Pixel intensity histograms from the video systent are reported for simulated trashmeter area reference samples (painted dots on panels) and for cotton containing trash to demonstrate the particle discrimination mechanism. 2.

  9. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    Science.gov (United States)

    Vaattovaara, Petri

    2010-05-01

    the composition behaviour of the particles during multiple nucleation events. The overall results show a clear anthropogenic influence on the nucleation and Aitken mode particle compositions during the events. The SO2/MTOP and NOx/MTOP (MTOP, monoterpene oxidation products) ratios explain most strongly the variation in the nucleation mode composition during clean and pollution-affected events, suggesting also the importance of organic sulfur compounds, in addition to other sulfur, nitrogen and organic compounds, in particle formation, composition and properties. During the cleanest events, MTOP explain significantly the time behaviour of the 10 nm particle composition with an estimated organic fraction of over 95%. [1] P. Tunved et al., 2006, Science, 312, 261-263. [2] P. Vaattovaara et al., 2005, Atmos. Chem. Phys., 5, 3277-3287. [3] K. Hämeri et al., 2000, J. Geophys. Res. 105(D17), 22231-22242. [4] K. Sellegri et al., Atmos. Chem. Phys., 5, 373-384. [5] M. Boy et al., Atmos. Chem. Phys., 5, 863-878.

  10. Megacity pollution by modern Diesel cars: New insights into the nature and formation of volatile nano-particles with high lung intrusion efficiency

    Science.gov (United States)

    Arnold, F.; Reichl, U.; Muschik, Ch.; Roiger, A.; Schlager, H.; Pirjola, L.; Rönkkö, T.; Keskinen, J.; Rothe, D.; Lähde, T.

    2009-04-01

    Aerosol particles generated by Diesel vehicles represent mayor health affecting air pollutants in cities and near motor ways. To mitigate the Diesel particle pollution problem, Diesel vehicles become increasingly fitted or retro-fitted with modern exhaust after treatment systems (ATS), which remove most engine-generated primary particles, particularly soot. Unfortunately however, ATS have undesired side effects including also the formation of low vapour pressure gases, which may undergo nucleation and condensation leading to volatile nucleation particles (NUP). NUP are substantially smaller (diameters: 5-15 nm) than soot particles (diameters: 40-100 nm), and therefore may be termed real nano-particles. NUP can intrude with maximum efficiency the lowest, least protected, and most vulnerable compartment of the human lung. However, the chemical nature and mechanism of formation of NUP are only poorly explored. Using a novel mass spectrometric method, we have made the first on line and off line measurements of low vapour pressure NUP precursor gases in the exhaust of a modern heavy duty Diesel vehicle engine, operated with and without ATS and combusting low and ultra-low sulphur fuels including also bio fuel. In addition, we have made accompanying NUP measurements and NUP model simulations. The on line measurements involved a CIMS (Chemical Ionization Mass Spectrometry) method originally developed by MPIK. They took place directly in the Diesel exhaust and had a large sensitivity and a fast time response (1 s). The off line measurements involved adsorption of exhaust gases on stainless steel, followed by thermo desorption and detection of desorbed exhaust molecules by CIMS. We find that modern Diesel ATS strongly increase the formation of hydroxyl radicals, which induce conversion of fuel sulphur to the important NUP precursor gaseous sulphuric acid. We also find that appreciable amounts of di-carboxylic acids survive the passage of the ATS or are even formed by the

  11. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  12. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Pollution and power generation: environmental implications Small Hydroelectric Plants of Sao Paulo

    Directory of Open Access Journals (Sweden)

    Giorgia Limnios

    2015-06-01

    Full Text Available The current situation of water scarcity of of São Paulo State, manifested as imminent risk of shortages in major urban areas, has led not only to issues concerning preservation of water resources, but also problems related to energy availability, identified in a series of expeditions field carried out under the project " Electricity History of the State of Sao Paulo (1890-1960: Industrial Heritage , Landscape and Environment – Electromemory II”. The objective of this project is to study an extremely representative set of power plants and small hydroelectric power plants built during the initial period of electrification of the State of São Paulo – Brazil (1890-1960, along with its evolution within the social, historical and geographical aspects, to highlight the landscape changes resulting from the electrification process, as well as beneficiaries and impacts on landscape during the study period. In all visits, in addition to the problem of water scarcity, we verified that the power plants face generation constraints related to severe water pollution, either by diffuse or point sources. Some studies conducted in Brazil have analyzed the interference of pollution in power generation , highlighting the role of diffuse sources such as solid waste, sediments from areas with strong erosion, lubricant oils from vehicles or the development of invasive species, particularly as macrophytes, causative agents of biochemical changes that promote the formation of chemical compounds able to erode the electromechanical equipment of the plants or even prevent the flow of water intake into the same. The power plants covered by Electromemory II Project scope have these same problems, which prompted the need to establish a relationship between pollution in its various forms and the generation of electricity. To establish this bridge, the survey of publications and technical reports was necessary as well asresearches inenvironmental legislation

  14. Tuning the bridging attraction between large hard particles by the softness of small microgels.

    Science.gov (United States)

    Luo, Junhua; Yuan, Guangcui; Han, Charles C

    2016-09-20

    In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.

  15. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement

    NARCIS (Netherlands)

    Vellinga, M.M.; Oude Engberink, R.D.; Seewann, A.; Pouwels, P.J.W.; Wattjes, M.P.; van der Pol, S.M.A.; Pering, C.; Polman, C.H.; de Vries, H.E.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    Gadolinium-DTPA (Gd-DTPA) is routinely used as a marker for inflammation in MRI to visualize breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Recent data suggest that ultra-small superparamagnetic particles of iron oxide (USPIO) can be used to visualize cellular infiltration,

  16. Henry's Constants of Persistent Organic Pollutants by a Group-Contribution Method Based on Scaled-Particle Theory.

    Science.gov (United States)

    Razdan, Neil K; Koshy, David M; Prausnitz, John M

    2017-11-07

    A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.

  17. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    Directory of Open Access Journals (Sweden)

    J. V. Niemi

    2006-01-01

    Full Text Available Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east, intermediate period (PM1~5 µg m−3, backtrajectories from north-east and clean period (PM1~2 µg m−3, backtrajectories from north-west/north. The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM coupled with energy dispersive X-ray (EDX microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2–1 and PM1–3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2–1 samples were 1 soot and 2 (ammoniumsulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2–1 samples were 0–12% and 83–97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high (26–48% in the PM1–3.3 and PM3.3–11 samples, while the PM0.2–1 and PM1–3.3 samples contained elevated proportions of silicates (22–33%, metal oxides/hydroxides (1–9% and tar balls (1–4%. These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1–3.3 samples contained mainly sea salt particles (67–89% with a variable rate of Cl substitution (mainly by NO3−. During the intermediate period, the PM1–3.3 sample contained porous (sponge-like Na-rich particles (35% with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments

  18. [Fluorescent and Raman scattering by molecules embedded in small particles]: Annual report, 1983

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1983-01-01

    An overview is given of the model formulated for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions), cylindrical, and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incoherently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescence under excitation by evanescent waves

  19. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  20. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    OpenAIRE

    Niemi , J. V.; Saarikoski , S.; Tervahattu , H.; Mäkelä , T.; Hillamo , R.; Vehkamäki , H.; Sogacheva , L.; Kulmala , M.

    2006-01-01

    Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east), intermediate period (PM1~5 µg m−3, backtrajectories from north-east) and clean period (PM1~2 µg m−3, backtrajectories from north-west/north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were st...

  1. Responses of wild small mammals to a pollution gradient: Host factors influence metal and metallothionein levels

    International Nuclear Information System (INIS)

    Fritsch, Clementine; Cosson, Richard P.; Coeurdassier, Michael; Raoul, Francis; Giraudoux, Patrick; Crini, Nadia; Vaufleury, Annette de; Scheifler, Renaud

    2010-01-01

    We investigated how host factors (species, age, gender) modulated Cd, Pb, Zn, and Cu concentrations, metallothionein levels (MTs) and their relationships in 7 sympatric small mammal species along a pollution gradient. Cd concentrations in liver and kidneys increased with age in all species. Age effect on other metals and MTs differs among species. Gender did not influence metal and MT levels except in the bank vole. Three patterns linking internal metal concentrations and MTs were observed along the gradient: a low metal accumulation with a (i) high (wood mouse) or (ii) low (bank vole) level of MTs accompanied by a slight or no increase of MTs with Cd accumulation; (iii) an elevated metal accumulation with a sharp increase of MTs (common and pygmy shrews). In risk assessment and biomonitoring perspectives, we conclude that measurements of MTs and metals might be associated because they cannot be interpreted properly when considered separately. - Age more than gender and species more than trophic group influence metallic trace element and metallothionein levels and their relationships in wild small mammals exposed to metals.

  2. Indoor particulate pollution in fitness centres with emphasis on ultrafine particles.

    Science.gov (United States)

    Slezakova, Klara; Peixoto, Cátia; Oliveira, Marta; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2018-02-01

    Fitness centres (FC) represent a unique indoor microenvironment. Exercising on regular basis provides countless health benefits and improves overall well-being, but if these facilities have poor indoor air quality, the respective exercisers might be subjected to some adverse risks. Considering the limited existent data, this work aimed to evaluate particulate pollution (PM 10, PM 2.5 , and ultrafine particles - UFP) in indoor air of FC and to estimate the respective risks for occupants (both staff and exercising subjects). Sampling was conducted during 40 consecutive days of May-June 2014 in general fitness areas, studios and classrooms (for group activities) of four different fitness centres (FC1-FC4) situated within Oporto metropolitan area, Portugal. The results showed that across the four FC, PM 10 ranged between 5 and 1080 μg m -3 with median concentrations (15-43 μg m -3 ) fulfilling the limit (50 μg m -3 ) of Portuguese legislation in all FC. PM 2.5 (medians 5-37 μg m -3 ; range 5-777 μg m -3 ) exceeded thresholds of 25 μg m -3 at some FC, indicating potential risks for the respective occupants; naturally ventilated FC exhibited significantly higher PM ranges (p exercising. These results indicate that even short-term physical activity (or more specifically its intensity) might strongly influence the daily inhalation dose. Finally, women exhibited 1.2 times higher UFPs intake than men thus suggesting the need for future gender-specific studies assessing UFP exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands)

    International Nuclear Information System (INIS)

    Hamers, Timo; Berg, Johannes H.J. van den; Gestel, Cornelis A.M. van; Schooten, Frederik-Jan van; Murk, Albertinka J.

    2006-01-01

    A risk assessment was made for a carnivorous and a herbivorous food chain in a heavily polluted natural estuary (Biesbosch), by determining the most critical pollutants and the food chain most at risk. Exposure of food chains to metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) was assessed by analyzing dietary concentrations, internal concentrations, and biomarkers of exposure. Common shrew (Sorex araneus) and bank vole (Clethrionomys glareolus) were selected as representative small mammal species for the carnivorous and herbivorous food chain, respectively, and earthworms (Lumbricus rubellus) and snails (Cepaea nemoralis) as representative prey species for the carnivorous food chain. Metals contributed most to the total risk for small mammals and earthworms. PCBs, but not PAHs, contributed to the overall risk for S. araneus at regularly flooded locations. The carnivorous food chain appeared most at risk given the higher exposure levels and bioaccumulating potency found for contaminants in S. araneus. - In polluted floodplain areas, dietary exposure to metals poses a larger risk for small mammals in a carnivorous than in a herbivorous food chain

  4. Elucidating Turnover Pathways of Bioactive Small Molecules by Isotopomer Analysis: The Persistent Organic Pollutant DDT

    Science.gov (United States)

    Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen

    2014-01-01

    The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380

  5. A particle-in-cell method for modeling small angle Coulomb collisions in plasmas

    International Nuclear Information System (INIS)

    Parker, S.E.

    1989-01-01

    We propose a computational method to self-consistently model small angle collisional effects. This method may be added to standard Particle-In-Cell (PIC) plasma simulations to include collisions, or as an alternative to solving the Fokker-Planck (FP) equation using finite difference methods. The distribution function is represented by a large number of particles. The particle velocities change due to the drag force, and the diffusion in velocity is represented by a random process. This is similar to previous Monte-Carlo methods except we calculate the drag force and diffusion tensor self- consistently. The particles are weighted to a grid in velocity space and associated ''Poisson equations'' are solved for the Rosenbluth potentials. The motivation is to avoid the very time consuming method of Coulomb scattering pair by pair. First the approximation for small angle Coulomb collisions is discussed. Next, the FP-PIC collision method is outlined. Then we show a test of the particle advance modeling an electron beam scattering off a fixed ion background. 4 refs

  6. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yi-Hsin Tai

    2016-02-01

    Full Text Available This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system.

  7. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Science.gov (United States)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other

  8. A compact solid-state detector for small angle particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Barnaba, O.; Braghieri, A. E-mail: alessandro.braghieri@pv.infn.it; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F

    2000-09-21

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/{pi}{sup {+-}} identification and particle tracking in the region 7 deg. <{theta}<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances.

  9. A compact solid-state detector for small angle particle tracking

    International Nuclear Information System (INIS)

    Altieri, S.; Barnaba, O.; Braghieri, A.; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F.

    2000-01-01

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/π ± identification and particle tracking in the region 7 deg. <θ<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances

  10. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    Science.gov (United States)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  11. Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Zbořil, R.; Matys Grygar, Tomáš; Kotlík, B.; Novák, J.; Kapička, Aleš; Grison, Hana

    2013-01-01

    Roč. 57, č. 4 (2013), s. 755-770 ISSN 0039-3169 R&D Projects: GA ČR GAP210/10/0554 Institutional support: RVO:67985530 ; RVO:61388980 Keywords : magnetite * atmospheric dust * pollution * rock magnetism Subject RIV: DI - Air Pollution ; Quality Impact factor: 0.752, year: 2013

  12. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  13. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  14. Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jankovska, Ivana, E-mail: jankovska@af.czu.c [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Miholova, Daniela [Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Langrova, Iva [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Bejcek, Vladimir [Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Vadlejch, Jaroslav [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Kolihova, Dana; Sulc, Miloslav [Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic)

    2009-08-15

    Bioaccumulation of cadmium, chromium, copper, manganese, nickel, lead and zinc in small terrestrial rodents - voles and their cestode parasite Paranoplocephala dentata was studied. Contents of Pb, Mn, Ni and Zn in the parasite were found to be higher than in the kidney and liver of the parasitized animals. Lead level in the cestode was 37 fold higher than in the liver of the infected rodents. Bioaccumulation factors of zinc, nickel and manganese in the cestode are mostly in the range from 2 to 4.5. Considering the different contents of manganese and zinc in livers of non-parasitized and parasitized rodents, kidney tissue was found to be more reliable than liver as an indicator of environmental pollution by manganese and zinc; the kidneys of parasitized animals showed no significant change in the concentrations of those elements that are accumulated in the cestode. - Liver tissue from voles infected by Paranoplocephala dentata was less suitable as a biomonitor for metal contamination than kidney tissue.

  15. Modification of Pawlow's thermodynamical model for the melting of small single-component particles

    Science.gov (United States)

    Barybin, Anatoly; Shapovalov, Victor

    2011-02-01

    A new approach to the melting of small particles is proposed to modify the known Pawlow's model by taking into account the transfer of material from solid spherical particles to liquid ones through a gas phase. Thermodynamical analysis gives rise to a differential equation for the melting point Tm involving such size-dependent and temperature-dependent parameters of a material as the surface tensions σs(l ), molar heat of fusion ΔHm and molar volumes vs(l ). Solution of this equation has shown that all the limiting cases for size-independent situations coincide with results known in the literature and our analysis of size-dependent situations gives results close to the experimental data previously obtained by other authors for some metallic particles.

  16. DAILY SCHEDULING OF SMALL HYDRO POWER PLANTS DISPATCH WITH MODIFIED PARTICLES SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Sinvaldo Rodrigues Moreno

    2015-04-01

    Full Text Available This paper presents a new approach for short-term hydro power scheduling of reservoirs using an algorithm-based Particle Swarm Optimization (PSO. PSO is a population-based algorithm designed to find good solutions to optimization problems, its characteristics have encouraged its adoption to tackle a variety of problems in different fields. In this paper the authors consider an optimization problem related to a daily scheduling of small hydro power dispatch. The goal is construct a feasible solution that maximize the cascade electricity production, following the environmental constraints and water balance. The paper proposes an improved Particle Swarm Optimization (PSO algorithm, which takes advantage of simplicity and facility of implementation. The algorithm was successfully applied to the optimization of the daily schedule strategies of small hydro power plants, considering maximum water utilization and all constraints related to simultaneous water uses. Extensive computational tests and comparisons with other heuristics methods showed the effectiveness of the proposed approach.

  17. Comparative discussion on some measurements of the atmospheric natural radioactivity and pollution with coal smoke particles

    International Nuclear Information System (INIS)

    Zoran, M.

    1977-01-01

    The results of measuring the natural radioactivity and coal smoke pollution are discussed for two sites in an industrial town, as well as for two heights at the same site, in connection with large scale and local atmospheric stability. The effects of the radiation fog upon the radon daughters acumulation near the ground are examined in some detail. By comparing the pollutant diurnal variations during two periods of similar atmospheric stability in autumn, respectively in winter, the contribution from the dwelling coal heating has been estimated to be about half of the total pollution in the town. (author)

  18. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    OpenAIRE

    Pereira, H; Haug, F; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of...

  19. Particle size determination in small solid propellant rocket motors using the diffractively scattered light method.

    OpenAIRE

    Cramer, Robert Grewelle.

    1982-01-01

    Approved for public release; distribution unlimited A dual beam apparatus was developed which simultaneously measured particle size (D32) at the entrance and exit of an exhaust nozzle of a small solid propellant rocket motor. The diameters were determined using measurements of dif fractiveiy scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide powder. Measurements were successfully made at both locations. Because of...

  20. Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Šmilauerová, J.; Harcuba, P.; Stráský, J.; Stráská, J.; Janeček, M.; Pospíšil, J.; Kužel, R.; Brunátová, T.; Holý, V.; Ilavský, J.

    2014-01-01

    Nanosized particles of ω phase in a β-Ti alloy were investigated by small-angle X-ray scattering using synchrotron radiation. We demonstrated that the particles are spontaneously weakly ordered in a three-dimensional cubic array along the 〈100〉-directions in the β-Ti matrix. The small-angle scattering data fit well to a three-dimensional short-range-order model; from the fit we determined the evolution of the mean particle size and mean distance between particles during ageing. The self-ordering of the particles is explained by elastic interaction between the particles, since the relative positions of the particles coincide with local minima of the interaction energy. We performed numerical Monte Carlo simulation of the particle ordering and we obtained a good agreement with the experimental data

  1. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  2. Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements

    Science.gov (United States)

    Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T.

    2014-04-01

    We have investigated the behaviour of light scattering by particulates of various sizes (0.1 μm to 100 μm) at a small scattering angle (below 20°). It has been previously shown that, for a small angle, the scattered intensities are weakly dependent upon the particulates' composition (Renard et al., 2010). Particles found in the atmosphere exhibit roughness that leads to large discrepancies with the classical Mie solution in terms of scattered intensities in the low angular set-up. This article focuses on building an effective theoretical tool to predict the behaviour of light scattering by real particulates at a small scattering angle. We present both the classical Mie theory and its adaptation to the case of rough particulates with a fairly simple roughness parameterisation. An experimental device was built, corresponding to the angular set-up of interest (low scattering angle and therefore low angular aperture). Measurements are presented that confirm the theoretical results with good agreement. It was found that differences between the classical Mie solution and actual measurements - especially for large particulates - can be attributed to the particulate roughness. It was also found that, in this low angular set-up, saturation of the scattered intensities occurs for relatively small values of the roughness parameter. This confirms the low variability in the scattered intensities observed for atmospheric particulates of different kinds. A direct interest of this study is a broadening of the dynamic range of optical counters: using a small angle of aperture for measurements allows greater dynamics in terms of particle size. Thus it allows a single device to observe a broad range of particle sizes whilst utilising the same electronics.

  3. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    International Nuclear Information System (INIS)

    Baia, M; Melinte, G; Iancu, V; Baia, L; Barbu-Tudoran, L; Diamandescu, L; Cosoveanu, V; Danciu, V

    2011-01-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10 -1 -10 -4 M for acrylamide and around 10 -5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  4. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Energy Technology Data Exchange (ETDEWEB)

    Baia, M; Melinte, G; Iancu, V; Baia, L [Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca (Romania); Barbu-Tudoran, L [Faculty of Biology and Geology, Babes-Bolyai University, 400015, Cluj-Napoca (Romania); Diamandescu, L [National Institute of Materials Physics, PO Box MG-7, 77125, Bucharest-Magurele (Romania); Cosoveanu, V; Danciu, V, E-mail: lucian.baia@phys.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca (Romania)

    2011-07-06

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10{sup -1}-10{sup -4} M for acrylamide and around 10{sup -5} M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  5. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    Science.gov (United States)

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  6. Fractionation of HeLa cell nuclear extracts reveals minor small nuclear ribonucleoprotein particles

    International Nuclear Information System (INIS)

    Kroemer, A.

    1987-01-01

    Upon chromatographic fractionation of HeLa cell nuclear extracts, small RNAs of 145 and 66/65 nucleotides, respectively, were detected that are distinct from the abundant small RNAs present in the extract. These RNAs are precipitated by antibodies directed against the trimethylguanosine cap structure, characteristic for small nuclear RNAs (snRNAs) of the U type. The RNAs of 145 and 66/65 nucleotides appear to be associated with at least one of the proteins common to the major small nuclear ribonucleoprotein particles U1 to U6, since they are specifically bound by anti-Sm antibodies. These criteria characterize the RNAs that are 145 and 66/65 nucleotides in length as U-type snRNAs. Upon gel filtration, the RNAs are found within particles of molecular weights ≅ 150,000 and 115,000 respectively. The RNA of 145 nucleotides represents a different minor snRNA, designated U11, whereas the RNA of 66/65 nucleotides may correspond to either mammalian U7 or U10 RNA

  7. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  8. Particle Swarm Optimization-based BP Neural Network for UHV DC Insulator Pollution Forecasting

    Directory of Open Access Journals (Sweden)

    Fangcheng Lü

    2014-02-01

    Full Text Available In order to realize the forecasting of the UHV DC insulator's pollution conditions, we introduced a PSOBP algorithm. A BP neural network (BPNN with leakage current, temperature, relative humidity and dew point as input neurons, and ESDD as output neuron was built to forecast the ESDD. The PSO was used to optimize the the BPNN, which had great improved the convergence rate of the BP neural network. The dew point as a brand new input unit has improved the iteration speed of the PSOBP algorithm in this study. It was the first time that the PSOBP algorithm was applied to the UHV DC insulator pollution forecasting. The experiment results showed that the method had great advantages in accuracy and speed of convergence. The research showed that this algorithm was suitable for the UHV DC insulator pollution forecasting.

  9. Use of instrumental nuclear activation methods in the study of particles from major air pollution sources

    International Nuclear Information System (INIS)

    Gordon, G.E.; Zoller, W.H.; Gladney, E.S.; Greenberg, R.R.

    1974-01-01

    Nuclear methods have been used effectively in the study of particles emitted by a coal-fired power plant and a municipal incinerator. In the coal-fired plant there is appreciable fractionation of only five of the observed elements. By contrast, particles from the incinerator are highly enriched in several trace elements

  10. Size distribution of natural aerosols and radioactive particles issued from radon, in marine and hardly polluted urban atmospheres

    International Nuclear Information System (INIS)

    Tymen, Georges.

    1979-03-01

    With a view to studying the natural radioactive particles produced by atttachment of 222 Rn daughters on environmental aerosol particles, the behaviours of CASELLA MK2 and ANDERSEN cascade impactors were first investigated. Their characteristic stage diameters were determined and size distributions of airborne particles were obtained in various situations. Moreover, an experimental and automatic equipment for measuring radon was devised and a method was developed in order to evaluate RaA, RaB, RaC concentrations in the free atmosphere. A degree of radioactive desequilibrium between 222 Rn and its daughters, more important than that in other locations was thus demonstrated. Furthermore, by means of various aerosol collection systems (ion tubes, diffusion batteries, cascade impactors, filters), the cumulative size distribution of natural radioactivity was established in the air, at ground level. Finally, from a theory of attachment of small radioactive ions on atmospheric particles, a tentative explanation of experimental results was made [fr

  11. In-situ TEM investigations of graphic-epitaxy and small particles

    Science.gov (United States)

    Heinemann, K.

    1983-01-01

    Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted; the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence.

  12. Limestone particle attrition and size distribution in a small circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhongxiang Chen; John R. Grace; C. Jim Lim [University of British Columbia, Vancouver, BC (Canada). Department of Chemical and Biological Engineering

    2008-06-15

    Limestone particle attrition was investigated in a small circulating fluidized bed reactor at temperatures from 25 to 850{sup o}C, 1 atm pressure and superficial gas velocities from 4.8 to 6.2 m/s. The effects of operating time, superficial gas velocity and temperature were studied with fresh limestone. No calcination or sulfation occurred at temperatures {le} 580{sup o}C, whereas calcination and sulfation affected attrition at 850{sup o}C. Increasing the temperature (while maintaining the same superficial gas velocity) reduced attrition if there was negligible calcination. Attrition was high initially, but after about 24 h, the rate of mass change became constant. The ratio of initial mean particle diameter to that at later times increased linearly with time and with (U{sub g} - U{sub mf}){sup 2}, while decreasing exponentially with temperature, with an activation energy for fresh limestone of -4.3 kJ/mol. The attrition followed Rittinger's surface theory. The change of surface area of limestone particles was proportional to the total excess kinetic energy consumed and to the total attrition time, whereas the change of surface area decreased exponentially with increasing temperature. At 850{sup o}C, the attrition rate of calcined lime was highest, whereas the attrition rate was lowest for sulfated particles. When online impact attrition was introduced, the attrition rate was about an order of magnitude higher than without impacts. 25 refs., 14 figs., 4 tabs.

  13. Correlations of particle number concentrations and metals with nitrogen oxides and other traffic-related air pollutants in Glasgow and London

    Science.gov (United States)

    Sánchez Jiménez, Araceli; Heal, Mathew R.; Beverland, Iain J.

    2012-07-01

    Particle number concentration (PNC) and transition metal content are implicated in the health effects of airborne particulate matter (PM) but they are difficult to measure so consequently their temporal and spatial variations are not well characterized. Daily concentrations of PNC and particle-bound water-soluble metals (V, Cr, Mn, Fe, Ni, Cu, As, Cd and Pb) were measured at background and kerbside sites in Glasgow and London to examine if other metrics of air pollution such as optical darkness (absorbance) of collected filter samples of PM, gravimetric PM, and NO, NO2 and CO gas concentrations, can be used as surrogates for the temporal and spatial variations of the former. NO2 and NOx exhibited a high degree of within-site correlation and with PNC and water-soluble metals (Fe, Cu, As, Cd, Pb) at background sites in both cities. There is therefore potential to use NO2 and NOx as surrogates for PNC and water-soluble metal at background sites. However, correlation was weaker in complex street canyon environments where pollutant concentrations are strongly affected by local sources and the small-scale variations in pollutant dispersion induced by the wind regimes within street canyons. The corollary of the high correlation between NO2 and PNC and water-soluble metals at the background sites is that the latter pollutants may act as confounders for health effects attributed to NO2 from such sites. Concentrations of CO cannot be used as a surrogate for PNC. Increments in daily NOx and NO2 concentrations between trafficked and background sites were shown to be a simple and novel surrogate for daily spatial variation of PNC; for example, increments in NOx explained 78-79% of the variance in PNC at the paired sites in both Glasgow and London, but relationships were city specific. The increments in NOx also explained 70% of the spatial variation in Cu and Ni in Glasgow but not in London. Weekly NO2 measurements derived from passive diffusion tubes were also shown to

  14. Small Airway Absorption and Microdosimetry of Inhaled Corticosteroid Particles after Deposition.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2017-10-01

    To predict the cellular-level epithelial absorbed dose from deposited inhaled corticosteroid (ICS) particles in a model of an expanding and contracting small airway segment for different particle forms. A computational fluid dynamics (CFD)-based model of drug dissolution, absorption and clearance occurring in the surface liquid of a representative small airway generation (G13) was developed and used to evaluate epithelial dose for the same deposited drug mass of conventional microparticles, nanoaggregates and a true nanoaerosol. The ICS medications considered were budesonide (BD) and fluticasone propionate (FP). Within G13, total epithelial absorption efficiency (AE) and dose uniformity (microdosimetry) were evaluated. Conventional microparticles resulted in very poor AE of FP (0.37%) and highly nonuniform epithelial absorption, such that <5% of cells received drug. Nanoaggregates improved AE of FP by a factor of 57-fold and improved dose delivery to reach approximately 40% of epithelial cells. True nanoaerosol resulted in near 100% AE for both drugs and more uniform drug delivery to all cells. Current ICS therapies are absorbed by respiratory epithelial cells in a highly nonuniform manner that may partially explain poor clinical performance in the small airways. Both nanoaggregates and nanoaerosols can significantly improve ICS absorption efficiency and uniformity.

  15. Limitation of the Mellin transform for small angle scattering by nearly spherical particles

    International Nuclear Information System (INIS)

    Melone, S.; Puliti, P.

    1983-01-01

    An analysis of the limit of validity of the Mellin transform when applied to small angle scattering curves produced by nearly spherical particles, i.e. by ellipsoids of semi-axes, a, a, va, was performed. The width of the assumed Gaussian distribution for the v values was used as a parameter. When this width tends to zero the inaccuracy of the Mellin transform vanishes as expected. However the inaccuracy becomes appreciable for large values of the width. In spite of this, the total volume fraction and the average radius of the scattering particles is also obtained by the Mellin transform with very high accuracy for large values of the width of the Gaussian distribution. (orig.)

  16. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after neu...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  17. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    Science.gov (United States)

    Pablo A. Garcia-Chevesich; Sergio Alvarado; Daniel G. Neary; Rodrigo Valdes; Juan Valdes; Juan Jose Aguirre; Marcelo Mena; Roberto Pizarro; Paolo Jofre; Mauricio Vera; Claudio Olivares

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of...

  18. Air pollution control and decreasing new particle formation lead to strong climate warming

    OpenAIRE

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-01-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increa...

  19. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    Directory of Open Access Journals (Sweden)

    H. Yu

    2016-03-01

    Full Text Available Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014–2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity – RH and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm−3 s−1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56–0.86, excluding a day with significant nocturnal nucleation, but the correlation among all eight events deteriorated (R2 =  0.17 due to temperature or season change. We observed that new particle growth rate (GR did not increase monotonically with particle size, but had a local maximum up to 25 nm h−1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  20. Is long-term exposure to traffic pollution associated with mortality? A small-area study in London

    International Nuclear Information System (INIS)

    Halonen, Jaana I.; Blangiardo, Marta; Toledano, Mireille B.; Fecht, Daniela; Gulliver, John; Ghosh, Rebecca; Anderson, H. Ross; Beevers, Sean D.; Dajnak, David; Kelly, Frank J.; Wilkinson, Paul; Tonne, Cathryn

    2016-01-01

    Long-term exposure to primary traffic pollutants may be harmful for health but few studies have investigated effects on mortality. We examined associations for six primary traffic pollutants with all-cause and cause-specific mortality in 2003–2010 at small-area level using linear and piecewise linear Poisson regression models. In linear models most pollutants showed negative or null association with all-cause, cardiovascular or respiratory mortality. In the piecewise models we observed positive associations in the lowest exposure range (e.g. relative risk (RR) for all-cause mortality 1.07 (95% credible interval (CI) = 1.00–1.15) per 0.15 μg/m"3 increase in exhaust related primary particulate matter ≤2.5 μm (PM_2_._5)) whereas associations in the highest exposure range were negative (corresponding RR 0.93, 95% CI: 0.91–0.96). Overall, there was only weak evidence of positive associations with mortality. That we found the strongest positive associations in the lowest exposure group may reflect residual confounding by unmeasured confounders that varies by exposure group. - Highlights: • Evidence of association between primary traffic pollutants and mortality is scarce. • We examined this in a large city using most recent small-area statistical methods. • Overall, there was only weak evidence of positive associations with mortality. - Overall, there was only weak evidence of positive associations between long-term exposure to primary traffic pollutants and mortality for all, cardiovascular or respiratory causes.

  1. Small-threshold behaviour of two-loop self-energy diagrams: two-particle thresholds

    International Nuclear Information System (INIS)

    Berends, F.A.; Davydychev, A.I.; Moskovskij Gosudarstvennyj Univ., Moscow; Smirnov, V.A.; Moskovskij Gosudarstvennyj Univ., Moscow

    1996-01-01

    The behaviour of two-loop two-point diagrams at non-zero thresholds corresponding to two-particle cuts is analyzed. The masses involved in a cut and the external momentum are assumed to be small as compared to some of the other masses of the diagram. By employing general formulae of asymptotic expansions of Feynman diagrams in momenta and masses, we construct an algorithm to derive analytic approximations to the diagrams. In such a way, we calculate several first coefficients of the expansion. Since no conditions on relative values of the small masses and the external momentum are imposed, the threshold irregularities are described analytically. Numerical examples, using diagrams occurring in the standard model, illustrate the convergence of the expansion below the first large threshold. (orig.)

  2. Diffusion of test particles in stochastic magnetic fields for small Kubo numbers

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed

  3. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  4. Atom land guided tour through the strange (and impossibly small) world of particle physics

    CERN Document Server

    Butterworth, Jon

    2018-01-01

    For fans of Seven Brief Lessons on Physics and Astrophysics for People in a Hurry: a richly conjured world, in map and metaphor, of particle physics. Atom Land brings the impossibly small world of particle physics to life, taking readers on a guided journey through the subatomic world. Readers will sail the subatomic seas in search of electron ports, boson continents, and hadron islands. The sea itself is the quantum field, complete with quantum waves. Beware dark energy and extra dimensions, embodied by fantastical sea creatures prowling the far edges of the known world. Your tour guide through this whimsical—and highly instructive— world is Jon Butterworth, leading physicist at CERN (the epicenter of today’s greatest findings in physics). Over a series of journeys, he shows how everything fits together, and how a grasp of particle physics is key to unlocking a deeper understanding of many of the most profound mysteries—and science’s possible answers—in the known universe.

  5. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    Science.gov (United States)

    Yue, D. L.; Hu, M.; Wu, Z. J.; Guo, S.; Wen, M. T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X. S.; Li, Y. P.; Zeng, L. M.; Zhang, Y. H.

    2010-10-01

    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm-3, about 40% lower than that at GZ, (2.9±1.1)×104 cm-3. The total particle volume concentration at BG was 94±34 μm3 cm-3, similar to that at GZ, 96±43 μm3 cm-3. More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m-3) and BG (69±58 μg m-3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42-, NO3- accounted for about 60% in 100-660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42-, NO3-, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.

  6. Abatement of mercury pollution in the small-scale gold mining industry: restructuring the policy and research agendas.

    Science.gov (United States)

    Hilson, Gavin

    2006-06-01

    This paper critiques contemporary research and policy approaches taken toward the analysis and abatement of mercury pollution in the small-scale gold mining sector. Unmonitored releases of mercury from gold amalgamation have caused considerable environmental contamination and human health complications in rural reaches of sub-Saharan Africa, Latin America and Asia. Whilst these problems have caught the attention of the scientific community over the past 15-20 years, the research that has since been undertaken has failed to identify appropriate mitigation measures, and has done little to advance understanding of why contamination persists. Moreover, the strategies used to educate operators about the impacts of acute mercury exposure, and the technologies implemented to prevent further pollution, have been marginally effective at best. The mercury pollution problem will not be resolved until governments and donor agencies commit to carrying out research aimed at improving understanding of the dynamics of small scale gold mining communities. Acquisition of this knowledge is the key to designing and implementing appropriate support and abatement measures.

  7. Game animals and small terrestrial mammals - Suitable bioindicators for the pollution assessment in agrarian ecosystems

    Czech Academy of Sciences Publication Activity Database

    Vávrová, M.; Zlámalová Gargošová, H.; Šucman, E.; Večerek, V.; Kořínek, P.; Zukal, Jan; Zejda, Jan; Sebestiánová, N.; Kubištová, I.

    2003-01-01

    Roč. 12, č. 2 (2003), s. 165-172 ISSN 1018-4619 R&D Projects: GA AV ČR KSK6005114 Keywords : bioindicator s * agrarian ecosystems * pollution Subject RIV: EH - Ecology, Behaviour Impact factor: 0.325, year: 2003 http://www.psp-parlar.de/details_artikel.asp?tabelle=FEBArtikel&artikel_id=234&jahr=2003

  8. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  9. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi

    2016-01-01

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible

  10. PREVENTING POLLUTION USING ISO 14001 AT A PARTICLE ACCELERATOR THE RELATIVISTIC HEAVY ION COLLIDER PROJECT

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.; MUSOLINO, S.V.

    2001-01-01

    In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations

  11. [Light scattering extinction properties of atmospheric particle and pollution characteristics in hazy weather in Hangzhou].

    Science.gov (United States)

    Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan

    2014-12-01

    In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.

  12. SEM-EDX IDENTIFICATION OF PARTICLES FROM FOG IN AN INDUSTRIALLY POLLUTED REGION OF CZECH REPUBLIC

    Czech Academy of Sciences Publication Activity Database

    Stoyanova, V.; Shoumkova, A.; Fišák, Jaroslav; Tsacheva, Ts.

    Vol. II - BUA32, č. 1 (2010), s. 269-276 ISSN 1314-2704. [International Multidisciplinary Scientific GeoConference SGEM 2010 /10./. Albena, 20.06.2010-26.06.2010] Institutional research plan: CEZ:AV0Z30420517 Keywords : SEM-EDX * solid atmospheric pollutants * trace elements * heavy metals * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.ipc.bas.bg/PPages/Shoumkova/Publications/Articles/2010%20SEM-EDX%20identification%20of%20FP.pdf

  13. Numerical investigation of pollution transport and environmental improvement measures in a tidal bay based on a Lagrangian particle-tracking model

    Directory of Open Access Journals (Sweden)

    En-jin Zhao

    2018-01-01

    Full Text Available In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM, a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and water exchange capability in Tangdao Bay, in China. The severe pollution in the bay was numerically simulated by releasing and tracking particles inside it. The simulation results demonstrate that the water exchange capability in the bay is very low. Once the bay has suffered pollution, a long period will be required before the environment can purify itself. In order to eliminate or at least reduce the pollution level, environmental improvement measures have been proposed to enhance the seawater exchange capability and speed up the water purification inside the bay. The study findings presented in this paper are believed to be instructive and useful for future environmental policy makers and it is also anticipated that the numerical model in this paper can serve as an effective technological tool to study many emerging coastal environment problems. Keywords: Particle-tracking, Water exchange capability, Lagrangian system, Coastal pollution, Tangdao bay, FVCOM

  14. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  15. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  16. [Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at Mount Dinghu in autumn season].

    Science.gov (United States)

    Liu, Zi-Rui; Wang, Yue-Si; Liu, Quan; Liu, Lu-Ning; Zhang, De-Qiang

    2011-11-01

    Real-time measurements of PM2.5, secondary inorganic compounds in PM2.5 (SO4(2-), NH4(+), and NO3(-)) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM2.5 were 76.9 microg x m(-3) during sampling period, and average daily mass concentrations of SO4(2-), NH4(+), and NO3(-) were 20.0 microg x m(-3), 6.8 microg x m(-3) and 2.6 microg x m(-3), respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM2.5 mass concentration, which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2.5, SO4(2-), and NH4(+) all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm, respectively, whereas NO3(-s) howed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO4(2-) in PM2.5 had the similar diurnal variation with that of SO2, SO4(2-) in PM2.5 was mainly transformed from SO2, whereas NO3(-) showed difference diurnal variation with that of NO2, and the second conversion rate of NO2 was far lower than that of SO2. NH4(+) in PM2.5 existed mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also

  17. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    Science.gov (United States)

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona.

    Science.gov (United States)

    van Drooge, Barend L; Prats, Raimon M; Reche, Cristina; Minguillón, MariCruz; Querol, Xavier; Grimalt, Joan O; Moreno, Teresa

    2018-06-09

    Underground subways transport large numbers of citizens in big cities, which must breathe air with limited ventilation. These atmospheric conditions may enhance the concentration of air pollutants from both outdoor and indoor air. The influence of ventilation conditions and maintenance activities on the concentrations of air pollutants have been studied. Particulate matter with aerodynamic diameter smaller than 2.5 μm (PM 2.5 ) in indoor air was sampled in ten platforms of nine subway stations of the metropolitan area of Barcelona in 2015 and 2016. These particles were analyzed for polycyclic aromatic hydrocarbons (PAH) and organic tracer compounds. The concentrations of PAH were in the range of the street air levels with higher PAH values in the colder period. No influence of nighttime maintenance activities was observed on the platform air quality during daytime. Source apportionment analysis using the concentrations of hopanes, nicotine and levoglucosan as molecular tracer compounds showed that 75% of the detected PAH at the platforms have an outdoor PM origin. The modern subway stations, with advanced ventilation and platform screen doors that separate the subway system from the platform, showed lowest PAH and PM concentrations. Copyright © 2018. Published by Elsevier B.V.

  19. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  20. Factors that determine the emission of gaseous and particle pollutants for the combustion of fossil fuels

    International Nuclear Information System (INIS)

    Bobadilla Edgar; Gomez Elias; Ramirez Beatriz

    1997-01-01

    The effect of physical-chemical, kinetic, estequiometric factors and of the mixture conditions on the emissions of five main classes of pollutants produced by the combustion equipments is analyzed. The emissions of monoxide of carbon (CO) are ruled by temperature and the proportion air - fuel. The production of nitrogen oxides (NOx) is determined by operation conditions (mainly temperature) and the composition of the fuel. The oxides of sulfur (SOx) are highly influenced by the temperature; in general, the formation of SO2 is faster than the oxidation of SO3. The temperature and the degree of homogenization of the mixture are decisive in the formation of organic volatile compounds. The emission of soot and fine ashes depends basically on the temperature, ratio air - fuel and conditions of homogenization of the mixture

  1. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top...... of the bed than smaller particles and high-density fuel particles. Fuel particle dimensions and sphericity were important parameters for the percentage of visible particles. Increasing bed fill degree and/or increasing rotational speed decreased the percentage of particles visible on top of the bed...

  2. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    Science.gov (United States)

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors. J Drugs Dermatol. 2016;15(9):1076-1082.

  3. Rapid separation of lanthanides and actinides on small particle based reverse phase supports

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    This paper presents the results on the use of short columns (3-5 cm long) with small particle size (1.8 {mu}m) for high performance liquid chromatographic separation of individual lanthanides and uranium from plutonium as well as uranium from thorium to achieve rapid separations i.e. separation time as short as 3.6 min for individual lanthanides, 1 min for thorium-uranium and 4.2 min for uranium from plutonium. These advantages can be exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator when radioactive samples are analysed e.g. burn-up determination. In the present work, a dynamic ion-exchange chromatographic separation technique was employed using camphor-10-sulfonic acid (CSA) as the ion-pairing reagent and {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) as the complexing reagent for the isolation of individual lanthanides as well as the separation of uranium from thorium. Uranium was separated from Pu(III) as well as Pu(IV) by reverse phase HPLC technique. The reverse phase HPLC was also investigated for the isolation and quantitative determination of uranium from thorium as well as lanthanide group from uranium. The dynamic ion-exchange technique using small particle support was demonstrated for measuring the concentrations of lanthanide fission products such as La, Ce, Pr, Nd and Sm in the dissolver solution of fast reactor fuel. Similarly, the assay of uranium in the dissolver solution of fast reactor was carried out using reverse phase HPLC technique. The rapid separation technique using reverse phase HPLC was also demonstrated for separation of lanthanides as a group from uranium matrix; samples of LiCl-KCl eutectic salt containing chlorides of lanthanides in uranium matrix (typically 1: 2000) were analysed. (orig.)

  4. Association of Air Pollution Exposures With High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Bell, Griffith; Mora, Samia; Greenland, Philip; Tsai, Michael; Gill, Ed; Kaufman, Joel D

    2017-05-01

    The relationship between air pollution and cardiovascular disease may be explained by changes in high-density lipoprotein (HDL). We examined the cross-sectional relationship between air pollution and both HDL cholesterol and HDL particle number in the MESA Air study (Multi-Ethnic Study of Atherosclerosis Air Pollution). Study participants were 6654 white, black, Hispanic, and Chinese men and women aged 45 to 84 years. We estimated individual residential ambient fine particulate pollution exposure (PM 2.5 ) and black carbon concentrations using a fine-scale likelihood-based spatiotemporal model and cohort-specific monitoring. Exposure periods were averaged to 12 months, 3 months, and 2 weeks prior to examination. HDL cholesterol and HDL particle number were measured in the year 2000 using the cholesterol oxidase method and nuclear magnetic resonance spectroscopy, respectively. We used multivariable linear regression to examine the relationship between air pollution exposure and HDL measures. A 0.7×10 - 6 m - 1 higher exposure to black carbon (a marker of traffic-related pollution) averaged over a 1-year period was significantly associated with a lower HDL cholesterol (-1.68 mg/dL; 95% confidence interval, -2.86 to -0.50) and approached significance with HDL particle number (-0.55 mg/dL; 95% confidence interval, -1.13 to 0.03). In the 3-month averaging time period, a 5 μg/m 3 higher PM 2.5 was associated with lower HDL particle number (-0.64 μmol/L; 95% confidence interval, -1.01 to -0.26), but not HDL cholesterol (-0.05 mg/dL; 95% confidence interval, -0.82 to 0.71). These data are consistent with the hypothesis that exposure to air pollution is adversely associated with measures of HDL. © 2017 American Heart Association, Inc.

  5. Inducing Strong Density Modulation with Small Energy Dispersion in Particle Beams and the Harmonic Amplifier Free Electron Laser

    CERN Document Server

    McNeil, Brian W J; Robb, Gordon

    2005-01-01

    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative ele...

  6. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study.

    Science.gov (United States)

    Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W

    2016-03-01

    To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  7. Is long-term exposure to traffic pollution associated with mortality? A small-area study in London.

    Science.gov (United States)

    Halonen, Jaana I; Blangiardo, Marta; Toledano, Mireille B; Fecht, Daniela; Gulliver, John; Ghosh, Rebecca; Anderson, H Ross; Beevers, Sean D; Dajnak, David; Kelly, Frank J; Wilkinson, Paul; Tonne, Cathryn

    2016-01-01

    Long-term exposure to primary traffic pollutants may be harmful for health but few studies have investigated effects on mortality. We examined associations for six primary traffic pollutants with all-cause and cause-specific mortality in 2003-2010 at small-area level using linear and piecewise linear Poisson regression models. In linear models most pollutants showed negative or null association with all-cause, cardiovascular or respiratory mortality. In the piecewise models we observed positive associations in the lowest exposure range (e.g. relative risk (RR) for all-cause mortality 1.07 (95% credible interval (CI) = 1.00-1.15) per 0.15 μg/m(3) increase in exhaust related primary particulate matter ≤2.5 μm (PM2.5)) whereas associations in the highest exposure range were negative (corresponding RR 0.93, 95% CI: 0.91-0.96). Overall, there was only weak evidence of positive associations with mortality. That we found the strongest positive associations in the lowest exposure group may reflect residual confounding by unmeasured confounders that varies by exposure group. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Design of Polymeric Nanofiber Gauze Mask to Prevent Inhaling PM2.5 Particles from Haze Pollution

    Directory of Open Access Journals (Sweden)

    Xingzhou Li

    2015-01-01

    Full Text Available Recently, PM2.5 (particulate matter with diameter of 2.5 micron or less has become a major health hazard from the polluted air in many cities in China. The regular gauze masks are used to prevent inhaling the PM2.5 fine particles; however, those masks are not able to filter out the PM2.5 because of the large porosity of the mask materials. Some well-prevented masks usually have poor breathability, which increases other health risks. In this study, a polysulfone based nanofiber for mask filtration material was synthesized by electrospinning. That nanofiber mask material was characterized by SEM, air permeability test, and PM2.5 trapping experiment. The results indicate that nanofiber mask material can efficiently filter out the PM2.5 particles and simultaneously preserve a good breathability. We attribute such improvement to the nanoscaled fibers, having the same porosity as that of regular gauze mask but with extremely reduced local interfiber space.

  9. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study.

    Science.gov (United States)

    de Keijzer, Carmen; Agis, David; Ambrós, Albert; Arévalo, Gustavo; Baldasano, Jose M; Bande, Stefano; Barrera-Gómez, Jose; Benach, Joan; Cirach, Marta; Dadvand, Payam; Ghigo, Stefania; Martinez-Solanas, Èrica; Nieuwenhuijsen, Mark; Cadum, Ennio; Basagaña, Xavier

    2017-02-01

    Air pollution exposure has been associated with an increase in mortality rates, but few studies have focused on life expectancy, and most studies had restricted spatial coverage. A limited body of evidence is also suggestive for a beneficial association between residential exposure to greenness and mortality, but the evidence for such an association with life expectancy is still very scarce. To investigate the association of exposure to air pollution and greenness with mortality and life expectancy in Spain. Mortality data from 2148 small areas (average population of 20,750 inhabitants, and median population of 7672 inhabitants) covering Spain for years 2009-2013 were obtained. Average annual levels of PM 10 , PM 2.5 , NO 2 and O 3 were derived from an air quality forecasting system at 4×4km resolution. The normalized difference vegetation index (NDVI) was used to assess greenness in each small area. Air pollution and greenness were linked to standardized mortality rates (SMRs) using Poisson regression and to life expectancy using linear regression. The models were adjusted for socioeconomic status and lung cancer mortality rates (as a proxy for smoking), and accounted for spatial autocorrelation. The increase of 5μg/m 3 in PM 10 , NO 2 and O 3 or of 2μg/m 3 in PM 2.5 concentration resulted in a loss of life in years of 0.90 (95% credibility interval CI: 0.83, 0.98), 0.13 (95% CI: 0.09, 0.17), 0.20years (95% CI: 0.16, 0.24) and 0.64 (0.59, 0.70), respectively. Similar associations were found in the SMR analysis, with stronger associations for PM 2.5 and PM 10 , which were associated with an increased mortality risk of 3.7% (95% CI: 3.5%, 4.0%) and 5.7% (95% CI: 5.4%, 6.1%). For greenness, a protective effect on mortality and longer life expectancy was only found in areas with lower socioeconomic status. Air pollution concentrations were associated to important reductions in life expectancy. The reduction of air pollution should be a priority for public health

  10. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  11. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection

    International Nuclear Information System (INIS)

    Wu Yihang; Song Mengjie; Zhang Xiaoqing; Zhang Yu; Wang Chunyu; Gu Ning; Xin Zhuang; Li Suyi

    2011-01-01

    Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe 3 O 4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H 2 O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.

  12. Current Concepts in the Use of Small-Particle Hyaluronic Acid.

    Science.gov (United States)

    Bertucci, Vince; Lynde, Carrie B

    2015-11-01

    Soft-tissue augmentation with hyaluronic acid (HA) fillers has become one of the most popular cosmetic procedures performed. HA fillers represent safe and commonly used fillers. Several different HA fillers are available. The differences lie in the manufacturing process, allowing for tailored uses. A small-particle HA with lidocaine (SP-HAL; Restylane Silk; Galderma, Uppsala, Sweden) was approved by the US Food and Drug Administration in June 2014 but has been available for many years in Canada as Restylane Fine Lines and in Europe as Restylane Vital. Relevant articles were reviewed relating to the composition, effectiveness, and safety of SP-HAL. We also discuss the author's extensive clinical experience in the use of this product in Canada. SP-HAL has demonstrated proven benefits for lip fullness, augmentation, and treatment of perioral rhytides. Although off-label in the United States, SP-HAL is also well suited for the treatment of superficial fine lines, including periorbital, forehead, marionette, and smile lines. In addition, it has also been used in the tear trough region. A novel application for SP-HAL includes use as a skinbooster with intradermal micropuncture. In this technique, small aliquots of product are injected so as to gradually rejuvenate the skin in areas such as the face and hands. Side effects of SP-HAL were generally transient and mild. The most common side effects were swelling, tenderness, bruising, pain, and redness. SP-HAL is an effective and safe HA filler with varied clinical uses.

  13. Transport of particle pollution into the Maipo Valley: winter 2015 campaign results

    Science.gov (United States)

    Huneeus, Nicolás; Mazzeo, Andrea; Ordóñez, César; Donoso, Nicolás; Gallardo, Laura; Molina, Luisa; Moreno, Valeria; Muñoz, Ricardo; Orfanoz, Andrea; Vizcarra, Aldo

    2016-04-01

    Each winter, Santiago (33° 27'S, 70° 40'W) the capital of Chile with a population of about 7 million people, experiences episodes with particulate matter (PM) concentrations larger than allowed by Chilean environmental regulations. Transport and residential heating largely dominate emissions prior to and during these episodes. Important impact of black carbon (BC) on the cryosphere has been documented in other parts of the world associated with urban pollution. In order to explore if BC from Santiago has the potential to reach the Andean cryosphere during the aforementioned episodes, a one week-long campaign was conducted in Santiago and the Maipo Valley between 18th and 25th of July 2015 when the air quality conditions of the city reached twice the critical levels (pre-emergency in Chilean regulations). Measurements were carried out at three sites: downtown Santiago, the entrance of the valley (and outskirts of Santiago) and 12 km inside the Maipo Valley. At each of these sites both surface and vertically distributed measurements were conducted. A meteorological station measuring standard meteorological parameters and an E-Sampler measuring PM10 concentrations were installed at each site. In addition, a tethered balloon equipped with a sonde and a mini-aethalometer was used in each site to measure vertical profiles of standard meteorological parameters and BC concentrations, respectively. The tethered balloon was raised every three hours up to a maximum of 1000 meters above ground level, whenever meteorological conditions allowed. In general, the BC concentrations inside the valley, both at the surface and in the vertical, were dominated by emissions within the valley and BC was limited to shallow layers above the ground. However, on both days with critical air quality levels, winds blowing from the city and deeper BC layers were observed inside the valley. Furthermore, during these days observations at the entrance of the valley and those taken inside were

  14. Challenges with minimising mercury pollution in the small-scale gold mining sector: experiences from the Guianas.

    Science.gov (United States)

    Hilson, Gavin; Vieira, Rickford

    2007-12-01

    This paper examines the barriers to mitigating mercury pollution at small-scale gold mines in the Guianas (Guyana, French Guiana and Suriname), and prescribes recommendations for overcoming these obstacles. Whilst considerable attention has been paid to analysing the environmental impacts of operations in the region, minimal research has been undertaken to identify appropriate policy and educational initiatives for addressing the mounting mercury problem. Findings from recent fieldwork and selected interviews with operators from Guyanese and Surinamese gold mining regions reveal that legislative incapacity, the region's varied industry policy stances, various technological problems, and low environmental awareness on the part of communities are impeding efforts to facilitate improved mercury management at small-scale gold mines in the Guianas. Marked improvements can be achieved, however, if legislation, particularly that pertaining to mercury, is harmonised in the region; educational seminars continue to be held in important mining districts; and additional outlets for disseminating environmental equipment and mercury-free technologies are provided.

  15. Qualitative analysis of barium particles coated in small intestinal mucosa of rabbit by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Ha, Hyun Kwon; Lee, Yang Seob; Kim, Jae Kyun; Yoon, Seong Eon; Kim, Jung Hoon; Chung, Dong Jin; Auh, Yong Ho

    1998-01-01

    To qualitatively analysed barium coating status in the intestinal mucosa, we used scanning electron microscopy to observe barium particles coated in the small intestinal mucosa of rabbit, and we attempted to assess the relationship between electron microscopic findings and radiographic densities. Six different combination of barium and methylcellulose suspensions were infused into the resected small intestines of 15 rabbits. Barium powders were mixed with water to make 40% and 70% w/v barium solutions, and also mixed with 0.5% methylcellulose solutions were used as a double contrast agent. After the infusion of barium suspensions, a mammography unit was used to obtain radiographs of the small intestine, and their optical densities were measured by a densitometer. Thereafter, photographs of barium-coated small intestinal mucosa were obtained using a scanning electron microscope (x 8,000), and the number of barium particles in the unit area were measured. To compare the relationship between the electron microscopic findings and optical densities, statistical analysis using Spearman correlation was performed. This study shows that by using scanning electron microscopy, barium particles coated on the small intestinal mucosa can be qualitatively analysed. It also shows that the number of small barium particles measured by scanning electron microscopy is related to optical densities. (author). 14 refs., 2 figs

  16. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  17. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    Science.gov (United States)

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014

  18. Transport of macromolecules and particles at target sites for deposition of air pollutants

    International Nuclear Information System (INIS)

    Crocker, T.T.; Bhalla, D.K.

    1986-01-01

    This study analyzed rats' nasal, tracheal and bronchoalveolar epithelial permeability to macromolecules after they were exposed, in 2- or 4-hour periods of rest or exercise, to ozone (O3) (0.6, 0.8 or 2 ppm), nitrogen dioxide (NO2) (2.5, 6 or 12 ppm) or formaldehyde (10 ppm). Exercise was performed on a treadmill operated at a speed that led to a 2-fold increase in oxygen consumption. Histopathologic and electron microscopic cytochemical and autoradiographic studies were performed to identify the structural aspects of mucosal response. In rats not exposed to pollutants, the quantity of macromolecular tracers (99mTc-DTPA, 125I-BSA) in blood sampled 6, 7, 8, 9 and 10 minutes after a slow 5-minute instillation of comparable quantities of tracer molecules in the lumen of each zone, was lowest in nasal, highest in tracheal, and intermediate in the bronchoalveolar region. Exposure of resting rats to O3 did not affect nasal permeability, but tracheal and bronchoalveolar permeabilities increased by 2-fold 1 hour after the exposure. In rats exposed at rest to O3, tracheal permeability was no longer elevated 24 hours after exposure, but bronchoalveolar permeability remained elevated at 24 hours after exposure and was normal at 48 hours. Exposure during exercise increased the effect of O3 in the trachea and in the bronchoalveolar zone. However, exercise also prolonged the duration of the O3 effect on the tracheal zone from 1 hour to 24 hours and, in the bronchoalveolar zone, from 24 hours to 48 hours. Histologically, focal inflammatory lesions in the alveolar zone were maximal at 48 hours after a 4-hour resting exposure to O3. After exposure during exercise, the area of lung involved by lesions increased 4- to 7-fold above the lesion-bearing area in rats exposed while resting

  19. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  20. Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments

    Science.gov (United States)

    Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.

  1. Exploitation of very small particles to enhance the probative value of carpet fibers.

    Science.gov (United States)

    Stoney, David A; Neumann, Cedric; Mooney, Kim E; Wyatt, J Matney; Stoney, Paul L

    2015-07-01

    Environmentally acquired very small particles (VSP), present on the surfaces of carpet fibers, have shown potential for the association of fibers with their carpet source. To unlock this potential, research is required addressing a number of areas, including the application of methods under realistic casework conditions and the utilization of computational methods for the refinement and testing of the approach. In this work field collections of carpet fibers were conducted by crime scene practitioners under realistic casework conditions. VSP were isolated using previously developed methods, and analyses were conducted using SEM/EDS analytical protocols in an operational crime laboratory setting. Computational methods were designed, allowing sets of hundreds to thousands of VSP to be characterized. Classifiers were designed to associate and discriminate among specimens. These classifiers were applied to the VSP data for specimens collected by crime scene practitioners, as well as to a previously collected research dataset. Quantitative measures of correspondence and probative value were designed based on the classification measures and successfully applied to both sets of VSP data. Particle sets larger than 500 showed strong promise for quantitative associations with their sources. The use of larger numbers of target particle types (TPTs) showed strong promise to improve the performance of classification and association. Overall, the usefulness of VSP to provide objective, quantitative associations has been established. Because VSP are acquired post-manufacture, these methods can address fundamental limitations to probative value that arise when class characteristics, determined by manufacture, are shared among mass produced commodities. These findings are of broad significance for the future of trace evidence analysis. The results of this research are likely extendable, with minor modifications, to other trace evidence types (such as glass, tape and human hair

  2. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    International Nuclear Information System (INIS)

    Balčiauskas, Linas; Skipitytė, Raminta; Jasiulionis, Marius; Trakimas, Giedrius; Balčiauskienė, Laima; Remeikis, Vidmantas

    2016-01-01

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ"1"3C and δ"1"5N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ"1"3C and δ"1"5N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ"1"5N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ"1"5N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ"1"3C values, age-dependent differences were not registered. δ"1"5N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ"1"3C and δ"1"5N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ"1"3C and δ"1"5N values were higher in rodents inhabiting

  3. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    Energy Technology Data Exchange (ETDEWEB)

    Balčiauskas, Linas, E-mail: linasbal@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Skipitytė, Raminta, E-mail: raminta.skipityte@ftmc.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania); Jasiulionis, Marius, E-mail: mjasiulionis@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Trakimas, Giedrius, E-mail: giedrius.trakimas@gf.vu.lt [Center for Ecology and Environmental Research, Vilnius University, Vilnius (Lithuania); Institute of Life Sciences and Technology, Daugavpils University, Parades Str. 1a, Daugavpils, LV-5401 (Latvia); Balčiauskienė, Laima, E-mail: laiba@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Remeikis, Vidmantas, E-mail: vidrem@fi.lt [Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania)

    2016-09-15

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ{sup 13}C and δ{sup 15}N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ{sup 13}C and δ{sup 15}N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ{sup 15}N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ{sup 15}N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ{sup 13}C values, age-dependent differences were not registered. δ{sup 15}N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ{sup 13}C and δ{sup 15}N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ{sup 13}C and

  4. Pollution Prevention through Peer Education: A Community Health Worker and Small and Home-Based Business Initiative on the Arizona-Sonora Border.

    Science.gov (United States)

    Ramírez, Denise Moreno; Ramírez-Andreotta, Mónica D; Vea, Lourdes; Estrella-Sánchez, Rocío; Wolf, Ann Marie A; Kilungo, Aminata; Spitz, Anna H; Betterton, Eric A

    2015-09-09

    Government-led pollution prevention programs tend to focus on large businesses due to their potential to pollute larger quantities, therefore leaving a gap in programs targeting small and home-based businesses. In light of this gap, we set out to determine if a voluntary, peer education approach led by female, Hispanic community health workers (promotoras) can influence small and home-based businesses to implement pollution prevention strategies on-site. This paper describes a partnership between promotoras from a non-profit organization and researchers from a university working together to reach these businesses in a predominately Hispanic area of Tucson, Arizona. From 2008 to 2011, the promotora-led pollution prevention program reached a total of 640 small and home-based businesses. Program activities include technical trainings for promotoras and businesses, generation of culturally and language appropriate educational materials, and face-to-face peer education via multiple on-site visits. To determine the overall effectiveness of the program, surveys were used to measure best practices implemented on-site, perceptions towards pollution prevention, and overall satisfaction with the industry-specific trainings. This paper demonstrates that promotoras can promote the implementation of pollution prevention best practices by Hispanic small and home-based businesses considered "hard-to-reach" by government-led programs.

  5. Pollution Prevention through Peer Education: A Community Health Worker and Small and Home-Based Business Initiative on the Arizona-Sonora Border

    Science.gov (United States)

    Moreno Ramírez, Denise; Ramírez-Andreotta, Mónica D.; Vea, Lourdes; Estrella-Sánchez, Rocío; Wolf, Ann Marie A.; Kilungo, Aminata; Spitz, Anna H.; Betterton, Eric A.

    2015-01-01

    Government-led pollution prevention programs tend to focus on large businesses due to their potential to pollute larger quantities, therefore leaving a gap in programs targeting small and home-based businesses. In light of this gap, we set out to determine if a voluntary, peer education approach led by female, Hispanic community health workers (promotoras) can influence small and home-based businesses to implement pollution prevention strategies on-site. This paper describes a partnership between promotoras from a non-profit organization and researchers from a university working together to reach these businesses in a predominately Hispanic area of Tucson, Arizona. From 2008 to 2011, the promotora-led pollution prevention program reached a total of 640 small and home-based businesses. Program activities include technical trainings for promotoras and businesses, generation of culturally and language appropriate educational materials, and face-to-face peer education via multiple on-site visits. To determine the overall effectiveness of the program, surveys were used to measure best practices implemented on-site, perceptions towards pollution prevention, and overall satisfaction with the industry-specific trainings. This paper demonstrates that promotoras can promote the implementation of pollution prevention best practices by Hispanic small and home-based businesses considered “hard-to-reach” by government-led programs. PMID:26371028

  6. Pollution Prevention through Peer Education: A Community Health Worker and Small and Home-Based Business Initiative on the Arizona-Sonora Border

    Directory of Open Access Journals (Sweden)

    Denise Moreno Ramírez

    2015-09-01

    Full Text Available Government-led pollution prevention programs tend to focus on large businesses due to their potential to pollute larger quantities, therefore leaving a gap in programs targeting small and home-based businesses. In light of this gap, we set out to determine if a voluntary, peer education approach led by female, Hispanic community health workers (promotoras can influence small and home-based businesses to implement pollution prevention strategies on-site. This paper describes a partnership between promotoras from a non-profit organization and researchers from a university working together to reach these businesses in a predominately Hispanic area of Tucson, Arizona. From 2008 to 2011, the promotora-led pollution prevention program reached a total of 640 small and home-based businesses. Program activities include technical trainings for promotoras and businesses, generation of culturally and language appropriate educational materials, and face-to-face peer education via multiple on-site visits. To determine the overall effectiveness of the program, surveys were used to measure best practices implemented on-site, perceptions towards pollution prevention, and overall satisfaction with the industry-specific trainings. This paper demonstrates that promotoras can promote the implementation of pollution prevention best practices by Hispanic small and home-based businesses considered “hard-to-reach” by government-led programs.

  7. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    Science.gov (United States)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples

  8. Emission from small dust particles in diffuse and molecular cloud medium

    International Nuclear Information System (INIS)

    Bernard, J.P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances

  9. Pollution reduction technology program for small jet aircraft engines: Class T1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  10. Pollution prevention in small and medium-sized enterprises: evoking structural changes through partnerships

    NARCIS (Netherlands)

    de Bruijn, Theo; Hofman, Peter

    2000-01-01

    Over the last few years major attempts have been made to transform small and mediumsized enterprises (SMEs) into more sustainable companies. In essence, these attempts aim at improving the organisational and technical capabilities of companies. Whereas larger companies have been able to appropriate

  11. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  12. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  13. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    Science.gov (United States)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  14. Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites

    International Nuclear Information System (INIS)

    Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F.

    2002-01-01

    A small particle composite in which the inclusions are slightly nonspherical and distributed in shape is considered. Within the framework of the mean-field approximation, the functions of linear and nonlinear optical responses are calculated in terms of a nonsphericity parameter specifying the width of the distribution function in shape. To estimate the effect of weak nonsphericity on the functions, their second derivatives with respect to the nonsphericity parameter are computed. The derivatives are shown to be complexly structured surfaces in the coordinates (Re(ε i /ε m ), Im(ε i /ε m )), where ε i and ε m are the inclusion and matrix permittivity, respectively. Based on the results obtained, applicability area of the classical Maxwell Garnett theory is discussed. The main conclusion is that weak nonsphericity is significant only in the close vicinity of a dipole resonance of a single ball made of inclusion material. At the same time, the role of nonsphericity increases with decreasing the imaginary part of inclusion permittivity. (author)

  15. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  16. Magnetic particles studied with neutron depolarization and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Rosman, R.

    1991-01-01

    Materials containing magnetic single-domain particles, referred to as 'particulate media', have been studied using neutron depolarization (ND) and small-angle neutron scattering (SANS). In a ND experiment the polarization vector of a polarized neutron beam is analyzed after transmission through a magnetic medium. Such an analysis in general yields the correlation length of variations in magnetic induction along the neutron path (denoted 'magnetic correlation length'), mean orientation of these variations and mean magnetic induction. In a SANS experiment, information about nuclear and magnetic inhomogeneities in the medium is derived from the broadening of a generally unpolarized neutron beam due to scattering by these inhomogeneities. Spatial and magnetic microstructure of a variety of particulate media have been studied using ND and/or SANS, by determination of the magnetic or nuclear correlation length in these media in various magnetic states. This thesis deals with the ND theory and its application to particulate media. ND and SANS experiments on a variety of particulate media are discussed. (author). 178 refs., 97 figs., 8 tabs

  17. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  18. Small particles containing phthalic esters in the indoor environment - a pilot study

    DEFF Research Database (Denmark)

    Lundgren, B.; Bornehag, Carl-Gustaf; Cedhaim, L.

    2002-01-01

    Many chemicals in polymeric materials have low vapour pressure. Hypothetically such chemicals are emitted and may stay as particles or be adsorbed onto dust particles and become airborne. The aim of this pilot study has been to validate the methods for measuring phthalates on particles in indoor ...

  19. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    Science.gov (United States)

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  20. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  1. Assessment of particle emissions inventories in northeastern U.S., using remote sensing, Lidar technology, air pollution sensors, and a Lagrangian particle dispersion model

    Science.gov (United States)

    Barrera, Y.; Swofsy, S. C.; Li, L.; Hegarty, J. D.; Nehrkorn, T.; Koutrakis, P.

    2017-12-01

    In the most recent issue of the New England Journal of Medicine, a new study found that 95% of Medicare beneficiaries over the age of 65 showed an increased risk of mortality, even at fine particulate matter (PM2.5) levels below the National Ambient Air Quality Standards (NAAQS). This new finding suggests that although a state may be designated under attainment for meeting the primary and secondary PM2.5 NAAQS, sensitive populations dispersed throughout the region may still be experiencing adverse health effects. To conduct accurate public health impact assessments, reliable information regarding PM2.5 concentrations in cities are required at high spatial and temporal resolutions. A newly developed particle emissions inventory using remote sensing (PEIRS) captured both primary and secondary formation in northeastern U.S. at a 1km x 1km spatial resolution during the period 2002-2014 (Tang et al., 2017). The PEIRS annual emissions inventory used the MODIS satellite to fill-in the spatial gaps where, EPA monitoring stations were not available. However, simulations of the planetary boundary layer (PBL) were a key factor in estimating PM2.5 concentrations on the ground and hence, testing PEIRS products with observationally based quantifications are critical. Recent advances in light ranging and detection (Lidar) technology allow us to estimate PBL heights in cities. This study combines information from a network of Mini Micropulse Lidar (MPL) instruments, meteorological and air pollution measuring sensors, and a Lagrangian particle dispersion model to test the performance of PEIRS at the neighborhood and urban scale. MPL observations were processed using image recognition and fuzzy logic to estimate PBL heights that were inputted into PEIRS to predict daily PM2.5 concentrations. To compare vertical distribution of aerosols, we use our LPDM model "footprints" to predict vertical profiles of PM2.5 distribution at our Lidar locations. Our model-data assimilation improved

  2. Improving awareness of mercury pollution in small-scale gold mining communities: challenges and ways forward in rural Ghana.

    Science.gov (United States)

    Hilson, Gavin; Hilson, Christopher J; Pardie, Sandra

    2007-02-01

    This paper critiques the approach taken by the Ghanaian Government to address mercury pollution in the artisanal and small-scale gold mining sector. Unmonitored releases of mercury-used in the gold-amalgamation process-have caused numerous environmental complications throughout rural Ghana. Certain policy, technological and educational initiatives taken to address the mounting problem, however, have proved marginally effective at best, having been designed and implemented without careful analysis of mine community dynamics, the organization of activities, operators' needs and local geological conditions. Marked improvements can only be achieved in this area through increased government-initiated dialogue with the now-ostracized illegal galamsey mining community; introducing simple, cost-effective techniques for the reduction of mercury emissions; and effecting government-sponsored participatory training exercises as mediums for communicating information about appropriate technologies and the environment.

  3. Iodine-131 in sewage sludge from a small water pollution control plant serving a thyroid cancer treatment facility.

    Science.gov (United States)

    Rose, Paula S; Swanson, R Lawrence

    2013-08-01

    Iodine-131 (half-life = 8.04 d) is the most widely used radionuclide in medicine for therapeutic purposes. It is excreted by patients and is discharged directly to sewer systems. Despite considerable dilution in waste water and the relatively short half-life of I, it is readily measured in sewage. This work presents I concentrations in sewage sludge from three water pollution control plants (WPCPs) on Long Island, NY. Iodine-131 concentrations ranged from 0.027 ± 0.002 to 148 ± 4 Bq g dry weight. The highest concentrations were measured in the Stony Brook WPCP, a relatively small plant (average flow = 6.8 × 10 L d) serving a regional thyroid cancer treatment facility in Stony Brook, NY. Preliminary radiation dose calculations suggested further evaluation of dose to treatment plant workers in the Stony Brook WPCP based on the recommendations of the Interagency Steering Committee on Radiation Standards.

  4. Diesel particles - a health hazard

    Energy Technology Data Exchange (ETDEWEB)

    Ege, C.

    2004-08-15

    To all appearances, small particles belong to the pollutants presenting the biggest health hazards. Particles come especially from diesel-powered vehicles. According to researchers, particles cause thousands of early deaths each year in the big cities in Denmark alone, and up to 1,250 of these deaths could be prevented by fitting particle filters on diesel-powered vehicles. That is more than deaths caused by traffic accidents. Especially the elderly are affected. In addition, the small particles seem to aggravate asthma incidences, including the many children with asthma. What makes the small particles so very dangerous is that they can enter the smallest of vessels of the lungs. There is a solution within sight to this grave health hazard. The solution is called particle filters, but they will not come automatically. It requires initiatives in the form of legislation, green taxes and subsidies. The EU is introducing stricter regulations regarding particle emission from heavy vehicles from 2006, though only for new vehicles. It will therefore take many years to abate the problem this way. In the present pamphlet, the Danish Ecological Council offers a number of specific proposals on how to further the introduction of filters on diesel vehicles. The Danish government has taken a small step in the right direction by establishing a subsidy scheme for particle filters. Yet the amount allocated is too small and, because it is not followed up by setting taxes on polluting vehicles, it will have little effect. (au)

  5. Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands)

    NARCIS (Netherlands)

    Hamers, T.H.M.; Berg, van den J.H.J.; Gestel, van C.A.M.; Schooten, van F.J.; Murk, A.J.

    2006-01-01

    A risk assessment was made for a carnivorous and a herbivorous food chain in a heavily polluted natural estuary (Biesbosch), by determining the most critical pollutants and the food chain most at risk. Exposure of food chains to metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated

  6. Multi isotopic characterization (Li-Cu-Zn-Pb) of waste waters pollution in a small watershed (Loire River basin, France)

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.

    2016-12-01

    The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.

  7. Wood burning stoves and small boilers - particle emissions and reduction initiatives; Braendeovne og smae kedler - partikelemissioner og reduktionstiltag

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J B; Capral Henriksen, T; Lundhede, T [Danmarks Miljoeundersoegelser, Aarhus Universitet, Aarhus (Denmark); Breugel, C van; Zoellner Jensen, N [Miljoestyrelsen, Copenhagen (Denmark)

    2007-06-15

    Pollution from burning wood in private households, and the environmental and health consequences of this is determined in practice by a complicated interaction between a number of factors, including firing habits, fuel, type of stove/boiler, chimney and location of the chimney in relation to the surroundings. This report maps out the technologies used today for burning wood in private households, how these technologies contribute to particle emissions and which technologies may potentially reduce emissions of particles from burning wood in households in Denmark. Moreover, the possible emissions reductions and the financial costs incurred by consumers from different initiatives have been estimated. This report does not deal with possible initiatives for improvement of firing habits, fuel quality and chimneys. (au)

  8. Microdimensional pollution of the atmosphere of small settlements of the Far East of the Russian Federation

    International Nuclear Information System (INIS)

    Golokhvast, K S; Chaika, V V; Nikiforov, P A; Doroshev, Yu S; Zemlyanaya, N V; Fatkulin, A A; Lushpey, V P; Vasyanovich, Yu A; Vasyanovich, A M; Agoshkov, A I

    2015-01-01

    Paper is devoted to research of atmospheric suspensions of the small cities and settlements of the Far East with the population to 100 thousand persons: Magadan, Belogorsk, Partizansk, Solovyevsk, Orotukan by means of methods of a laser granulometry and scanning electronic microscopy. Atmospheric suspensions were studied in the dropped-out snow which gathered in the different cities at the time of snowfalls from March, 2010 to January, 2013. It is shown that the studied settlements, considering dimension of fractions of atmospheric suspensions and their morphometric characteristics, it is possible to place in the following order on extent of increase of potential health hazard: Orotukan, Solovyevsk, Partizansk, Belogorsk, Magadan

  9. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  10. Disintegration of photoemulsion nuclei in 32 GeV/c muon inelastic scattering at small angles. Slow particle emission

    International Nuclear Information System (INIS)

    Rabin, N.V.

    1988-01-01

    Energy, angular and correlation characteristics of slow particles, ≤30 MeV/nucleon emitted in the reaction of 32 GeV/c muon inelastic scattering by photoemulsion heavy nuclei, A≅100, at small values of transfered four momentum square, Q 2 ≅0.1 (GeV/c) 2 , are analyzed. Arguments for formation of multiparticle moving excited cluster in muon events are presented: explanation of observed characteristics of slow particles in the framework of statistic theory is possible if it is assumed that cluster forms initially in the reaction, and then formation of moving excited nucleus - the main source of slow particles - takes place during cluster interaction with nucleus-target. Possibility of formation of other preequilibrium sources of slow particles is mentioned

  11. Response to a small external force and fluctuations of a passive particle in a one-dimensional diffusive environment

    Science.gov (United States)

    Huveneers, François

    2018-04-01

    We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.

  12. U1 small nuclear RNA variants differentially form ribonucleoprotein particles in vitro.

    Science.gov (United States)

    Somarelli, Jason A; Mesa, Annia; Rodriguez, Carol E; Sharma, Shalini; Herrera, Rene J

    2014-04-25

    The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5' splice sites at exon/intron boundaries. U1 snRNAs associate with 5' splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the 'Smith antigen', or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Accumulation of Heavy Metals by Small Mammals the Background and Polluted Territories of the Urals

    Directory of Open Access Journals (Sweden)

    Kovalchuk L. A.

    2017-08-01

    Full Text Available Accumulation of heavy metals (Cu, Zn, Cd in hemopoietic-competent organs of ecologically contrast species of small mammals (Clethrionomys glareolus, Sorex araneus, Apodemus uralensis from natural populations of the Middle and South Urals were considered. The content of exogenous and essential trace elements in animal tissues (a liver, kidney, a spleen was determined by atomic absorption spectroscopy. It has been shown that bioaccumulation of heavy metals in organs of insectivores significantly differs from it of bank voles and wood mice. The smallest total content of heavy metals is shown in wood mice in technogenic territories of the Middle Urals. The submitted data demonstrate the competitive mechanism of the Cu, Zn, Cd. The increased concentrations of endogenous trace elements (copper, zinc in relation to a toxicant (cadmium, other things being equal, reduce cadmium accumulation level in the tissues Sorex araneus.

  14. Quantifying variation in occupational air pollution exposure within a small metropolitan region of Brazil

    Science.gov (United States)

    Pattinson, Woodrow; Targino, Admir Créso; Gibson, Mark David; Krecl, Patricia; Cipoli, Yago; Sá, Victor

    2018-06-01

    An occupational sampling campaign was conducted in the city of Londrina, Paraná, during an eleven-week period of the dry season (spring) of 2015. To assess worker exposure, concentrations of black carbon (BC), fine particles (air mass back trajectory and satellite fire spot analyses. A total of fifteen environmental variables influencing workplace exposures were tested using multiple regression models and exposure differences between occupations were assessed using non-parametric tests. Although the environmental settings differed substantially, weekly median exposures were similar, with the exception of occupations involving significant indoor sources and those proximate to heavy traffic. Median TVOC exposure was 8 (3,351, range 17-77,530 ppb, p < 0.001) and 3.5 times higher (1,616, range 0.3-18,861 ppb, p < 0.001) at a shoe repair store and hair salon, respectively, than in a clean office environment situated directly within the city centre (414, range 0.5-4844 ppb). Similarly, median BC concentrations were 2.8 (3.7, range 1.2-27.8 μg/m3, p < 0.001) times greater inside a street canyon drug store and elevated by a factor of 3.0 (3.8, range 0.4-39.6 μg/m3, p < 0.001), on a local commuter bus, than in the office environment (1.3 μg/m3). These results hold important implications for workplace exposure and can aid in informing potential mitigation strategies, such as a review of ventilation configurations and hazardous materials used in certain occupations.

  15. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    Science.gov (United States)

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  16. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  17. Explanation of the anomalously small absorption of α particles in 40Ca nuclei

    International Nuclear Information System (INIS)

    Planeta, R.; Dabrowski, H.; Freindl, L.; Grotowski, K.

    1979-01-01

    The reduced absorption at lower α particle energies (approximately 30 MeV) which is necessary to describe the anomalous large angle scattering of α particles from 40 Ca nuclei is explained by the angular momentum mismatch between the entrance and exit reaction channels. A new definition of the volume integral of the imaginary potential is proposed. (author)

  18. Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays.

    Science.gov (United States)

    Kim, Sung-Cheol; Wunsch, Benjamin H; Hu, Huan; Smith, Joshua T; Austin, Robert H; Stolovitzky, Gustavo

    2017-06-27

    Deterministic lateral displacement (DLD) is a technique for size fractionation of particles in continuous flow that has shown great potential for biological applications. Several theoretical models have been proposed, but experimental evidence has demonstrated that a rich class of intermediate migration behavior exists, which is not predicted. We present a unified theoretical framework to infer the path of particles in the whole array on the basis of trajectories in a unit cell. This framework explains many of the unexpected particle trajectories reported and can be used to design arrays for even nanoscale particle fractionation. We performed experiments that verify these predictions and used our model to develop a condenser array that achieves full particle separation with a single fluidic input.

  19. Organochlorine pollutants in small cetaceans from the Pacific and south Atlantic Oceans, November 1968-June 1976

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, T.J.; Brownell, R.L. Jr.; Clark, D.R. Jr.; Walker, W.A.; Gay, M.L.; Lamont, T.G.

    1980-09-01

    Organochlorine residues were analyzed in blubber, brain, or muscle tissues of 69 individuals representing 10 species of small cetaceans. Collections were made from November 1968 through June 1976 at localities in the Eastern Tropical Pacific and along the coasts of California, Hawaii, Japan, and Uruguay, Relations of residue concentrations between tissues are described for DDE and PCBs in two dolphin species. sigma DDT and PCB residues in blubber of most of the 19 individuals of the five southern California species sampled exceed concentrations that are associated with reproductive impairment in pinnipeds, although the nature of such associations is not well defined. The sigma DDT residue of 2,695 ppm in blubber of one California coastal Tursiops truncatus is one of the highest concentrations reported in tissues of members of any population of wild mammals. Except for one rough-toothed dolphin (Steno bredanensis) from Maui, Hawaii, all individuals from all localities surveyed were contaminated with organochlorine compounds. Seventeen different organochlorines were detected; greatest diversity occurred near Japan and California. This is the first report of several of these compounds in tissues of any species of marine mammals. The o,p'-isomers and metabolites of DDT were detected unusually frequently. Ratios of p,p'-DDT to p,p'-DDE in blubber of cetaceans from waters off countries where use of this pesticide has been relatively recent and ongoing were at least an order of magnitude higher than in cetaceans from United States waters.

  20. A new approach to the combination of IBA techniques and wind back trajectory data to determine source contributions to long range transport of fine particle air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D., E-mail: dcz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Crawford, Jagoda; Stelcer, Eduard; Atanacio, Armand [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2012-02-15

    A new approach to link HYSPLIT back trajectories to the source of fine particle pollution as characterised by standard IBA techniques is discussed. The example of the long range transport of desert dust from inland Australia across the eastern coast is used to show that over a 10-year period extreme soil events originated from major agricultural regions some 30% of the time and that dust from known deserts are not always the problem.

  1. Small angle particle-particle correlation measurements in the reactions 280 MeV 40Ar+27Al and 670 MeV 55Mn+12C

    International Nuclear Information System (INIS)

    Milosevich, Zoran; Vardaci, Emanuele; DeYoung, Paul A.; Brown, Craig M.; Kaplan, Morton; Whitfield, James P.; Peterson, Donald; Dykstra, Christopher; Barton, Matthew; Karol, Paul J.; McMahan, Margaret A.

    2001-01-01

    Small-angle particle-particle correlations were measured in the two matching reactions 280 MeV 40 Ar+ 27 Al and 670 MeV 55 Mn+ 12 C. These two reactions were used to produce the composite nucleus, 67 Ga*, at the same initial excitation energy of 127 MeV, but with different entrance channel angular momentum distributions. A simple trajectory model was used to compute the average emission times between various particle pairs, and comparisons with the data show that there is a significant difference in the deexcitation of the composite nucleus formed from the two reactions. Statistical model calculations were compared to the experimental observations with the added constraint that the model input parameters were consistent with those derived from observed charged-particle energy spectra and angular distributions. It was found that the calculated correlation functions were insensitive to the input spin distributions, but agreed fairly well with the data from the lower-spin system. The higher-spin reaction data were poorly reproduced by the calculations

  2. Risks of nuclear waste disposal in space. III - Long-term orbital evolution of small particle distribution

    Science.gov (United States)

    Friedlander, A. L.; Wells, W. C.

    1980-01-01

    A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.

  3. Pollution status and mercury sedimentation in small river near amalgamation and cyanidation units of Talawaan-Tatelu gold mining, North Sulawesi

    Directory of Open Access Journals (Sweden)

    T M Palapa

    2015-04-01

    Full Text Available Information Journal Help User Username Password Remember me Notifications View Subscribe / Unsubscribe Search Keyword : The activities of traditional gold mining in the region of Talawaan-Tatelu, North Minahasa regency, North Sulawesi, have been ongoing since 1998. Processing the gold in the mine consists of three stages i.e., the excavation, milling and amalgamation, and the use of cyanide tanks. Waste from the processing units which contains high mercury, generally flows directly into small rivers nearby. This study aimed to determine the pollution status and mercury sedimentation in a small river near the amalgamation and cyanidation processing units in Talawaan-Tatelu gold mining. Water and sediment samples were taken from seven stations along a small river, as many as four temporal replications (weekly. Mercury determination in water and sediments was done by using Cold Vapor Atomic Fluorescence Spectrometry. Pollution status was determined through the calculation of Hg ratio in water samples and in water quality criterion (4th class, as noted in The Indonesian Government Regulation No. 82 of 2001 on Water Quality and Water Pollution Control, while the mercury sedimentation was calculated from the ratio of mercury in water and sediment. The results showed that there are differences in the status of pollution and mercury sedimentation of seven sampling stations. Amalgamation and cyanidation processing units provide significant impact on the status of pollution (although it is categorized in contamination and mercury sedimentation along small river in the gold mining area of Talawaan-Tatelu. The downstream of this small river, Talawaan River, is the main river of the Talawaan watershed. Things that should be a concern are Talawaan rural communities living near Talawaan River who often use the water for daily needs such as bathing and washing. Risk to public health around the river can arise when the status of pollution and mercury

  4. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods.

    Science.gov (United States)

    Kura, Nura Umar; Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Aris, Ahmad Zaharin; Tanko, Adamu Idris; Zaudi, Muhammad Amar

    2015-01-01

    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and

  5. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    Science.gov (United States)

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  6. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output

    Directory of Open Access Journals (Sweden)

    D. Hirdman

    2010-01-01

    Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport, this paper studies the sources of equivalent black carbon (EBC, sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To determine where these substances originate, the measurement data were combined with calculations using FLEXPART, a Lagrangian particle dispersion model. The climatology of atmospheric transport from surrounding regions on a twenty-day time scale modelled by FLEXPART shows that the stations Zeppelin, Alert and Barrow are highly sensitive to surface emissions in the Arctic and to emissions in high-latitude Eurasia in winter. Emission sensitivities over southern Asia and southern North America are small throughout the year. The high-altitude station Summit is an order of magnitude less sensitive to surface emissions in the Arctic whereas emissions in the southern parts of the Northern Hemisphere continents are more influential relative to the other stations. Our results show that for EBC and sulphate measured at Zeppelin, Alert and Barrow, northern Eurasia is the dominant source region. For sulphate, Eastern Europe and the metal smelting industry in Norilsk are particularly important. For EBC, boreal forest fires also contribute in summer. No evidence for any substantial contribution to EBC from sources in southern Asia is found. European air masses are associated with low ozone concentrations in winter due to titration by nitric oxides, but are associated with high ozone concentrations in summer due to photochemical ozone formation. There is also a strong influence of ozone depletion events in the Arctic boundary layer on measured ozone concentrations in spring

  7. Solving widespread low-concentration VOC air pollution problems: Gas-phase photocatalytic oxidation answers the needs of many small businesses

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, C; Turchi, C; Gratson, D

    1995-04-01

    Many small businesses are facing new regulations under the 1990 Amendments to the Clean Air Act. Regulators, as well as the businesses themselves, face new challenges to control small point-source air pollution emissions. An individual business-such as a dry cleaner, auto repair shop, bakery, coffee roaster, photo print shop, or chemical company-may be an insignificant source of air pollution, but collectively, the industry becomes a noticeable source. Often the businesses are not equipped to respond to new regulatory requirements because of limited resources, experience, and expertise. Also, existing control strategies may be inappropriate for these businesses, having been developed for major industries with high volumes, high pollutant concentrations, and substantial corporate resources. Gas-phase photocatalytic oxidation (PCO) is an option for eliminating low-concentration, low-flow-rate emissions of volatile organic compounds (VOCs) from small business point sources. The advantages PCO has over other treatment techniques are presented in this paper. This paper also describes how PCO can be applied to specific air pollution problems. We present our methodology for identifying pollution problems for which PCO is applicable and for reaching the technology`s potential end users. PCO is compared to other gas-phase VOC control technologies.

  8. Selective separation of very small particles by flotation : in relation to soil and sediment remediation

    NARCIS (Netherlands)

    Mulleneers, H.

    2001-01-01

    Next to numerous contaminated sites, also large quantities of polluted dredged sediments have to be cleaned in the near future in the Netherlands. Soil washing (classification) is one of the most common remediation techniques to remediate contaminated dredged sediment and excavated soil. It uses

  9. Small-action Particles in a Tokamak in the Presence of an n = 1 Mode

    International Nuclear Information System (INIS)

    White, R.B.; Lutsenko, V.V.; Kolesnichenko, Ya. I.; Yakovenko, Yu. V.

    1999-01-01

    It is found that an m = n = 1 mode with the amplitude exceeding a certain threshold can lead to stochastic motion of energetic ions in tokamaks, the large orbit width particles (potatoes) being most easily affected. An n = 1 mode can redistribute particles also in the absence of stochasticity but only when the perturbation is quickly switched on/off, e.g., due to sawtooth crash. In the latter case, the perturbation results in regular motion of particles around a certain helical orbit, at which a resonance driven by the mode but having no amplitude threshold takes place

  10. Dimerization of eosin on nanostructured gold surfaces: Size regime dependence of the small metallic particles

    Science.gov (United States)

    Ghosh, Sujit Kumar; Pal, Anjali; Nath, Sudip; Kundu, Subrata; Panigrahi, Sudipa; Pal, Tarasankar

    2005-08-01

    Gold nanoparticles of variable sizes have been exploited to study their influence on the absorption and emission spectral characteristics of eosin, a fluorescent dye. It has been found that smaller particles of gold stimulate J-aggregation of eosin on the surface of metal particles whereas larger particles cannot induce any kind of aggregation amongst the dye molecules. The size regime dependence of the gold nanoparticles has been attributed to the intercluster interactions induced by the dye molecules for smaller gold nanoparticles and consequently, close packing of the dye molecules around the gold surface engenders intermolecular interactions amongst the dye molecules leading to dimerization.

  11. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime.

    Science.gov (United States)

    Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael

    2016-11-01

    Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ 65 Cu and δ 66 Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ 65 Cu and δ 66 Zn values in snow and rime, extracted by diluted HNO 3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ 65 Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ 65 Cu value of pollution sources (-1.17‰). The variability in δ 65 Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ 66 Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ 66 Zn value of pollution sources (-0.23‰). The variability in δ 66 Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Methodological approach in determination of small spatial units in a highly complex terrain in atmospheric pollution research: the case of Zasavje region in Slovenia.

    Science.gov (United States)

    Kukec, Andreja; Boznar, Marija Z; Mlakar, Primoz; Grasic, Bostjan; Herakovic, Andrej; Zadnik, Vesna; Zaletel-Kragelj, Lijana; Farkas, Jerneja; Erzen, Ivan

    2014-05-01

    The study of atmospheric air pollution research in complex terrains is challenged by the lack of appropriate methodology supporting the analysis of the spatial relationship between phenomena affected by a multitude of factors. The key is optimal design of a meaningful approach based on small spatial units of observation. The Zasavje region, Slovenia, was chosen as study area with the main objective to investigate in practice the role of such units in a test environment. The process consisted of three steps: modelling of pollution in the atmosphere with dispersion models, transfer of the results to geographical information system software, and then moving on to final determination of the function of small spatial units. A methodology capable of designing useful units for atmospheric air pollution research in highly complex terrains was created, and the results were deemed useful in offering starting points for further research in the field of geospatial health.

  13. Blue-Emitting Small Silica Particles Incorporating ZnSe-Based Nanocrystals Prepared by Reverse Micelle Method

    Directory of Open Access Journals (Sweden)

    Masanori Ando

    2007-01-01

    Full Text Available ZnSe-based nanocrystals (ca. 4-5 nm in diameter emitting in blue region (ca. 445 nm were incorporated in spherical small silica particles (20–40 nm in diameter by a reverse micelle method. During the preparation, alkaline solution was used to deposit the hydrolyzed alkoxide on the surface of nanocrystals. It was crucially important for this solution to include Zn2+ ions and surfactant molecules (thioglycolic acid to preserve the spectral properties of the final silica particles. This is because these substances in the solution prevent the surface of nanocrystals from deterioration by dissolution during processing. The resultant silica particles have an emission efficiency of 16% with maintaining the photoluminescent spectral width and peak wavelength of the initial colloidal solution.

  14. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    International Nuclear Information System (INIS)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  15. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  16. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Reed F. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Hammoud, Dima A. [Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Lackemeyer, Matthew G.; Yellayi, Srikanth [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Solomon, Jeffrey [Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Blaney, Joseph E. [Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States)

    2015-07-15

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log{sub 10} PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease.

  17. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    International Nuclear Information System (INIS)

    Johnson, Reed F.; Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-01-01

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log 10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease

  18. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    Science.gov (United States)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air

  19. Two- and multi-particle azimuthal correlations in small collision systems with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00256459; The ATLAS collaboration

    2017-01-01

    The recent ATLAS results on two- and multi-particle azimuthal correlations of charged particles are presented for $\\sqrt{s}$=~5.02 TeV and 13 TeV $pp$, $\\sqrt{s_\\mathrm{NN}}$= 5.02 TeV $p$+Pb and $\\sqrt{s_\\mathrm{NN}}$= 2.76 TeV low-multiplicity Pb+Pb collisions. To remove the "non-flow" contribution from the correlations, that arises predominantly from hard-scattering processes, a template fitting procedure is used in the two-particle correlations (2PC) measurements, while for multi-particle correlations the cumulant method is applied. The correlations are expressed in the form of Fourier harmonics $\\mathrm{v}_n (n=2,3,4)$ measuring the global azimuthal anisotropy. The measurements presented hereafter confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. For $pp$ collisions the results on four-particle cumulants do not demonstrate a similar collective behaviour.

  20. Measurement of illite particle thickness using a direct Fourier transform of small-angle X-ray scattering data

    Science.gov (United States)

    Shang, Chao; Rice, James A.; Eberl, Dennis D.; Lin, Jar-Shyong

    2003-01-01

    It has been suggested that interstratified illite-smectite (I-S) minerals are composed of aggregates of fundamental particles. Many attempts have been made to measure the thickness of such fundamental particles, but each of the methods used suffers from its own limitations and uncertainties. Small-angle X-ray scattering (SAXS) can be used to measure the thickness of particles that scatter X-rays coherently. We used SAXS to study suspensions of Na-rectorite and other illites with varying proportions of smectite. The scattering intensity (I) was recorded as a function of the scattering vector, q = (4 /) sin(/2), where  is the X-ray wavelength and  is the scattering angle. The experimental data were treated with a direct Fourier transform to obtain the pair distance distribution function (PDDF) that was then used to determine the thickness of illite particles. The Guinier and Porod extrapolations were used to obtain the scattering intensity beyond the experimental q, and the effects of such extrapolations on the PDDF were examined. The thickness of independent rectorite particles (used as a reference mineral) is 18.3 Å. The SAXS results are compared with those obtained by X-ray diffraction peak broadening methods. It was found that the power-law exponent (α) obtained by fitting the data in the region of q = 0.1-0.6 nm-1 to the power law (I = I0q-α) is a linear function of illite particle thickness. Therefore, illite particle thickness could be predicted by the linear relationship as long as the thickness is within the limit where α <4.0.

  1. Correlations associated with particles produced at small angles in pp collisions at the CERN ISR

    CERN Document Server

    Albrow, M G; Benz, P; Bosnjakovic, B; Brooks, J R; Chang, C Y; Clegg, A B; Erné, F C; Kooijman, P; Loebinger, F K; McCubbin, N A; Murphy, P G; Radiojicic, D; Rudge, A; Sens, Johannes C; Sessoms, A L; Singh, J; Strolin, P; Timmer, J

    1976-01-01

    Data on correlations between momentum analysed protons, pions or K mesons, and charged particles produced in pp collisions at the CERN ISR are presented. The charged particles were detected in a approximately 4 pi scintillation counter hodoscope. The pseudo- rapidity distributions are well described by production within the limits of cylindrical phase space, with negative kaons and antiprotons yielding narrower distributions than protons, pions and positive kaons. The azimuthal distributions show symmetry around the t-channel axis in the rest frame of the recoiling mass M/sub X/ in pp to aX(a =detected proton, pion, positive kaon). (14 refs).

  2. Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city

    Directory of Open Access Journals (Sweden)

    Alastair G. Williams

    2016-09-01

    Full Text Available One year of radon, benzene and carbon monoxide (CO concentrations were analysed to characterise the combined influences of variations in traffic density and meteorological conditions on urban air quality in Bern, Switzerland. A recently developed radon-based stability categorisation technique was adapted to account for seasonal changes in day length and reduction in the local radon flux due to snow/ice cover and high soil moisture. Diurnal pollutant cycles were shown to result from an interplay between variations in surface emissions (traffic density, the depth of the nocturnal atmospheric mixing layer (dilution and local horizontal advection of cleaner air from outside the central urban/industrial area of this small compact inland city. Substantial seasonal differences in the timing and duration of peak pollutant concentrations in the diurnal cycle were attributable to changes in day length and the switching to/from daylight-savings time in relation to traffic patterns. In summer, average peak benzene concentrations (0.62 ppb occurred in the morning and remained above 0.5 ppb for 2 hours, whereas in winter average peak concentrations (0.85 ppb occurred in the evening and remained above 0.5 ppb for 9 hours. Under stable conditions in winter, average peak benzene concentrations (1.1 ppb were 120% higher than for well-mixed conditions (0.5 ppb. By comparison, summertime peak benzene concentrations increased by 53% from well-mixed (0.45 ppb to stable nocturnal conditions (0.7 ppb. An idealised box model incorporating a simple advection term was used to derive a nocturnal mixing length scale based on radon, and then inverted to simulate diurnal benzene and CO emission variations at the city centre. This method effectively removes the influences of local horizontal advection and stability-related vertical dilution from the emissions signal, enabling a direct comparison with hourly traffic density. With the advection term calibrated appropriately

  3. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  4. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  5. Fluorescent and Raman scattering by molecules embedded in small particles: Final report

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1987-02-01

    The model takes into account the physical properties and the morphology of the particles, as well as the locations of the scatter(s). Brief descriptions of various applications of the model are presented. Brief descriptions of experimental studies of scattering by finite dielectric and cylindrical microstructures in plastic track detector plane surfaces are given

  6. Magnetic dynamics of small alpha-Fe2O3 and NiO particles

    DEFF Research Database (Denmark)

    Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt

    1999-01-01

    particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to respresent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temprature is interpreted...

  7. High export via small particles before the onset of the North Atlantic spring bloom

    DEFF Research Database (Denmark)

    Giering, S. L. C.; Sanders, R.; Martin, A. P.

    2016-01-01

    Sinking organic matter in the North Atlantic Ocean transfers 1-3 Gt carbon yr-1 from the surface ocean to the interior. The majority of this exported material is thought to be in form of large, rapidly sinking particles that aggregate during or after the spring phytoplankton bloom. However, recent...

  8. Symmetry breaking. Particles, antiparticles, and the small difference; Symmetriebrechung. Teilchen, Antiteilchen und der kleine Unterschied

    Energy Technology Data Exchange (ETDEWEB)

    Uwer, Ulrich [Heidelberg Univ. (Germany). Physikalisches Inst.; Albrecht, Johannes [Technische Univ. Dortmund (Germany). Emmy-Noether Gruppe

    2018-04-01

    With precise measurements on subatomic particles and their antiparticles physicists search at CERN for new physical phenomena. They hope for last but not least better for answers to the question, why we live in a world of matter, where matter and antimatter in the universe must have arisen alike.

  9. Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence

    Science.gov (United States)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-05-01

    The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).

  10. Environmental pollution and allergies.

    Science.gov (United States)

    Takano, Hirohisa; Inoue, Ken-Ichiro

    2017-07-01

    Environmental changes are thought to be the main factor in the rapid increase and worsening of allergic diseases. While there have been significant changes in many environmental factors, including in environments such as residential, health and sanitation, food, and water/soil/atmospheric environments, the root of each of these changes is likely an increase in chemical substances. In fact, various environmental pollutants, such as air pollutants and chemical substances, have been shown to worsen various allergies in experimental studies. For example, diesel exhaust particles (DEPs), which are an agglomeration of particles and a wide array of chemical substances, aggravate asthma, primarily due to the principle organic chemical components of DEPs. In addition, environmental chemicals such as phthalate esters, which are commonly used as plasticizers in plastic products, also aggravate atopic dermatitis. It has also become evident that extremely small nanomaterials and Asian sand dust particles can enhance allergic inflammation. While the underlying mechanisms that cause such aggravation are becoming clearer at the cellular and molecular levels, methods to easily and quickly evaluate (screen) the ever-increasing amount of environmental pollutants for exacerbating effects on allergies are also under development. To eliminate and control allergic diseases, medical measures are necessary, but it is also essential to tackle this issue by ameliorating environmental changes.

  11. [Study on the types and water pollution driving forces of the typical and medium-small-sized cities in the southern China based on the analysis of water environment].

    Science.gov (United States)

    Jiao, Shi-Xing; Wang, La-Chun; Huo, Yu; Chen, Chang-Chun; Teng, Juan

    2009-07-15

    According to the major pollution sources of urban water environment, 10 indexes such as industrial sewage quantity were closen to establish evaluation indexes system about the types and influencing factors of the typical and medium-small-sized cities in the southern China. Case studies of 16 typical and medium-small-sized cities were taken in Jiangsu, Zhejiang, Hubei and Anhui provinces. Combined with SPSS 11.0 cluster analysis results, city types were divided in reference to the values of water resources comprehensive pollution indexes and economical development indexes. The driving forces about city water environment pollution were studied by principal component analysis method. The result indicates that the 16 cities belong to two categories and four sub-categories, which are rich economy as well as light pollution of water environment and poor economy as well as heavy pollution of water environment. The influencing factors of water environment pollution are in sequence of industrial water pollution, agricultural no-point source pollution and urban domestic water pollution. The main factors of water environment pollution influenced I category cities, II as well as IV category cities and III category cities are industrial water pollution, urban domestic pollution and agricultural no-point source pollution respectively.

  12. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kameya, Yuki, E-mail: ykameya@anl.gov; Lee, Kyeong O. [Argonne National Laboratory, Center for Transportation Research (United States)

    2013-10-15

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  13. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  14. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  15. East Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available A large SO2-rich pollution plume of East Asian origin was detected by aircraft based CIMS (Chemical Ionization Mass Spectrometry measurements at 3–7.5 km altitude over the North Atlantic. The measurements, which took place on 3 May 2006 aboard of the German research aircraft Falcon, were part of the INTEX-B (Intercontinental Chemical Transport Experiment-B campaign. Additional trace gases (NO, NOy, CO, H2O were measured and used for comparison and source identification. The atmospheric SO2 mole fraction was markedly increased inside the plume and reached up to 900 pmol/mol. Accompanying lagrangian FLEXPART particle dispersion model simulations indicate that the probed pollution plume originated at low altitudes from densely populated and industrialized regions of East Asia, primarily China, about 8–12 days prior to the measurements.

  16. Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China

    Science.gov (United States)

    Chen, Yuanchen; Shen, Guofeng; Liu, Weijian; Du, Wei; Su, Shu; Duan, Yonghong; Lin, Nan; Zhuo, Shaojie; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2016-01-01

    Pollutant emissions into outdoor air from cooking and space heating processes with various solid fuels were measured, and daily household emissions were estimated from the kitchen performance tests. The burning of honeycomb briquette had the lowest emission factors, while the use of wood produced the highest pollutants. Daily emissions from space heating were significantly higher than those from cooking, and the use of honeycomb briquette for cooking and raw coal chunk for space heating reduces 28%, 24% and 25% for CO, PM10 and PM2.5, compared to wood for cooking and peat for space heating. Much higher emissions were observed during the initial phase than the stable phase due to insufficient air supply and lower combustion temperature at the beginning of burning processes. However, more mass percent of fine particles formed in the later high temperature stable burning phase may increase potential inhalation exposure risks.

  17. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States); Day, Douglas A. [Univ. of Colorado, Boulder, CO (United States); Martin, Scot T. [Univ. of Colorado, Boulder, CO (United States); Kim, Saewung [Univ. of Colorado, Boulder, CO (United States); Smith, James [Univ. of Colorado, Boulder, CO (United States); Souza, Rodrigo [Univ. of Colorado, Boulder, CO (United States); Barbosa, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-08-04

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution. The first objective of the project was to understand and quantify the interactions of biogenic and anthropogenic emissions with respect to the production of secondary organic material. In clean conditions in the Amazon basin, secondary organic material dominates the diameter distribution of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective followed from the first in that, although the diameter distribution is dominated by secondary organic material, the actual source of new particle production remains uncertain (i.e., the number concentration). The second objective was to test the hypothesis that new particles under natural conditions are produced as a result of evaporation of primary particles emitted by fungal spores as well as to investigate any shifts in this mechanism under pollution conditions, e.g., in consequence to the high concentrations of SO2 in the pollution plume. Combined, the number-diameter distribution is the key connection to upscaling to the effects of aerosol

  18. In-situ TEM investigations of graphic-epitaxy and small particles. Final Report, 1 January-31 December 1982

    International Nuclear Information System (INIS)

    Heinemann, K.

    1983-01-01

    Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence

  19. Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density.

    Science.gov (United States)

    North, S M; Jones, E R; Smith, G N; Mykhaylyk, O O; Annable, T; Armes, S P

    2017-02-07

    The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA 71 -PBzMA 100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm -3 to

  20. Small PWR 'PFPWR50' using cermet fuel of Th-Pu particles

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Shimazu, Yoichiro

    2009-01-01

    An innovative concept of PFPWR50 has been studied. The main feature of PFPWR50 has been to adopt TRISO coated fuel particles in a conventional PWR cladding. Coated fuel particle provides good confining ability of fission products. But it is pointed out that swelling of SiC layer at low temperature by irradiation has possibilities of degrading the integrity of coated fuel particle in the LWR environment. Thus, we examined the use of Cermet fuel replacing SiC layer to Zr metal or Zr compound. And the nuclear fuel has been used as fuel compact, which is configured to fix coated fuel particles in the matrix material to the shape of fuel pellet. In the previous study, graphite matrix is adopted as the matrix material. According to the burnup calculations of the several fuel concepts with those covering layers, we decide to use Zr layer embedded in Zr metal base or ZrC layer with graphite matrix. But carbon has the problem at low temperature by irradiation as well as SiC. Therefore, Zr covering layer and Zr metal base are finally selected. The other feature of PFPWR50 concept has been that the excess reactivity is suppressed during a cycle by initially loading burnable poison (gadolinia) in the fuels. In this study, a new loading pattern is determined by combining 7 types of assemblies in which the gadolinia concentration and the number of the fuel rods with gadolinia are different. This new core gives 6.7 equivalent full power years (EFPY) as the core life of a cycle. And the excess reactivity is suppressed to less than 2.0%Δk/k during the cycle. (author)

  1. Collision of a Small Rising Bubble with a Large Falling Particle

    Czech Academy of Sciences Publication Activity Database

    Hubička, M.; Basařová, P.; Vejražka, Jiří

    2013-01-01

    Roč. 121, JUN 10 (2013), s. 21-30 ISSN 0301-7516 R&D Projects: GA ČR GAP101/11/0806 Grant - others:GA MŠk(CZ) 21/2011 Institutional support: RVO:67985858 Keywords : bubble-particle interaction * collision process * collision efficiency Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.461, year: 2013

  2. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air.

    Science.gov (United States)

    Guo, Hai; Morawska, Lidia; He, Congrong; Zhang, Yanli L; Ayoko, Godwin; Cao, Min

    2010-07-01

    The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. The findings obtained in this study are useful for epidemiological studies to estimate the

  3. Performance Evaluation of "Low-cost" Sensors for Measuring Gaseous and Particle Air Pollutants: Results from Two Years of Field and Laboratory Testing

    Science.gov (United States)

    Feenstra, B. J.; Polidori, A.; Tisopulos, L.; Papapostolou, V.; Zhang, H.; Pathmanabhan, J.

    2016-12-01

    In recent years great progress has been made in development of low-cost miniature air quality sensing technologies. Such low-cost sensors offer a prospect of providing a real-time spatially dense information on pollutants, however, the quality of the data produced by these sensors is so far untested. In an effort to inform the general public about the actual performance of commercially available low-cost air quality sensors, in June 2014 the South Coast Air Quality Management District (SCAQMD) has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC). This program performs a thorough characterization of low-cost sensors under ambient (in the field) and controlled (in the laboratory) conditions. During the field testing, air quality sensors are operated side-by-side with Federal Reference Methods and Federal Equivalent Methods (FRM and FEM, respectively), which are routinely used to measure the ambient concentration of gaseous or particle pollutants for regulatory purposes. Field testing is conducted at two of SCAQMD's existing air monitoring stations, one in Rubidoux and one near the I-710 freeway. Sensors that demonstrate an acceptable performance in the field are brought back to the lab where a "characterization chamber" is used to challenge these devices with known concentrations of different particle and gaseous pollutants under different temperature and relative humidity levels. Testing results for each sensor are then summarized in a technical report and, along with other relevant information, posted online on a dedicated website (www.aqmd.gov/aq-spec) to educate the public about the capabilities of commercially available sensors and their potential applications. During this presentation, the results from two years of field and laboratory testing will be presented. The major strengths and weaknesses of some of the most commonly available particle and gaseous sensors will be discussed.

  4. Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality.

    Science.gov (United States)

    Klaminder, Jonatan; Bindler, Richard; Laudon, Hjalmar; Bishop, Kevin; Emteryd, Ove; Renberg, Ingemar

    2006-08-01

    It is not well-known how the accumulated pool of atmospheric lead pollution in the boreal forest soil will affect the groundwater and surface water chemistry in the future as this lead migrates through the soil profile. This study uses stable lead isotopes (206Pb/207Pb and 208Pb/ 207Pb ratios) to trace the transport of atmospheric lead pollution within the soil of a small catchment and predict future lead level changes in a stream draining the catchment. Low 206Pb/207Pb and 208Pb/207Pb ratios for the lead in the soil water (1.16 +/- 0.02; 2.43 +/- 0.03) and streamwater (1.18 +/- 0.03; 2.42 +/- 0.03) in comparison to that of the mineral soil (>1.4; >2.5) suggest that atmospheric pollution contributes by about 90% (65-100%) to the lead pool found in these matrixes. Calculated transport rates of atmospheric lead along a soil transect indicate that the mean residence time of lead in organic and mineral soil layers is at a centennial to millennial time scale. A maximum release of the present pool of lead pollution in the soil to the stream is predicted to occur within 200-800 years. Even though the uncertainty of the prediction is large, it emphasizes the magnitude of the time lag between the accumulation of atmospheric lead pollution in soils and the subsequent response in streamwater quality.

  5. Scanning electron microscopy applied to the study of solid pollution particles deposited on monumental stone; La microscopia electronica de barrido aplicada al estudio de particulas solidas de contaminacion depositadas sobre la piedra momumental

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Pache, F.; Alonso, F.J.; Esbert, R.M. [Departamento de Geologia, Universidad de Oviedo (Spain)

    1996-06-01

    Solid pollution particles play an important role in the decay of monumental stone. Scanning electron microscopy (SEM) in conjunction with microanalysis (EDX) are a very valuable study tool. In the present paper, particular attention is paid to sample collection and preparation. Examples of particles providing information on the source of decay are submitted. (Author) 9 refs.

  6. Influence of small metallic particles on the absorption and emission in amorphous materials doped with rare earths

    International Nuclear Information System (INIS)

    Malta, O.L.; Santa Cruz, P.A.; Sa, G.F. de

    1987-01-01

    The influence of small metallic clusters on the absorption and emission processes in molecular species shows a great interest as well the fundamental as the pratical point of view. This subject, which has been recently developed, covers several aspects related to the kinetics of formation of these chusters and to theirs optical properties in amorphous media. A study of this problem developed by the first time for the case of one volumetric distribution of metallic particles is presented. With this aim, fluoborate glasses doped with Eu 3+ ion which fluorescence is well known in several materials are used. (L.C.) [pt

  7. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Messerer, A.; Schmatloch, V.; Poeschl, U.; Niessner, R.

    2007-01-01

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms -1 ), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  8. Two- and Multi-particle Azimuthal Correlations in Small Collision Systems with the ATLAS Detector

    CERN Document Server

    Trzupek, Adam; The ATLAS collaboration

    2017-01-01

    ATLAS measurements of two-particle correlations in $\\Delta\\phi$ and $\\Delta\\eta$ are presented for $pp$ collisions at 2.76, 5.02 and 13~TeV, and for $p$+Pb collisions at 5.02 TeV. A template fitting procedure is used to subtract the dijet contribution and to extract the genuine long-range ridge correlations. This template procedure was previously used for 2.76 TeV and 13 TeV pp collisions, but is now extended to pp and $p$+Pb collisions at 5.02 TeV. In all collision systems, the ridge correlations are shown to be present even in events with a low multiplicity of produced particles, implying that the long-range correlations are not unique to rare high-multiplicity events. The properties of the correlation are shown to exhibit only a weak energy dependence and are remarkably similar to that observed in $p$+Pb collisions. Another new aspect of this talk is a detailed study of ridge properties in collisions containing hard processes, characterized by large four-momentum transfer. This may help answering the quest...

  9. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    Science.gov (United States)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  10. Experimental investigations of the influence from different operating conditions on the particle emissions from a small-scale pellets combustor

    International Nuclear Information System (INIS)

    Wiinikka, Henrik; Gebart, Rikard

    2004-01-01

    The purpose of this study is to determine how different design parameters in an idealised small-scale combustor affect the emission of particulates in the flue gas and to provide insight that can be used for design optimisation. The design parameters are the primary air factor, the total air factor and the magnitude of swirling flow in the combustion chamber. Particles from the reactor were collected from two different sampling lines, one located in the combustion zone, just above the fuel bed, and the other in the flue stack after the reactor. The measurements show that this burner gives very low emissions of particulates and CO in the flue gas. Furthermore, the concentration of particles in the flue gas is uncoupled to the concentration of particles immediately above the fuel bed, probably as a result of a well-designed secondary air supply. The variable that had the strongest effect on the total particulate emission from the combustor was the total air factor. In order to understand the qualitative differences in the flow nature between different operating conditions, CFD simulations of the flow field were also performed

  11. Some Characteristics of Dust Particles in Atmosphere of Kemerovo City According to Pollution Data of Snow Cover

    Science.gov (United States)

    Golokhvast, K. S.; Manakov, Yu A.; Bykov, A. A.; Chayka, V. V.; Nikiforov, P. A.; Rogulin, R. S.; Romanova, T. Yu; Karabtsov, A. A.; Semenikhin, V. A.

    2017-10-01

    The given paper presents the study results of solid particles contained in snow samples, taken on 10 sites in Kemerovo city in spring 2013. The sites were chosen in such a way as to prevent particles flow into the snow cover in other ways, except with atmospheric precipitation. Kuzbass Botanical Garden was chosen as the check point. In 7 out of 10 sampling sites on the territory of Kemerovo city the presence of particles that are particularly dangerous for human health was found. In one of the areas the particles of 200-400 nm size and with a specific surface area of 14,813.34 cm2/cm3 were detected in ecologically significant quantity (8%).

  12. MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas

    Science.gov (United States)

    Hutchison, Mark; Price, Daniel J.; Laibe, Guillaume

    2018-05-01

    We present a new algorithm, MULTIGRAIN, for modelling the dynamics of an entire population of small dust grains immersed in gas, typical of conditions that are found in molecular clouds and protoplanetary discs. The MULTIGRAIN method is more accurate than single-phase simulations because the gas experiences a backreaction from each dust phase and communicates this change to the other phases, thereby indirectly coupling the dust phases together. The MULTIGRAIN method is fast, explicit and low storage, requiring only an array of dust fractions and their derivatives defined for each resolution element.

  13. Relaxing the Small Particle Approximation for Dust-grain opacities in Carbon-star Wind Models

    OpenAIRE

    Mattsson, Lars; Höfner, Susanne

    2010-01-01

    We have computed wind models with time-dependent dust formation and grain-size dependent opacities, where (1) the problem is simplified by assuming a fixed dust-grain size, and where (2) the radiation pressure efficiency is approximated using grain sizes based on various means of the actual grain size distribution. It is shown that in critical cases, the effect of grain sizes can be significant. For well-developed winds, however, the effects on the mass-loss rate and the wind speed are small.

  14. Structural characterization and gas reactions of small metal particles by high-resolution TEM and TED

    Science.gov (United States)

    Heinemann, K.

    1985-01-01

    The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.

  15. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number

    Science.gov (United States)

    Boogaard, Hanna; Kos, Gerard P. A.; Weijers, Ernie P.; Janssen, Nicole A. H.; Fischer, Paul H.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Hoek, Gerard

    2011-01-01

    Policies to reduce outdoor air pollution concentrations are often assessed on the basis of the regulated pollutants. Whether these are the most appropriate components to assess the potential health benefits is questionable, as other health-relevant pollutants may be more strongly related to traffic. The aim of this study is to compare the contrast in concentration between major roads and (sub)urban background for a large range of pollutants and to analyze the magnitude of the measured difference in the street - background for major streets with different street configurations. Measurements of PM 10, PM 2.5, particle number concentrations (PNC), black carbon (BC), elemental composition of PM 10 and PM 2.5 and NO x were conducted simultaneously in eight major streets and nine (sub)urban background locations in the Netherlands. Measurements were done six times for a week during a six month period in 2008. High contrasts between busy streets and background locations in the same city were found for chromium, copper and iron (factor 2-3). These elements were especially present in the coarse fraction of PM. In addition, high contrasts were found for BC and NO x (factor 1.8), typically indicators of direct combustion emissions. The contrast for PNC was similar to BC. NO 2 contrast was lower (factor 1.5). The largest contrast was found for two street canyons and two streets with buildings at one side of the street only. The contrast between busy streets and urban background in NO 2 was less than the contrast found for BC, PNC and elements indicative of non-exhaust emissions, adding evidence that NO 2 is not representing (current) traffic well. The study supports a substantial role for non-exhaust emissions including brake- and tyre wear and road dust in addition to direct combustion emissions. Significant underestimation of disease burden may occur when relying too much on the regulated components.

  16. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2017-10-01

    Full Text Available The Beijing–Tianjin–Hebei (BTH region has been suffering from the most severe fine-particle (PM2. 5 pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM. The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24–36 % to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM

  17. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  18. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  19. Study of particles in solution by small angle x-ray scattering

    International Nuclear Information System (INIS)

    Itri, R.

    1986-01-01

    The implantation of SAXS technique is presented, and mycellas in solution of the dodecyl sodium sulfate SLS/water system are studied. A synthesis of SAXS theory to study parameters such as, volume, radii of gyration and specific surface and distribution function of the distance of homogenous and inhomogeneous particles is also presented. The technique was implanted by the study of a vitreous coal sample with voids in amorphous matrix. Computer programs were used for data treatment. It was concluded that the void configuration must be an oblate ellipsoid with rippled external surface and radii of gyration of ∼20A . The study of mycellas in solution of the SLL/H 2 O binary system showed spherical mycellas with paraffinic radii of 16A and total radii of 25.5 A. Interaction effects start to appear in 15% SLS concentrations. The change in the scattering curve occurs due to the interactions between mycellas. The isotropic-nematic transition in the ternary system by decanol addition was also investigated. (M.C.K.) [pt

  20. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    Science.gov (United States)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  1. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  2. Development of real time detector for fluorescent particles applied to pollutant transfers characterization; Etude d`un dispositif de comptage en continu d`un aerosol fluorescent

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, C [CEA Saclay, Departement de Prevention et d` Etude des Accidents, 91 - Gif-sur-Yvette (France); [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1996-06-01

    The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the

  3. The effects of selected air pollutants on clearance of titanic oxide particles from the lungs of rats.

    Science.gov (United States)

    Ferin, J; Leach, L J

    1975-09-01

    A procedure utilizing the lung clearance kinetics of titanic oxide (TiO2) particles was used to determine the effects of inhaled sulphur dioxide (SO2) and nitrogen oxides (NO x) on particle clearance. The procedure is reproducible and mainly tests clearance mechanisms involving alveolar macrophages and the mucociliary transport system at the alveolobronchial clearance pathway. At low SO2 or NOx exposures enhanced particle clearance was observed. Lung clearance was depressed at 15 and 24 ppm of NO2 after 22 exposures as well as at 20 ppm of SO2 after 11 exposures, and also at 1 ppm of SO2 after 25 exposures. Dose-response curves for the SO2 and NOx exposures showed differences explainable by the routes by which these gases reach the alveolar macrophages.

  4. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions

    Directory of Open Access Journals (Sweden)

    M. Stock

    2011-05-01

    Full Text Available This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH. During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS. Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp: 1.42 (± 0.05 at 30 nm compared to 1.63 (± 0.07 at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea as well as the degree of continental pollution (marine vs. continentally influenced. The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70

  5. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2017-08-01

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution.

  6. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces

    Directory of Open Access Journals (Sweden)

    Richa Rohatgi

    2015-12-01

    Full Text Available Small particle reagent (SPR is a widely used method for developing latent fingerprints on non-porous wet surfaces. SPR based on zinc carbonate hydroxide monohydrate, ZnCo3·2Zn(OH2·H2O – also called basic zinc carbonate – has been formulated. The other ingredients of the formulation are crystal violet dye and a commercial liquid detergent. The composition develops clear, sharp and detailed fingerprints on non-porous items, after these were immersed separately in clean and dirty water for variable periods of time. The ability of the present formulation to detect weak and faint chance prints not only enhances its utility, but also its potentiality in forensic case work investigations. The raw materials used to prepare the SPR are cost-effective and non-hazardous.

  7. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi

    2015-01-01

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  8. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  9. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  11. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    Science.gov (United States)

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  13. Biomonitoring of atmospheric pollution: a novel approach for the evaluation of natural and anthropogenic contribution to atmospheric aerosol particles.

    Science.gov (United States)

    Caggiano, Rosa; Calamita, Giuseppe; Sabia, Serena; Trippetta, Serena

    2017-03-01

    The investigation of the potential natural and anthropogenic contribution to atmospheric aerosol particles by using lichen-bag technique was performed in the Agri Valley (Basilicata region, southern Italy). This is an area of international concern since it houses one of the largest European on-shore reservoirs and the biggest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri (COVA)) within an anthropized context. In particular, the concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti, and Zn) were measured in lichen bags exposed in 59 selected monitoring points over periods of 6 months (from October 2011 to April 2012) and 12 months (from October 2011 to October 2012). The general origin of the main air masses affecting the sampling site during the study period was assessed by the back trajectories clustering calculated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results allowed the identification and characterization of the crustal material, smoke, sea salt, sulfate, and anthropogenic trace element contributions to the atmospheric aerosol particles in the study area. Finally, the application of the trend surface analysis (TSA) allowed the study of the spatial distribution of the considered contributions highlighting the existence of a continuous broad variation of these contributions in the area of interest.

  14. Are small-scale field-aligned currents and magneto sheath-like particle precipitation signatures of the same low-altitude cusp?

    DEFF Research Database (Denmark)

    Watermann, J.; Stauning, P.; Luhr, H.

    2009-01-01

    We examined some 75 observations from the low-altitude Earth orbiting DMSP, Orsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation...... ("particle cusp") and intense small-scale magnetic field variations ("current cusp"), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms ("statistical cusp"). The geocentric coordinates...... of the satellites were converted into AACGM coordinates, and the geomagnetic latitude of the cusp boundaries (as indicated by precipitating particles and small-scale field-aligned currents) set in relation to the IMF-B-z dependent latitude of the equatorward boundary of the statistical cusp. We find...

  15. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  16. Adaptive Particle Swarm Optimizer with Varying Acceleration Coefficients for Finding the Most Stable Conformer of Small Molecules.

    Science.gov (United States)

    Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra

    2015-11-01

    A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.

    Science.gov (United States)

    Sun, Zehang; Xie, Xiande; Wang, Ping; Hu, Yuanan; Cheng, Hefa

    2018-05-19

    Although metal ore mining activities are well known as an important source of heavy metals, soil pollution caused by small-scale mining activities has long been overlooked. This study investigated the pollution of surface soils in an area surrounding a recently abandoned small-scale polymetallic mining district in Guangdong province of south China. A total of 13 tailing samples, 145 surface soil samples, and 29 water samples were collected, and the concentrations of major heavy metals, including Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Se, were determined. The results show that the tailings contained high levels of heavy metals, with Cu, Zn, As, Cd, and Pb occurring in the ranges of 739-4.15 × 10 3 , 1.81 × 10 3 -5.00 × 10 3 , 118-1.26 × 10 3 , 8.14-57.7, and 1.23 × 10 3 -6.99 × 10 3  mg/kg, respectively. Heavy metals also occurred at high concentrations in the mine drainages (15.4-17.9 mg/L for Cu, 21.1-29.3 mg/L for Zn, 0.553-0.770 mg/L for Cd, and 1.17-2.57 mg/L for Pb), particularly those with pH below 3. The mean contents of Cu, Zn, As, Cd, and Pb in the surface soils of local farmlands were up to 7 times higher than the corresponding background values, and results of multivariate statistical analysis clearly indicate that Cu, Zn, Cd, and Pb were largely contributed by the mining activities. The surface soils from farmlands surrounding the mining district were moderately to seriously polluted, while the potential ecological risk of heavy metal pollution was extremely high. It was estimated that the input fluxes from the mining district to the surrounding farmlands were approximately 17.1, 59.2, 0.311, and 93.8 kg/ha/yr for Cu, Zn, Cd, and Pb, respectively, which probably occurred through transport of fine tailings by wind and runoff, and mine drainage as well. These findings indicate the significant need for proper containment of the mine tailings at small-scale metal ore mines. Copyright © 2018. Published by Elsevier

  18. Copper removal from acid mine drainage-polluted water using glutaraldehyde-polyethyleneimine modified diatomaceous earth particles

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2018-02-01

    Full Text Available Mine waters and tailings generated from mining and mineral processing activities often have detrimental impact on the local environment. One example is acid mine drainage, in which sulphides in the mining waste react with water and oxygen to produce an acidic environment that subsequently dissolves host rock minerals from the waste containing toxic metals and trace elements. Copper is one such metal of significance, as it is mined at large volumes in sulphide containing ores. It has strong biocidal activity that greatly affects ecosystems. We have previously reported that glutaraldehyde (GA-crosslinked polyethyleneimine (PEI has strong affinity and selectivity for copper and that diatomaceous earth (DE particles can be modified with the material to form a copper-extraction resin. In this study, the copper uptake of GA-PEI-DE particles was investigated from synthetic and real acid mine drainage samples under different pHs and their copper removal performance was compared with that of selected commercial resins. The results revealed that copper could effectively and preferentially bind to the material at pH 4, and that the copper could be completely eluted by lowering of the pH. In addition, effective copper uptake and elution was demonstrated using real legacy acid mine drainage water from Mount Lyell in Tasmania.

  19. Studies on aerosols. XI. Influence of particulate matter on the eye irritation produced by volatile irritants and importance of particle size in connection with atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Dautrebande, L; Shaver, J; Capps, R

    1951-01-01

    This is a review of smog irritation prevented by water filters which remove > 2-..mu..m particles. Formaldehyde, HNO/sub 3/, H/sub 2/SO/sub 4/ vapors combined plus used oil produced stronger irritation than vapors alone. Vapors produced irritation essentially only at concentrations above 4.2 x 10/sup -3/ mg/liter air of each constituent. Three trained human volunteers were exposed to various aerosols via goggles. Blinking and lacrimation were observed. Reaction varied largely between the 3 and between different exposure periods. NaCl, Si dust, and used oil in combination required a much higher concentration to produce eye irritation than with vapors present. NaCl and Si combined did not irritate; used oil did. Photomicrographs showed small (approx. 0.05 ..mu..m), long-chained (1 to 7 ..mu..m), and aggregated (1 to 10 ..mu..m) particles.

  20. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  1. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    Science.gov (United States)

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  2. Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach

    Directory of Open Access Journals (Sweden)

    Tiiu Koff

    2016-11-01

    Full Text Available Palaeolimnological techniques were utilized to determine the extent of the effect of anthropogenic pollutants or other environmental stressors on three lake ecosystems over the last 200 years. The ecology of the study sites has experienced significant changes due to various activities such as (1 extensive catchment drainage and using poisoning as a fish management measure, (2 seepage of urban waste water due to establishment and growth of a town and (3 artificial inflow of oil-shale mining waters. Sediment geochemical composition, fossil pigments and Cladocera remains from the sediment cores were analysed to demonstrate that sufficient information can be derived from sediments to permit a historical reconstruction. The integrated use of archival maps, historical records and lake monitoring data confirmed links to anthropogenic pollutants, primarily on the catchment level. The examples show how the sediment indicators provide unique insights into the causes and temporal dynamics of lake ecosystem changes relevant for environmental management decisions. This study demonstrates that palaeolimnology has great potential to assist in eutrophication assessment and management efforts in waterbodies.

  3. Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water

    Science.gov (United States)

    Yang, Kaijie; Chen, Baoliang; Zhu, Lizhong

    2015-01-01

    The substantial aggregation of pristine graphene nanosheets decreases its powerful adsorption capacity and diminishes its practical applications. To overcome this shortcoming, graphene-coated materials (GCMs) were prepared by loading graphene onto silica nanoparticles (SiO2). With the support of SiO2, the stacked interlamination of graphene was held open to expose the powerful adsorption sites in the interlayers. The adsorption of phenanthrene, a model aromatic pollutant, onto the loaded graphene nanosheets increased up to 100 fold compared with pristine graphene at the same level. The adsorption of GCMs increased with the loading amount of the graphene nanosheets and dramatically decreased with the introduction of oxygen-containing groups in the graphene nanosheets. The highly hydrophobic effect and the strong π-π stacking interactions of the exposed graphene nanosheets contributed to their superior adsorption of GCMs. An unusual GCM peak adsorption coefficient (Kd) was observed with the increase in sorbate concentration. The sorbate concentration at peak Kd shifted to lower values for the reduced graphene oxide and graphene relative to the graphene oxide. Therefore, the replacement of water nanodroplets attached to the graphene nanosheets through weak non-hydrogen bonding with phenanthrene molecules via strong π-π stacking interactions is hypothesized to be an additional adsorption mechanism for GCMs. PMID:26119007

  4. Mercury Pollution from Small-Scale Gold Mining Can Be Stopped by Implementing the Gravity-Borax Method

    DEFF Research Database (Denmark)

    Køster-Rasmussen, Rasmus; Westergaard, Maria L; Brasholt, Marie

    2016-01-01

    Mercury is used globally to extract gold in artisanal and small-scale gold mining. The mercury-free gravity-borax method for gold extraction was introduced in two mining communities using mercury in the provinces Kalinga and Camarines Norte. This article describes project activities...... organization facilitated the shift in Kalinga. In conclusion, the gravity-borax method is a doable alternative to mercury use in artisanal and small-scale gold mining, but support from the civil society is needed....

  5. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk; Orlov, Alexander

    2017-07-01

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on its adsorption capacity and reaction mechanisms was also proposed in this work.

  6. Measurement of four-particle cumulants and symmetric cumulants with subevent methods in small collision systems with the ATLAS detector

    CERN Document Server

    Derendarz, Dominik; The ATLAS collaboration

    2018-01-01

    Measurements of symmetric cumulants SC(n,m)=⟨v2nv2m⟩−⟨v2n⟩⟨v2m⟩ for (n,m)=(2,3) and (2,4) and asymmetric cumulant AC(n) are presented in pp, p+Pb and peripheral Pb+Pb collisions at various collision energies, aiming to probe the long-range collective nature of multi-particle production in small systems. Results are obtained using the standard cumulant method, as well as the two-subevent and three-subevent cumulant methods. Results from the standard method are found to be strongly biased by non-flow correlations as indicated by strong sensitivity to the chosen event class definition. A systematic reduction of non-flow effects is observed when using the two-subevent method and the results become independent of event class definition when the three-subevent method is used. The measured SC(n,m) shows an anti-correlation between v2 and v3, and a positive correlation between v2 and v4. The magnitude of SC(n,m) is constant with Nch in pp collisions, but increases with Nch in p+Pb and Pb+Pb collisions. ...

  7. Structure of small-scale standing azimuthal Alfven waves interacting with high-energy particles in the magnetosphere

    International Nuclear Information System (INIS)

    Klimushkin, D.Yu.

    1998-01-01

    The effect of bounce-drift instability on the structure of small-scale azimuthal Alfven waves in the magnetosphere is studied with allowance for the curvature of the geomagnetic field lines. The pressure of the background plasma is assumed to be zero. As early as 1993, Leonovich and Mazur showed that Alfven waves with m>>1, being standing waves along magnetic field lines, propagate, at the same time, across the magnetic surfaces. As these waves propagate through the magnetosphere, they interact with a group of high-energy particles and, thereby, are amplified with a growth rate dependent on the radial coordinate, i.e., a coordinate perpendicular to the magnetic sheaths. Near the Alfven resonance surface, the growth rate approaches zero, and the waves are damped completely due to the energy dissipation in the ionosphere. As the growth rate increases, the maximum of the wave amplitude is displaced to the Alfven resonance region and the most amplified waves are those whose magnetic field vectors oscillate in the azimuthal direction. Among the waves excited in a plasma resonator that is formed near the plasmapause, the most amplified are those with radial polarization

  8. Macrophage Uptake of Ultra-Small Iron Oxide Particles for Magnetic Resonance Imaging in Experimental Acute Cardiac Transplant Rejection

    International Nuclear Information System (INIS)

    Penno, E.; Johnsson, C.; Johansson, L.; Ahlstroem, H.

    2006-01-01

    Purpose: To discriminate between acutely rejecting and non-rejecting transplanted hearts using a blood pool contrast agent and T2 magnetic resonance imaging (MRI) in a clinical 1.5T scanner. Material and Methods: Allogeneic and syngeneic heterotopic heart transplantations were performed in rats. One allogeneic and one syngeneic group each received either the ultra-small iron oxide particle (USPIO), at two different doses, or no contrast agent at all. MRI was performed on postoperative day 6. Immediately after the MR scanning, contrast agent was injected and a further MRI was done 24 h later. Change in T2 was calculated. Results: No significant difference in change in T2 could be seen between rejecting and non-rejecting grafts in either of the doses, or in the control groups. There was a difference between the allogeneic group that received the higher contrast agent dose and the allogeneic group that did not receive any contrast agent at all. Conclusion: In our rat model, measurements of T2 after myocardial macrophage uptake of AMI-227 in a clinical 1.5T scanner were not useful for the diagnosis of acute rejection

  9. Development of High Energy Particle Detector for the Study of Space Storms onboard Next Generation Small Satellite-1

    Science.gov (United States)

    Sohn, J. D.; Min, K.; Lee, J.; Lee, D. Y.; Yi, Y.; Kang, K.; Shin, G. H.; Jo, G. B.; Lee, S. U.; Na, G.

    2017-12-01

    We reports the development of the High Energy Particle Detector (HEPD), one of the radiation detectors on board the Next Generation Small Satellite-1 to be launched into a low-Earth polar orbit in late 2017. The HEPD consists of three telescopes, each with a field of view of 33.4°, that are mounted on the satellite to have an angle of 0°, 45°, and 90° to the geomagnetic field during observations in the Earth's sub-auroral regions. The detection system of each telescope is composed of two silicon surface barrier detectors (SSDs), with the capability of measuring electrons from 300 keV to 2 MeV at 32 Hz that precipitate into the polar regions from the Earth's radiation belts when space storms occur. The successful operation of the HEPD in orbit will help us understand the interaction mechanisms between energetic electrons and plasma waves such as whistler and Electromagnetic Ion Cyclotron (EMIC) waves that are believed to be responsible for the energization and loss of high energy electrons in the Earth's radiation belts.

  10. Measurement of the specific heat of small vanadium particles in the normal- and superconducting state in the temperature range of 1.5-12 K

    International Nuclear Information System (INIS)

    Vergara Garcia, O.

    1982-01-01

    The specific heat of small crystalline vanadium particles in form of polyeders with diameters between 2.9 and 13.2 mm was measured in the temperature range of 1.5-12 K. Quantum effects are interpreted in the frame of theoretical models. (BEF)

  11. Determination of Informal Sector as Urban Pollution Source : Fume Characterization of Small-scale Manual Metal Arc Welding using Factor Analysis in Bandung City

    Directory of Open Access Journals (Sweden)

    A. Nastiti

    2012-04-01

    Full Text Available In developing countries, the informal sector, particularly small-scale welding activities, are considered to be an important contributor to urban air pollution although studies in this sector are limited. This study aims to identify the composition of small-scale welding fume in order to further investigate the effects and set control strategies and urban pollution abatement policies. Breathing zone air samples were collected from 30 mild steel manual metal arc welders and 17 non-welders in Bandung City, West Java, Indonesia. The respirable particulates in air samples were analyzed using gravimetric method, and Instrumental Neutron Activation Analysis (INAA was employed to identify characteristic of welding fume. It was found that respirable particulates concentration in welders (range : 315.6 and 3,735.93 µgm-3; average 1,545.436 µgm-3 were significantly higher than in non-welders (range : 41.84 and 1,688.03 µgm-3; average : 375.783 µgm-3. Welders’ breathing zones contain Fe>Na>K>Mn>Al >Cr>Ti>Cl>Br>I>Zn>Sb>V>Co>Sc; while non-welders’ breathing zones contain Cr>F>Al>Ti>Na>Br>I>Mn>Cl>Co>Zn>Sc. Inter-species correlation analysis conducted using Statgraphic Ver. 4.0 shows that Fe (range : n.d. – 775.19 µgm-3; average: 0.1674 µgm-3, Co (range : n.d. – 0.51 µgm-3; average: 0.000082 µgm-3, Mn (range : 0.39 – 148.37 µgm-3; average: 0.0374 µgm-3, Na (range: 0.17 and 623.85 µgm-3; average: 0.0973 µgm-3 and K (range : n.d. – 301.15 µgm-3; average: 0.0535 µgm-3 were emitted from welding activity, and thus are considered as components of welding fume which contribute to urban air pollution. Although welding fume and the identified species in welding fume were still below permissible limit, small-scale welding activities have great potential in emitting higher fume concentration due to due to high variability of welding activities, such as welding frequency, materials being welded, and varied environmental conditions

  12. Determination of Informal Sector as Urban Pollution Source : Fume Characterization of Small-scale Manual Metal Arc Welding using Factor Analysis in Bandung City

    International Nuclear Information System (INIS)

    Nastiti, A.; Pramudyastuti, D.Y.; Oginawati, K.; Santoso, M.

    2012-01-01

    In developing countries, the informal sector, particularly small-scale welding activities, are considered to be an important contributor to urban air pollution although studies in this sector are limited. This study aims to identify the composition of small-scale welding fume in order to further investigate the effects and set control strategies and urban pollution abatement policies. Breathing zone air samples were collected from 30 mild steel manual metal arc welders and 17 non-welders in Bandung City, West Java, Indonesia. The respirable particulates in air samples were analyzed using gravimetric method, and Instrumental Neutron Activation Analysis (INAA) was employed to identify characteristic of welding fume. It was found that respirable particulates concentration in welders (range : 315.6 and 3,735.93 µgm -3 ; average 1,545.436 µgm -3 ) were significantly higher than in non-welders (range : 41.84 and 1,688.03 µgm -3 ; average : 375.783 µgm -3 ). Welders' breathing zones contain Fe>Na>K>Mn>Al >Cr>Ti>Cl>Br>I>Zn>Sb>V>Co>Sc; while non-welders' breathing zones contain Cr>F>Al>Ti>Na>Br>I>Mn>Cl>Co>Zn>Sc. Inter-species correlation analysis conducted using Statgraphic Ver. 4.0 shows that Fe (range : n.d. - 775.19 µgm -3 ; average: 0.1674µgm -3 ), Co (range : n.d. - 0.51 µgm -3 ; average: 0.000082 µgm -3 ), Mn (range : 0.39 - 148.37 µgm -3 ; average: 0.0374 µgm -3 ), Na (range: 0.17 and 623.85 µgm -3 ; average: 0.0973 µgm -3 ) and K (range : n.d. - 301.15 µgm -3 ; average: 0.0535 µgm -3 ) were emitted from welding activity, and thus are considered as components of welding fume which contribute to urban air pollution. Although welding fume and the identified species in welding fume were still below permissible limit, small-scale welding activities have great potential in emitting higher fume concentration due to due to high variability of welding activities, such as welding frequency, materials being welded, and varied environmental conditions. (author)

  13. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    Science.gov (United States)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical

  14. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Dall'Osso, Martino; Dorigo, Tommaso; Fantinel, Sergio; Gonella, Franco; Gozzelino, Andrea; Gulmini, Michele; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Sgaravatto, Massimo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Dattola, Domenico; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Khein, Lev; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Lukina, Olga; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bierwagen, Katharina; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-12-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given $p_{\\mathrm{T}}^{\\mathrm{min}}$ threshold starting at $p_{\\mathrm{T}}^{\\mathrm{min}} = $ 0.8 and 1 GeV, respectively, is studied in PbPb collisions at $\\sqrt{s} =$ 8 TeV. The particles and the jets are measured for absolute pseudorapidities lower than 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  15. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  16. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  17. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  18. EFFECTS OF THE CONSTRUCTION OF IRRIGATION RESERVOIRS ON THE DISTRIBUTION OF POLLUTANTS IN ESTUARINE ZONES OF SMALL MEDITERRANEAN RIVERS. THE CASE OF SPERCHIOS RIVER, GREECE

    Directory of Open Access Journals (Sweden)

    Manos Dassenakis

    2009-07-01

    Full Text Available Sperchios is a small river in central Greece and although its estuary has been characterised as an Important Bird Area and is included in the European network “NATURA 2000”, it is very poorly managed from an environmental point of view. The Sperchios basin is one of the most important agricultural regions in Greece but it is influenced also by industrial and urban pollution. An earthen dyke is erected b every summer about 2km upstream from the river mouth in order to collect the river water for irrigation purposes. The change in the site of the intermixing zone due to this fact affects the salinity of the water and the amount of suspended matter as well as the chemical behaviour and partitioning of both heavy metals and nutrients. The suspended matter was found to be the major carrier for most metals e.g. lead, zinc, copper whereas phosphorus was the limiting factor for the phytoplankton growth.

  19. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    Science.gov (United States)

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  20. The Small Area Health Statistics Unit: a national facility for investigating health around point sources of environmental pollution in the United Kingdom.

    Science.gov (United States)

    Elliott, P; Westlake, A J; Hills, M; Kleinschmidt, I; Rodrigues, L; McGale, P; Marshall, K; Rose, G

    1992-01-01

    STUDY OBJECTIVE--The Small Area Health Statistics Unit (SAHSU) was established at the London School of Hygiene and Tropical Medicine in response to a recommendation of the enquiry into the increased incidence of childhood leukaemia near Sellafield, the nuclear reprocessing plant in West Cumbria. The aim of this paper was to describe the Unit's methods for the investigation of health around point sources of environmental pollution in the United Kingdom. DESIGN--Routine data currently including deaths and cancer registrations are held in a large national database which uses a post code based retrieval system to locate cases geographically and link them to the underlying census enumeration districts, and hence to their populations at risk. Main outcome measures were comparison of observed/expected ratios (based on national rates) within bands delineated by concentric circles around point sources of environmental pollution located anywhere in Britain. MAIN RESULTS--The system is illustrated by a study of mortality from mesothelioma and asbestosis near the Plymouth naval dockyards during 1981-87. Within a 3 km radius of the docks the mortality rate for mesothelioma was higher than the national rate by a factor of 8.4, and that for asbestosis was higher by a factor of 13.6. CONCLUSIONS--SAHSU is a new national facility which is rapidly able to provide rates of mortality and cancer incidence for arbitrary circles drawn around any point in Britain. The example around Plymouth of mesothelioma and asbestosis demonstrates the ability of the system to detect an unusual excess of disease in a small locality, although in this case the findings are likely to be related to occupational rather than environmental exposure. PMID:1431704

  1. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  2. Traffic-Related Air Pollution and the Onset of Myocardial Infarction: Disclosing Benzene as a Trigger? A Small-Area Case-Crossover Study

    Science.gov (United States)

    Bard, Denis; Kihal, Wahida; Schillinger, Charles; Fermanian, Christophe; Ségala, Claire; Glorion, Sophie; Arveiler, Dominique; Weber, Christiane

    2014-01-01

    Background and Objectives Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI). Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far. Methods and Results We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000–2007) in the Strasbourg Metropolitan Area (France). Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0–1 and 1 day was 10.4 (95% confidence interval 3–18.2), 10.7 (2.7–19.2) and 7.2 (0.3–14.5), respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature. Conclusion We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars –main benzene emitters–, should be taken into account for public health action. PMID:24932584

  3. Traffic-related air pollution and the onset of myocardial infarction: disclosing benzene as a trigger? A small-area case-crossover study.

    Directory of Open Access Journals (Sweden)

    Denis Bard

    Full Text Available Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI. Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far.We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000-2007 in the Strasbourg Metropolitan Area (France. Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter <10 µm (PM10, ozone, carbon monoxide and benzene air concentrations were modeled on an hourly basis at the census block level over the study period using the deterministic ADMS-Urban air dispersion model. Model input data were emissions inventories, background pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0-1 and 1 day was 10.4 (95% confidence interval 3-18.2, 10.7 (2.7-19.2 and 7.2 (0.3-14.5, respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature.We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars--main benzene emitters-, should be taken into account for public health action.

  4. Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France.

    Science.gov (United States)

    Drouhot, Séverine; Raoul, Francis; Crini, Nadia; Tougard, Christelle; Prudent, Anne-Sophie; Druart, Coline; Rieffel, Dominique; Lambert, Jean-Claude; Tête, Nicolas; Giraudoux, Patrick; Scheifler, Renaud

    2014-02-01

    Partial remediation actions at a former gold mine in Southern France led to a mosaic of contaminated and rehabilitated zones. In this study, the distribution of arsenic and its potential adverse effects on small mammals were investigated. The effectiveness of remediation for reducing the transfer of this element into wildlife was also discussed. Arsenic levels were measured in the soil and in the stomach contents, livers, kidneys, and lungs of four small mammal species (the wood mouse (Apodemus sylvaticus), the Algerian mouse (Mus spretus), the common vole (Microtus arvalis), and the greater white-toothed shrew (Crocidura russula)). The animals were caught at the former extraction site, in zones with three different levels of remediation treatments, and at a control site. Arsenic concentrations in the soil were highly spatially heterogeneous (ranging from 29 to 18,900 μg g(-1)). Despite the decrease in arsenic concentrations in the remediated soils, both wood mice and Algerian mice experienced higher oral exposure to arsenic in remediated zones than in the control area. The accumulated arsenic in their organs showed higher intra-zonal variability than the arsenic distribution in the soil, suggesting that, in addition to remediation processes, other variables can help explain arsenic transfer to wildlife, such as the habitat and diet preferences of the animals or their mobility. A weak but significant correlation between arsenic concentration and body condition was observed, and weak relationships between the liver/kidney/lung mass and arsenic levels were also detected, suggesting possible histological alterations. © 2013.

  5. Particle therapy for non-small cell lung tumors: where do we stand?A systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Krista eWink

    2014-10-01

    Full Text Available This review article provides a systematic overview of the currently available evidence on the clinical effectiveness of particle therapy for the treatment of NSCLC and summarizes findings of in silico comparative planning studies. Furthermore, technical issues and dosimetric uncertainties with respect to thoracic particle therapy are discussed.

  6. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes--a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Philipp A Gerber

    Full Text Available The association of small, dense low-density lipoprotein (sdLDL particles with an increased cardiovascular risk is well established. However, its predictive value with regard to glucose metabolism and arterial disease in patients with type 2 diabetes has not been thoroughly investigated. We conducted a prospective longitudinal cohort study in patients with (prediabetes who were seen at baseline and after two years. sdLDL particles were determined by gradient gel electrophoresis. Insulin resistance was estimated by using the homeostatic model assessment 2 (HOMA2. Intima media thickness (IMT and flow-mediated dilation (FMD were assessed by ultrasound measurements. Fifty-nine patients (mean age 63.0 ± 12.2 years were enrolled and 39 were seen at follow-up. IMT increased in the whole cohort during follow-up. The change in IMT was predicted by the proportion of sdLDL particles at baseline (p=0.03, and the change in FMD was predicted by LDL-cholesterol levels at baseline (p=0.049. HOMA2 and changes in HOMA2 correlated with the proportion of sdLDL particles and changes in this proportion, respectively (p<0.05 for both. Serum resistin levels increased in parallel with the increasing sdLDL particle number, while serum adiponectin increased only in patients with unaltered sdLDL particle number at follow-up (p<0.01 for both. In conclusion, the proportion of small, dense LDL particles and changes in this proportion are predictive of changes in intima media thickness and insulin resistance, and are closely associated with other determinants of an adverse metabolic status. Thus, this parameter extends the individual risk assessment beyond the limitations of traditional risk markers in patients with dysglycemia.

  7. Traffic represents the main source of pollution in small Mediterranean urban areas as seen by lichen functional groups.

    Science.gov (United States)

    Llop, Esteve; Pinho, Pedro; Ribeiro, Manuel C; Pereira, Maria João; Branquinho, Cristina

    2017-05-01

    The land-use type (residential, green areas, and traffic) within relatively small Mediterranean urban areas determines significant changes on lichen diversity, considering species richness and functional groups related to different ecological factors. Those areas with larger volume of traffic hold lower species diversity, in terms of species richness and lichen diversity value (LDV). Traffic areas also affect the composition of the lichen community, which is evidenced by sensitive species. The abundance of species of lichens tolerant to low levels of eutrophication diminishes in traffic areas; oppositely, those areas show a higher abundance of species of lichens tolerating high levels of eutrophication. On the other hand, residential and green areas have an opposite pattern, mainly with species highly tolerant to eutrophication being less abundant than low or moderate ones. The characteristics of tree bark do not seem to affect excessively on lichen composition; however, tree species shows some effect that should be considered in further studies.

  8. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA

    Science.gov (United States)

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...

  9. Neutron activation analysis of small particles brought back from the asteroid Itokawa by the space probe Hayabusa

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2013-01-01

    The probe in the title launched in May 2003, landed on the asteroid 25143 (Itokawa) to collect the surface material, and returned to the desert of Australia in June 2010. The material carried in Japan Aerospace Exploration Agency (JAXA) was found to be >1,500 particles of extraterrestrial origin. This paper reports the results of activation analysis of a part of particles for the purpose of characterizing the elemental composition. The size of particles was mostly <100 mc-m and the mass, several 10s mc-g. The experiment was performed preliminarily on Kilabo meteorite using Kyoto University Research Reactor (KURR) as a neutron source, and then on 1 Itokawa particle named RA-QD02-0049, which was activated for 19 hr. The cooled particle was found to be split mainly in 2 parts (0049-1 and -2), which were subjected to analysis of gamma ray with Ge semiconductor detector in the KURR Institute and Kanazawa University. Analysis revealed that the 2 particles contained 8 elements of Na, Sc, Cr, Fe, Co, Ni, Zn and Ir, which were then quantitated with similarly neutron irradiated Allende meteorite, basalt JB-1 and highly purified Fe, and with previous findings by scanning electron microscope with energy dispersive X-ray spectrometer (SEM-EDX) showing the Itokawa particle was an olivine. Finally, 0049-1 and -2 were found to be of mass of 1.6 and 1.5 mc-g, respectively, based on which the calculated contents of the 8 elements revealed that they were homogeneously existed in the Itokawa particle. Comparison of elemental composition of the particle with those of various intra- and extra-terrestrial rocks and meteorites suggested that Itokawa had a feature of elements aggregated at the early stage after formation of the solar system 4.5 billion years ago. (T.T.)

  10. Pollution control activities for waste-water treatment plants: planning, integrated approach, functionality controls and small plants

    International Nuclear Information System (INIS)

    Serena, F.; Tomiato, L.; Ostoich, M.; Falletti, L.

    2009-01-01

    The work presents the problem of the Wastewater Treatment Plants' (WWTPs) controls and the organization of the consequential activities with reference to the priorities of the Environmental Agencies through a hierarchy assessment according to the environmental importance of the pressure sources. The European Recommendation 2001/331/EC bases the environmental controls of industrial sites and also of WWTPs on an integrated approach overtaking the simple analytic control; the integrated approach requires documentary, technical, management and analytic controls. The Veneto Regional Environmental Prevention and Protection Agency (ARPAV) has recently developed and applied a check-list for the implementation of the European Recommendation for WWTPs. The check-list includes the functionality assessment of the WWTP in case of discharge control delegation to the plant manager as consented with Annex 5 third part Italian Decree 3/04/2006 n. 152. In the paper the general framework of environmental controls on public WWTPs in the Veneto region is described. Particular importance for the numerousness and for the required control typology is referred to the small WWTP ( [it

  11. Amping it up on a small budget: Transforming inexpensive, commercial audio and video components into a useful charged particle spectrometer

    Science.gov (United States)

    Pallone, Arthur

    Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.

  12. Small Sub-micron-Particle Position-Resolving Laser-Doppler Velocimeter for High-Speed Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objectives of this proposed work are to develop and prove the use of LDV and CompLDV for particle-position-resolving and flow velocity profile...

  13. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    Science.gov (United States)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  14. Small-signal analysis and particle-in-cell simulations of planar dielectric Cherenkov masers for use as high-frequency, moderate-power broadband amplifiers

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2002-01-01

    A small-signal gain analysis of the planar dielectric Cherenkov maser is presented. The analysis results in a Pierce gain solution, with three traveling-wave modes. The analysis shows that the dielectric Cherenkov maser has a remarkable broadband tuning ability near cutoff, while maintaining reasonable gain rates. Numerical simulations verifying the small-signal gain results are presented, using a particle-in-cell code adapted specifically for planar traveling-wave tubes. An instantaneous bandwidth is numerically shown to be very large, and saturated efficiency for a nominal high-power design is shown to be in the range of standard untapered traveling-wave tubes

  15. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  16. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China.

    Science.gov (United States)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-12-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8-14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10-24%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. New insights into agricultural pesticide pollution through a complete and continuous pesticide screening during one growing season in five small Swiss streams

    Science.gov (United States)

    Mangold, Simon; Doppler, Tobias; Spycher, Simon; Langer, Miriam; Junghans, Marion; Kunz, Manuel; Stamm, Christian; Singer, Heinz

    2017-04-01

    Agricultural pesticides are regularly found in many surface waters draining agricultural areas. Due to large fluctuations in concentration over time and the potentially high number of pesticides, it is difficult to obtain a complete overview of the real pollution level. This collaborative project between research, federal and cantonal authorities in Switzerland aimed for a comprehensive assessment of pesticide pollution in five small agricultural streams to tackle this knowledge gap. The five streams are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops including vegetables, vineyards and orchards. Twelve-hour composite samples were collected continuously from March until the end of August 2015 with automatic sampling devices, yielding 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples from discharge events where measured individually whereas samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 34 - 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry involved a target screening of about 220 pesticides. The measured concentrations were compared to chronic and acute environmental quality standards (EQS values) resulting in risk quotients RQs, which are the ratios between measured concentrations and the respective EQS values. Despite the small size of the catchments, we observed a large pesticide diversity in all of them with 68 to 103 detected compounds per study area. At all sites, chronic EQS values were exceeded. However, the exposure levels varied substantially among catchments. Maximum chronic RQs per site ranged between 1.1 and 48.8 and the duration of EQS exceedance varied between 2 weeks and 5.5 months. Additionally, the data reveal (very) high concentration

  18. Use of small diameter column particles to enhance HPLC determination of histamine and other biogenic amines in seafood

    DEFF Research Database (Denmark)

    Simat, Vida; Dalgaard, Paw

    2011-01-01

    Pre-column and post-column HPLC derivatization methods were modified and evaluated for the identification and quantification of nine biogenic amines in seafood Two HPLC methods with column particles of 1 8 mu m or 3 mu m in diameter were modified and compared to classical methods using 5 mu m...... column particles Both pre-column derivatization with dansyl chloride and post-column derivatization with O-phthalaldehyde were studied The HPLC methods were compared with respect to the time of elution eluent consumption backpressure as well as separation sensitivity recovery and repeatability...... for determination of biogenic amines in lean canned tuna and fatty frozen herring The modified methods using smaller column particles of 1 8 mu m or 3 mu m allowed biogenic amines to be separated and quantified faster (23-59%) and with less eluent consumption (59-62%) than classical HPLC methods Backpressures were...

  19. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China

    International Nuclear Information System (INIS)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-01-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8–14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10–24%. - Highlights: • High inhalation exposure of fine PM 2.5 and PM 1.0 among rural residents. • Smoking prevails on cooking in increasing exposure to finer particles. • PM exposure could be reduced by

  20. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  1. Regional air pollution at a turning point.

    Science.gov (United States)

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  2. Magnetic dynamics of small α-Fe2O3 and NiO particles studied by neutron scattering

    DEFF Research Database (Denmark)

    Lefmann, Kim; Bødker, Franz; Hansen, Mikkel Fougt

    1999-01-01

    particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to represent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temperature is interpreted...

  3. Assessment of the Atmospheric Suspended Particles Pollution in the Madrid Air Quality Networks; Evaluacion de la Contaminacion Atmosferica producida por Particulas en Suspension en las Redes de Calidad del Aire de la Comunidad de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P; Artinano, B

    2000-07-01

    Suspended particles are a very complex type of atmospheric pollution because of their chemical composition and size. In fact, there are a quite high number of particles sources which are linked to different physico-chemical processes that determine their size. At present particles smaller than 10 {mu}m are considered the most dangerous, as has been recently pointed out by numerous epidemiologic studies. In this way, more restrictive concentration limit values have been approved in the EU countries, so an assessment of present airborne concentration values and the sources apportionment in their most representative areas is needed. In the Madrid Community a first approaching of these and other aims, has been carried out from an analysis of the Madrid Air Quality networks data. This will contribute to the stablishment of concentration levels abatement strategies. (Author) 111 refs.

  4. Walker occupancy has an impact on changing airborne bacterial communities in an underground pedestrian space, as small-dust particles increased with raising both temperature and humidity.

    Science.gov (United States)

    Okubo, Torahiko; Osaki, Takako; Nozaki, Eriko; Uemura, Akira; Sakai, Kouhei; Matushita, Mizue; Matsuo, Junji; Nakamura, Shinji; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2017-01-01

    Although human occupancy is a source of airborne bacteria, the role of walkers on bacterial communities in built environments is poorly understood. Therefore, we visualized the impact of walker occupancy combined with other factors (temperature, humidity, atmospheric pressure, dust particles) on airborne bacterial features in the Sapporo underground pedestrian space in Sapporo, Japan. Air samples (n = 18; 4,800L/each sample) were collected at 8:00 h to 20:00 h on 3 days (regular sampling) and at early morning / late night (5:50 h to 7:50 h / 22:15 h to 24:45 h) on a day (baseline sampling), and the number of CFUs (colony forming units) OTUs (operational taxonomic units) and other factors were determined. The results revealed that temperature, humidity, and atmospheric pressure changed with weather. The number of walkers increased greatly in the morning and evening on each regular sampling day, although total walker numbers did not differ significantly among regular sampling days. A slight increase in small dust particles (0.3-0.5μm) was observed on the days with higher temperature regardless of regular or baseline sampling. At the period on regular sampling, CFU levels varied irregularly among days, and the OTUs of 22-phylum types were observed, with the majority being from Firmicutes or Proteobacteria (γ-), including Staphylococcus sp. derived from human individuals. The data obtained from regular samplings reveled that although no direct interaction of walker occupancy and airborne CFU and OTU features was observed upon Pearson's correlation analysis, cluster analysis indicated an obvious lineage consisting of walker occupancy, CFU numbers, OTU types, small dust particles, and seasonal factors (including temperature and humidity). Meanwhile, at the period on baseline sampling both walker and CFU numbers were similarly minimal. Taken together, the results revealed a positive correlation of walker occupancy with airborne bacteria that increased with increases in

  5. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    Science.gov (United States)

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10

  6. WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm

    International Nuclear Information System (INIS)

    Volten, H.; Munoz, O.; Hovenier, J.W.; Haan, J.F. de; Vassen, W.; Zande, W.J. van der; Waters, L.B.F.M.

    2005-01-01

    We present a new extensive database containing experimental scattering matrix elements as functions of the scattering angle measured at 441.6 and 632.8 nm for a large collection of micron-sized mineral particles in random orientation. This unique database is accessible through the World-Wide Web. Size distribution tables of the particles are also provided, as well as other characteristics relevant to light scattering. The database provides the light scattering community with easily accessible information that is useful, for a variety of applications such as testing theoretical methods, and the interpretation of measurements of scattered radiation. To illustrate the use of the database, we consider cometary observations and compare them with (1) cometary analog data from the database, and (2) with results of Mie calculations for homogeneous spheres, having the same refractive index and size distribution as those of the analog data

  7. Processing tetramethylammonium-carbonate-coprecipitated slurries to obtain small-particle-size YBa2Cu3O7

    International Nuclear Information System (INIS)

    Spencer, N.D.; Peders, T.S.; Baer, M.B.

    1991-01-01

    The effect of different drying and calcination methods on the ultimate particle size of YBa 2 Cu 3 O 7 (Y-123) has been investigated. The starting material was a tetramethylammonium (TMA) carbonate-precipitated slurry. Spray-drying the slurry after filtering and reslurrying (to remove residual TMA), was most effective in the ultimate formation of finely divided Y-123. The morphology of the spray-dried powder could be preserved by calcining in very low total pressures of flowing oxygen. When a slurry with 0.16% solids content was spray dried, and this powder calcined at 750 degree C in 2 Torr of flowing oxygen, a Y-123 powder of mean particle size 0.74 μm (66% submicron) was obtained

  8. Dynamics of very small soot particles during soot burnout in diesel engines; Dynamik kleinster Russteilchen waehrend der Russausbrandphase im Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Chemische Technik; Peters, N. [RWTH Aachen (DE). Institut fuer Technische Mechanik (ITM); Pittermann, R. [WTZ fuer Motoren- und Maschinenforschung Rosslau gGmbH (Germany); Hentschel, J.; Weber, J.

    2003-07-01

    The investigations used advanced laser-optical methods for measuring soot particle size distributions, temporally and spectrally resolved measurements of engine combustion, measurements of composition and size distribution of particles in exhaust, and further development and validation of reaction-kinetic models. In all, it can be stated that mixing will affect not only soot particle formation but also soot particle emissions. Mixing can be influenced by using a fuel-water emulsion and by CR injection. Experiments and models both showed the advantageous effects of water added to the diesel fuels and of CR injection. The higher OH radical concentrations in the later combustion stages also serve to ensure faster oxidation of soot. (orig.) [German] Ziel des Projektes war es, Informationen ueber die Bildung und Oxidation von Russ sowie die Teilchendynamik der Russteilchen waehrend der Ausbrandphase zu erhalten. Dies wurde erreicht durch die Weiterentwicklung laseroptischer Methoden zur Bestimmung der Groessenverteilung von Russpartikeln, durch zeit- und spektral aufgeloeste Erfassung der motorischen Verbrennung, durch die Bestimmung von Zusammensetzung und Groessenverteilung von Partikeln im Abgas sowie durch die Weiterentwicklung und Validierung von reaktionskinetischen Modellen. Zusammenfassend laesst sich sagen, dass sich die Gemischbildung im Dieselmotor nicht nur auf die Bildung der Russpartikel sondern auch auf die Russpartikelemission auswirkt. Die Verwendung einer Kraftstoff-Wasser-Emulsion und die Common-Rail-Einspritzung stellen zwei Verfahren zur Beeinflussung der Gemischbildung dar. Sowohl die experimentellen Untersuchungen als auch die Modellierung zeigen den die Gemischbildung foerdernden Einfluss des Zusatzes von Wasser zum Dieselbrennstoff. Ein erhoehter Anteil an vorgemischter Verbrennung, wie er auch durch die Verwendung hoher Einspritzdruecke bei der Common-Rail-Einspritzung erreicht werden kann, verringert die waehrend der Verbrennung entstehende

  9. A high sensitivity SQUID-method for the measurement of magnetic susceptibility of small samples in the temperature range 1.5 K-40 K and application on small palladium particles

    International Nuclear Information System (INIS)

    Tu Nguyen Quang.

    1979-01-01

    In this paper a method is developed for magnetic susceptibility measurements which is superior to the common methods. The method is based on the SQUID-principle (Superconducting Quantum Interference Device) using the tunnel effect of a superconducting point contact and magnetic flux quantization for measuring electric and magnetic quantities. Due to this refined method susceptibility changes of very small palladium particles could be detected in the temperature range 1.5 K-40 K with respect to the bulk. In addition susceptibility differences of particle distributions with different means diameters (81 Angstroem and 65 Angstroem) have been measured for the first time. A quantitative comparison of the measurements with theoretical results shows satisfactory agreement. (orig./WBU) [de

  10. Modeling single-scattering properties of small cirrus particles by use of a size-shape distribution of ice spheroids and cylinders

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.

    2006-01-01

    In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible

  11. Transboundary Pollution, Trade Liberalization, and Environmental Taxes

    International Nuclear Information System (INIS)

    Baksi, S.; Ray Chaudhuri, A.

    2008-01-01

    In a bilateral trade framework, we examine the impact of tariff reduction on the optimal pollution tax and social welfare when pollution is transboundary. Strategic considerations lead countries to distort their pollution tax in the non-cooperative equilibrium. Trade liberalization changes the distortion, and consequently the pollution tax and welfare, in ways that depend on the extent to which pollution is transboundary. We find that when the pollution damage parameter is sufficiently small (large), bilateral tariff reduction always decreases (increases) the pollution tax, irrespective of the value of the transboundary pollution parameter. However, when the pollution damage parameter takes intermediate values, bilateral tariff reduction decreases the pollution tax if and only if the transboundary pollution parameter is sufficiently large (or even sufficiently small, in certain cases). Moreover, with pollution being transboundary, the impact of trade liberalization on welfare is non-monotonic and concave. The greater the extent to which pollution crosses borders, the more likely is trade liberalization to reduce welfare

  12. Transboundary Pollution, Trade Liberalization, and Environmental Taxes

    Energy Technology Data Exchange (ETDEWEB)

    Baksi, S. [Department of Economics, University of Winnipeg, Winnipeg (Canada); Ray Chaudhuri, A. [Department of Economics, CentER, TILEC, Tilburg University, Tilburg (Netherlands)

    2008-08-15

    In a bilateral trade framework, we examine the impact of tariff reduction on the optimal pollution tax and social welfare when pollution is transboundary. Strategic considerations lead countries to distort their pollution tax in the non-cooperative equilibrium. Trade liberalization changes the distortion, and consequently the pollution tax and welfare, in ways that depend on the extent to which pollution is transboundary. We find that when the pollution damage parameter is sufficiently small (large), bilateral tariff reduction always decreases (increases) the pollution tax, irrespective of the value of the transboundary pollution parameter. However, when the pollution damage parameter takes intermediate values, bilateral tariff reduction decreases the pollution tax if and only if the transboundary pollution parameter is sufficiently large (or even sufficiently small, in certain cases). Moreover, with pollution being transboundary, the impact of trade liberalization on welfare is non-monotonic and concave. The greater the extent to which pollution crosses borders, the more likely is trade liberalization to reduce welfare.

  13. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    Science.gov (United States)

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  14. A summary of processes relevant for the particle balance of a cold plasma blanket contaminated with a small amount of helium

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.; Goedheer, W.J.

    1982-04-01

    A summary is given of the atomic processes which are relevant for the ionization balance and for the transport in a plasma consisting of hydrogen with a small admixture of helium. Attention is paid mainly to processes in plasmas with temperatures below 100 eV and electron densities between 3x10 13 and 3x10 14 cm -3 conditions which prevail in a so-called cold plasma blanket. The species considered are electrons, protons, hydrogen atoms (ground state and excited), α-particles, He + -ions (ground state and excited), and helium atoms (ground state and excited). The discussed processes are charge exchange, ionization, recombination, (de-) excitation, and elastic scattering

  15. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  16. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  17. Development of a High Irradiance LED Configuration for Small Field of View Motion Estimation of Fertilizer Particles

    Directory of Open Access Journals (Sweden)

    Simon Cool

    2015-11-01

    Full Text Available Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m2 with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications.

  18. Ribonucleoprotein organization of eukaryotic RNA. XXXII. U2 small nuclear RNA precursors and their accurate 3' processing in vitro as ribonucleoprotein particles.

    Science.gov (United States)

    Wieben, E D; Nenninger, J M; Pederson, T

    1985-05-05

    Biosynthetic precursors of U2 small nuclear RNA have been identified in cultured human cells by hybrid-selection of pulse-labeled RNA with cloned U2 DNA. These precursor molecules are one to approximately 16 nucleotides longer than mature U2 RNA and contain 2,2,7-trimethylguanosine "caps". The U2 RNA precursors are associated with proteins that react with a monoclonal antibody for antigens characteristic of small nuclear ribonucleoprotein particles. Like previously described precursors of U1 and U4 small nuclear RNAs, the pre-U2 RNAs are recovered in cytoplasmic fractions, although it is not known if this is their location in vivo. The precursors are processed to mature-size U2 RNA when cytoplasmic extracts are incubated in vitro at 37 degrees C. Mg2+ is required but ATP is not. The ribonucleoprotein structure of the pre-U2 RNA is maintained during the processing reaction in vitro, as are the 2,2,7-trimethylguanosine caps. The ribonucleoprotein organization is of major importance, as exogenous, protein-free U2 RNA precursors are degraded rapidly in the in vitro system. Two lines of evidence indicate that the conversion of U2 precursors to mature-size U2 RNA involves a 3' processing reaction. First, the reaction is unaffected by a large excess of mature U2 small nuclear RNP, whose 5' trimethylguanosine caps would be expected to compete for a 5' processing activity. Second, when pre-U2 RNA precursors are first stoichiometrically decorated with an antibody specific for 2,2,7-trimethylguanosine, the extent of subsequent processing in vitro is unaffected. These results provide the first demonstration of a eukaryotic RNA processing reaction in vitro occurring within a ribonucleoprotein particle.

  19. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  20. Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta, China

    Science.gov (United States)

    Hu, Rui; Wang, Honglei; Yin, Yan; Chen, Kui; Zhu, Bin; Zhang, Zefeng; Kang, Hui; Shen, Lijuan

    2018-04-01

    The mixing state of aerosol particles were investigated using a single particle aerosol mass spectrometer (SPAMS) during a regional fog-haze episode in the Yangtze River Delta (YRD) on 16-28 Dec., 2015. The aerosols were analyzed and clustered into 12 classes: aged elemental carbon (Aged-EC), internally mixed organics and elemental carbon (ECOC), organic carbon (OC), Biomass, Amine, Ammonium, Na-K, V-rich, Pb-rich, Cu-rich, Fe-rich and Dust. Results showed that particles in short-term rainfalls mixed with more nitrate and oxidized organics, while they mixed with more ammonium and sulfate in long-term rainfall. Due to anthropogenic activities, stronger winds and solar radiation, the particle counts increased and the size ranges of particles broadened in haze. Carbonaceous particles and Na-K mixed with enhanced secondary species during haze, and obviously were more acidic, especially for the ones with a size range of 0.6-1.2 μm. For local and long-range transported pollution, OC had distinct size distributions while the changes of ECOC were uniform. The secondary formation of ECOC contributed significantly in local pollution and affected much smaller particles (as small as 0.5 μm) in long-range transported pollution. And long-range transported pollution was more helpful for the growth of OC. Particles mixed with more chloride and nitrate/sulfate in local/long-range transported pollution.

  1. RMCSANS-modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method

    International Nuclear Information System (INIS)

    Gereben, O; Pusztai, L; McGreevy, R L

    2010-01-01

    A new reverse Monte Carlo (RMC) method has been developed for creating three-dimensional structures in agreement with small angle scattering data. Extensive tests, using computer generated quasi-experimental data for aggregation processes via constrained RMC and Langevin molecular dynamics, were performed. The software is capable of fitting several consecutive time frames of scattering data, and movie-like visualization of the structure (and its evolution) either during or after the simulation is also possible.

  2. Highly Effective Non-Viral Antitumor Gene Therapy System Comprised of Biocompatible Small Plasmid Complex Particles Consisting of pDNA, Anionic Polysaccharide, and Fully Deprotected Linear Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Koyama

    2015-07-01

    Full Text Available We have reported that ternary complexes of plasmid DNA with conventional linear polyethylenimine (l-PEI and certain polyanions were very stably dispersed, and, with no cryoprotectant, they could be freeze-dried and re-hydrated without the loss of transfection ability. These properties enabled the preparation of a concentrated suspension of very small pDNA complex, by preparing the complexes at highly diluted conditions, followed by condensation via lyophilization-and-rehydration procedure. Recently, a high potency linear polyethylenimine having no residual protective groups, i.e., Polyethylenimine “Max” (PEI “Max”, is available, which has been reported to induce much higher gene expression than conventional l-PEI. We tried to prepare the small DNA/PEI “Max”/polyanion complexes by a similar freeze-drying method. Small complex particles could be obtained without apparent aggregation, but transfection activity of the rehydrated complexes was severely reduced. Complex-preparation conditions were investigated in details to achieve the freeze-dried DNA/PEI “Max”/polyanion small ternary complexes with high transfection efficiency. DNA/PEI “Max”/polyanion complexes containing cytokine-coding plasmids were then prepared, and their anti-tumor therapeutic efficacy was examined in tumor-bearing mice.

  3. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  4. Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity.

    Science.gov (United States)

    Zhang, Yi; Pan, Jielin; Xu, Qilan; Li, Hao; Wang, Jianhao; Zhang, Chao; Hong, Guobin

    2018-01-01

    Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)- b -poly(ε-caprolactone) (PEG-PCL) was synthesized via the ring-opening polymerization of ε-caprolactone (CL) initiated by poly(ethylene glycol) (PEG), in which cyclic pentapeptide Arg-Gly-Asp (cRGD) was conjugated with the terminal of hydrophilic PEG block. During the self-assembly of PEG-PCL micelles, superparamagnetic γ-Fe 2 O 3 nanoparticles (11 nm) was loaded into the hydrophobic core. The cRGD-terminated γ-Fe 2 O 3 -loaded polymeric micelles targeting to carcinoma vascular endothelial cells, were characterized in particle size, morphology, loading efficiency and so on, especially high MRI sensitivity in vitro. Normal hepatic vascular endothelial cells (ED25) were incubated with the resulting micelles for assessing their safety. Human hepatic carcinoma vascular endothelial cells (T3A) were cultured with the resulting micelles to assess the micelle uptake using Prussian blue staining and the cell signal intensity using MRI. Results: All the polymeric micelles exhibited ultra-small particle sizes with approximately 50 nm, high relaxation rate, and low toxicity even at high iron concentrations. More blue-stained iron particles were present in the targeting group than the non-targeting and competitive inhibition groups. In vitro MRI showed T 2 WI and T 2 relaxation times were significantly lower in the targeting group than in the other two groups. Conclusion: γ-Fe 2 O 3 -loaded PEG-PCL micelles not only possess ultra-small size and high superparamagnetic sensitivity, also can be actively targeted to carcinoma vascular endothelial cells by tumor-targeted cRGD. It appears to be a promising contrast agent for tumor

  5. [Air pollution and cardiovascular disease in Trondheim].

    Science.gov (United States)

    Mannsåker, Bård; Vikan, Torkel; Holme, Jonas

    2004-05-20

    There is some evidence linking air pollution to cardiovascular morbidity. Our aim was to examine whether there is a correlation between air pollution and cardiovascular morbidity in the city of Trondheim, Norway. We compared the mean daily number of admissions for cardiovascular disease to the St. Olav University hospital on days with relatively low and high levels of PM10 (1993-2001), PM2,5, NO, NO2, SO2, O3, toluene and paraxylene (1998-2001). A time series analysis was carried out to see how day-to-day variations in concentrations of air pollutants correlated with the number of hospitalizations for cardiovascular disease. In the bivariate analysis, the mean daily number of hospitalizations was found to be significantly higher (p < 0.05) on days with NO and NO2 levels above the 80 th percentile (57.6 microg/m3 and 43.1 microg/m3, respectively) than on days with pollutant levels below the 20th percentile (11.3 microg/m3 and 16.9 microg/m3, respectively). Time series analysis did not show any statistically significant correlation between day-to-day variations in air pollution and hospital admissions for cardiovascular disease. The findings regarding NO2 and NO indicate that exposure to gases and/or ultra-small particles from diesel exhaust may influence cardiovascular morbidity.

  6. Arctic pollution: How much is too much

    Energy Technology Data Exchange (ETDEWEB)

    An overview is presented of the problems of pollution in the Arctic. Pollution from lower latitudes is carried into the Arctic by atmospheric circulation and ocean currents. Contamination of snow, waters and organisms with imported pollutants has appeared in the past few decades and appears to be increasing. Arctic ecosystems show indications of being much more susceptible to biological damage at low levels of pollutants than higher-energy ecosystems in temperate latitudes, and many Arctic organisms become accumulators and concentrators of organic pollutants and toxic metals. Arctic haze is 20 to 40 times as high in winter as in summer and has been found to consist of particles of largely industrial origin, mostly soot, hydrocarbons and sulphates. Dramatic declines in stratospheric ozone have been apparent over Antarctica, and a similar but less intense depletion is appearing over the Arctic. Toxic compounds, particularly organochlorines and some heavy metals, have been found in worrying amounts in snow, water and organisms in Arctic North America, Greenland and Svalbard. Radioactive contamination was widespread during atmospheric testing of nuclear weapons during the 1960s and 1970s, and the comparatively small amount of radiation released by the Chernobyl accident had greatest effect in northern Scandinavia. 4 figs.

  7. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  8. Intercontinental Transport of Air Pollution

    Science.gov (United States)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  9. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer

    Science.gov (United States)

    Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian

    2018-01-01

    Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.

  10. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    Science.gov (United States)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  11. Evaluation of pollutant build-up and wash-off from selected land uses at the Port of Brisbane, Australia.

    Science.gov (United States)

    Goonetilleke, Ashantha; Egodawatta, Prasanna; Kitchen, Brad

    2009-02-01

    The quality of stormwater runoff from seaports can be an important source of pollution to the marine environment. Currently, little knowledge exists with regards to the pollutant generation capacity specific to seaports as they do not necessarily compare well with conventional urban land use. The research project focussed on the assessment of pollutant build-up and wash-off. The study was undertaken using rainfall simulation and small impervious plots for different port land uses with the results obtained compared to typical urban land uses. The study outcomes confirmed that the Port land uses exhibit comparatively lower pollutant concentrations. However, the pollutant characteristics varied across different land uses. Hence, the provision of stereotypical water quality improvement measures could be of limited value. Particle size < 150microm was predominant in suspended solids. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this particle size range needs to be removed.

  12. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Brook, Robert D

    2008-09-01

    Air pollution is a heterogeneous mixture of gases, liquids and PM (particulate matter). In the modern urban world, PM is principally derived from fossil fuel combustion with individual constituents varying in size from a few nanometres to 10 microm in diameter. In addition to the ambient concentration, the pollution source and chemical composition may play roles in determining the biological toxicity and subsequent health effects. Nevertheless, studies from across the world have consistently shown that both short- and long-term exposures to PM are associated with a host of cardiovascular diseases, including myocardial ischaemia and infarctions, heart failure, arrhythmias, strokes and increased cardiovascular mortality. Evidence from cellular/toxicological experiments, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. PM inhaled into the pulmonary tree may instigate remote cardiovascular health effects via three general pathways: instigation of systemic inflammation and/or oxidative stress, alterations in autonomic balance, and potentially by direct actions upon the vasculature of particle constituents capable of reaching the systemic circulation. In turn, these responses have been shown to trigger acute arterial vasoconstriction, endothelial dysfunction, arrhythmias and pro-coagulant/thrombotic actions. Finally, long-term exposure has been shown to enhance the chronic genesis of atherosclerosis. Although the risk to one individual at any single time point is small, given the prodigious number of people continuously exposed, PM air pollution imparts a tremendous burden to the global public health, ranking it as the 13th leading cause of morality (approx. 800,000 annual deaths).

  13. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  14. Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: a case study of Žerjav, Slovenia.

    Science.gov (United States)

    Miler, Miloš; Gosar, Mateja

    2013-12-01

    Solid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic-anthropogenic, anthropogenic, and secondary weathering products. Geogenic-anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.

  15. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    Science.gov (United States)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  16. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  17. Ambient air pollution as a risk factor for lung cancer

    Directory of Open Access Journals (Sweden)

    COHEN AARON J

    1997-01-01

    Full Text Available Epidemiologic studies over the last 40 years have observed that general ambient air pollution, chiefly due to the by- products of the incomplete combustion of fossil fuels, is associated with small relative increases in lung cancer. The evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30-50% increases in the risk of lung cancer in relation to approximately a doubling of respirable particle exposure. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the US continue to be exposed to pollutant mixtures containing known or suspected carcinogens. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the US, based largely on the results of animal experimentation, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution in the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer related to air pollution.

  18. Air Pollutants Minimalization of Pollutant Absorber with Condensation System

    International Nuclear Information System (INIS)

    Ruhiat, Yayat; Wibowo, Firmanul Catur; Oktarisa, Yuvita

    2017-01-01

    Industrial development has implications for pollution, one of it is air pollution. The amount of air pollutants emitted from industrial depend on several factors which are capacity of its fuel, high chimneys and atmospheric stability. To minimize pollutants emitted from industries is created a tool called Pollutant Absorber (PA) with a condensing system. Research and Development with the approach of Design for Production was used as methodology in making PA. To test the function of PA, the simulation had been done by using the data on industrial emissions Cilegon industrial area. The simulation results in 15 years period showed that the PA was able to minimize the pollutant emissions of SO2 by 38% NOx by 37% and dust by 64%. Differences in the absorption of pollutants shows the weakness of particle separation process in the separator. This condition happen because the condensation process is less optimal during the absorption and separation in the separator. (paper)

  19. Microscale atmospheric pollution of Pogranichny settlement (Primorsky region, Russia)

    Science.gov (United States)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Agoshkov, Alexander; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter in the small urban settlement Pogranichny by means of laser granulometry of snow water. The atmosphere of this settlement is polluted with particles under 10 μm (PM10) to a certain extent. We found microparticles potentially hazardous to health in significant quantities (from 176.3% to 24.9%) in 4 sampling points out of 9. Large particles (sized over 400 μm) dominate on the most territory of the settlement reaching 78.1%.

  20. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  1. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    International Nuclear Information System (INIS)

    Janches, D.; Plane, J. M. C.; Feng, W.; Nesvorný, D.; Vokrouhlický, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d –1 ) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  2. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    Energy Technology Data Exchange (ETDEWEB)

    Janches, D. [Space Weather Laboratory, Mail Code 674, GSFC/NASA, Greenbelt, MD 20771 (United States); Plane, J. M. C.; Feng, W. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Nesvorný, D. [SouthWest Research Institute, Boulder, CO 80302 (United States); Vokrouhlický, D. [Institute of Astronomy, Charles University, Prague (Czech Republic); Nicolls, M. J., E-mail: diego.janches@nasa.gov, E-mail: j.m.c.plane@leeds.ac.uk, E-mail: w.feng@leeds.ac.uk, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz, E-mail: Michael.Nicolls@sri.com [SRI International, Menlo Park, CA 94025 (United States)

    2014-11-20

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d{sup –1}) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  3. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    Science.gov (United States)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC p