WorldWideScience

Sample records for small particle detectors

  1. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.

    Science.gov (United States)

    Benmakhlouf, Hamza; Andreo, Pedro

    2017-02-01

    Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by

  2. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  3. A compact solid-state detector for small angle particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Barnaba, O.; Braghieri, A. E-mail: alessandro.braghieri@pv.infn.it; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F

    2000-09-21

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/{pi}{sup {+-}} identification and particle tracking in the region 7 deg. <{theta}<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances.

  4. A compact solid-state detector for small angle particle tracking

    International Nuclear Information System (INIS)

    Altieri, S.; Barnaba, O.; Braghieri, A.; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F.

    2000-01-01

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/π ± identification and particle tracking in the region 7 deg. <θ<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances

  5. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    OpenAIRE

    Pereira, H; Haug, F; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of...

  6. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen

    1992-01-01

    We shall discuss the principles of the main techniques applied to particle detection (including front-end electronics), the construction and performance of some of the devices presently in operation and a few ideas on future developments.

  7. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  8. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  9. Microscopic Simulation of Particle Detectors

    CERN Document Server

    Schindler, Heinrich

    Detailed computer simulations are indispensable tools for the development and optimization of modern particle detectors. The interaction of particles with the sensitive medium, giving rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the resulting photons and charge carriers, which eventually generate the observed signal, is also subject to statistical fluctuations. Together with the readout electronics, these processes - which are ultimately governed by the atomic cross-sections for the respective interactions - pose a fundamental limit to the achievable detector performance. Conventional methods for calculating electron drift lines based on macroscopic transport coefficients used to provide an adequate description for traditional gas-based particle detectors such as wire chambers. However, they are not suitable for small-scale devices such as micropattern gas detectors, which have significantly gained importance in recent years. In this thesis, a novel approach, bas...

  10. New preamplifier for particle detectors

    International Nuclear Information System (INIS)

    Yarema, R.J.

    1984-11-01

    A new preamplifier for particle detectors has been designed and built for the Fermilab VTPC by Fujitsu of Japan. The device, designated MB43458, is a semi-custom monolithic assembled in a small, low mass package. The purpose of this report is to document the preliminary tests which have been done thus far. Tests are continuing to expand upon the results presented herein

  11. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  12. Development of High Energy Particle Detector for the Study of Space Storms onboard Next Generation Small Satellite-1

    Science.gov (United States)

    Sohn, J. D.; Min, K.; Lee, J.; Lee, D. Y.; Yi, Y.; Kang, K.; Shin, G. H.; Jo, G. B.; Lee, S. U.; Na, G.

    2017-12-01

    We reports the development of the High Energy Particle Detector (HEPD), one of the radiation detectors on board the Next Generation Small Satellite-1 to be launched into a low-Earth polar orbit in late 2017. The HEPD consists of three telescopes, each with a field of view of 33.4°, that are mounted on the satellite to have an angle of 0°, 45°, and 90° to the geomagnetic field during observations in the Earth's sub-auroral regions. The detection system of each telescope is composed of two silicon surface barrier detectors (SSDs), with the capability of measuring electrons from 300 keV to 2 MeV at 32 Hz that precipitate into the polar regions from the Earth's radiation belts when space storms occur. The successful operation of the HEPD in orbit will help us understand the interaction mechanisms between energetic electrons and plasma waves such as whistler and Electromagnetic Ion Cyclotron (EMIC) waves that are believed to be responsible for the energization and loss of high energy electrons in the Earth's radiation belts.

  13. Particle localization detector

    International Nuclear Information System (INIS)

    Allemand, R.

    1976-01-01

    A proportional detector for the localization of particles comprises a leak-tight chamber filled with fluid and fitted with an electrode of a first type consisting of one or more conducting wires and with an electrode of a second type consisting of one or more conducting plates having the shape of a portion of cylindrical surface and a contour which provides a one-to-one correspondence between the position of a point of the wires and the solid angle which subtends the plate at that point, means being provided for collecting the electrical signal which appears on the plates. 12 Claims, 10 Drawing Figures

  14. Two- and multi-particle azimuthal correlations in small collision systems with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00256459; The ATLAS collaboration

    2017-01-01

    The recent ATLAS results on two- and multi-particle azimuthal correlations of charged particles are presented for $\\sqrt{s}$=~5.02 TeV and 13 TeV $pp$, $\\sqrt{s_\\mathrm{NN}}$= 5.02 TeV $p$+Pb and $\\sqrt{s_\\mathrm{NN}}$= 2.76 TeV low-multiplicity Pb+Pb collisions. To remove the "non-flow" contribution from the correlations, that arises predominantly from hard-scattering processes, a template fitting procedure is used in the two-particle correlations (2PC) measurements, while for multi-particle correlations the cumulant method is applied. The correlations are expressed in the form of Fourier harmonics $\\mathrm{v}_n (n=2,3,4)$ measuring the global azimuthal anisotropy. The measurements presented hereafter confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. For $pp$ collisions the results on four-particle cumulants do not demonstrate a similar collective behaviour.

  15. Particle detector spatial resolution

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs

  16. Two- and Multi-particle Azimuthal Correlations in Small Collision Systems with the ATLAS Detector

    CERN Document Server

    Trzupek, Adam; The ATLAS collaboration

    2017-01-01

    ATLAS measurements of two-particle correlations in $\\Delta\\phi$ and $\\Delta\\eta$ are presented for $pp$ collisions at 2.76, 5.02 and 13~TeV, and for $p$+Pb collisions at 5.02 TeV. A template fitting procedure is used to subtract the dijet contribution and to extract the genuine long-range ridge correlations. This template procedure was previously used for 2.76 TeV and 13 TeV pp collisions, but is now extended to pp and $p$+Pb collisions at 5.02 TeV. In all collision systems, the ridge correlations are shown to be present even in events with a low multiplicity of produced particles, implying that the long-range correlations are not unique to rare high-multiplicity events. The properties of the correlation are shown to exhibit only a weak energy dependence and are remarkably similar to that observed in $p$+Pb collisions. Another new aspect of this talk is a detailed study of ridge properties in collisions containing hard processes, characterized by large four-momentum transfer. This may help answering the quest...

  17. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  18. The DEPFET Mini-matrix Particle Detector

    Directory of Open Access Journals (Sweden)

    J. Scheirich

    2010-01-01

    Full Text Available The DEPFET is new type of active pixel particle detector. A MOSFET is integrated in each pixel, providing the first amplification stage of the readout electronics. Excellent noise parameters are obtained with this layout. The DEPFET detector will be integrated as an inner detector in the BELLE II and ILC experiment. A flexible measuring system with a wide control cycle range and minimal noise was designed for testing small detector prototypes.Noise of 60 electrons of the equivalent input charge was achieved during the first measurements on the system.

  19. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  20. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  1. Largest particle detector nearing completion

    CERN Multimedia

    2006-01-01

    "Construction of another part of the Large Hadron Collider (LHC), the worl's largest particle accelerator at CERN in Switzerland, is nearing completion. The Compact Muon Solenoid (CMS) is oner of the LHC project's four large particle detectors. (1/2 page)

  2. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  3. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  4. The atmosphere as particle detector

    Science.gov (United States)

    Stanev, Todor

    1990-01-01

    The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.

  5. Status of diamond particle detectors

    Science.gov (United States)

    Krammer, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fish, D.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Manfredi, P. F.; Meier, D.; Mishina, M.; LeNormand, F.; Pan, L. S.; Pernegger, H.; Pernicka, M.; Re, V.; Riester, G. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.

    1998-11-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given.

  6. Particle identification by silicon detectors

    International Nuclear Information System (INIS)

    Santos, Denison de Souza

    1997-01-01

    A method is developed for the evaluation of the energy loss, dE/dx, of a charged particle traversing a silicon strip detector. The method is applied to the DELPHI microvertex detector leading to diagrams of dE/dx versus momentum for different particles. The specific case of pions and protons is treated and the most probable value of dE/dx and the width of the dE/dx distribution for those particles in the momentum range of 0.2 GeV/c to 1.5 GeV/c, are obtained. The resolution found is 13.4 % for particles with momentum higher than 2 GeV/c and the separation power is 2.9 for 1.0 GeV/c pions and protons. (author)

  7. Build Your Own Particle Detector

    CERN Document Server

    Mehlhase, Sascha; The ATLAS collaboration

    2016-01-01

    To support the outreach activities of Atlas institutes and to grab people's attention in science exhibitions and during public events, we have created both a very detailed model of the experiment built entirely out of about Lego bricks as well as an outreach programme using Lego bricks to get people to think about particle detectors and involve them into a conversation about particle physics in general. A large Lego model, consisting of about 9500 pieces, has been 'exported' to more than 55 Atlas institutes and has been used in numerous exhibitions to explain the proportion and composition of the experiment to the public. As part of 'Build Your Own Particle Detector' programme (byopd.org) we conducted more than 15 events,either involving a competition to design and build the 'best' particle detector from a random pile of pieces or to take part in the construction of one of the large models, as part of a full day outreach event. Recently we've added miniature models of all four LHC experiments, that will be us...

  8. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  9. Status of diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krammer, M.; Adam, W.; Friedl, M.; Hrubec, J.; Pernegger, H.; Pernicka, M. [Institut fuer Hochenergiephysik der Oesterr. Akademie d. Wissenschaften, Nikolsdorferg. 18, A-1050 Vienna (Austria); Bauer, C. [MPI fuer Kernphysik, D-69029 Heidelberg (Germany); Berdermann, E.; Stelzer, H. [GSI, Darmstadt (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M.; Sciortino, S. [University of Florence, Florence (Italy); Colledani, C.; Dulinski, W.; Husson, D.; LeNormand, F.; Riester, G.L.; Turchetta, R. [LEPSI, CRN Strasbourg (France); Conway, J.; Fish, D.; Schnetzer, S.; Stone, R.; Tesarek, R.; Thomson, G.B.; Walsh, A.M. [Rutgers University, Piscataway, NJ (United States); Dabrowski, W.; Kaplon, J.; Meier, D.; Roe, S.; Rudge, A.; Wedenig, R.; Weilhammer, P. [CERN, CH-1211 Geneva (Switzerland); Delpierre, P.; Hallewell, G. [CPPM, Marseille (France); Deneuville, A.; Cheeraert, E. [LEPES, Grenoble (France); Eijk, B.V.; Hartjes, F. [NIKHEF, Amsterdam (Netherlands); Fallou, A. [CPPM, Marseille (France); Foulon, F. [Centre d' Etudes de Saclay, 91191 Gif-Sur-Yvette (France); Gan, K.K.; Kagan, H.; Kass, R.; Trawick, M.; Zoeller, M. [The Ohio State University, Columbus, OH (United States); Grigoriev, E.; Knoepfle, K.T. [MPI fuer Kernphysik, D-69029 Heidelberg (Germany); Hall-Wilton, R. [Bristol University, Bristol (United Kingdom); Han, S.; Ziock, H. [Los Alamos National Laboratory, Research Division, Los Alamos, NM (United States); Kania, D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Manfredi, P.F.; Re, V.; Speziali, V. [Universita di Pavia, Dipartimento di Elettronica, 27100 Pavia (Italy); Mishina, M. [FNAL, Batavia, IL (United States); Pan, L.S. [Sandia National Laboratory, Albuquerque, NM (United States); Roff, D.; Tapper, R.J. [Bristol University, Bristol (United Kingdom); Trischuk, W. [University of Toronto, Toronto (Canada)

    1998-11-21

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Status of diamond particle detectors

    International Nuclear Information System (INIS)

    Krammer, M.; Adam, W.; Friedl, M.; Hrubec, J.; Pernegger, H.; Pernicka, M.; Bauer, C.; Berdermann, E.; Stelzer, H.; Bogani, F.; Borchi, E.; Bruzzi, M.; Sciortino, S.; Colledani, C.; Dulinski, W.; Husson, D.; LeNormand, F.; Riester, G.L.; Turchetta, R.; Conway, J.; Fish, D.; Schnetzer, S.; Stone, R.; Tesarek, R.; Thomson, G.B.; Walsh, A.M.; Dabrowski, W.; Kaplon, J.; Meier, D.; Roe, S.; Rudge, A.; Wedenig, R.; Weilhammer, P.; Delpierre, P.; Hallewell, G.; Deneuville, A.; Cheeraert, E.; Eijk, B.V.; Hartjes, F.; Fallou, A.; Foulon, F.; Gan, K.K.; Kagan, H.; Kass, R.; Trawick, M.; Zoeller, M.; Grigoriev, E.; Knoepfle, K.T.; Hall-Wilton, R.; Han, S.; Ziock, H.; Kania, D.; Manfredi, P.F.; Re, V.; Speziali, V.; Mishina, M.; Pan, L.S.; Roff, D.; Tapper, R.J.; Trischuk, W.

    1998-01-01

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Measurement of four-particle cumulants and symmetric cumulants with subevent methods in small collision systems with the ATLAS detector

    CERN Document Server

    Derendarz, Dominik; The ATLAS collaboration

    2018-01-01

    Measurements of symmetric cumulants SC(n,m)=⟨v2nv2m⟩−⟨v2n⟩⟨v2m⟩ for (n,m)=(2,3) and (2,4) and asymmetric cumulant AC(n) are presented in pp, p+Pb and peripheral Pb+Pb collisions at various collision energies, aiming to probe the long-range collective nature of multi-particle production in small systems. Results are obtained using the standard cumulant method, as well as the two-subevent and three-subevent cumulant methods. Results from the standard method are found to be strongly biased by non-flow correlations as indicated by strong sensitivity to the chosen event class definition. A systematic reduction of non-flow effects is observed when using the two-subevent method and the results become independent of event class definition when the three-subevent method is used. The measured SC(n,m) shows an anti-correlation between v2 and v3, and a positive correlation between v2 and v4. The magnitude of SC(n,m) is constant with Nch in pp collisions, but increases with Nch in p+Pb and Pb+Pb collisions. ...

  12. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles at close to the speed of light, then generate collisions between them at extraordinary energies, giving birth to showers of new particles. What are these particles? In order to find out, physicists transform themselves into detectives with the help of the detectors. Located around the collision area, these exceptional machines are made up of various layers, each of which detects and measures specific properties of the particles that travel through them. Powerful computers then reconstruct their trajectory and record their charge, mass and energy in order to build up a kind of particle ID card. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. A cloud chamber will provide live images of the trac...

  13. The CPLEAR particle identification detector

    International Nuclear Information System (INIS)

    Angelopoulos, A.; Apostolakis, A.; Rozaki, E.; Sakeliou, L.; Backenstoss, G.; Kuzminski, J.; Rickenbach, R.; Wildi, M.; Carlson, P.; Francis, D.; Jansson, K.; Jon-And, K.; Kerek, A.; Szilagyi, S.; Carvalho, J.; Cobbaert, H.; Ferreira-Marques, R.; Machado, E.; Onofre, A.; Pinto da Cunha, J.; Policarpo, A.; Charalambous, S.; Chardalas, M.; Dedoussis, S.; Touramanis, C.; Fassnacht, P.; Pelucchi, F.; Fetcher, W.; Gerber, H.J.; Fuglesang, C.; Kesseler, G.; Montanet, F.; Go, A.; Lawry, T.; Miller, J.; Roberts, B.L.; Varner, G.; Warner, D.; Zimmerman, D.; Kokkas, P.; Pavlopoulos, P.; Sarigiannis, K.; Triantis, F.

    1992-01-01

    The CPLEAR experiment will measure CP violation parameters in the neutral kaon system, using a low energy antiproton beam from the Low Energy Antiproton Ring (LEAR) at CERN. One of its subdetectors, the Particle Identification Detector (PID), makes a fast separation of pions and kaons, which is essential for the experiment. This article describes the design of the PID and its performance during beam tests and during initial runs at LEAR. A pion rejection efficiency of 99.7% for the first level trigger (after 60 ns) is found in the relevant momentum region. (orig.)

  14. The CPLEAR particle identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Angelopoulos, A.; Apostolakis, A.; Rozaki, E.; Sakeliou, L. (Univ. Athens (Greece)); Backenstoss, G.; Kuzminski, J.; Rickenbach, R.; Wildi, M. (Univ. Basel (Switzerland)); Carlson, P.; Francis, D.; Jansson, K.; Jon-And, K.; Kerek, A.; Szilagyi, S. (Manne Siegbahn Inst. Stockholm (Sweden)); Carvalho, J.; Cobbaert, H.; Ferreira-Marques, R.; Machado, E.; Onofre, A.; Pinto da Cunha, J.; Policarpo, A. (Univ. Coimbra, LIP (Portugal) Technical Univ., Delft (Netherlands)); Charalambous, S.; Chardalas, M.; Dedoussis, S.; Touramanis, C. (Univ. Thessaloniki (Greece)); Fassnacht, P.; Pelucchi, F. (CPPM, Marseille (France) CSNSM, Orsay (France) P. Scherrer Inst., Villingen (Switzerland) DPhPe, CEN-Saclay, 91 - Gif-sur-Yvette (France)); Fetcher, W.; Gerber, H.J. (Inst. fuer Mittelenergiephysik, ETH Villingen (Switzerland)); Fuglesang, C.; Kesseler, G.; Montanet, F. (CERN, Geneva (Switzerland)); Go, A.; Lawry, T.; Miller, J.; Roberts, B.L.; Varner, G.; Warner, D.; Zimmerman, D. (Univ. Boston,; CPLEAR Collaboration

    1992-01-01

    The CPLEAR experiment will measure CP violation parameters in the neutral kaon system, using a low energy antiproton beam from the Low Energy Antiproton Ring (LEAR) at CERN. One of its subdetectors, the Particle Identification Detector (PID), makes a fast separation of pions and kaons, which is essential for the experiment. This article describes the design of the PID and its performance during beam tests and during initial runs at LEAR. A pion rejection efficiency of 99.7% for the first level trigger (after 60 ns) is found in the relevant momentum region. (orig.).

  15. Development of acoustic particle detector

    International Nuclear Information System (INIS)

    Matsuyama, Tadayoshi; Hinode, Fujio; Konno, Osamu

    1999-01-01

    To detect acoustic sign from electron, determination of acoustic radiation from high energy electron and detector were studied. When charge particles pass through medium, energy loss generates local expansion and contraction of medium and pressure compression wave. We need caustic element with 10 -5 Pa the minimum acoustic receive sensitivity and from 10 to 100 kHz frequency sensitivity characteristic. Elements were made by Low-Q materials, piezoelectric materials (PZT). Various sharp of elements were constructed and measured. 50 mm spherical element showed 38 m V/Pa, the best sensitivity. Our developed acoustic element could detect acoustic radiation generated by electron beam from accelerator. The wave sharp detected proved the same as bipolar wave, which was given theoretically. The pressure generated by beam was proportional to the energy loss E. 200 MeV electron beam existed about 95% particles on the incident axis. So that acoustic detector on the axis proved to detect sound wave generated on the beam axis. (S.Y.)

  16. Current technology of particle physics detectors

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1986-01-01

    A brief discussion is given of the characteristics required of new accelerator facilities, leading into a discussion of the required detectors, including position sensitive detectors, particle identification, and calorimeters

  17. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  18. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  19. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  20. Superconductivity of small particles

    International Nuclear Information System (INIS)

    Leavens, C.R.; Fenton, E.W.

    1981-01-01

    The Eliashberg gap equations are used to investigate the contribution of surface-phonon softening to the size dependence of the superconducting transition temperature (T/sub c/) of small metallic particles. Because of our limited quantitative knowledge of phonon spectra and electron-phonon coupling in the surface region, the effect cannot be calculated with certainty. Previous calculations which agree with experiment depend on a fortuitous choice of input parameters which cannot be justified at present. For this reason the absence of any observable size effect for T/sub c/ in Pb is especially important. This null effect is obtained in Pb if the electron-phonon coupling strength is the same in the surface region as in the bulk. This assumption can be tested experimentally because it means that the energy gap of Pb should not be independent of particle size but rather should increase significantly with decreasing radius. Hence, measurement of the size dependence of the energy gap for well-characterized small particles of Pb could provide information regarding the importance of the phonon-softening mechanism, at least for Pb

  1. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles and generate collisions between them at extraordinary energies. The collisions give birth to showers of new particles. What are they? In order to find out, physicists slip into the role of detectives thanks to the detectors. At the next Discovery Monday you will find out about the different methods used at CERN to detect particles. A cloud chamber will allow you to see the tracks of cosmic particles live. You will also be given the chance to see real modules for the ATLAS and for the LHCb experiments. Strange materials will be on hand, such as crystals that are heavier than iron and yet as transparent as glass... Come to the Microcosm and become a top detective yourself! This event will take place in French. Join us at the Microcosm (Reception Building 33, M...

  2. Detector for atomic particles and ionizing radiations

    International Nuclear Information System (INIS)

    Mallet, Georges; Ythier, Christian.

    1976-01-01

    The aim of this invention is to provide improved detectors of atomic particles and of ionising radiations, having maximum sensitivity, by virtually suppressing all absorption of the radiation scattered by the main detector, so that these detectors are particularly suitable for fitting to anti-Compton spectrometers. Reference is particularly made to detectors of the Ge(Li) type, lithium compensated germanium, which are the most used. It is however made clear that this choice is not restrictive and that this invention not only applies to all known types of detectors and particularly to scintillator detectors, for instance to detectors such as NaI (Tl), composed of a monocrystal of a thallium activated alkaline halogenide, but also to gas, ionisation chamber and luminescent chamber type detectors and in general to all the known devices that convert the energy of particles into electric signals. Owing to the fact that the walls of the enclosure containing the main detector are composed, in the part around this detector, of an auxiliary detector, the latter detects virtually all the radiations scattered by the main detector. It does so without any loss due to the absorption of these radiations (a) by the metal walls of the enclosure usually containing the main detector and (b) by the walls of the auxiliary detector casing. It results from this that the detectors of the invention enable coincidence or anti-coincidence spectrometers with a very high performance to be made [fr

  3. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  4. Oscillatory regime of avalanche particle detectors

    International Nuclear Information System (INIS)

    Lukin, K.A.; Cerdeira, H.A.; Colavita, A.A.

    1995-06-01

    We describe the model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. We show that this detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out. (author). 15 refs, 7 figs

  5. Fabrication of beta particles detector for RMS

    International Nuclear Information System (INIS)

    Lee, W. G.; Kim, Y. G.; Kim, J. B.; Jeong, J. E.; Hong, S. B.

    2003-01-01

    The beta particles detector for RMS (radiation monitoring system) was fabricated to detect charged beta particles. The plastic scintillator was cutted, shaped, polished to make plastic disk for beta particles. The diameter of completed plastic scintillator disk is 40 mm and thickness is 1.5 mm. The mylar film and aluminium foil were used the front of plastic scintillator to intercept light and moisture. The completed plastic detector for RMS consist of the discriminator and counter were made by ULS (Co.). The absolute efficiency of plastic detector was 45.51% for beta particles (Sr/Y - 90)

  6. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  7. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  8. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  9. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  10. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-01-01

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  11. DETECTORS USED IN PARTICLE PHYSICS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Melissines, A. C.

    1963-10-15

    Detectors used in particle physics are discussed, and their specific properties are compared. With the pictorial'' devices are included nuclear emulsions, cloud and bubble chambers, and spark chambers. Included in the digital'' devices are counters, e.g., the Geiger counter, scintillation counters, solid-state detectors, Cherenkov counters, and spark counters. Sensitivity, resolving power, time resolutions, saturation level, and energy detection are discussed. (R.E.U.)

  12. Detectors for particle radiation. 2. rev. ed.

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1987-01-01

    This book is a description of the set-up and mode of action of detectors for charged particles and gamma radiation for students of physics, as well as for experimental physicists and engineers in research and industry: Ionization chamber, proportional counter, semiconductor counter; proportional chamber, drift chamber, bubble chamber, spark chamber, photomultiplier, laser ionization, silicion strip detector; Cherenkov counter, transition radiation detector; electron-photon-cascade counter, hadron calorimeter; magnetic spectrometer; applications in nuclear medicine, geophysics, space travel, atom physics, nuclear physics, and high-energy physics. With 149 figs., 20 tabs [de

  13. The hyperion particledetector array

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.O.; Burke, J.T.; Casperson, R.J.; Ota, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Fisher, S.; Parker, J. [Science, Technology and Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Beausang, C.W. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Dag, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Humby, P. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Department of Physics, University of Surrey, Surrey GU27XH (United Kingdom); Koglin, J. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McCleskey, E.; McIntosh, A.B.; Saastamoinen, A. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Tamashiro, A.S. [Department of Nuclear Science and Engineering, Oregon State University, Corvallis, OR 97331 (United States); Wilson, E. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Wu, T.C. [Department of Physics and Astronomy, University of Utah, Salt Lake City UT 84112-0830 (United States)

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  14. Particle detector and its construction process

    International Nuclear Information System (INIS)

    Farcy, Paul.

    1980-01-01

    This invention refers to a detector of particles that enables accurate determinations to be effected at high temperature, irrespective of the particle flux to which it is subjected (for example, a neutron flux in the core of a reactor) and preferentially is of elongated shape and particularly reduced radial section. According to the invention, the specifications of this detector include a body in a single piece, made of a ceramic material, in which are embedded and sealed two concentric tubular electrodes forming between them an annular chamber filled with a gas under pressure and electric wires connecting the electrodes to the outside of the body [fr

  15. Turbulent diffusion of small particles

    International Nuclear Information System (INIS)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley

  16. Small area detectors at the European XFEL

    Science.gov (United States)

    Turcato, M.; Gessler, P.; Hauf, S.; Kuster, M.; Meyer, M.; Nordgren, J.; Sztuk-Dambietz, J.; Youngman, C.

    2014-05-01

    The detectors to be used at the European XFEL have to deal with the unique time structure of the machine, delivering up to 2700 pulses, with a repetition rate of 4.5 MHz, ten times per second, the very high photon flux and the need to combine single-photon sensitivity and a large dynamic range. This represents a challenge not only for the large-area 2D imaging detectors but also for the smaller-area detectors and makes the use of standard commercial devices impossible. Dedicated solutions are therefore envisaged for small imaging- or strip-detectors. In this contribution the focus is put on two particular small-area detector solutions which are planned to be used at the European XFEL, a strip detector for hard X-rays (with energy 3 < E < 25 keV) and an imaging detector for soft X-rays (0.25 < E < 3 keV). Hard X-rays photon-beam diagnostics as well as hard X-ray absorption and emission spectroscopy at the European XFEL make use of strip detectors as detectors for beam spectrometers or as energy-dispersive detectors in combination with an energy-dispersive element. The European XFEL is establishing cooperation with the Paul Scherrer Institute in Villigen to develop a new version of the Gotthard detector best suited to the European XFEL needs. The use case and the required detector specifications are illustrated. Starting from the present detector version, the modifications planned to adapt it to the European XFEL running conditions are described. These include the capability of running at an increased rate and to provide a veto signal to the large 2D imaging detectors, in order to be able to remove non-interesting images already at early stages of the DAQ system. In another particular application, resonant inelastic X-ray scattering, a Micro-Channel Plate detector matched to a delay-line readout is foreseen to be used. In this case the European XFEL is aiming for a highly customized solution provided by the German company Surface Concept. The use case is described

  17. Academic Training: Particle Detectors - Principles and Techniques

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES FOR POSTGRADUATE STUDENTS 11, 12, 13, 14 & 15 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Particle Detectors - Principles and Techniques C. JORAM, L. ROPELEWSKI, M. MOLL, C. D'AMBROSIO, T. GYS / CERN-PH The lecture series presents an overview of the physical principles and basic techniques of particle detection, applied to current and future high energy physics experiments. Illustrating examples, chosen mainly from the field of collider experiments, demonstrate the performance and limitations of the various techniques. Main topics of the series are: interaction of particles and photons with matter; particle tracking with gaseous and solid state devices, including a discussion of radiation damage and strategies for improved radiation hardness; scintillation and photon detection; electromagnetic and hadronic calorimetry; particle identification using specific energy loss dE/dx, time of flight, Cherenkov light and transition radi...

  18. The 150 ns detector project: progress with small detectors

    International Nuclear Information System (INIS)

    Warburton, W.K.; Russell, S.R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-01-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  19. The 150 ns detector project: progress with small detectors

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Russell, S.R. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Kleinfelder, Stuart A. (VLSI Physics, 19 Drury Lane, Berkeley, CA 94705 (United States)); Segal, Julie (Integrated Ckts Lab., Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States))

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 [mu]m CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  20. Coordinate-sensitive charged particle detector for spectroscopy

    Directory of Open Access Journals (Sweden)

    Sidorenko V. P.

    2016-10-01

    Full Text Available The authors have designed, manufactured and tested a coordinate-sensitive detector for charged particle spectroscopy. The detector can be used in the devices for the elemental analysis of materials, providing simultaneous analysis of all the elemental composition with high sensitivity and precision. The designed device is based on an integrated circuit (IC and a microchannel plate (MCP electron multiplier. The IC is mounted on a ceramic substrate. Ions fall on the MCP mounted above the IC. Giving rise to a pulse which typically exceeds 106 electrons, each ion falls on the detector electrodes and these pulses are counted. In this research, a two stage stack of MCPs (Hamamatsu was used. The MCPs have a channel diameter of 12 μm on a 15 μm pitch. The results of tests carried out in a mass spectrometer are presented. The designed detector is small, light, and low-power.

  1. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  2. Fast microchannel plate detector for particles

    International Nuclear Information System (INIS)

    Wurz, P.; Gubler, L.

    1996-01-01

    In this article we report on the timing capabilities of a new microchannel plate detector we designed and built. The detector assembly has an impedance-matched transition line (50 Ω line resistance) from anode to cable connector which is considerably smaller than other, commercially available solutions and at the same time has about four times the active area. The detector was tested with an alpha particle source and excellent time response was achieved. Using 10 μm pore size channel plates, a rise time of 300 ps and a pulse width of 520 ps are obtained. The details of the signal analysis are also given in the article. copyright 1996 American Institute of Physics

  3. A Very High Momentum Particle Identification Detector

    CERN Document Server

    Acconcia, T.V.; Barile, F.; Barnaföldi, G.G.; Bellwied, R.; Bencedi, G.; Bencze, G.; Berenyi, D.; Boldizsar, L.; Chattopadhyay, S.; Cindolo, F.; Chinellato, D.D.; D'Ambrosio, S.; Das, D.; Das, K.; Das-Bose, L.; Dash, A.K.; De Cataldo, G.; De Pasquale, S.; Di Bari, D.; Di Mauro, A.; Futo, E.; Garcia, E.; Hamar, G.; Harton, A.; Iannone, G.; Jimenez, R.T.; Kim, D.W.; Kim, J.S.; Knospe, A.; Kovacs, L.; Levai, P.; Nappi, E.; Markert, C.; Martinengo, P.; Mayani, D.; Molnar, L.; Olah, L.; Paic, G.; Pastore, C.; Patimo, G.; Patino, M.E.; Peskov, V.; Pinsky, L.; Piuz, F.; Pochybova, S.; Sgura, I.; Sinha, T.; Song, J.; Takahashi, J.; Timmins, A.; Van Beelen, J.B.; Varga, D.; Volpe, G.; Weber, M.; Xaplanteris, L.; Yi, J.; Yoo, I.K.

    2014-01-01

    The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.

  4. Particle Detectors: Research and Development at CERN

    International Nuclear Information System (INIS)

    Fabjan, C. W.

    2008-01-01

    Over the past 15 years a worldwide Detector R and D Programme has made the LHC experiments possible. These experiments operate at a new level of event rate and detection capabilities. Based on these advances, Detector R and D is continuing at CERN in close collaboration with University and Research Institutes. Several main directions are being pursued for solid-state and gaseous tracking devices, advanced crystal and noble liquid calorimetry, particle identification methods, and advanced signal-processing techniques. This effort is directed towards experiments at even higher collision rates at the LHC, the requirements for the next generation of linear electron-positron colliders and for applications outside particle physics, such as medical diagnostics instrumentation. We shall illustrate this challenging, stimulating and creative programme with examples and show how these developments are taking place in close collaboration between CERN and institutions around the globe

  5. Report on neutral particle detectors and QED: PEP summer study

    International Nuclear Information System (INIS)

    Bloom, E.D.; Bulos, F.; Buschhorn, G.

    1974-08-01

    The exploration of the neutral particle final states in e + e/sup /minus// annihilation using a 4π neutral particle detector is discussed. Charge particle final state physics is also considered in the context of a neutral detector. Design criteria are discussed, and a possible detector design is presented. 15 refs., 13 figs., 2 tabs

  6. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    M. Neff

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding 1018 eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  7. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    Richardt C

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding  eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  8. Alternating current long range alpha particle detector

    International Nuclear Information System (INIS)

    MacArthur, D.W.; McAtee, J.L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions

  9. Particle identification for a future EIC detector

    Science.gov (United States)

    Ilieva, Y.; Allison, L.; Barber, C.; Cao, T.; Del Dotto, A.; Gleason, C.; He, X.; Kalicy, G.; McKisson, J.; Nadel-Turonski, P.; Park, K.; Rapoport, J.; Schwarz, C.; Schwiening, J.; Wong, C. P.; Zhao, Zh.; Zorn, C.

    2018-03-01

    In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous >= 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c-10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T-3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results

  10. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  11. Characterization of BJT-based particle detectors

    International Nuclear Information System (INIS)

    Piemonte, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Rachevskaia, I.; Ronchin, S.; Zorzi, N.

    2004-01-01

    We report on the static and dynamic behavior of BJT-based particle detectors realized on high-resistivity silicon. Several prototypes, featuring different doping profiles and geometries, have been fabricated at ITC-irst (Trento, Italy). These devices have been thoroughly characterized from the electrical viewpoint, and, in order to understand the fundamental parameters of the structure, device simulations have been performed, whose results are in very good agreement with experimental data. Preliminary functional measurements have been carried out by using a 109Cd source excitation

  12. Plasma memories associated to a particle detector

    International Nuclear Information System (INIS)

    Comby, G.; Mangeot, Ph.

    1978-01-01

    The realization of a localized and persisting memory of a detected particle which can be easily read out offers new possibilities for the detection of events with high multiplicity. The association of the plasma memory to a spark chamber allows the test of the principles of memorization and read-out. By means of one gap of plasma memories, one can read out without ambiguity the coordinates of a large number of memories. This device can be adapted to other types of detectors and also to larger geometries. (Auth.)

  13. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  14. Nuclear Track Detectors. Searches for Exotic Particles

    CERN Document Server

    Giacomelli, Giorgio

    2008-01-01

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 detectors exposed for 4.22 y, gave an upper limit for IMMs of ~1.3x10^-15 cm^-2 s^-1 sr^-1. The experiments yielded interesting upper limits also on the fluxes of the other mentioned exotic particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.

  15. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  16. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  17. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  18. GEM - A novel gaseous particle detector

    CERN Document Server

    Meinschad, T

    2005-01-01

    The work carried out within the framework of this Ph.D. deals with the construction of gaseous prototype detectors using Gas Electron Multiplier electrodes for the amplification of charges released by ionizing particles. The Gas Electron Multiplier (GEM) is a thin metal-clad polymer foil, etched with a high density of narrow holes, typically 50-100mm-2. On the application of a potential difference between the conductive top and bottom sides each hole acts as independent proportional counter. This new fast device permits to reach large amplification factors at high rates with a strong photon and ion-mediated feedback suppression due to the avalanche confinement in the GEM-holes. Here, in particular studies have been performed, which should prove, that the GEM-technology is applicable for an efficient measurement of single Cherenkov photons. These UV-photons can be detected in different ways. An elegant solution to develop large area RICH-detectors is to evaporate a pad-segmented readout-cathode of a multi-wire...

  19. A new concept of detector chamber of ionizing particles

    International Nuclear Information System (INIS)

    Garzon Ruiperez, L.

    1974-01-01

    Considering that the mechanism of detection of ionizing particles depends upon the transformation of a thermodynamically metastable phase, the systems of inmiscible liquids as nuclear-particle detectors are proposed. (author) [es

  20. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  1. Current oscillations in avalanche particle detectors with PNIPN-structure

    International Nuclear Information System (INIS)

    Lukin, K.A.

    1995-08-01

    The model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. This detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out

  2. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  3. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  4. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  5. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    Science.gov (United States)

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  6. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    International Nuclear Information System (INIS)

    Grad, M; Harken, A; Randers-Pehrson, G; Brenner, D J; Attinger, D

    2012-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H + ), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles ( 4 He ++ ). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  7. Gas-discharge particle detector with ball-tipped anodes

    International Nuclear Information System (INIS)

    Travkin, V.I.; Khazins, D.M.

    1987-01-01

    A new gas-discharge particle detector, whose anode is a set of balls 2mm in diameter is investigated. The chamber is blowing down by the argon-methane-methylal gas mixture with the ratio 3:1:1. The detector operates in the self-quenching streamer mode, has high efficiency and a wide counting characteristic plateau. The maximum counting rate of particles at one ball is ∼ 2.5x10 4 s -1 . The ball-tipped anodes allow making reliable complex-shaped detectors. Two-coordinate detection of multiparticle events can be naturally organized in detectors like that

  8. Simple preparation of thin CR-39 detectors for alpha-particle radiobiological experiments

    International Nuclear Information System (INIS)

    Chan, K.F.; Lau, B.M.F.; Nikezic, D.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2007-01-01

    Alpha-particle radiobiological experiments involve irradiating cells with alpha particles and require accurate positions where the alpha particles hit the cells. In the present work, we prepared thin CR-39 detectors from commercially available CR-39 SSNTDs with a thickness of 100 μm by etching them in 1 N NaOH/ethanol at 40 deg. C to below 20 μm. The desired final thickness was achieved within ∼8 h. Such etching conditions can provide relatively small roughness of the detector as revealed by atomic force microscope, and thus provide transparent detectors for radiobiological experiments. UV radiation was employed to shorten track formation time on these thin CR-39 detectors. After exposure to UV light (UVA + B radiation) for 2-3 h with doses from 259 to 389 W/cm 2 , 5 MeV alpha-particle tracks can be seen to develop on these CR-39 detectors clearly under the optical microscope within 2 h in 14 N KOH at 37 deg. C. As an example for practical use, custom-made petri dishes, with a hole drilled at the bottom and covered with a thin CR-39 detector, were used for culturing HeLa cells. The feasibility of using these thin CR-39 detectors is demonstrated by taking photographs of the cells and alpha-particle tracks together under the optical microscope, which can allow the hit positions on the cells by the alpha particles to be determined accurately

  9. Charged particle discrimination with silicon surface barrier detectors

    International Nuclear Information System (INIS)

    Coote, G.E.; Pithie, J.; Vickridge, I.C.

    1996-01-01

    The application for materials analysis of nuclear reactions that give rise to charged particles is a powerful surface analytical and concentration depth profiling technique. Spectra of charged particles, with energies in the range 0.1 to 15 MeV, emitted from materials irradiated with beams of light nuclei such as deuterons are measured with silicon surface barrier detectors. The spectra from multi-elemental materials typically encountered in materials research are usually composed of an overlapping superposition of proton, alpha, and other charged particle spectra. Interpretation of such complex spectra would be simplified if a means were available to electronically discriminate between the detector response to the different kinds of charged particle. We have investigated two methods of discriminating between different types of charged particles. The fast charge pulses from a surface barrier detector have different shapes, depending on the spatial distribution of energy deposition of the incident particle. Fast digitisation of the pulses, followed by digital signal processing provides one avenue for discrimination. A second approach is to use a thin transmission detector in front of a thick detector as a detector telescope. For a given incident energy, different types of charged particles will lose different amounts of energy in the thin detector, providing an alternative means of discrimination. We show that both approaches can provide significant simplification in the interpretation of charged particle spectra in practical situations, and suggest that silicon surface barrier detectors having graded electronic properties could provide improved discrimination compared to the current generation of detectors having homogeneous electronic properties. (author).12 refs., 2 tabs., 28 figs

  10. Gallium arsenide detectors for minimum ionizing particles

    International Nuclear Information System (INIS)

    Beaumont, S.B.; Bertin, R.; Booth, C.N.; Buttar, C.; Capiluppi, C.; Carraresi, L.; Cindolo, F.; Colocci, M.; Combley, F.H.; D'Auria, S.; Del Papa, C.; Dogru, M.; Edwards, M.; Fiori, F.; Foster, F.; Francescato, A.; Gray, R.; Hill, G.; Hou, Y.; Houston, P.; Hughes, G.; Jones, B.K.; Lynch, J.G.; Lisowsky, B.; Matheson, J.; Nava, F.; Nuti, M.; O'Shea, V.; Pelfer, P.G.; Raine, C.; Santana, J.; Saunders, I.J.; Seller, P.H.; Shankar, K.; Sharp, P.H.; Skillicorn, I.O.; Sloan, T.; Smith, K.M.; Tartoni, N.; Ten Have, I.; Turnbull, R.M.; Vanni, U.; Vinattieri, A.; Zichichi, A.

    1993-01-01

    Progress on the development of GaAs solid state detectors is presented. 80% charge collection efficiency has been achieved, and double sided detectors with metal rectifying contacts have been tested. Measurements of capacitance and tests with SEM are giving more information on the behaviour of these devices. (orig.)

  11. SU-8 as a Material for Microfabricated Particle Physics Detectors

    CERN Document Server

    Maoddi, Pietro; Jiguet, Sebastien; Renaud, Philippe

    2014-01-01

    Several recent detector te chnologies developed for particle physics applications are based on microfabricated structures. Dete ctors built with this approach generally exhibit the overall best performance in te rms of spatial and time resolution. Many properties of the SU-8 photoepoxy make it suitable for the manufacturing of microstructured particle detectors. This arti cle aims to review some emerging detector technologies making use of SU-8 microstructu ring, namely micropatte rn gaseous detectors and microfluidic scintillation detectors. Th e general working principle and main process steps for the fabrication of each device are reported, with a focus on the advantages brought to the device functionality by the us e of SU-8. A novel process based on multiple bonding steps for the fabrication of thin multila yer microfluidic scin tillation detectors developed by the authors is presented. Finally, a brief overview of the applications for the discussed devices is given.

  12. Improved gas mixtures for gas-filled particle detectors

    Science.gov (United States)

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. High energy particle detectors utilizing cryogenic charge storage

    Energy Technology Data Exchange (ETDEWEB)

    Coon, D; Engels, E Jr; Plants, D; Shepard, P F; Yang, Y [Pittsburgh Univ., PA (USA); Sopira, M; Papania, R [Westinghouse Research and Development Labs., Monroeville, PA (USA)

    1984-09-15

    The mechanism of cryogenic charge storage as a method of particle detection is reviewed. A description of a simple multielement strip detector operated in this mode is given, and partial results on its operating characteristics presented.

  14. Signal Formation Processes in Micromegas Detectors and Quality Control for large size Detector Construction for the ATLAS New Small Wheel

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387450; Rembser, Christoph

    2017-08-04

    The Micromegas technology is one of the most successful modern gaseous detector concepts and widely utilized in nuclear and particle physics experiments. Twenty years of R & D rendered the technology sufficiently mature to be selected as precision tracking detector for the New Small Wheel (NSW) upgrade of the ATLAS Muon spectrometer. This will be the first large scale application of Micromegas in one of the major LHC experiments. However, many of the fundamental microscopic processes in these gaseous detectors are still not fully understood and studies on several detector aspects, like the micromesh geometry, have never been addressed systematically. The studies on signal formation in Micromegas, presented in the first part of this thesis, focuses on the microscopic signal electron loss mechanisms and the amplification processes in electron gas interaction. Based on a detailed model of detector parameter dependencies, these processes are scrutinized in an iterating comparison between exper- imental result...

  15. Superheated superconducting granules: a detector for particle physics and astrophysics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1987-01-01

    A general introduction to superheated superconducting granules (SSG) detectors is given and some recent results on their basic properties are presented. Granules recently made by industrial producers exhibit good metastability properties and show sensitivity, better than naively expected, to photons and ionizing particles. The behaviour of SSG detectors at very low temperatures is also discussed. We finally sketch a critical review of proposed applications to the cross-disciplinary frontier between particle physics and astrophysics

  16. Small violations of particle statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1992-01-01

    This paper reports on the particle statistics menagerie for identical particles (in 3 + 1 dimensions) which consists of fermions (all states totally antisymmetric), bosons (all states totally symmetric), parafermions of order p (all representations of the symmetric group with Young tableaux having at most p boxes in a row) and parabosons of order p (all representations with at most p boxes in a column). p = 1 for parafermions is the same as Fermi, and p = 1 for parabosons is the same as Bose. These possibilities were derived in a general way by Doplicher, Haag and Roberts, who found one other case, infinite statistics for which all representations of the symmetric group occur, but did not give an algebra which leads to this statistics

  17. Light scattering by small particles

    CERN Document Server

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties

  18. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  19. Particle identification via transition radiation and detectors

    International Nuclear Information System (INIS)

    Egorytchev, V.; Saveliev, V.; Aplin, S.J.

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high-energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions - neutrino experiments (NOMAD), and ideal condition for the use of transition radiation detectors in flying and space high-energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high-energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results

  20. Particle identification via transition radiation and detectors

    CERN Document Server

    Egorytchev, V; Aplin, S J

    2000-01-01

    Transition radiation detectors show great promise for the purposes of lepton identification in existing and future experiments in high- energy physics such as HERA-B, ATLAS, ALICE in high-luminosity environment. More high performance can be expected in low-luminosity conditions-neutrino experiments (NOMAD), and the ideal condition for the use of transition radiation detectors in flying and space high- energy experiments (AMS). This paper discusses the practical theory of transition radiation, basic equation and algorithm suitable for detailed analysis of transition radiation and optimization of transition radiation detectors in the area of experimental high- energy physics. The results are based on detailed Monte Carlo simulation of transition radiation introduced in GEANT and experimental results. (12 refs).

  1. The physics of radiation damage in particle detectors

    International Nuclear Information System (INIS)

    Van Lint, V.A.J.

    1987-01-01

    Intense high-energy particle beams cause damage to semiconductor detectors and signal-conditioning electronics by displacement and long-term ionization effects. While first-principles prediction of effects are not practical, the magnitude of each effect can be scaled approximately between particle energy and type by using an appropriate scaling parameter. (orig.)

  2. The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector

    Science.gov (United States)

    Axani, S. N.; Frankiewicz, K.; Conrad, J. M.

    2018-03-01

    The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.

  3. The Small Acceptance Vertex Detector of NA61/SHINE

    Directory of Open Access Journals (Sweden)

    Deveaux M.

    2018-01-01

    Full Text Available Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD, which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  4. Search for Long-lived particles with the ATLAS detector

    CERN Document Server

    Saito, Masahiko; The ATLAS collaboration

    2017-01-01

    Several supersymmetric models predict the production of massive long-lived supersymmetric particles. Such particles, if charged, may be detected through abnormal specific energy loss or long time-of-flight to the calorimeters. The poster presents recent results from searches of long-lived supersymmetric charged particles using proton-proton collisions at a centre of mass energy of 13 TeV with the ATLAS detector.

  5. Construction and performance of silicon detectors for the small angle spectrometers of the collider detector of Fermilab

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1987-01-01

    The manufacturing process of a series of position sensitive silicon detectors is described together with the tests performed to optimize the performance of the detectors. The detectors are Schottky diodes with strips on the ohmic contact which allow to determine the position of the incoming ionizing particles by charge partition. Four detectors were assembled in a telescope and tested inside the vacuum pipe of the Tevatron Collider at Fermilab. The system is a prototype of the Small Angle Silicon Spectrometer, designed primarily to study p-anti p elastic and diffractive cross sections, and is a part of the Collider Detector of Fermilab (CDF). Several tests were performed to check the efficiency and the linearity of response of various regions of the detectors. Scans of the beam halo were also done in high and low β optics to check how close to the beam the detectors could be operated. Finally, the dependence of the detector response on temperature and integrated radiation dose was investigated. (orig.)

  6. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  7. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  8. Particle detectors come out of the laboratory

    International Nuclear Information System (INIS)

    Miller, D.

    1990-01-01

    There is more to a particle physicist than a theoretician working on fundamental research with no practical use. Many are skilled inventors who have developed new kinds of technology that is benefiting industry and medicine alike. (author)

  9. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  10. Investigation of some properties of the dielectric particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Gavalyan, V.G.; Gukasyan, S.M.; Kavalov, R.L.; Karapetyan, R.A.; Lorikyan, M.P. (Erevanskij Fizicheskij Inst. (USSR))

    1981-01-01

    Results of investigation into temporary dispersion and amplitude resolution of a dielectric detector (DD) of particles are given. In this detector secondary electrons produced by a particle passing through a dielectric layer are gathered on thin anode filaments strenched inside the dielectric layer. As a working substance of the detector investigated used was CsI having 1.7% relative density of monocrystal, gap between planes of 20 ..mu..m diameter anode filaments and cathode electrodes was approximately equal to 200 ..mu..m, distance between anode filaments was approximately 250 ..mu..m. DD having working area S=5 cm/sup 2/ was placed at a distance of 2 cm from 5 MeV radioactive alpha source of 10/sup 4/ particle/s intensity. Curve of particle detection efficiency for this detector reached plateau at a level of 100% in the range of working voltages from 800 to 1200 V. Coincidence method together with a time-amplitude converter, at inlets of which applied were pulses from DD and a scintillation counter placed under DD, were used to measure temporary dispersion. Data on behaviour of particle registration efficiency depending on time of continuous effect of working and inverse voltages are given. It is found that temporary dispersion of the DD and scintillation counter system is a value of order of 1 ns and amplitude resolution of DD is an order of 100%.

  11. Charged particle detectors made from thin layers of amorphous silicon

    International Nuclear Information System (INIS)

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (α-Si:H) as solid state thin film charged particle detectors. 241 Am alphas were successfully detected with α-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed

  12. Deliquescence and efflorescence of small particles.

    Science.gov (United States)

    McGraw, Robert; Lewis, Ernie R

    2009-11-21

    We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem.

  13. Alpha-particle radiobiological experiments using thin CR-39 detectors

    International Nuclear Information System (INIS)

    Chan, K. F.; Siu, S. Y. M.; McClella, K. E.; Tse, A. K. W.; Lau, B. M. F.; Nikezic, D.; Richardson, B. J.; Lam, P. K. S.; Fong, W. F.; Yu, K. N.

    2006-01-01

    The present paper studied the feasibility of applying comet assay to evaluate the DNA damage in individual HeLa cervix cancer cells after alpha-particle irradiation. We prepared thin CR-39 detectors (<20 μm) as cell-culture substrates, with UV irradiation to shorten the track formation time. After irradiation of the HeLa cells by alpha particles, the tracks on the underside of the CR-39 detector were developed by chemical etching in (while floating on) a 14 N KOH solution at 37 deg. C. Comet assay was then applied. Diffusion of DNA out of the cells could be generally observed from the images of stained DNA. The alpha-particle tracks corresponding to the comets developed on the underside of the CR-39 detectors could also be observed by just changing the focal plane of the confocal microscope. (authors)

  14. Environment recognition applied to particle detectors

    OpenAIRE

    Corbi Bellot, Alberto

    2017-01-01

    Resumen en español Introducción Los detectores de partículas son dispositivos que registran la radiación ionizante, bien de sistemas activos (rayos X, aceleradores, etc.) o bien de isótopos radiactivos. Para poder realizar medidas de precisión con estos instrumentos, es necesario modelar geométricamente el entorno, contorno o escena bajo estudio. Estas condiciones geométricas se pueden determinar de forma más o menos precisa en algunos experimentos de física de partículas/nuclear, ...

  15. A detector for high frequency modulation in auroral particle fluxes

    Science.gov (United States)

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  16. SQUIDs in thermal detectors of weakly interacting particles

    International Nuclear Information System (INIS)

    Trofimov, V.N.

    1991-01-01

    The application of four different types of SQUID-assisted thermometers for cryogenic thermal detectors of weakly interacting particles is analyzed with two of them for the first time. The classic resistive thermometer is considered as well for the comparison. Original results of testing the detector with working temperature of 1K and thermocouple thermometer with SQUID are given. The conclusion is made that temperature resolution of 10 -10 kHz -1/2 or energy sensitivity of 1-10 eV per 1 kg of detector mass can be achieved when using the SQUID-assisted thermometers. 12 refs.; 7 figs.; 1 tab

  17. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  18. Performance comparison of scintillators for alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Yamamoto, Seiichi [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Izaki, Kenji [Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-11-11

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd{sub 2}Si{sub 2}O{sub 7} (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM.

  19. Nanobridge SQUIDs as calorimetric inductive particle detectors

    International Nuclear Information System (INIS)

    Gallop, John; Cox, David; Hao, Ling

    2015-01-01

    Superconducting transition edge sensors (TESs) have made dramatic progress since their invention some 65 years ago (Andrews et al 1949 Phys. Rev. 76 154–155; Irwin and Hilton 2005 Topics Appl. Phys. 99 63–149) until now there are major imaging arrays of TESs with as many as 7588 separate sensors. These are extensively used by astronomers for some ground-breaking observations (Hattori et al 2013 Nucl. Instrum. Methods Phys. Res. A 732 299–302). The great success of TES systems has tended to overshadow other superconducting sensor developments. However there are other types (Sobolewski et al 2003 IEEE Trans. Appl. Supercond. 13 1151–7; Hadfield 2009 Nat. Photonics 3 696–705) which are discussed in papers within this special edition of the journal. Here we describe a quite different type of detector, also applicable to single photon detection but possessing possible advantages (higher sensitivity, higher operating temperature) over the conventional TES, at least for single detectors. (paper)

  20. Omni-directional Particle Detector (ODPD) on Tiangong-2 Spacecraft

    Science.gov (United States)

    Guohong, S.; Zhang, S.; Yang, X.; Wang, C.

    2017-12-01

    Tiangong-2 spacecraft is the second space laboratory independently developed by china after Tiangong-1, which was launched on 15 September 2016. It is also the first real space laboratory in china, which will be used to further validate the space rendezvous and docking technology and to carry out a series of space tests. The spacecraft's orbit is 350km height and 42° inclination. The omni-directional particle detector (ODPD) on Tiangong-2 spacecraft is a new instrument developed by China. Its goal is the anisotropy and energy spectra of space particles on manned space flight orbit. The ODPD measures the energy spectra and pitch angle distributions of high energy electrons and protons. It consists of one electron spectrum telescope, one proton spectrum telescope and sixteen directional flux telescopes. The ODPD is designed to measure the protons spectrum from 2.5MeV to 150MeV, electrons spectrum from 0.2MeV to 1.5MeV, the flux of electrons energy >200keV and protons energy>1.5MeV on 2∏ space, also the ODPD has a small sensor to measure the LET spectrum from 1-100MeV/cm2sr. The primary advantage can give the particle's pitch angle distributions at any time because of the sixteen flux telescopes arrange form 0 to 180 degree. This is the first paper dealing with ODPD data, so we firstly spend some time describing the instrument, its theory of operation and its calibration. Then we give the preliminary detecting results.

  1. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  2. Electromagnetic wave scattering by many small particles

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2007-01-01

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated

  3. Two particle correlations in small systems

    CERN Document Server

    Palmeiro Pazos, Brais

    2015-01-01

    The present report summarizes the work on the Summer Student project within the ALICE Collaboration. The aim of the project is to study the two-particle correlations in peripheral Pb-Pb collisions with the ALICE detector. The first part of this project is the development of a Toy Monte Carlo (MC) generator to reproduce and understand the Physics behind and probe the analysis in a controlled data set. Then, once the Toy MC is fully understood, it is possible to move to real data where some unexpected effects might appear and should be comprehended in order to have the whole physical picture of the peripheral Pb-Pb collisions.

  4. Search for Long-lived particles with the ATLAS detector

    CERN Document Server

    Saito, Masahiko; The ATLAS collaboration

    2017-01-01

    Several supersymmetric models predict the production of meta-stable supersymmetric particles. Such particles, if charged, may be detected through disappearing tracks. The poster presents recent results from disappearing track analysis based on an integrated luminosity of 36.1 $\\mathrm{fb}^{-1}$ of $pp$ collisions at a centre of mass energy of 13 TeV with the ATLAS detector at the LHC.

  5. A massive cryogenic particle detector with good energy resolution

    International Nuclear Information System (INIS)

    Ferger, P.; Colling, P.; Cooper, S.; Dummer, D.; Frank, M.; Nagel, U.; Nucciotti, A.; Proebst, F.; Seidel, W.

    1993-12-01

    Massive cryogenic particle detectors are being developed for use in a search for dark matter particles. Results with a 31 g sapphire crystal and a superconducting phase transition thermometer operated at 44 mK are presented. The observed signal includes a fast component which is significantly larger than the expected thermal pulse. The energy resolution is 210 eV (FWHM) for 6 keV X-rays. (orig.)

  6. Microwave kinetic inductance detectors for astronomy and particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Christian; Monfardini, Alessandro [Institut Neel, CNRS and Universite J. Fourier, Grenoble (France); Roesch, Markus; Schuster, Karl [IRAM, St. Martin d' Heres (France)

    2011-07-01

    A new type of superconducting detector, the Microwave Kinetic Inductance Detector, has recently drawn the attention of the low-temperature detector community. Easy fabrication, high sensitivity, low time constants and most notably the intrinsic capability to frequency multiplexing open new possibilities to applications that need very large array sizes and/or high speed read-out. We develop detector arrays for applications in the domain of astronomy, particle detection, phonon imaging and Helium-physics based on Lumped Element KIDs (LEKIDs). In a LEKID a resonant circuit composed of a discrete inductance and capacitance is coupled to a transmission line. The constant current density in the inductive part makes it a very efficient detector for em-radiation and particles. In this contribution we discuss detector principle, design and measured characteristics. Then we focus on the application for a millimeter wavelength camera, successfully tested at the IRAM 30-meter telescope at Pico Veleta, Spain in October 2010. The current instrument contains two arrays at 100 mK with more than 100 pixels on one read-out-line each for observations at 1.3 and 2 mm. The performances are the best achieved as of today for groundbased KIDs with sensitivities already comparable with existing (horns-coupled bolometers) instruments.

  7. AIDA – pushing the boundaries of European particle detector research

    CERN Multimedia

    Naomi Gilraen Wyles

    2011-01-01

    AIDA (Advanced European Infrastructures for Detectors at Accelerators), a new project co-funded by the European Union and worth a total of 26 million euros, will be officially launched at CERN next week. The kick-off meeting will take place on 16-18 February, during which Europe-wide detector physicists will come together to begin work on detector infrastructure developments for future particle physics experiments.   Coordinated by CERN, AIDA involves more than 80 institutes and laboratories from 23 countries as beneficiaries or associate partners (the full list can be found here). This four-year project will receive 8 million euros from the European Commission's FP7 Research Infrastructures programme. AIDA will develop facilities covering the four main goals identified by the European Strategy for Particle Physics. These are the LHC upgrade, Linear Colliders, Neutrino facilities and Super-B factories. These facilities will also be available for other researchers in the fields of nuclear and par...

  8. Nobel physics prize to Charpak for inventing particle detectors

    International Nuclear Information System (INIS)

    Schwarzschild, B.

    1993-01-01

    This article describes the work of Georges Charpak of France leading to his receipt of the 1992 Nobel Prize in Physics. The Nobel Prize was awarded to Charpak open-quotes for his invention and development of particle detectors, in particular the multiwire proportional chamber.close quotes Historical aspects of Charpak's life and research are given

  9. Particle detectors based on InP Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2012-01-01

    Roč. 10, č. 7 (2012), C100051-C100055 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) OC10021; GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Particle detector * High purity InP layer * Schottky diode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  10. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, M., E-mail: martino.calvo@neel.cnrs.fr [Institute Néel, CNRS, Grenoble (France); Goupy, J.; D' Addabbo, A.; Benoit, A. [Institute Néel, CNRS, Grenoble (France); Bourrion, O. [Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Catalano, A. [Institute Néel, CNRS, Grenoble (France); Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Monfardini, A. [Institute Néel, CNRS, Grenoble (France)

    2016-07-11

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  11. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    International Nuclear Information System (INIS)

    Calvo, M.; Goupy, J.; D'Addabbo, A.; Benoit, A.; Bourrion, O.; Catalano, A.; Monfardini, A.

    2016-01-01

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  12. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  13. On the analysis of small particles

    International Nuclear Information System (INIS)

    Vis, R.D.

    2002-01-01

    The analysis of small, micrometer or even submicrometer sized, particles represents a challenging problem. The whole analytical procedure, including quality assurance and control, needs careful planning. Even the sampling itself is in many cases not trivial at all and the question as to whether the sample is representative for the suite of particles on wants to measure is sometimes difficult to assess. The question of representativity is even more important if one performs single particle analysis. Only large numbers of such analyses will lead to meaningful and interpretable results. In this contribution a few aspects of the various steps in the analytical protocol will be described. Starting point is that it is the elemental composition of the particle that is of interest

  14. Using CHIMERA detector at LNS for gamma-particle coincidences

    Directory of Open Access Journals (Sweden)

    Cardella G.

    2016-01-01

    Full Text Available We have recently evaluated the quality of γ-ray angular distributions that can be extracted in particle-gamma coincidence measurements using the CHIMERA detector at LNS. γ-rays have been detected using the CsI(Tl detectors of the spherical part of the CHIMERA array. Very clean γ-rays angular distributions were extracted in reactions induced by different stable beams impinging on 12C thin targets. The results evidenced an effect of projectile spin flip on the γ-rays angular distributions. γ-particle coincidence measurements were also performed in reactions induced by neutron rich exotic beams produced through in-flight fragmentation at LNS. In recent experiments also the Farcos array was used to improve energy and angular resolution measurements of the detected charged particles. Results obtained with both stable and radioactive beams are reported.

  15. Fano factor evaluation of diamond detectors for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Sato, Yuki [Naraha Remote Technology Development Center, Japan Atomic Energy Agency, Naraha-machi, Futaba-gun, Fukushima, 979-0513 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Mokuno, Yoshiaki [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Watanabe, Hideyuki [Research Institute for Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8565 (Japan)

    2016-10-15

    This report is the first describing experimental evaluation of Fano factor for diamond detectors. High-quality self-standing chemical vapor deposited diamond samples were produced using lift-off method. Alpha-particle induced charge measurements were taken for three samples. A 13.1 ±0.07 eV of the average electron-hole pair creation energy and excellent energy resolution of approximately 0.3% were found for 5.486 MeV alpha particles from an {sup 241}Am radioactive source. The best Fano factor for 5.486 MeV alpha particles, calculated from experimentally obtained epsilon values and the detector intrinsic energy resolution, was 0.382 ± 0.007. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Small Particles Intact Capture Experiment (SPICE)

    Science.gov (United States)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  17. [Effects of ionizing radiation on scintillators and other particle detectors

    International Nuclear Information System (INIS)

    Proudfoot, J.

    1992-01-01

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the ''apple of the high energy physicist's eye.'' Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference

  18. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  19. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  20. Superconducting magnet technology for particle accelerators and detectors seminar

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    This lecture is an introduction to superconducting magnets for particle accelerators and detectors, the aim being to explain the vocabulary and describe the basic technology of modern superconducting magnets, and to explore the limits of the technology. It will include the following: - Why we need superconducting magnets - Properties of superconductors, critical field, critical temperature - Why accelerators need fine filaments and cables; conductor manufacture - Temperature rise and temperature margin: the quench process, training - Quench protection schemes. Protection in the case of the LHC. - Magnets for detectors - The challenges of state-of-the-art magnets for High Energy Physics

  1. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  2. Some recent developments in nuclear charged particle detectors

    International Nuclear Information System (INIS)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown

  3. Test of a Diamond Detector Using Unbunched Beam Halo Particles

    CERN Document Server

    Dehning, B; Pernegger, H; Dobos, D; Frais-Kolbl, H; Griesmayer, E

    2010-01-01

    A pCVD diamond detector has been evaluated as a beam loss monitor for future applications in the LHC accelerator. The test monitor was mounted in the SPS BA5 downstream of a LHC collimator during the LHC beam set-up. CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and Alice. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for single-particle detection, as well as for measuring particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. Despite the read-out being made through 250 m of CK50 cable, the tests have shown a very good signal-to-noise ratio of 6.8, an excellent double-pulse resolution of less than 5 ns and a high dynamic range of 1:350 MIP particles. The efficiency of particle detection is practically 100% for charged particles.

  4. Performance of a Small Anode Germanium Well detector

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  5. Performance of a Small Anode Germanium Well detector

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  6. Alpha particle radiography of small insects

    International Nuclear Information System (INIS)

    Chingshen Su

    1993-01-01

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope 244 Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52 o C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author)

  7. Dispersion of small particles in a tornado

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1975-05-01

    Based on 22 years of tornado statistics for South Carolina and Georgia, the probability of a tornado of Class F3 or greater striking a point at the Savannah River Plant is calculated to be approximately 14 x 10 -5 per year. These statistics show that Class F3 tornados (0.56-psi pressure drop and winds of 158 to 206 mph), are the most frequently occurring but cause only 23 percent of the damage compared with all classes of tornadoes. F4 tornadoes (1.10-psi pressure drop and winds of 207 to 260 mph) constitute only 20 percent of the total, but cause 63 percent of the damage. A Gaussian diffusion model is used to calculate the ground level concentration (ratio of concentration to source mass chi/Q) as a function of distance downwind should a tornado strike a point within the Savannah River Plant (SRP). The particles released to the atmosphere are assumed to be 1 to 3-μm diameter. For the calculations, two cases of possible small particle pickup are considered. In Case I a unit source of small particles is assumed to be injected into the tornado core and transported into the thunderstorm. In Case II, the cluster of particles is assumed to exit the side of the tornado core below the thunderstorm cloud. Several different stabilization heights within the thunderstorm, different horizontal wind speeds, and different turbulence dissipation rates are assumed for the calculations. (U.S.)

  8. Scattering by ensembles of small particles

    International Nuclear Information System (INIS)

    Gustafson, B. Aa. S.

    1980-11-01

    With the advent of high altitude rockets and of space probes, evidence has accumulated that several particle types coexiste in the interplanetary medium. It also became apparent that the zodiacal light is not produced by particles with previously known scattering characteristics. However, the scattering is here shown to be consistent with the hypothesis that presolar interstellar grains accumulate into comets which through fragmentation provide a major component of the interplanetary dust complex. Cometary debris - zodiscal light particles - are therefore modeled as conglomerates of elongated core-mantle particles. Light scattering characteristics of the conglomerates are investigated using a micro-wave analogue method. Approximate theoretical methods for prediction and interpretation of the electro-magnetic scattering patterns are developed and are found to compare favorably with the experimental results and with observations of the zodiacal light. The model is also found to be consistent with comet- and impactdata. Dynamical considerations predicts a small particle component rapidly receding from the Sun, an identification with the B-meteoroids is tentatively suggested. (author)

  9. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  10. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  11. Polarization of silicon detectors by minimum ionizing particles

    CERN Document Server

    Dezillie, B; Li, Z; Verbitskaya, E

    2000-01-01

    This work presents quantitative predictions of the properties of highly irradiated (e.g. by high-energy particles, up to an equivalent fluence of 1x10 sup 1 sup 4 n cm sup - sup 2) silicon detectors operating at cryogenic temperature. It is shown that the exposure to the Minimum Ionising Particle (MIP) with counting rates of about 10 sup 6 cm sup - sup 2 s sup - sup 1 can influence the electric field distribution in the detector's sensitive volume. This change in the electric field distribution and its effect on the charge collection efficiency are discussed in the frame of a model based on trapping of carriers generated by MIPs. The experiment was performed at 87 K with an infrared (1030 nm) laser to simulate MIPs.

  12. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  13. Development of High Energy Particle Detector for the Study of Space Radiation Storm

    Directory of Open Access Journals (Sweden)

    Gyeong-Bok Jo

    2014-09-01

    Full Text Available Next Generation Small Satellite-1 (NEXTSat-1 is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of 33.4° was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of 0°,45°,90° against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

  14. Room temperature particle detectors based on indium phosphide

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Žďánský, Karel; Pekárek, Ladislav

    2010-01-01

    Roč. 612, č. 2 (2010), s. 334-337 ISSN 0168-9002 R&D Projects: GA AV ČR KJB200670901; GA AV ČR(CZ) KAN401220801; GA ČR(CZ) GP102/08/P617 Institutional research plan: CEZ:AV0Z20670512 Keywords : Particle detector * Semi-insulating InP * High purity InP layers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.142, year: 2010

  15. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  16. A new detector array for charged particle spectroscopy

    CERN Document Server

    Cowin, R L; Chappell, S P G; Clarke, N M; Freer, M; Fulton, B R; Cunningham, R A; Curtis, N; Dillon, G; Lilley, J; Jones, C D; Lee, P; Rae, W D M

    1999-01-01

    A compact and highly segmented detector array consisting of 44 gas-silicon-caesium iodide, position sensitive, particle identification detector telescopes and up to 10 position-sensitive, silicon strip detectors has been constructed for the study of light-ion-heavy-ion reactions including cluster break-up in the energy range 5-15 MeV/nucleon. The detectors are housed in a purpose built vacuum chamber. The telescopes are placed in fixed positions, covering the forward hemisphere from 3 to 30 deg. in the laboratory with the target placed at 535 mm from the front of the telescopes or 6-52 deg. with the target placed at 215 mm. The strip detectors are placed in any of 30 fixed positions in the forward hemisphere. For 85 MeV sup 1 sup 2 C ions the telescope energy resolution (gas plus silicon) is 345 keV with an angular resolution of 0.03 deg. . Using the gas-silicon section ions with Z up to 21 can be identified. For ions that pass through the silicon isotopic identification is achieved using the silicon-CsI comb...

  17. Position-sensitive silicon strip detector characterization using particle beams

    CERN Document Server

    Maenpaeae, Teppo

    2012-01-01

    Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution.They are widely used in many high-energy physics experiments. Modern high energyphysics experiments impose harsh operation conditions on the detectors, e.g., of LHCexperiments. The high radiation doses cause the detectors to eventually fail as a resultof excessive radiation damage. This has led to a need to study radiation tolerance usingvarious techniques. At the same time, a need to operate sensors approaching the endtheir lifetimes has arisen.The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal,measurement apparatuses are built. The devices are then used to measure the propertiesof irradiated detectors. The measurement data are analyzed, and conclusions are drawn.Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle acceler...

  18. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  19. Applications of alpha particles detectors made of nitrocellulose film

    International Nuclear Information System (INIS)

    Segovia, N.; Salinas, B.; Pineda, H.

    1978-01-01

    We describe the experiments realized in order to probe the response of the alpha particles detectors manufactured in our laboratory and their suitability to some important applications. The detection system is a nitrocellulose film which register the transit of the charged particles. The traces left by the particles during their transit are manifested through a controlled chemical attack and counted after that with a microscope. This monitor system was utilized in the following applications: 1) uranium prospection 2) alpha autoradiography 4) determination of air pollution by alpha emitters. The results which were obtained are satisfactory and in spite that in these first applications only qualitative measurements were made the method could be used for quantitative determinations when we will have a better knowledge of the effect of factors which are not under our control. (author)

  20. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  1. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  2. RF electrodynamics in small particles of oxides - a review

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2008-01-01

    Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...

  3. On the prestressing and deformation of rectangular particle detector frames

    International Nuclear Information System (INIS)

    Margulies, S.

    1978-01-01

    Particle detectors such as spark chambers and multiwire proportional chambers (MWPC) generally contain planar electrodes stretched across rectangular frames. For detectors of reasonable size, this can result in fairly large forces acting on the frames. To maintain the electrode planes under uniform tension and to prevent sagging, the frames must be prestressed. This paper contains a detailed examination of the deformation of rectangular frames under stress. A simple model for this phenomenon is presented. The model consists of treating each side of the frame as an elastic beam subject to the condition that the sides remain perpendicular at the corners. The predictions of the model are in good agreement with measured deflections of a MWPC frame. The model is used to determine the optimum value of a single concentrated prestressing force F to best approximate the total distributed force W of a uniformly tensed electrode plane. For most geometries it is found that F is about 62% of W. (Auth.)

  4. Review of input stages used in front end electronics for particle detectors

    CERN Document Server

    Kaplon, J

    2015-01-01

    In this paper we present noise analysis of the input stages most commonly used in front end electronics for particle detectors. Analysis shows the calculation of the input referenced noise related to the active devices. It identifies the type, parallel or series, of the equivalent noise sources related to the input transistors, which is the important input for the further choice of the signal processing method. Moreover we calculate the input impedance of amplifiers employed in applications where the particle detector is connected to readout electronics by means of transmission line. We present schematics, small signal models,a complete set of equations, and results of the major steps of calculations for all discussed circuits.

  5. Innovations in ILC detector design using a particle flow algorithm approach

    International Nuclear Information System (INIS)

    Magill, S.; High Energy Physics

    2007-01-01

    The International Linear Collider (ILC) is a future e + e - collider that will produce particles with masses up to the design center-of-mass (CM) energy of 500 GeV. The ILC complements the Large Hadron Collider (LHC) which, although colliding protons at 14 TeV in the CM, will be luminosity-limited to particle production with masses up to ∼1-2 TeV. At the ILC, interesting cross-sections are small, but there are no backgrounds from underlying events, so masses should be able to be measured by hadronic decays to dijets (∼80% BR) as well as in leptonic decay modes. The precise measurement of jets will require major detector innovations, in particular to the calorimeter, which will be optimized to reconstruct final state particle 4-vectors--called the particle flow algorithm approach to jet reconstruction

  6. The charged particle trigger of the CELLO-detector

    International Nuclear Information System (INIS)

    Schroeder, V.

    1981-01-01

    The fast charged particle trigger of the CELLO-detector at the PETRA e + e - storage ring (DESY) is a fast software programmable hardware processor. It is using multiwire chamber signals as inputs and takes a decision on charged tracks coming from the interaction region in less than 1 μsec. The input signals are addressing Random Access Memory devices in which the mask schemes of all meaningful physical tracks are stored. The RAM output signals give information about the numbers and shapes of the valid masks found. This information is used for fast event acquisition and online data analysis done by a PDP 11 computer. (orig.)

  7. The DIRC, the particle identification detector of BaBar

    CERN Document Server

    Yéche, C

    1999-01-01

    A novel particle identification detector (PID) has been developed for the BABAR experiment which will operate at the PEP-II B factory at SLAC. The principles of this new concept of PID called the DIRC, based on ring imaging $9 Cherenkov techniques, are briefly described. The results obtained with a large scale prototype and pion, kaon and proton beams at CERN are presented. The performances of this prototype are compared to the Monte-Carlo simulations and $9 the BABAR requirements. (4 refs).

  8. Lightweight energetic particle detector EPONA and its performance on Giotto

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.; Kirsch, E.; Thompson, A.; O' Sullivan, D.; Wenzel, K.-P.

    1987-06-01

    A lightweight energetic particle detector system (EPONA/EPA) is described which was designed to operate in those novel environmental conditions (i) characterised by the varying solar aspect angles and temperatures pertaining during the cruise phase of the Giotto spacecraft and (ii) during the dust bombardment characterising closest approach (approx. 600 km) to the nucleus of comet Halley. Representative data, illustrating the functioning of EPONA during both the Giotto cruise phase and at comet encounter, are represented. The instrument has a wide range of applications to other space experiments where reliable plasma diagnostics are required.

  9. Signal formation processes in Micromegas detectors and quality control for large size detector construction for the ATLAS new small wheel

    Energy Technology Data Exchange (ETDEWEB)

    Kuger, Fabian

    2017-07-31

    The Micromegas technology is one of the most successful modern gaseous detector concepts and widely utilized in nuclear and particle physics experiments. Twenty years of R and D rendered the technology sufficiently mature to be selected as precision tracking detector for the New Small Wheel (NSW) upgrade of the ATLAS Muon spectrometer. This will be the first large scale application of Micromegas in one of the major LHC experiments. However, many of the fundamental microscopic processes in these gaseous detectors are still not fully understood and studies on several detector aspects, like the micromesh geometry, have never been addressed systematically. The studies on signal formation in Micromegas, presented in the first part of this thesis, focuses on the microscopic signal electron loss mechanisms and the amplification processes in electron gas interaction. Based on a detailed model of detector parameter dependencies, these processes are scrutinized in an iterating comparison between experimental results, theory prediction of the macroscopic observables and process simulation on the microscopic level. Utilizing the specialized detectors developed in the scope of this thesis as well as refined simulation algorithms, an unprecedented level of accuracy in the description of the microscopic processes is reached, deepening the understanding of the fundamental process in gaseous detectors. The second part is dedicated to the challenges arising with the large scale Micromegas production for the ATLAS NSW. A selection of technological choices, partially influenced or determined by the herein presented studies, are discussed alongside a final report on two production related tasks addressing the detectors' core components: For the industrial production of resistive anode PCBs a detailed quality control (QC) and quality assurance (QA) scheme as well as the therefore required testing tools have been developed. In parallel the study on micromesh parameter optimization

  10. Signal formation processes in Micromegas detectors and quality control for large size detector construction for the ATLAS new small wheel

    International Nuclear Information System (INIS)

    Kuger, Fabian

    2017-01-01

    The Micromegas technology is one of the most successful modern gaseous detector concepts and widely utilized in nuclear and particle physics experiments. Twenty years of R and D rendered the technology sufficiently mature to be selected as precision tracking detector for the New Small Wheel (NSW) upgrade of the ATLAS Muon spectrometer. This will be the first large scale application of Micromegas in one of the major LHC experiments. However, many of the fundamental microscopic processes in these gaseous detectors are still not fully understood and studies on several detector aspects, like the micromesh geometry, have never been addressed systematically. The studies on signal formation in Micromegas, presented in the first part of this thesis, focuses on the microscopic signal electron loss mechanisms and the amplification processes in electron gas interaction. Based on a detailed model of detector parameter dependencies, these processes are scrutinized in an iterating comparison between experimental results, theory prediction of the macroscopic observables and process simulation on the microscopic level. Utilizing the specialized detectors developed in the scope of this thesis as well as refined simulation algorithms, an unprecedented level of accuracy in the description of the microscopic processes is reached, deepening the understanding of the fundamental process in gaseous detectors. The second part is dedicated to the challenges arising with the large scale Micromegas production for the ATLAS NSW. A selection of technological choices, partially influenced or determined by the herein presented studies, are discussed alongside a final report on two production related tasks addressing the detectors' core components: For the industrial production of resistive anode PCBs a detailed quality control (QC) and quality assurance (QA) scheme as well as the therefore required testing tools have been developed. In parallel the study on micromesh parameter optimization

  11. Search for lightly ionizing particles with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, M A A; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Katsavounidis, I; Kearns, E T; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Okada, C; Osteria, G; Ouchrif, M; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Satriano, C; Satta, L; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Vilela, E; Walter, C W; Webb, R

    2000-01-01

    A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 1/5 e and close to the charge of an electron, with beta between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Phi

  12. Challenges of small-pixel infrared detectors: a review.

    Science.gov (United States)

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  13. Retina neural circuitry seen with particle detector technology

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Using particle physics techniques, high energy physics researchers have recently provided new insight into neural circuits inside the retina. After uncovering a new type of retinal cell and mapping how the retina deals with colours, the team from Santa Cruz (US), Krakow and Glasgow is now turning its attention to more complex issues such as how the retina gets wired up and how the brain deals with the signals it receives from the retina. All this using technology derived from high-density, multistrip silicon detectors…   Seen from the point of view of a particle physicist, eyes are image detectors that can gather many different types of data: light and dark, different colours, motion, etc. In particular, the retina, a thin tissue that lines the back of the eye, is a biological pixel detector that detects light and converts it to electrical signals that travel through the optic nerve to the brain. Neurobiologists know that many different cell types are involved in these processes, but they...

  14. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  15. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  16. Analysis of three particle correlations with the INDRA detector

    International Nuclear Information System (INIS)

    Rahmani, A.; Eudes, Ph.; Lautridou, P.; Lebrun, C.; Reposeur, T.

    1997-01-01

    In the framework of the study of light particle production with the INDRA detector, we have analysed the invariant mass distribution of three particles produced in the Xe + Sn collisions at 50 A.MeV making use of an original interferometric method which offers the possibilities to access the intrinsic parameters of intermediate 'resonances' created during the nuclear collisions. By analyzing the correlations of (α,α,α) it was possible to make evident a signal equivalent to that from 12 C. The study of this signal allows: - to estimate the production rate of αs coming from the 12 C * decay; - accordingly, to introduce a correction for α multiplicity measured by INDRA; - to extract the temperature of the emitting fragment ( 12 C * ); to establish the sequential or direct decay mode of the emitting fragments ( 12 C * → α + 8 Be → α + α + α or 12 C * → α + α + α). Thus, the measured signal is an apparent consequence of the occurrence of the intermediate fragments excited in a metastable state from which the particles are emitted. The emission rate of the α particles coming from the decay of these fragments is estimated to several percents (< 10 %)

  17. A scintillation detector set measuring the charge particle energy

    International Nuclear Information System (INIS)

    Dore, Chantal.

    1979-01-01

    The S143 experiment, at CERN in 1976, needed both the measurement and the identification of light nuclei, and especially the separation between 3 H and 3 He, over a large energy range. In the chosen solution, in addition to semiconductor detectors, some scintillation counters are used. The non-linearity of light versus energy of charged particles was complicated by the fact there was two different linear laws according to the charge of particles. To obtain good analogic signals over a dynamic range nearly equal to 200, the signals from several dynodes were used simultaneously. In the experimental setting up, each scintillator was put directly in contact with the corresponding photocathode. In spite of a special shielding, some perturbations due to the magnet placed close by required to bring important corrections to linear laws. Thanks to complementary informations from semiconductor counters, a full separation between charge 1 and charge 2 particles was possible. A suitable identification as guaranted among charge 1 particles, but only kinematic constraints gave the possibility to extract 4 He corresponding to the elastic scattering [fr

  18. Alpha particle radiography and the track plastic detector CR-39

    International Nuclear Information System (INIS)

    Souza, Bismarck Amilar de.

    1991-05-01

    This work develops the radiographic technique using charged particle beams. This technique complements the X-ray conventional radiography, and presents some advantages in certain cases. The material used as nuclear plastic detector was CR-39, manufactured by Pershre Mould. England, of 250 and 1000 μm nominal thicknesses. The irradiations were made with 7 MeV/Nucleon alpha particles beams, accelerated in the CV-28 Cyclotron of Instituto de Engenharia Nuclear/CNEN - Rio de Janeiro. The etch conditions used were a Na OH 6,25 N solution at 70 0 C, varying the etch time, so that the best etch time was found to be six hours. The calibration curve is presented, which permits images interpretation, showed in terms of light transmittance (obtained using a micro densitometer), and in terms of energy losses suffered by alpha particles in several aluminum degradating thicknesses. This curve was checked by the use of other degradating materials: Mylar, Makrofol, and CR-39 itself. The influence of alpha particle beam FWHM widening on images quality, when it crosses several degradating materials, is also presented. Radiographs of some specimen are presented, including some images obtained varying some irradiation and etch parameters. (author). 62 refs., 22 figs., 19 tabs

  19. Design of Compact Particle Detector System Using FPGA for Space Particle Environment Measurement

    Directory of Open Access Journals (Sweden)

    K. Ryu

    2007-06-01

    Full Text Available We have designed a high resolution proton and electron telescope for the detection of high energy particles, which constitute a major part of the space environment. The flux of the particles, in the satellite orbits, can vary abruptly according to the position and solar activities. In this study, a conceptual design of the detector, for adapting these variations with a high energy resolution, was made and the performance was estimated. In addition, a parallel processing algorithm was devised and embodied using FPGA for the high speed data processing, capable of detecting high flux without losing energy resolution, on board a satellite.

  20. CR-39 α track detector and its application in observing of the hot particles in environment

    International Nuclear Information System (INIS)

    Zou Benchuan

    1992-01-01

    CR-39 α track detector is a new α remitting radionuclides plastic detector. It is audio-visual, convenient and economic in the detection of α particle track and the distribution of α emitting radionuclides in environmental samples. CR-39 α track detector is used to observe the hot particles in rock and the hot particles coming from the liquid effluents discharged by spent fuel reprocessing plant in UK in marine environment and got good results

  1. Development of a Massive, Highly Multiplexible, Phonon-Mediated Particle Detector Using Kinetic Inductance Detectors

    Science.gov (United States)

    Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.

    2018-04-01

    We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.

  2. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    International Nuclear Information System (INIS)

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  3. Vectorising the detector geometry to optimize particle transport

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    Among the components contributing to particle transport, geometry navigation is an important consumer of CPU cycles. The tasks performed to get answers to "basic" queries such as locating a point within a geometry hierarchy or computing accurately the distance to the next boundary can become very computing intensive for complex detector setups. So far, the existing geometry algorithms employ mainly scalar optimisation strategies (voxelization, caching) to reduce their CPU consumption. In this paper, we would like to take a different approach and investigate how geometry navigation can benefit from the vector instruction set extensions that are one of the primary source of performance enhancements on current and future hardware. While on paper, this form of microparallelism promises increasing performance opportunities, applying this technology to the highly hierarchical and multiply branched geometry code is a difficult challenge. We refer to the current work done to vectorise an important part of the critica...

  4. Correcting saturation of detectors for particle/droplet imaging methods

    International Nuclear Information System (INIS)

    Kalt, Peter A M

    2010-01-01

    Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels

  5. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  6. Particle Identification algorithm for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the algorithm presently used to determine the particle identification performance for single particles for the CLIC ILD and CLIC SiD detector concepts as prepared in the CLIC Conceptual Design Report.

  7. Particle mis-identification rate algorithm for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the algorithm presently used to determine the particle mis- identification rate and gives results for single particles for the CLIC ILD and CLIC SiD detector concepts as prepared for the CLIC Conceptual Design Report.

  8. Turbulent resuspension of small nondeformable particles

    International Nuclear Information System (INIS)

    Lazaridis, M.; Drossinos, Y.

    1998-01-01

    An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al 2 O 3 particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment

  9. Collection of large and small food particles by Bosmina

    International Nuclear Information System (INIS)

    Bleiwas, A.H.; Stokes, P.M.

    1985-01-01

    The rate of collection by Bosmina of large and small food particles was measured with 14 C-labeled algae and checked by visual observation. Bosmina collected and ingested a large alga, Cosmarium, about six times faster than a small one, Chlorella. This is consistent with the observation of DeMott and Kerfoot that Bosmina has two modes of feeding: small-particle filtering and large-particle grasping

  10. Aging Analysis of Micromegas Detectors for ATLAS New Small Wheel

    CERN Document Server

    Quinnan, Melissa

    2015-01-01

    In preparation for the coming High Luminosity Large Hadron Collider (HL-LHC) upgrade, the New Small Wheel (NSW) will replace the Small Wheel of the ATLAS Muon Spectrometer as part of the 2018 ATLAS Phase-I upgrade. Micromegas (MM) detectors will serve as one component of the NSW. These gaseous micro-mesh detectors will accommodate the higher luminosity and trigger rate of the future HL-LHC.In order to predict performance of MM after several years in the HL-LHC, radiation aging tests were conducted in the Gamma Irradiation Facility (GIF++) using a Cs 137 source. Two small MM prototype "T" chambers were irradiated and studied over the course of several months to accelerate the aging process and characterize chamber behavior. This report outlines a record of the aging process thus far and demonstrates techniques used to describe aging effects, namely measurements of average current, integrated charge, and gain. These will be used in the ongoing aging analysis of the T chambers and in future aging studies of the ...

  11. Portable cosmic particle detectors for subsurface density mapping

    Science.gov (United States)

    Oláh, László; Gábor Barnaföldi, Gergely; Hamar, Gergö; Surányi, Gergely; Varga, Dezsö

    2016-04-01

    Muography deduces the density length in the interior of the investigated geological object, such as a mountain or volcano by the measurement of the cosmic muon absorption along different paths through the object. If path lengths (average densities) are measured, the average density (path length) can be deduced along the muon paths. A portable, low power consumption cosmic particle tracking detector based on Close Cathode multi-wire proportional chambers [1,2] has been developed for muography based on our earlier developments and experiences at the Wigner RCP of the HAS in Budapest [3,4,5]. The newly developed tracking system consists of six layers with the sensitive area of 0.25 m2 [6]. The spatial resolution of 2 mm provides an angular resolution of 15 mrad. This instrument has been optimized for underground and outdoor measurements: it has a Raspberry pi controlled data acquisition system which includes a custom designed board with a coincidence unit and allows high level remote control, data management and analysis. The individual trigger signals, number of missed triggers, analogue signals from chambers and the temperature are recorded. The duration of data readout (dead time) is 100 microsec. The DAQ software runs on the Raspberry Pi. For standard operation, a graphical user interface has been developed, running on any remote computer with Internet connection (both of wired and wireless) to the Raspberry Pi. A temperature-controlled high-voltage power supply provides a stable and reasonable (> 95 %) tracking performance for the measurements. With total power consumption of 5W, a portable tracking detector can operate for 5 days with a standard 50 Ah battery and with gas (non flammable Ar-CO2 mixture) consumption of 0.5 liter per hour, a 10 l bottle at pressure of 150 bar is enough for four month. The portability (total weight of less than 30 kg) allowed that our tracking detectors have been applied in underground caverns for subsurface density mapping. The

  12. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  13. Study on the etching conditions of polycarbonate detectors for particle analysis of safeguards environmental samples

    International Nuclear Information System (INIS)

    Iguchi, K.; Esaka, K.T.; Lee, C.G.; Inagawa, J.; Esaka, F.; Onodera, T.; Fukuyama, H.; Suzuki, D.; Sakurai, S.; Watanabe, K.; Usuda, S.

    2005-01-01

    The fission track technique was applied to the particle analysis for safeguards environmental samples to obtain information about the isotope ratio of nuclear materials in individual particles. To detect the particles containing nuclear material with high detection efficiency and less particle loss, the influence of uranium enrichments on etching conditions of a fission track detector made of polycarbonate was investigated. It was shown that the increase in uranium enrichment shortened the suitable etching time both for particle detection and for less particle loss. From the results obtained, it was suggested that the screening of the uranium particles according to the enrichment is possible by controlling the etching time of the detector

  14. Injection quality measurements with diamond based particle detectors

    CERN Document Server

    Stein, Oliver; CERN. Geneva. ATS Department

    2016-01-01

    During the re-commissioning phase of the LHC after the long shutdown 1 very high beam losses were observed at the TDI during beam injection. The losses reached up to 90% of the dump threshold. To decrease the through beam losses induced stress on the accelerator components these loss levels need to be reduced. Measurements with diamond based particle detectors (dBLMs), which have nano-second time resolution, revealed that the majority of these losses come from recaptured SPS beam surrounding the nominal bunch train. In this MD the injection loss patterns and loss intensities were investigated in greater detail. Performed calibration shots on the TDI (internal beam absorber for injection) gave a conversion factor from impacting particles intensities to signal in the dBLMs (0.1Vs/109 protons). Using the SPS tune kicker for cleaning the recaptured beam in the SPS and changing the LHC injection kicker settings resulted in a reduction of the injection losses. For 144 bunch injections the loss levels were decreased...

  15. Charged particle spectroscopy with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hunyadi, I.; Somogyi, G.

    1984-01-01

    Some of earlier and recent methods for differentiation of charged particles according to their energy, based on the use of polymeric etch-track detectors (CN, CA, PC and CR-39) are outlined. The principle of three track methods suitable for nuclear spectroscopy is discussed. These are based on the analysis of the diameter, surface size and shape of etch-track 'cones' produced by charged particles in polymers, after using shorter or longer chemical etching processes. Examples are presented from the results of the last decade in ATOMKI, Debrecen, Hungary, concerning the application of nuclear track spectroscopy to different low-energy nuclear reaction studies, angular distribution and excitation function measurements. These involve the study of (d,α) reaction on sup(14)N, sup(19)F and sup(27)Al nuclei, (sup(3)He,α) reactions on sup(15)N, (p,α) reaction on sup(27)Al and the process sup(12)C(sup(12)C, sup(8)Be)sup(16)O. (author)

  16. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  17. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  18. Development of large area si detectors based on planar technology for charged particles

    International Nuclear Information System (INIS)

    Zhang Wanchang; Sun Liang; Huang Xiaojian; Liu Yang; Chen Guozhu

    2009-01-01

    This paper describes the processing method of large area Si detectors fabricated by planar technology for charged particles. In order to decrease the detectors leakage current, the surface passivation technique was used. The paper gives the measurement results of the leakage current of 300μm thick, 20mm diameter detectors and 500μm thick, 40mm diameter detectors respectively. The spectra of the detectors for 241 Am 5.486MeV α particles are also provided at room temperature. (authors)

  19. Redox properties of small semiconductor particles

    International Nuclear Information System (INIS)

    Liver, N.; Nitzan, A.

    1992-01-01

    The size dependence of electrical and thermodynamic quantities of intermediate-sized semiconductor particles in an electrolyte solution with a given redox pair are studied. The equilibrium constant for this system is then derived based on the relationship of the electrolytic redox components to the size, charges, and concentration of the semiconductor particles. 25 refs., 9 figs., 1 tab

  20. SIRI - A proposal for a multi-detector ΔE-E particle telescope

    International Nuclear Information System (INIS)

    Guttormsen, M.

    1992-06-01

    The CACTUS detector system which is mounted on the 90 o beam line of the Oslo Cyclotron consists of 28 NaI and 2 Ge detectors in combination with 8 Si particle telescopes. The Si particle telescopes are however based on an old technology with a geometrical lay-out that prohibits further increase in efficiency. In this report a replacement of the old system in the form of 64 telescopes based on silicon strip detectors is proposed. For the planned system called SIRI (Silicon Ring), the detectors are located on a ring around the target, covering the angles between 30 o and 60 o relative to the beam direction. The planned detector system will increase detector efficiency of charged particles by a factor 8. The design and construction of the new detector system is described and discussed. 8 refs., 9 figs., 4 tabs

  1. Discrimination of Charged Particles in a Neutral Beam Line by Using a Solid Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Kwan; Ko, Jewou; Liu, Dong [Jeju National University, Jeju (Korea, Republic of)

    2017-01-15

    In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a charged particle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.

  2. Coordinate determination of high energy charged particles by silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    2002-01-01

    The coordinate determination accuracy of minimum ionizing and short-range particles by silicon strip detectors has been considered. The charge collection on neighboring strips of the detector is studied and the influence of diffusion and the electric field distribution on the accuracy of the coordinate determination is analyzed. It has been shown that coordinates of both minimum ionizing and short-range particles can be determined with accuracy to a few microns using silicon strip detectors. 11 refs.; 8 figs

  3. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  4. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  5. Accelerators: the large slings of small particles

    International Nuclear Information System (INIS)

    Crozon, M.

    1987-01-01

    This paper reviews the different types of accelerators, of particles or heavy ions, which have been developed or are in project, their performance, their limits, which noting briefly the technologies used [fr

  6. Neutron detector based on Particles of {sup 6}Li glass scintillator dispersed in organic lightguide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K.D., E-mail: ianakiev@lanl.gov; Hehlen, M.P.; Swinhoe, M.T.; Favalli, A.; Iliev, M.L.; Lin, T.C.; Bennett, B.L.; Barker, M.T.

    2015-06-01

    Most {sup 3}He replacement neutron detector technologies today have overlapping neutron–gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron–gamma separation of {sup 3}He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. {sup 6}Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of {sup 6}Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium ({sup 6}Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of {sup 6}Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a

  7. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  8. Multi-angle gas and Si detector particle telescope

    International Nuclear Information System (INIS)

    McDonald, R.J.; Sobotka, L.G.; Wozniak, G.J.

    1984-01-01

    A simple gas ΔE and multiple Si E detector telescope (called a WEDGE detector) has been constructed, which is particularly suitable for angular distribution studies of light ion emission from fragments following heavy ion reactions. This inexpensive detector was designed to have a low detection threshold, large dynamic range and constant ΔE path length. The detector has been used in studies of complex fragment emission (typically 2 < Z < 10) following compound nucleus and deep-inelastic heavy ion reactions

  9. New concept for a wall detector for alpha particles

    International Nuclear Information System (INIS)

    Miley, G.H.; Kislev, H.; Micklich, B.J.

    1985-01-01

    A new concept for a wall-mounted detector is described here that would measure D-T alpha flux and corresponding pitch angle distribution in tokamaks (or related toroidal devices). The sensing element is a conical Micro Channel Ring (MCR) coated with 1 to 2μ of ZnS scintillator (or possibly ZnO). The collimation of the α particles is provided by two circumferential slots at the wall surface. The alpha scintillation events on the MCR are transferred through the ring channels and coupled fiber optics bundle to an external processor. From the magnetic field vector at a given point on the device wall, a certain relation can be set up between the α-induced scintillation position on the MCR and its original pitch angle (i.e., the angle between the α emission from the fusion reaction and the magnetic field vector) which is equal to the local pitch angle since the wall α flux is dominated by prompt losses

  10. Averaged currents induced by alpha particles in an InSb compound semiconductor detector

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Hishiki, Shigeomi; Kogetsu, Yoshitaka; Nakamura, Tatsuya; Katagiri, Masaki

    2008-01-01

    Very fast pulses due to alpha particle incidence were observed by an undoped-type InSb Schottky detector. This InSb detector was operated without applying bias voltage and its depletion layer thickness was less than the range of alpha particles. The averaged current induced by alpha particles was analyzed as a function of operating temperature and was shown to be proportional to the Hall mobility of InSb. (author)

  11. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    Science.gov (United States)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  12. Alpha particle response study of polycrstalline diamond radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Topkar, Anita [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2016-05-23

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  13. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    DEFF Research Database (Denmark)

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar

    2014-01-01

    -doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm3 to 0.3 cm3). All detector measurements were corrected for volume averaging effect and compared with dose ratios...... measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators....

  14. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  15. Using digital images to measure and discriminate small particles in cotton

    Science.gov (United States)

    Taylor, Robert A.; Godbey, Luther C.

    1991-02-01

    Inages from conventional video systems are being digitized in coraputers for the analysis of small trash particles in cotton. The method has been developed to automate particle counting and area measurements for bales of cotton prepared for market. Because the video output is linearly proportional to the amount of light reflected the best spectral band for optimum particle discrimination should be centered at the wavelength of maximum difference between particles and their surroundings. However due to the spectral distribution of the illumination energy and the detector sensitivity peak image performance bands were altered. Reflectance from seven mechanically cleaned cotton lint samples and trash removed were examined for spectral contrast in the wavelength range of camera sensitivity. Pixel intensity histograms from the video systent are reported for simulated trashmeter area reference samples (painted dots on panels) and for cotton containing trash to demonstrate the particle discrimination mechanism. 2.

  16. Absorption and scattering of light by small particles

    CERN Document Server

    Bohren, Craig F

    1983-01-01

    Absorption and Scattering of Light by Small Particles. Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include:. * Classical theor

  17. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  18. Particle detectors based on semiconducting InP epitaxial layers

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Žďánský, Karel

    2011-01-01

    Roč. 6, C01072 (2011), C010721-C010725 ISSN 1748-0221 R&D Projects: GA AV ČR KJB200670901; GA MŠk(CZ) OC10021; GA ČR(CZ) GP102/08/P617 Institutional research plan: CEZ:AV0Z20670512 Keywords : Solid state detectors * Gamma detectors * Radiation-hard detectors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  19. Development of FARICH detector for particle identification system at accelerators

    Science.gov (United States)

    Finogeev, D. A.; Kurepin, A. B.; Razin, V. I.; Reshetin, A. I.; Usenko, E. A.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kasyanenko, P. V.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Podgornov, N. A.; Talyshev, A. A.; Danilyuk, A. F.

    2018-01-01

    Aerogel has been successfully used as a radiator in Cherenkov detectors. In 2004, a multilayer aerogel providing Cherenkov ring focusing was proposed and produced. FARICH (Focusing Aerogel Rich Imaging CHerenkov) detectors such as ARICH for Belle-II (KEK, Japan), Forward RICH for PANDA detector (FAIR, Germany), and FARICH for the Super Charm-Tau factory project (BINP, Novosibirsk) have been developed based on this aerogel. Prototypes of FARICH detector based on MRS APD and Philips DPC photosensors were developed and tested in the framework of this project. An angular resolution for Cherenkov rings of 3.6 mrad was achieved.

  20. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  1. Acoustic interaction forces between small particles in an ideal fluid

    DEFF Research Database (Denmark)

    Silva, Glauber T.; Bruus, Henrik

    2014-01-01

    We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...

  2. Fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    1982-01-01

    Studies are reported in these areas: double resonance in fluorescent and Raman scattering; surface enhanced Raman scattering; fluorescence by molecules embedded in small particles; fluorescence by a liquid droplet; and fluorescence by conical pits in surfaces

  3. Status of fully integrated GaAs particle detectors

    International Nuclear Information System (INIS)

    Braunschweig, W.; Breibach, J.; Kubicki, Th.; Luebelsmeyer, K.; Maesing, Th.; Rente, C.; Roeper, Ch.; Siemes, A.

    1999-01-01

    GaAs strip detectors are of interest because of their radiation hardness at room temperature and the high absorption coefficient of GaAs for x-rays. The detectors currently under development will be used in the VLQ-experiment at the H1 experiment at the HERA collider. This will be the first high energy physics experiment where GaAs detectors will be used. The detectors have a sensitive area of 5 x 4 cm with a pitch of 62 μ m. Due to the high density of channels the biasing resistors and coupling capacitors are integrated. For the resistors a resistive layer made of Cermet is used. The properties of the first fully integrated strip detector are presented

  4. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  5. BJT detector with FPGA-based read-out for alpha particle monitoring

    International Nuclear Information System (INIS)

    Tyzhnevyi, V; Dalla Betta, G-F; Rovati, L; Verzellesi, G; Zorzi, N

    2011-01-01

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an α-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  6. Development of a charged particle detector array in Pelletron-LINAC facility

    International Nuclear Information System (INIS)

    John, Bency; Inkar, A.L.; Saxena, A.; Vind, R.P.; Gupta, Y.K.; Biswas, D.C.; Nayak, B.K.; Thomas, R.G.; Danu, L.S.; Choudhury, R.K.; Kailas, S.; Topkar, A.; Venkatramanan, S.; Kumar, Manish; Sunilkumar, S.

    2010-01-01

    A charged particle detector array consisting of 50 Si-CsI detector telescopes for study of heavy-ion reactions is under construction in BARC-TIFR Pelletron-LINAC facility. Developmental work carried out for the detector modules, front-end and pulse shape discrimination electronics, scattering chamber and other mechanical parts are summarized. Some new ideas developed during the course of work are pointed out. (author)

  7. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  8. Spin-off from particle detectors in the field of medicine and biology

    International Nuclear Information System (INIS)

    Lecoq, P.

    2007-01-01

    Since the discovery of X-rays by Roentgen in 1895 physicists have played a major role in the development of medical imaging instrumentation. More recently, the technological developments in several areas of applied physics, the new generation of particle physics detectors and the development of an information-based society all combine to enhance the performance of presently available imaging devices. This paper describes the critical parameters of modern medical imaging in the context of the spectacular development of in-vivo molecular imaging, which will soon allow to bridge post-genomics research activities with new diagnostics and therapeutic strategies for major diseases. In particular, the molecular profiling of tumors and gene expression open the way to tailored therapies and therapeutic monitoring of major diseases like cancer, degenerative and genetic disorders. Moreover, the repeatability of non-invasive approaches allows an evaluation of drug targeting and pharmacokinetics studies on small animals, as well as a precise screening and treatment follow-up of patients. The technical requirements on imaging devices are very challenging but are rather similar in many respects to the ones of modern particle detectors on high-luminosity accelerators. Examples will be given of active technology transfer areas from high-energy physics detectors, which can significantly improve the performance of future medical imaging devices. Special emphasis will be put on the need for a globalization of technology research and development as modern instrumentation in a vast range of applications has similar requirements and spin-off should be more and more understood as cross-fertilization between different disciplines

  9. Spin-off from particle detectors in the field of medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Lecoq, P. [CERN, 1211 Geneva (Switzerland)], E-mail: paul.lecoq@cern.ch

    2007-10-21

    Since the discovery of X-rays by Roentgen in 1895 physicists have played a major role in the development of medical imaging instrumentation. More recently, the technological developments in several areas of applied physics, the new generation of particle physics detectors and the development of an information-based society all combine to enhance the performance of presently available imaging devices. This paper describes the critical parameters of modern medical imaging in the context of the spectacular development of in-vivo molecular imaging, which will soon allow to bridge post-genomics research activities with new diagnostics and therapeutic strategies for major diseases. In particular, the molecular profiling of tumors and gene expression open the way to tailored therapies and therapeutic monitoring of major diseases like cancer, degenerative and genetic disorders. Moreover, the repeatability of non-invasive approaches allows an evaluation of drug targeting and pharmacokinetics studies on small animals, as well as a precise screening and treatment follow-up of patients. The technical requirements on imaging devices are very challenging but are rather similar in many respects to the ones of modern particle detectors on high-luminosity accelerators. Examples will be given of active technology transfer areas from high-energy physics detectors, which can significantly improve the performance of future medical imaging devices. Special emphasis will be put on the need for a globalization of technology research and development as modern instrumentation in a vast range of applications has similar requirements and spin-off should be more and more understood as cross-fertilization between different disciplines.

  10. Giant particle detector magnet goes underground at CERN's Large Hadron Collider accelerator

    CERN Multimedia

    2007-01-01

    "Scientists of the US CMS collaboration joined colleagues around the world in announcing that the heaviest piece of the Compact Muon Solenoid particle detector has begun the momentous journey into its experimental cavern 100 meters underground." (1 page)

  11. Contribution of silicon recombination properties in resolution of short-range particle detectors

    International Nuclear Information System (INIS)

    Verbitskaya, E.M.; Eremin, V.K.; Malyarenko, A.M.; Strokan, N.B.; Sukhanov, V.L.

    1987-01-01

    Tracks of short-range particles represent dense clusters of electron-hole pairs 2-4 μm in diameter and 20-30 μm long. Thus, conditions for charge carrier transport in microscopic Si volume are discovered at registration of each particle. Statistical distribution by the specimen square of the main parameter - lifetime of charge carriers (τ) is disclosed as a result of particle chaotic hitting the detector. Analytical description for the shape of the spectral line of the detector is found in the assumption of Gauss distribution τ. The function is applied to the analysis of detector spectra with maximum energy resolution, for which contributions to the shape of the line of the fundamental factors and nonperfection of Si or of the detector structure as a whole are comparable. Excess fluctuations of α-particle energy transformation to the charge of electron-hole pairs are found relatively to adopted values

  12. Contribution of silicon recombination properties in resolution of short-range particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Strokan, N B; Sukhanov, V L

    1987-10-01

    Tracks of short-range particles represent dense clusters of electron-hole pairs 2-4 ..mu..m in diameter and 20-30 ..mu..m long. Thus, conditions for charge carrier transport in microscopic Si volume are discovered at registration of each particle. Statistical distribution by the specimen square of the main parameter - lifetime of charge carriers (tau) is disclosed as a result of particle chaotic hitting the detector. Analytical description for the shape of the spectral line of the detector is found in the assumption of Gauss distribution tau. The function is applied to the analysis of detector spectra with maximum energy resolution, for which contributions to the shape of the line of the fundamental factors and nonperfection of Si or of the detector structure as a whole are comparable. Excess fluctuations of ..cap alpha..-particle energy transformation to the charge of electron-hole pairs are found relatively to adopted values.

  13. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  14. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Science.gov (United States)

    Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.

    2018-03-01

    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

  15. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  16. Perfomance of a high purity germanium multi-detector telescope for long range particles

    International Nuclear Information System (INIS)

    Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.

    1980-01-01

    A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results

  17. A device for transferring, in particular, small particles

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a transfer device, in particular for transferring small particles, comprising a helical channel made in the tube inner surface, a device for causing the tube to rotate about its longitudinal axis, a rotating joint adapted to close one of the tube extremities, a device for inserting a substance in the form of granules or of fluid particles into said tube through said joint, and a device for collecting and discharging said substance at the tube opposite end. This can applied to the transfer of small spherical particles e.g. of fuel [fr

  18. Small area silicon diffused junction X-ray detectors

    Science.gov (United States)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  19. Small area silicon diffused junction x-ray detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm 2 and a thickness of 100 μm. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150 0 K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs

  20. Particle detector goes on line soon in Japan

    CERN Multimedia

    1998-01-01

    Belle, a detector intended to explain the imbalance between matter and antimatter in the universe is scheduled to be moved to the collision point of KEK's new electron-positron collider in February 1999.

  1. Spin-off from particle detectors in the field of medicine and biology

    CERN Document Server

    Lecoq, P

    2007-01-01

    Since the discovery of X-rays by Roentgen in 1895 physicists have played a major role in the development of medical imaging instrumentation. More recently, the technological developments in several areas of applied physics, the new generation of particle physics detectors and the development of an information-based society all combine to enhance the performance of presently available imaging devices. This paper describes the critical parameters of modern medical imaging in the context of the spectacular development of in-vivo molecular imaging, which will soon allow to bridge post-genomics research activities with new diagnostics and therapeutic strategies for major diseases. In particular, the molecular profiling of tumors and gene expression open the way to tailored therapies and therapeutic monitoring of major diseases like cancer, degenerative and genetic disorders. Moreover, the repeatability of non-invasive approaches allows an evaluation of drug targeting and pharmacokinetics studies on small animals, ...

  2. A surface barrier detector for simultaneous detection of α and β particles

    International Nuclear Information System (INIS)

    Shiraishi, Fumio

    1981-01-01

    Semiconductor detectors are indispensable as the solid detectors with high energy resolution. Ge detectors are used for gamma-ray spectroscopy and its applied fields, while Si detectors are used as the detectors for charged particles such as α and β rays and low energy X-ray. In this paper, it is reported that the Si detector developed in the author's laboratory is suitable to monitor very weak radioactivity. The Si detector is a rectifier, but in order to capture radiation, it has large area and increased thickness, and a window is provided for incident charged particles. The Si detectors are classified into three types according to the manufacturing methods, namely surface barrier type, PN joint type and Li drift type. The Si detector introduced here is of surface barrier type, but it is characterized by the use of P-type Si with superhigh purity. The method of manufacturing this detector, its specifications and characteristics are described. Because of the surface barrier type, it can be produced simply in short time, and the yield of products is good. The stability is good, and the sensitivity is high, accordingly very weak radioactivity can be measured. As the examples of measurements, the results of uranium ore and fertilizer on the market are compared. Also the utilization as surface contamination meters is explained. (Kako, I.)

  3. Influence of radiation induced defect clusters on silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra

    2011-10-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10{sup 35} cm{sup -2}s{sup -1}. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to {phi}{sub eq}=10{sup 16} cm{sup -2}. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E{sub C}-0.460 eV and E205a at E{sub C}-0.395 eV where E{sub C} is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V{sub 3}) defect. Furthermore, isochronal annealing experiments have shown that the V{sub 3} defect

  4. Influence of radiation induced defect clusters on silicon particle detectors

    International Nuclear Information System (INIS)

    Junkes, Alexandra

    2011-10-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10 35 cm -2 s -1 . In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to Φ eq =10 16 cm -2 . The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E C -0.460 eV and E205a at E C -0.395 eV where E C is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V 3 ) defect. Furthermore, isochronal annealing experiments have shown that the V 3 defect exhibits a bistability, as does the leakage current. In oxygen

  5. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír

    2013-01-01

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239 Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film

  6. Fully integrated CMOS pixel detector for high energy particles

    International Nuclear Information System (INIS)

    Vanstraelen, G.; Debusschere, I.; Claeys, C.; Declerck, G.

    1989-01-01

    A novel type of position and energy sensitive, monolithic pixel array with integrated readout electronics is proposed. Special features of the design are a reduction of the number of output channels and of the amount of output data, and the use of transistors on the high resistivity silicon. The number of output channels for the detector array is reduced by handling in parallel a number of pixels, chosen as a function of the time resolution required for the system, and by the use of an address decoder. A further reduction of data is achieved by reading out only those pixels which have been activated. The pixel detector circuit will be realized in a 3 μm p-well CMOS process, which is optimized for the full integration of readout electronics and detector diodes on high resistivity Si. A retrograde well is formed by means of a high energy implantation, followed by the appropriate temperature steps. The optimization of the well shape takes into account the high substrate bias applied during the detector operation. The design is largely based on the use of MOS transistors on the high resistivity silicon itself. These have proven to perform as well as transistors on standard doped substrate. The basic building elements as well as the design strategy of the integrated pixel detector are presented in detail. (orig.)

  7. Testing and assessment of a large BGO detector for beach monitoring of radioactive particles

    International Nuclear Information System (INIS)

    Graaf, E.R. van der; Rigollet, C.; Maleka, P.P.; Jones, D.G.

    2007-01-01

    The Beach Monitoring Steering Group (BMSG) was set up by UKAEA to explore whether improved systems for beach monitoring of radioactive particles are available. The BMSG commissioned the British Geological Survey (BGS) and the Nuclear Geophysics Division of the Kernfysisch Versneller Instituut (KVI/NGD), and other companies, to test their most sensitive system. This paper presents the results of trials in a specially created test facility at UKAEA Harwell with a large BGO detector. The detector's size and weight mean that it would be suitable for vehicle deployment but would be too large and heavy to carry in areas that could not be accessed by a vehicle. However, it would be possible to use the same methodology that is described here with a smaller detector capable of being carried in a backpack, albeit with reduced sensitivity for particle detection. The approach that we present is also applicable, with modifications, to the detection of offshore particles using a towed seabed detector

  8. Study on Characteristic of CdZnTe Semiconductor Detectors for Alpha Particle Measurement

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Kim, Yong Kyun; Park, Se Hwan; Kim, Han Soo; Chung, Chong Eun

    2005-01-01

    The last 2-3 years have seen continued effort in the development of a wide band gap room-temperature compound semiconductor devices aimed principally at photon imaging covering hard X-rays, synchrotrons, and low to medium energy gamma rays. Especially, among the semiconductor materials of a wide band gap, CdZnTe(CZT) has commonly used X-ray and gammaray detection applications because of the opportunity to achieve and excellent spectral and spatial resolution. It has recently been demonstrated that CZT can be used as an ancillary detector with the ability to detect both alpha particles and X-ray at room temperature. CZT detectors are relatively inexpensive compared with some silicon detectors, and are priced about the same as amorphous silicon and photodiodes which are routinely used for charged particle detection. In this paper, we investigated the use of the CZT semiconductor material as an alpha particles detector

  9. Spectrometer based on the silicon semiconductor detectors for a study of the two charged particles correlation

    International Nuclear Information System (INIS)

    Krumsztein, Z.W.; Siemiarczuk, T.; Szawlowski, M.

    1974-01-01

    The spectrometer based on the silicon semiconductor detectors for a study of the correlation between two charged particles is described. The results of the time resolution and particles identification measurements are presented. The tests were performed in the proton beam of the JINR synchrocyclotron. (author)

  10. Search for strongly interacting massive particles using semiconductor detectors on the ground

    International Nuclear Information System (INIS)

    Derbin, A.V.; Egorov, A.I.; Bakhlanov, S.V.; Muratova, V.N.

    1999-01-01

    Using signals from recoil nucleus in semiconductor detectors, search for strongly interacting massive particles, as a possible candidate for dark matter, is continued. Experimental installation and the experimental results are given. New limits on the possible masses and cross sections of strongly interacting massive particles are presented [ru

  11. The plastic ball spectrometer - an electronic 4π detector with particle identification

    International Nuclear Information System (INIS)

    Baden, A.; Poskanzer, A.M.; Renner, T.; Riedesel, H.

    1982-04-01

    For the high multiplicity events occuring in relativistic nuclear collisions an electronic 4π detector with particle identification has been built. It consists of 815 ΔE-E telescopes and 176 TOF telescopes covering 97% of 4π. Very good particle identification has been obtained for hydrogen and helium isotopes and also π + have been detected with high efficiency. (orig.)

  12. Annealing effects on the charged particles registration characteristic of the CR-39 traces solid detector

    International Nuclear Information System (INIS)

    Correa, M.M.

    1989-10-01

    CR-39 trace solid detectors samples, previously exposed to alpha particles and fission fragments from a Cf-252 source, were submitted to a annealing treatment to study his effects on the characteristics of charged particle traces registration. (L.C.J.A.)

  13. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  14. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang; Mulligan, Padhraic [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Wang, Jinghui [Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94305 (United States); Chuirazzi, William [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2017-03-21

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current–voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a {sup 241}Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 µm at −550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field. - Highlights: • An alpha-particle detector based on a Schottky-structured GaN wafer was tested. • The detector's large depletion depth enables fuller energy spectra to be obtained. • The best resolution yet attained in GaN alpha-particle spectrometry was achieved. • The detector's short carrier transit time resulted in improved charge collection. • This detector is usable in extreme conditions, including intense radiation fields.

  15. A VLSI System-on-Chip for Particle Detectors

    CERN Document Server

    AUTHOR|(CDS)2078019

    In this thesis I present a System-on-Chip (SoC) I designed to oer a self- contained, compact data acquisition platform for micromegas detector mon- itoring. I carried on my work within the RD-51 collab oration of CERN. With a companion ADC, my architecture is capable to acquire the signal from a detector electro de, pro cess the data and p erform monitoring tests. The SoC is built around on a custom 8-bit micropro cessor with internal mem- ory resources and emb eds the p eripherals to b e interf...

  16. High energy charged particle registration in CR-39 polycarbonated detector

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; El Enany, N.; El Fiki, S.; Eissa, H.M.; El-Adl, E.H.; El-Feky, M.A.

    1991-01-01

    Track etch rate characteristics of CR-39 plastic detector exposed to 28 Si ions of 670 MeV energy have been investigated. Experimental results were obtained in terms of frequency distribution of the track diameter, track density and bulk etching rate. A dependence of the mean track diameter on energy was found. The application of the radiation effect of heavy ions on CR-39 in the field of radiation detection and dosimetry are discussed. Results indicated that it is possible to produce etchable tracks of 28 Si in this energy range in CR-39. We also report the etching characteristics of these tracks in the CR-39 detector. (orig.) [de

  17. Qualification of a new supplier for silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M., E-mail: marko.dragicevic@cern.ch [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T.; Frühwirth, E. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Gamerith, S.; Hacker, J.; Kröner, F.; Kucher, E.; Moser, J.; Neidhart, T. [Infineon Technologies Austria AG, Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, Munich (Germany); Schustereder, W. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Wübben, T. [Infineon Technologies Austria AG, Villach (Austria)

    2013-12-21

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors are capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European semiconductor manufacturer Infineon Technologies Austria AG the Institute of High Energy Physics of the Austrian Academy of Sciences developed planar silicon strip sensors in p-on-n technology. This paper presents the development, production and results from the electrical characterisation of the first sensors produced by Infineon.

  18. A free-running, time-based readout method for particle detectors

    International Nuclear Information System (INIS)

    Goerres, A; Ritman, J; Stockmanns, T; Bugalho, R; Francesco, A Di; Gastón, C; Gonçalves, F; Rolo, M D; Silva, J C da; Silva, R; Varela, J; Veckalns, V; Mazza, G; Mignone, M; Pietro, V Di; Riccardi, A; Rivetti, A; Wheadon, R

    2014-01-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach

  19. A free-running, time-based readout method for particle detectors

    Science.gov (United States)

    Goerres, A.; Bugalho, R.; Di Francesco, A.; Gastón, C.; Gonçalves, F.; Mazza, G.; Mignone, M.; Di Pietro, V.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; da Silva, J. C.; Silva, R.; Stockmanns, T.; Varela, J.; Veckalns, V.; Wheadon, R.

    2014-03-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach.

  20. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  1. Behavior of small ferromagnetic particles in traveling magnetic field

    Science.gov (United States)

    Deych, V. G.; Terekhov, V. P.

    1985-03-01

    Forces and moments acting on a magnetizable body in a traveling magnetic field are calculated for a body with dimensions much smaller than the wavelength of the magnetic field. It is assumed that a particle of given linear dimension does not have a constant magnetic moment. The material of a particle is characterized by its magnetic permeability and electrical conductivity. The hypothesis that rotation plays a major role in the behavior of small particles is confirmed and the fact that a small particle rolls on a plane, without sliding, when the surface is perfectly rough, in the opposite direction from which the magnetic field travels is explained. Calculations are based on the magnetohydrodynamic equations for a quasi steady magnetic field, and the induced Foucault eddy currents are considered. The results are applicable to transport of ferrofluids and to such metallurgical devices as separators.

  2. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  3. Limitations of the pulse-shape technique for particle discrimination in planar Si detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Seidel, W.; Lampert, M.O.; Rohr, P.

    1996-11-01

    Limitations of the pulse-shape discrimination (PSD) technique - a promising method to identify the charged particles stopped in planar Si-detectors - have been investigated. The particle resolution turned out to be basically determined by resistivity fluctuations in the bulk silicon which cause the charge-collection time to depend on the point of impact. Detector maps showing these fluctuations have been measured and are discussed. Furthermore we present a simple method to test the performance of detectors with respect to PSD. Another limitation of the PSD technique is the finite energy threshold for particle identification. This threshold is caused by an unexpected decrease of the total charge-collection time for ions with a short range, in spite of the fact that the particle tracks are located in a region of very low electric field. (orig.)

  4. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  5. A transition radiation detector which features accurate tracking and dE/dx particle identification

    International Nuclear Information System (INIS)

    O'Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-01-01

    We describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 x l0 2 . The single-wire, track-position resolution for the TRD is ∼230μm

  6. Spent-fuel characterization with small CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, R. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: Reinhard.Berndt@jrc.it; Mortreau, P. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Va) (Italy)

    2006-08-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections.

  7. Spent-fuel characterization with small CZT detectors

    International Nuclear Information System (INIS)

    Berndt, R.; Mortreau, P.

    2006-01-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections

  8. Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes

    Science.gov (United States)

    Cant, John Fraser

    This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector

  9. Search for long-lived massive particles with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Numerous new physics models predict the existence of massive long-lived particles. Such particles may be produced at the LHC singly or in pairs, and can be detected through abnormal specific energy loss, long time-of-flight, late calorimetric energy deposits, disappearing tracks or displaced vertices. The seminar presents the experimental challenges and recent results from searches for long-lived particles with the ATLAS detector.

  10. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  11. GaAs detectors with an ultra-thin Schottky contact for spectrometry of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Chernykh, S.V., E-mail: chsv_84@mail.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Chernykh, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Didenko, S.I.; Baryshnikov, F.M. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Burtebayev, N. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan); Britvich, G.I. [Institute of High Energy Physics, Protvino, Moscow region (Russian Federation); Chubenko, A.P. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Guly, V.G.; Glybin, Yu.N. [LLC “SNIIP Plus”, Moscow (Russian Federation); Zholdybayev, T.K.; Burtebayeva, J.T.; Nassurlla, M. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-02-11

    For the first time, samples of particle detectors based on high-purity GaAs epilayers with an active area of 25 and 80 mm{sup 2} and an ultra-thin Pt Schottky barrier were fabricated for use in the spectrometry of charged particles and their operating characteristics were studied. The obtained FWHM of 14.2 (for 25 mm{sup 2} detector) and 15.5 keV (for 80 mm{sup 2} detector) on the 5.499 MeV line of {sup 238}Pu is at the level of silicon spectrometric detectors. It was found that the main component that determines the energy resolution of the detector is a fluctuation in the number of collected electron–hole pairs. This allows us to state that the obtained energy resolution is close to the limit for VPE GaAs. - Highlights: • VPE GaAs particle detectors with an active area of 25 and 80 mm{sup 2} were fabricated. • 120 Å ultra-thin Pt Schottky barrier was used as a rectifying contact. • The obtained FWHM of 14.2 keV ({sup 238}Pu) is at the level of Si spectrometric detectors. • Various components of the total energy resolution were analyzed. • It was shown that obtained energy resolution is close to its limit for VPE GaAs.

  12. Large area nuclear particle detectors using ET materials

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated

  13. Study of multi-channel readout ASIC and its discrete module for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Fan Lei; Zhang Shengjun; Li Xian

    2013-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout systems, it is the key part for the whole system. This project designed a multi-channel readout ASIC for general detectors. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured and tested. The discrete modules work well, and the 6-channel chip NPRE 6 is ready for test in some particle detection system. (authors)

  14. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    International Nuclear Information System (INIS)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-01-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed

  16. Design of the TORCH detector: A Cherenkov based Time-of-Flight system for particle identification

    CERN Document Server

    AUTHOR|(CDS)2078663; Rademacker, Jonas

    The LHCb detector at the LHC collider has been very successfully operated over the past years, providing new and profound insights into the Standard Model, in particular through study of $b$-hadrons to achieve a better understanding of CP violation. One of the key components of LHCb is its particle identification system, comprised of two RICH detectors, which allow for high precision separation of particle species over a large momentum range. In order to retain and improve the performance of the particle identification system in light of the LHCb upgrade, the TORCH detector has been proposed to supplement the RICH system at low momentum (2-10 GeV/c). The TORCH detector provides (charged) particle identification through precision timing of particles passing through it. Assuming a known momentum from the tracking, it is possible to derive the species of a particle from the time of flight from its primary vertex. This measurement is achieved by timing and combining photons generated in a solid radiator. The geom...

  17. Improved method for estimating particle scattering probabilities to finite detectors for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Mickael, M.; Gardner, R.P.; Verghese, K.

    1988-01-01

    An improved method for calculating the total probability of particle scattering within the solid angle subtended by finite detectors is developed, presented, and tested. The limiting polar and azimuthal angles subtended by the detector are measured from the direction that most simplifies their calculation rather than from the incident particle direction. A transformation of the particle scattering probability distribution function (pdf) is made to match the transformation of the direction from which the limiting angles are measured. The particle scattering probability to the detector is estimated by evaluating the integral of the transformed pdf over the range of the limiting angles measured from the preferred direction. A general formula for transforming the particle scattering pdf is derived from basic principles and applied to four important scattering pdf's; namely, isotropic scattering in the Lab system, isotropic neutron scattering in the center-of-mass system, thermal neutron scattering by the free gas model, and gamma-ray Klein-Nishina scattering. Some approximations have been made to these pdf's to enable analytical evaluations of the final integrals. These approximations are shown to be valid over a wide range of energies and for most elements. The particle scattering probability to spherical, planar circular, and right circular cylindrical detectors has been calculated using the new and previously reported direct approach. Results indicate that the new approach is valid and is computationally faster by orders of magnitude

  18. A novel transparent charged particle detector for the CPET upgrade at TITAN

    Science.gov (United States)

    Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.

    2017-10-01

    The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.

  19. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  20. Results on light dark matter particles with a low-threshold CRESST-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Pagliarone, C.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Defay, X.; Feilitzsch, F. von; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Schoenert, S.; Trinh Thi, H.H.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Erb, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Guetlein, A.; Kluck, H.; Schieck, J.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Atominstitut, Vienna University of Technology, Wien (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Reindl, F. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2016-01-15

    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO{sub 4} crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/c{sup 2} region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles. (orig.)

  1. A CAD based geometry model for simulation and analysis of particle detector data

    Energy Technology Data Exchange (ETDEWEB)

    Milde, Michael; Losekamm, Martin; Poeschl, Thomas; Greenwald, Daniel; Paul, Stephan [Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    The development of a new particle detector requires a good understanding of its setup. A detailed model of the detector's geometry is not only needed during construction, but also for simulation and data analysis. To arrive at a consistent description of the detector geometry a representation is needed that can be easily implemented in different software tools used during data analysis. We developed a geometry representation based on CAD files that can be easily used within the Geant4 simulation framework and analysis tools based on the ROOT framework. This talk presents the structure of the geometry model and show its implementation using the example of the event reconstruction developed for the Multi-purpose Active-target Particle Telescope (MAPT). The detector consists of scintillating plastic fibers and can be used as a tracking detector and calorimeter with omnidirectional acceptance. To optimize the angular resolution and the energy reconstruction of measured particles, a detailed detector model is needed at all stages of the reconstruction.

  2. Real-time energy detector for relativistic charged particles

    International Nuclear Information System (INIS)

    Piestrup, A.

    1988-01-01

    The objective of the research is to investigate the use of coherent transition radiation to measure the energy of ultra-relativistic charged particles. The research has possible applications for the detection and identification of these particles. It can also be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The device is low cost and can operate in situ while causing little or no perturbation to the beam. Three such coherent radiators have been constructed and tested at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft x-ray emission (1 keV to 4 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5 to 9.0 mr. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charge-particle energies

  3. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  4. AstroBox2 – Detector for low-energy β-delayed particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, A., E-mail: ajsaasta@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Pollacco, E. [IRFU, CEA Saclay, Gif-sur-Yvette (France); Roeder, B.T.; Spiridon, A.; Daq, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Trache, L.; Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele RO-077125 (Romania); De Oliveira, R. [CERN, Geneva (Switzerland); Rodrigues, M.R.D. [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05314-970, São Paulo, SP (Brazil); Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States)

    2016-06-01

    Efficient suppression of β-background is essential for studies of low-energy β-delayed charged particle decays of astrophysical interest. A promising method for such studies has been a micro pattern gas amplifier detector where the sample is implanted into the gas volume and the decays that follow are observed with high gain and signal to noise ratio. An upgraded version of the original AstroBox detector has been built and commissioned at Texas A&M University. Here a description of the new AstroBox2 detector is given, selected results from the commissioning tests are presented, and future perspectives discussed.

  5. CONTRIBUTION OF DIFFERENT PARTICLES MEASURED WITH TRACK ETCHED DETECTORS ONBOARD ISS.

    Science.gov (United States)

    Ambrožová, I; Davídková, M; Brabcová, K Pachnerová; Tolochek, R V; Shurshakov, V A

    2017-09-29

    Cosmic radiation consists of primary high-energy galactic and solar particles. When passing through spacecraft walls and astronauts' bodies, the spectrum becomes even more complex due to generating of secondary particles through fragmentation and nuclear interactions. Total radiation exposure is contributed by both these components. With an advantage, space research uses track etched detectors from the group of passive detectors visualizing the tracks of particles, in this case by etching. The detectors can discriminate between various components of cosmic radiation. A method is introduced for the separation of the different types of particles according to their range using track etched detectors. The method is demonstrated using detectors placed in Russian segment of the International Space Station in 2009. It is shown that the primary high-energy heavy ions with long range contribute up to 56% of the absorbed dose and up to 50% to the dose equivalent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  7. Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Maeda, Tetsuo; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Radiology, Kobe University Hospital, Kobe (Japan); Yoshikawa, Takeshi [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Konishi, Minoru [Division of Radiology, Kobe University Hospital, Kobe (Japan); Kanda, Tomonori; Onishi, Yumiko; Matsumoto, Keiko; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan)

    2011-11-15

    Objective: To compare the capability of 320-detector row CT (area-detector CT: ADCT) with step-and-shoot scan protocol for small abdominal vasculature assessment with that of 64-detector row CT with helical scan protocol. Materials and methods: Total of 60 patients underwent contrast-enhanced abdominal CT for preoperative assessment. Of all, 30 suspected to have lung cancer underwent ADCT using step-and-shoot scan protocol. The other 30 suspected to have renal cell carcinoma underwent 64-MDCT using helical scan protocol. Two experienced radiologists independently assessed inferior epigastric, hepatic subsegmental (in the segment 8), mesenteric marginal (Griffith point) and inferior phrenic arteries by using 5-point visual scoring systems. Kappa analysis was used for evaluation of interobserver agreement. To compare the visualization capability of the two systems, the Mann-Whitney U-test was used to compare the scores for each of the arteries. Results: Overall interobserver agreements for both systems were almost perfect ({kappa} > 0.80). Visualization scores for inferior epigastric and mesenteric arteries were significantly higher for ADCT than for 64-detector row CT (p < 0.05). No significant difference was found for hepatic subsegmental and inferior phrenic arteries. Conclusion: Small abdominal vasculature assessment by ADCT with step-and-shoot scan protocol is potentially equal to or better than that by 64-detector row CT with helical scan protocol.

  8. Capability of abdominal 320-detector row CT for small vasculature assessment compared with that of 64-detector row CT

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Maeda, Tetsuo; Ohno, Yoshiharu; Yoshikawa, Takeshi; Konishi, Minoru; Kanda, Tomonori; Onishi, Yumiko; Matsumoto, Keiko; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro

    2011-01-01

    Objective: To compare the capability of 320-detector row CT (area-detector CT: ADCT) with step-and-shoot scan protocol for small abdominal vasculature assessment with that of 64-detector row CT with helical scan protocol. Materials and methods: Total of 60 patients underwent contrast-enhanced abdominal CT for preoperative assessment. Of all, 30 suspected to have lung cancer underwent ADCT using step-and-shoot scan protocol. The other 30 suspected to have renal cell carcinoma underwent 64-MDCT using helical scan protocol. Two experienced radiologists independently assessed inferior epigastric, hepatic subsegmental (in the segment 8), mesenteric marginal (Griffith point) and inferior phrenic arteries by using 5-point visual scoring systems. Kappa analysis was used for evaluation of interobserver agreement. To compare the visualization capability of the two systems, the Mann-Whitney U-test was used to compare the scores for each of the arteries. Results: Overall interobserver agreements for both systems were almost perfect (κ > 0.80). Visualization scores for inferior epigastric and mesenteric arteries were significantly higher for ADCT than for 64-detector row CT (p < 0.05). No significant difference was found for hepatic subsegmental and inferior phrenic arteries. Conclusion: Small abdominal vasculature assessment by ADCT with step-and-shoot scan protocol is potentially equal to or better than that by 64-detector row CT with helical scan protocol.

  9. Identification of charged particles by etching the solid state nuclear track detectors in successive intervals

    International Nuclear Information System (INIS)

    Randhawa, G.S.; Virk, H.S.

    1997-01-01

    The suitability of the method of charged particle identification by etching the samples in successive intervals developed by Grabez et al. has been checked in CR-39 exposed to heavy ions 238 U, 208 Pb, 197 Au and 132 Xe in the interval 11.0 to 17.0 MeV/u. A similar study has been made on soda glass detectors irradiated by 238 U, 132 Xe, 56 Fe and 48 Ti ions having energy 4.0 to 6.0 MeV/u. It is concluded that this method of particle identification can be used successfully in CR-39 and soda glass detectors. (author)

  10. Jagiellonian University Radiation Damage in Silicon Particle Detectors in High Luminosity Experiments

    CERN Document Server

    Oblakowska-Mucha, A

    2017-01-01

    Radiation damage is nowadays the most serious problem in silicon particle detectors placed in the very harsh radiation environment. This problem will be even more pronounced after the LHC Upgrade because of extremely strong particle fluences never encountered before. In this review, a few aspects of radiation damage in silicon trackers are presented. Among them, the change in the silicon lattice and its influence on the detector performance are discussed. Currently applied solutions and the new ideas for future experiments will be also shown. Most of the results presented in this summary were obtained within the RD50 Collaboration

  11. Characterization of a alpha particle detector CR-39 exposed to a source of radium

    International Nuclear Information System (INIS)

    Maino, Leandro Marcondes

    2009-01-01

    In this project, the main goal is the characterization of a alpha particle detector CR-39 exposed to a source of radio. Three detectors were exposed to a source of radium and then chemically treated for different periods. This way, we could analyze these samples and collect the information needed to verify that at least one of the chemical attack, there has been a separation of the energies alpha particles incident with distinct peaks, thus characterizing the CR-39 as alpha spectrometer in the range 2.5 to 6.3 MeV . (author)

  12. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  13. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  14. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  15. Mechanism of track formation by charged particles in inorganic and organic solid-state track detectors

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.; Streubel, G.

    1979-01-01

    Knowledge of the individual phases of track formation mechanism is necessary in some applications of solid-state track detectors. The generation of latent tracks is described by energy transfer processes of the charged particles along their paths using several different models. Etchability of the latent tracks is discussed on the basis of some distinct criteria taking into account different fractions of energy release by the primary and secondary particles during track generation. If these etchability criteria for latent tracks are fulfilled, visual particle tracks can be produced by a chemical etching process. Etch pit formation depends on the etching conditions. The geometrical parameters of the etching pits are given on the basis of known etching rates. Evaluation of individual particle tracks or determination of track density yields results depending on both the properties of the particles and the etching conditions. Determination of particle energy and particle fluence is discussed as an example. (author)

  16. Energy resolution of a four-layer depth of interaction detector block for small animal PET

    International Nuclear Information System (INIS)

    Tsuda, Tomoaki; Kawai, Hideyuki; Orita, Narimichi; Murayama, Hideo; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga; Omura, Tomohide

    2004-01-01

    We are now planning to develop a positron emission tomograph dedicated to small animals such as rats and mice which meets the demand for higher sensitivity. We proposed a new depth of interaction (DOI) detector arrangement to obtain DOI information by using a four-layer detector with all the same crystal elements. In this DOI detector, we control the behavior of scintillation photons by inserting the reflectors between crystal elements so that the DOI information of four layers can be extracted from one two-dimensional (2D) position histogram made by Anger-type calculation. In this work, we evaluate the energy resolution of this four-layer DOI detector. (author)

  17. Cryogenic phonon-mediated particle detectors for dark matter searches and neutrino physics

    International Nuclear Information System (INIS)

    Lee, A.T.J.

    1993-01-01

    This work describes the development of cryogenic phonon-mediated particle detectors for dark matter searches and neutrino detection. The detectors described in this work employ transition-edge sensors, which consist of a meander pattern of thin-film superconductor on a silicon substrate. When phonons from a particle interaction in the crystal impinge on the sensor in sufficient density, sections of the line are driven normal and provide a measurable resistance. A large fraction of the thesis describes work to fully characterize the phonon flux from particle interactions. In one set of experiments, ∼25% of the phonon energy from 59.54 keV gamma-ray events was found to propagate open-quotes ballisticallyclose quotes (i.e., with little or no scattering) across a 300 μm thick crystal of silicon. Gamma-rays produce electron recoils in silicon whereas with dark matter and neutrino experiments nuclear recoils are also of interest. Two experiments were done to measure the ballistic component that arises from neutron events, which interact via nuclear recoil. Measurements indicate that the fraction of energy that is ballistic is ∼50% greater for nuclear recoils than for electron recoils. Two novel detectors were fabricated and tested in an attempt to improve the sensitivity of the detectors. In the first detector, relatively large Al pads were linked by 2 μm wide Ti lines in a meander pattern. Phonons impinging on the Al pads create quasiparticles which diffuse in the Al pad until they are trapped in the lower gap Tl links. The sensitivity of the detector was found to be increased by this open-quotes funnelingclose quotes action. A second detector was built that incorporates 0.25 μm wide lines defined by direct electron-beam exposure of the photoresist. If the superconducting line is sufficiently narrow, single phonons are capable of driving sections normal which should improve the sensitivity and linearity of the detector

  18. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  19. Diamond particle detectors systems in high energy physics

    CERN Document Server

    Gan, Kock Kiam

    2015-01-01

    The measurement of luminosity at the Large Hadron Collider (LHC) using diamond detect or s has matured from devices based on a rather large pads to highly granular pixelated device s . The ATLAS experiment has recently installed a diamond pixel detector, the Diamond Beam Monitor (DBM), to measure the luminosity in the upgraded LHC with higher instantaneous luminosity. Polycrystalline diamonds were used to fabricate the diamond pixel modules. The design , production, and test beam result s are described. CMS also has a similar plan to construct a diamond based luminosity monitor, the Pixel Luminos ity Telescope s (PLT) . In a pilot run using single crystal diamond, the pulse height was found to depend on the luminosity . Consequently the collaboration decided to use silicon instead due to time constrain ts .

  20. Particle identification by silicon detectors; Identificacao de particulas por detetores de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Denison de Souza

    1997-07-01

    A method is developed for the evaluation of the energy loss, dE/dx, of a charged particle traversing a silicon strip detector. The method is applied to the DELPHI microvertex detector leading to diagrams of dE/dx versus momentum for different particles. The specific case of pions and protons is treated and the most probable value of dE/dx and the width of the dE/dx distribution for those particles in the momentum range of 0.2 GeV/c to 1.5 GeV/c, are obtained. The resolution found is 13.4 % for particles with momentum higher than 2 GeV/c and the separation power is 2.9 for 1.0 GeV/c pions and protons. (author)

  1. Application of digital sampling techniques to particle identification in scintillation detectors

    International Nuclear Information System (INIS)

    Bardelli, L.; Bini, M.; Poggi, G.; Taccetti, N.

    2002-01-01

    In this paper, the use of a fast digitizing system for identification of fast charged particles with scintillation detectors is discussed. The three-layer phoswich detectors developed in the framework of the FIASCO experiment for the detection of light charged particles (LCP) and intermediate mass fragments (IMF) emitted in heavy-ion collisions at Fermi energies are briefly discussed. The standard analog electronics treatment of the signals for particle identification is illustrated. After a description of the digitizer designed to perform a fast digital sampling of the phoswich signals, the feasibility of particle identification on the sampled data is demonstrated. The results obtained with two different pulse shape discrimination analyses based on the digitally sampled data are compared with the standard analog signal treatment. The obtained results suggest, for the present application, the replacement of the analog methods with the digital sampling technique

  2. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Jaederstroem, H.; Mueller, W.F.; Yocum, K.M.; Carmichael, K.

    2015-01-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. The detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm 3 . The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable

  3. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Jaederstroem, H.; Mueller, W.F.; Yocum, K.M.; Carmichael, K. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT 06450 (United States)

    2015-07-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. The detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm{sup 3}. The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable

  4. The 8{pi} miniball charged-particle detector array

    Energy Technology Data Exchange (ETDEWEB)

    Ball, G C; Galindo-Uribarri, A; Andrews, H R; Bray, N C; Lori, J D; Radford, D C; Smith, L V; Tapp, G A; Ward, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Drake, T E [Toronto Univ., ON (Canada). Dept. of Physics; Waddington, J C [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics

    1992-08-01

    A modular miniature array of 24 CsI(Tl) crystals (0.5 cm) thick coupled to large area photodiodes has been constructed to operate inside the 8{pi} spectrometer. The array was designed to have good resolution, high efficiency, and adequate granularity for detecting light charged particles emitted in coincidence with the gamma rays from the decay of high-spin states populated in heavy-ion fusion-evaporation reactions. 17 refs., 2 tabs., 3 figs.

  5. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  6. Measurements probing small-x physics using the ATLAS detector.

    CERN Document Server

    Myagkov, A; The ATLAS collaboration

    2014-01-01

    The high-energy pp collisions at the LHC provide unique opportunity to study particle flow and event shapes of the hadronic final state particles. Evolution of the event shape variables, such as the transverse thrust, thrust minor and transverse sphericity have been studied for minimum bias events. Particle distributions sensitive to the underlying event have been measured using calorimeter jet events. Separate inclusive jet and exclusive dijet event selections are included in this study for various observables. The production of jets in association with a vector boson is an important process to study the contribution of multi-particle interactions and for understanding the effect of QCD radiation on forward and central jet activity. ATLAS results on events with vector boson plus jets are compared with predictions from Monte Carlo simulations.

  7. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  8. Search for long-lived neutral particles decaying into lepton-jets with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389950; The ATLAS collaboration

    2016-01-01

    Several models of elementary particle physics beyond the Standard Model predict the existence of neutral particles that can be long lived and decay in collimated jets of light leptons and hadrons (lepton-jets). The present contribution refers to the search for lepton-jets in proton-proton collision data sample recorded at the ATLAS detector. The selected events are compared with the Standard Model expectations and with various BSM predictions.

  9. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    Science.gov (United States)

    Dey, S.; Maulik, A.; Raha, Sibaji; Saha, Swapan K.; Syam, D.

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ± 1 . The initial energy of stopping particle in PET was determined with an accuracy of 10 % for ion energies above the Bragg peak.

  10. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    Energy Technology Data Exchange (ETDEWEB)

    Dey, S. [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Maulik, A., E-mail: atanu.maulik@gmail.com [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Raha, Sibaji; Saha, Swapan K. [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Department of Physics, Bose Institute, Kolkata 700 009 (India); Syam, D. [Department of Physics, Barasat Government College, Kolkata 700 124 (India)

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ±1. The initial energy of stopping particle in PET was determined with an accuracy of 10% for ion energies above the Bragg peak.

  11. Interaction of energetic particles with large and small scale instabilities

    International Nuclear Information System (INIS)

    Guenter, S.; Conway, G.; Graca, S. da; Fahrbach, H.-U.; Forest, C.; Munoz, M. Garcia; Hauff, T.; Hobirk, J.; Igochine, V.; Jenko, F.; Lackner, K.; Lauber, P.; McCarthy, P.; Maraschek, M.; Martin, P.; Poli, E.; Sassenberg, K.; Strumberger, E.; Tardini, G.; Wolfrum, E.; Zohm, H.

    2007-01-01

    Beyond a certain heating power, measured and predicted distributions of neutral beam injection (NBI) driven currents deviate from each other even in the absence of MHD instabilities. The most reasonable explanation is a redistribution of fast NBI ions on a time scale smaller than the current redistribution time. The hypothesis of a redistribution of fast ions by background turbulence is discussed. Direct numerical simulation of fast test particles in a given field of electrostatic turbulence indicates that for reasonable parameters fast and thermal particle diffusion can indeed be similar. High quality plasma edge density profiles on ASDEX Upgrade and the recent extension of the reflectometry system allow for a direct comparison of observed TAE eigenfunctions with theoretical ones as obtained with the linear, gyrokinetic, global stability code LIGKA. These comparisons support the hypothesis of TAE-frequency crossing the continuum at the plasma edge in ASDEX Upgrade H-mode discharges. A new fast ion loss detector with 1 MHz time resolution allows frequency and phase resolved correlation between the observed losses and low frequency magnetic perturbations such as TAE modes and rotating magnetic islands. Whereas losses caused by TAE modes are known to be due to resonances in velocity space, by modelling the particle drift orbits we were able to explain losses caused by magnetic islands as due to island formation and stochasticity in the drift orbits

  12. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  13. Project and construction of a spectrometer for alpha particles using surface barrier detectors

    International Nuclear Information System (INIS)

    Terini, R.A.

    1986-01-01

    The project, construction, tests and some applications of a system for alpha and beta spectrometry, using surface barrier detector are described. The device includes a solid state detector ORTEC-Series F coupled to a system for amplifying the charges produced by passage of an ionizing particle through the detector. The amplifying system is composed by a charge sensitive pre-amplifier, which employs an operational amplifier CA 3140, and a low noise linear amplifier, which is based on the operational amplifiers CA 3140 and LM 301. The pre-amplifier stage input impedance is on the order of TΩ and produces output pulses which heights are proportional to total charge produced by passage of particle through the detector sensitive volume. The main advantage to use charge sensitive system lies in obtention of independent pulse heights of the distributed capacity of connecting cable between the detector and the pre-amplifier. The total system amplification ca reach a maximum of 50.000 in the linear region. Pulses are analysed in a multichannel system ORTEC, model 6240. The amplifier system is easily constructed and low cost using components available in the national market, and it can be employed with ionization chambers, proportional counters, scitillation counters and semiconductor detectors. The results of spectrometer application for alpha spectrometry of AM 241 source were compared to systems made with imported stages. (Author) [pt

  14. Evaluation of charge coupled devices as alpha particle detectors

    International Nuclear Information System (INIS)

    Pace, R.; Haskard, M.; Watts, S.; Holmes-Siedle, A.; Solanky, M.

    1996-01-01

    The ability of the Charge Coupled Device (CCD) to provide spectroscopic and flux information for highly ionising radiation has been investigated. CCDs and related imaging chips are becoming increasingly affordable. In addition advances in technology are producing smaller and better devices. Since imaging chips are based on some variation of the pn-diode structure it is expected and known that they are sensitive to ionising radiation as well as light. Indeed specially designed CCDs are able to be used to image X-rays. This paper reports on the response of CCDs to alpha particles. (author)

  15. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter

    International Nuclear Information System (INIS)

    Perez P, J.J.

    1991-01-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector

  16. Model for cryogenic particle detectors with superconducting phase transition thermometers

    International Nuclear Information System (INIS)

    Proebst, F.; Frank, M.; Cooper, S.; Colling, P.; Dummer, D.; Ferger, P.; Nucciotti, A.; Seidel, W.; Stodolsky, L.

    1994-09-01

    We present data on a detector composed of an 18 g Si crystal and a superconducting phase transition thermometer which could be operated over a wide temperature range. An energy resolution of 1 keV (FWHM) has been obtained for 60 keV photons. The signals consist of two components: A fast one and a slow one, with decay times of 1.5 ms and 30-60 ms, respectively. In this paper we present a simple model which takes thermal and non-thermal phonon processes into account and provides a description of the observed temperature dependence of the pulse shape. The fast component, which completely dominates the signal at low temperatures, is due to high-frequency non-thermal phonons being absorbed in the thermometer. Thermalization of these phonons then leads to a temperature rise of the absorber, which causes the slow thermal component. At the highest operating temperatures (T∼80 mK) the amplitude of the slow component is roughly as expected from the heat capacity of the absorber. The strong suppression of the slow component at low temperatures is explained mostly as a consequence of the weak thermal coupling between electrons and phonons in the thermometer at low temperatures. (orig.)

  17. MD#1182: Calibration of diamond particle detectors in IP6

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip; Wiesner, Christoph

    2017-01-01

    In case of an asynchronous beam dump with a fully filled LHC machine it is expected that all standard ionisation chamber Beam Loss Monitors (IC BLM) around the LHC dumping region in IP6 will be saturated. Diamond Beam Loss Monitors (dBLM) were therefore installed next to the movable dump protection absorber (TCDQ) downstream of the extraction kickers. These detectors allow resolving losses at a nanosecond timescale and with an dynamic range of several orders of magnitude; thus, allowing to know the number of nominal bunches impacting the TCDQ. After a first series of calibrations using asynchronous beam dump tests, an experiment was conducted during MD#1182 to demonstrate the possibility of resolving a nominal bunch hitting the TCDQ. The impact parameter of the bunches on the TCDQ was first scanned using probe bunches with lower intensity then tests were done with nominal bunches (1.1e11 p/bunch) at injection energy. High energy calibration of the losses was also attempted unsuccessfully. Due to different beh...

  18. Nuclear track detectors for charged particles and neutrons

    International Nuclear Information System (INIS)

    Tommasino, L.

    2006-01-01

    It was with great emotion that I accepted to be a guest speaker to this memorial section dedicated to my old-time friend, Prof. Radomir Ilic. In addition to being one of the most outstanding scientists in the field of nuclear tracks, Prof. Radomir Ilic has been always highly acclaimed by the scientific community for his enthusiasm, his warm friendship, and his great vitality. Through his successful editorial activities, Prof. Ilic has proved to be very able to address the field of nuclear tracks to very wide audiences with special regards to young students. It was here in Portoroz, that Prof. Radomir Ilic was our host as the organiser of the 21st International Conference on Nuclear Tracks in Solids. All the participants have great memories of this very successful international conference. For all these reasons, the 2006 edition of the International Conference on Nuclear Energy for new Europe, with its wide audience and its venue at Portoroz, can be considered as one of the most appropriate forum for the memorial lecture of Prof. Radomir Ilic. The present paper will be dealing with the solid state nuclear track detectors-SSNTDs and their successful applications for the measurements of cosmic-ray-neutrons and terrestrial radioactivity, namely radon. (author)

  19. Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition

    International Nuclear Information System (INIS)

    McKerracher, C.; Thwaites, D.I.

    1999-01-01

    Two new detectors (0.015 cm 3 ion chamber from PTW, 0.6 mm diameter diode from Scanditronix AB) designed specifically for use in small stereotactic fields were compared against similar, more routine, detectors (0.125 cm 3 ion chamber, parallel plate chamber, shielded and unshielded diodes and film). Percentage depth doses, tissue maximum ratios, off-axis ratios and relative output factors were compared for circular fields in the 40-12.5 mm diameter range, with a view to identifying the optimum detector for stereotactic beam data acquisition. Practical suggestions for beam data collection and analysis are made, with an emphasis on what is achievable practically in radiotherapy departments where the primary demand is to provide a routine service. No single detector was found to be ideal, and neither of the two new measurement devices had any significant advantages over more routine devices, in the situations measured. Although the new 0.015 cm 3 ion chamber was an improvement on a 0.125 cm 3 ion chamber in the measurement of profiles, it was still too large when compared with a diode. The new small diode had a low signal to noise ratio which made reliable data difficult to extract and its only advantage is possibly improved resolution in fields smaller than the range tested. The use of a larger unshielded diode is recommended for all measurements, with the additional cross-checking of data against at least one small ion chamber and film. A simple method of obtaining reliable output data from the detectors used is explained. (author)

  20. The frequency analysis particle resolution technique of 6LiI(Eu) scintillation detector

    International Nuclear Information System (INIS)

    Duan Shaojie

    1995-01-01

    To measure the distribution and rate of tritium production by neutron in a 6 LiD sphere, the 6 LiI(Eu) scintillation detector was used. In the measurement, the frequency analysis particle resolution technique was used. The experiment was completed perfectly

  1. Operation of a high-purity silicon diode alpha particle detector at 1.4 K

    International Nuclear Information System (INIS)

    Martoff, C.J.; Kaczanowicz, E.; Neuhauser, B.J.; Lopez, E.; Zhang, Y.; Ziemba, F.P.

    1991-01-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm 2 by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.)

  2. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Science.gov (United States)

    Xu, Qiang; Mulligan, Padhraic; Wang, Jinghui; Chuirazzi, William; Cao, Lei

    2017-03-01

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current-voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a 241Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 μm at -550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field.

  3. Evolution of Some Particle Detectors Based On the Discharge in Gases

    Science.gov (United States)

    Charpak, G.

    1969-11-19

    Summary of the properties of some of the detectors that are commonly used in counter experiments to localize charged particles, and which are based on discharge in gases under the influence of electric fields and some basic facts of gaseous amplification in homogeneous and inhomogeneous fields.

  4. Fading of CaSO4 thermoluminescent detectors after exposure to charged particles

    Czech Academy of Sciences Publication Activity Database

    Pachnerová Brabcová, Kateřina; Štěpán, Václav; Kubančák, Ján; Davídková, Marie; Ambrožová, Iva

    2017-01-01

    Roč. 106, č. 12 (2017), s. 569-572 ISSN 1350-4487 R&D Projects: GA ČR GJ15-16622Y Institutional support: RVO:61389005 Keywords : thermoluminescent detectors * CaSO4:Dy * fading * charged particles Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  5. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  6. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  7. Kinetics of small particle activation in supersaturated vapors

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  8. Probing the oxidation kinetics of small permalloy particles

    International Nuclear Information System (INIS)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian

    2017-01-01

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe 2 O 3 /(Ni, Fe) 3 O 4 plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe 2 O 3 to (Ni, Fe) 3 O 4 induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe 2 O 3 to (Ni, Fe) 3 O 4 will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only

  9. Analysis of long-lived particle decays with the MATHUSLA detector

    Science.gov (United States)

    Curtin, David; Peskin, Michael E.

    2018-01-01

    The MATHUSLA detector is a simple large-volume tracking detector to be located on the surface above one of the general-purpose experiments at the Large Hadron Collider. This detector was proposed in [J. P. Chou, D. Curtin, and H. J. Lubatti, Phys. Lett. B 767, 29 (2017), 10.1016/j.physletb.2017.01.043] to detect exotic, neutral, long-lived particles that might be produced in high-energy proton-proton collisions. In this paper, we consider the use of the limited information that MATHULSA would provide on the decay products of the long-lived particle. For the case in which the long-lived particle is pair-produced in Higgs boson decays, we show that it is possible to measure the mass of this particle and determine the dominant decay mode with less than 100 observed events. We discuss the ability of MATHUSLA to distinguish the production mode of the long-lived particle and to determine its mass and spin in more general cases.

  10. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    CERN Document Server

    Locci, E.; Dehos, C.; De Lurgio, P.; Djurcic, Z.; Drake, G.; Gimenez, J. L. Gonzalez; Gustafsson, L.; Kim, D.W.; Roehrich, D.; Schoening, A.; Siligaris, A.; Soltveit, H.K.; Ullaland, K.; Vincent, P.; Wiednert, D.; Yang, S.; Brenner, R.

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  11. Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy

    Science.gov (United States)

    Hoehr, C.; Lindsay, C.; Beaudry, J.; Penner, C.; Strgar, V.; Lee, R.; Duzenli, C.

    2018-05-01

    Accurate dosimetry in small field proton therapy is challenging, particularly for applications such as ocular therapy, and suitable detectors for this purpose are sought. The Exradin W1 plastic scintillating fibre detector is known to out-perform most other detectors for determining relative dose factors for small megavoltage photon beams used in radiotherapy but its potential in small proton beams has been relatively unexplored in the literature. The 1 mm diameter cylindrical geometry and near water equivalence of the W1 makes it an attractive alternative to other detectors. This study examines the dosimetric performance of the W1 in a 74 MeV proton therapy beam with particular focus on detector response characteristics relevant to relative dose measurement in small fields suitable for ocular therapy. Quenching of the scintillation signal is characterized and demonstrated not to impede relative dose measurements at a fixed depth. The background cable-only (Čerenkov and radio-fluorescence) signal is 4 orders of magnitude less than the scintillation signal, greatly simplifying relative dose measurements. Comparison with other detectors and Monte Carlo simulations indicate that the W1 is useful for measuring relative dose factors for field sizes down to 5 mm diameter and shallow spread out Bragg peaks down to 6 mm in depth.

  12. Comparing interaction rate detectors for weakly interacting massive particles with annual modulation detectors

    International Nuclear Information System (INIS)

    Copi, Craig J.; Krauss, Lawrence M.

    2003-01-01

    We compare the sensitivity of WIMP detection via direct separation of possible signal versus background to WIMP detection via detection of an annual modulation, in which signal and background cannot be separated on an event-by-event basis. In order to determine how the constraints from the two different types of experiments might be combined an adequate incorporation of uncertainties due to galactic halo models must be made. This issue is particularly timely in light of recent direct detection limits from Edelweiss and CDMS, which we now demonstrate cannot be made consistent with the most recent claimed DAMA annual modulation observation by including halo uncertainties for spin independent interactions. On the other hand, we demonstrate that a combination of these two techniques, in the event of any positive direct detection signal, could ultimately allow significant constraints on anisotropic halo models even without directional sensitivity in these detectors

  13. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  14. Energy response of detectors to alpha/beta particles and compatibility of the equivalent factors

    International Nuclear Information System (INIS)

    Lin Bingxing; Li Guangxian; Lin Lixiong

    2011-01-01

    By measuring detect efficiency and equivalent factors of alpha/beta radiation with different energies on three types of detectors, this paper compares compatibility of their equivalent factors and discusses applicability of detectors to measuring total alpha/beta radiation. The result shows the relationship between efficiency of alpha/beta radiation and their energies on 3 types of detectors, such as scintillation and proportional and semiconductor counters, are overall identical. Alpha count efficiency display exponential relation with alpha-particle energy. While beta count efficiency display logarithm relation with beta-particle energy, but the curves appears deflection at low energy. Comparison test of energy response also shows that alpha and beta equivalent factors of scintillation and proportional counters have a good compatibility, and alpha equivalent factors of the semiconductor counters are in good agreement with those of the above two types of counters, but beta equivalent factors have obvious difference, or equivalent factors of low energy beta-particle are lower than those of other detectors. So, the semiconductor counter can not be used for measuring total radioactivity or for the measurements for the purpose of food safety. (authors)

  15. Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Choi, Yong; Cho, Gyuseong; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2004-01-01

    A positron emission tomograph dedicated to small animal imaging should have high spatial resolution and sensitivity, and dual layer scintillators have been developed for this purpose. In this study, simulations were performed to optimize the order and the length of each crystal of a dual layer phoswich detector, and to evaluate the possibility of measuring signals from each layer of the phoswich detector. A simulation tool GATE was used to estimate the sensitivity and resolution of a small PET scanner. The proposed scanner is based on dual layer phoswich detector modules arranged in a ring of 10 cm diameter. Each module is composed of 8 x 8 arrays of phoswich detectors consisting of LSO and LuYAP with a 2 mm x 2 mm sensitive area coupled to a Hamamatsu R7600-00-M64 PSPMT. The length of the front layer of the phoswich detector varied from 0 to 10 mm at 1 mm intervals, and the total length (LSO + LuYAP) was fixed at 20 mm. The order of the crystal layers of the phoswich detector was also changed. Radial resolutions were kept below 3.4 mm and 3.7 mm over 8 cm FOV, and sensitivities were 7.4% and 8.0% for LSO 5 mm-LuYAP 15 mm, and LuYAP 6 mm-LSO 14 mm phoswich detectors, respectively. Whereas, high and uniform resolutions were achieved by using the LSO front layer, higher sensitivities were obtained by changing the crystal order. The feasibilities for applying crystal identification methods to phoswich detectors consisting of LSO and LuYAP were investigated using simulation and experimentally derived measurements of the light outputs from each layer of the phoswich detector. In this study, the optimal order and lengths of the dual layer phoswich detector were derived in order to achieve high sensitivity and high and uniform radial resolution

  16. SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, S; Sauer, O [University of Wuerzburg, Wuerzburg (Germany)

    2016-06-15

    Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of a 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.

  17. Small field electron beam dosimetry using MOSFET detector.

    Science.gov (United States)

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  18. A prediction of the neutron and charged particle backgrounds in the L detector

    International Nuclear Information System (INIS)

    Lee, D.M.; Kinnison, W.W.; Wilson, W.B.

    1990-01-01

    Monte Carlo calculations have been made of the neutron flux and activation in the forward and barrel calorimeters in the L* detector and of the neutron flux in the central detector volume. In addition estimates of the charged particle and neutron background rates in the vicinity of the muon chambers has been determined. The Los Alamos National Laboratory code system LAHET and CINDER, 90 along with ISAJET and GEANT were used in these studies. The results indicate that neutron fluences as low as 2 x 10 12 per SSC year can be achieved in the central volume. 6 refs., 3 figs., 2 tabs

  19. Behaviour of scintillometers with charge particles; Respuesta de detectores de centelleo a particulas cargadas

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, M A; Montes, J; Granados, C E; Gutierrez, R

    1959-07-01

    The behaviour of a scintillation plastic and an anthracene crystal for protons and deuterons with energies within 0,2 and 1,7 MeV. has been studied. The beam of monoenergetic particles falls directly on the detector in study in optic contact with a photomultiplicator. The impulse get in an amplifier which sends then to a scale a sting as a monitor and to an analyzer of 100 canals. The spectrum for each energy of incidental beam is obtained taking the maximum of the spectrum as the most probable value of amplitude of the detector reply, and this is represented apposite to the energy. (Author) 6 refs.

  20. Laser and alpha particle characterization of floating-base BJT detector

    International Nuclear Information System (INIS)

    Tyzhnevyi, V.; Batignani, G.; Bosisio, L.; Dalla Betta, G.-F.; Verzellesi, G.; Zorzi, N.

    2010-01-01

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to α-particles emitted from radioactive 241 Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 μs are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  1. Laser and alpha particle characterization of floating-base BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V., E-mail: tyzhnevyi@disi.unitn.i [Universita di Trento and INFN Trento, Trento (Italy); Batignani, G. [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G.-F. [Universita di Trento and INFN Trento, Trento (Italy); Verzellesi, G. [Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to {alpha}-particles emitted from radioactive {sup 241}Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 {mu}s are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  2. Charged-particle induced radiation damage of a HPGe gamma-ray detector during spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Larry G. [Computer Sciences Corporation, Science Programs, Lanham, MD 20706 (United States); Starr, Richard [The Catholic University of America, Department of Physics, Washington, DC 20064 (United States); Brueckner, Johannes [Max-Planck-Institut fuer Chemie, Mainz (Germany); Boynton, William V. [University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ 85721 (United States); Bailey, S.H. [University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ 85721 (United States); Trombka, J.I. [NASA Goddard Space Flight Center, Code 691, Greenbelt, MD 20771 (United States)

    1999-02-11

    The Mars Observer spacecraft was launched on September 26, 1992 with a planned arrival at Mars after an 11-month cruise. Among the scientific instruments carried on the spacecraft was a Gamma-Ray Spectrometer (GRS) experiment to measure the composition of Mars. The GRS used a passively cooled high-purity germanium detector for measurements in the 0.2-10 MeV region. The sensor was a closed-end co-axial detector, 5.5 cm diameter by 5.5 cm long, and had an efficiency along its axis of 28% at 1332 keV relative to a standard NaI(Tl) detector. The sensor was surrounded by a thin (0.5 cm) plastic charged-particle shield. This was the first planetary mission to use a cooled Ge detector. It was expected that the long duration in space of three years would cause an increase in the energy resolution of the detector due to radiation damage and could affect the expected science return of the GRS. Shortly before arrival, on August 21, 1993, contact was lost with the spacecraft following the pressurization of the propellent tank for the orbital-insertion rocket motor. During much of the cruise to Mars, the GRS was actively collecting background data. The instrument provided over 1200 h of data collection during periods of both quiescent sun and solar flares. From the charged particle interactions in the shield, the total number of cosmic ray hits on the detector could be determined. The average cosmic ray flux at the MO GRS was about 2.5 cm{sup -2} s{sup -1}. The estimated fluence of charged particles during cruise was about 10{sup 8} particles cm{sup -2} with 31% of these occurring during a single solar proton event of approximately 10 days duration. During cruise, the detector energy resolution determined from a background gamma-ray at 1312 keV degraded from 2.4 keV full-width at half-maximum shortly after launch to 6.4 keV 11 months later. This result agrees well with measurements from ground-based accelerator irradiations (at 1.5 GeV) on a similar size detector.

  3. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  4. First results with the 4π charged particle detector INDRA at GANIL

    International Nuclear Information System (INIS)

    Dayras, R.

    1995-01-01

    After a three year construction period, the 4π charged particle detector INDRA took its first data at GANIL, during the spring of 1993. After a brief description of the detector characteristics, an overview of the ongoing scientific program is given. The general trend of the data are discussed. For the first time, the energy threshold for the full vaporization of a nuclear system into neutrons and Z=1 and 2 isotopes has been determined for the 36 Ar + 58 Ni reaction. For this system, this threshold is observed for an incident energy of about 50 A.MeV. (author). 18 refs., 6 figs

  5. System tests of the LHCb RICH detectors in a charged particle beam

    CERN Document Server

    Skottowe, Hugh

    2009-01-01

    The RICH detectors of the LHCb experiment will provide efficient particle identification over the momentum range 1-100 GeV=c. Results are presented from a beam test of the LHCb RICH system using final production pixel Hybrid Photon Detectors, the final readout electronics and an adapted version of LHCb RICH reconstruction software. Measurements of the photon yields and Cherenkov angle resolutions for both nitrogen and C4F10 radiators agree well with full simulations. The quality of the data and the results obtained demonstrate that all aspects meet the stringent physics requirements of the experiment are now ready for first data.

  6. On the limiting resolution of silicon detectors for short-range particles

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Strokan, N B; Sukhanov, V L

    1986-10-20

    The transition to planar tecnology has lead to substantial improvement of energy resolution of Si detectors of strongly ionizing nuclear radiations. For 5 MeV ..cap alpha..-particles the resolution (delta/sub ..cap alpha../) is equal 9.2 keV. The application of the method of local diffusion permitted to attain delta/sub ..cap alpha../=8.1-8.4 keV. The comparison of the new resolution level with the theoretical limit is carried out. It is shown that the combination of partial contributions of fluctuations caused by fundamental mechanisms practically determined delta/sub ..cap alpha../ of obtained detectors.

  7. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    Science.gov (United States)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  8. SQUID sensor application for small metallic particle detection

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  9. Volumetric dispenser for small particles from plural sources

    International Nuclear Information System (INIS)

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-01-01

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles

  10. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    Science.gov (United States)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  11. Study on the performance of electromagnetic particle detectors of LHAASO-KM2A

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Hou, Chao; Cao, Zhen [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, Jingfan; Feng, Cunfeng; Hanapia, Erlan [Shandong University, Jinan 250100 (China); Gong, Guanghua [Tsinghua University, Beijing 100083 (China); Liu, Jia [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Lv, Hongkui [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shaoru [Hebei Normal University, Shijiazhuang 050024 (China); Zhu, Chengguang [Shandong University, Jinan 250100 (China)

    2017-02-11

    The electromagnetic particle detectors (EDs) for one square kilometer detector array (KM2A) of large high altitude air shower observation (LHAASO) are designed to measure the densities and arrival times of secondary particles in extensive air showers (EASs). ED is a type of plastic scintillator detector with an active area of 1 m{sup 2}. This study investigates the design and performance of prototype ED. Approximately 20 photoelectrons are collected by the 1st dynode of a photomultiplier tube (PMT). The prototype ED exhibited good detection efficiency and time resolution. The detection for the wide dynamic particle density varying from 1 to 10 000 particles/m{sup 2} is realized with the design of the PMT divider for the readout of both the anode and 6th dynode. - Highlights: • Detailed description for the design of ED in LHAASO. • Good performances of prototype ED are obtained according to the measuring results. • Detailed studies on the factors which influence the properties of ED.

  12. Build Your Own Particle Detector. Education and outreach through ATLAS LEGO models and events

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2016-01-01

    To support the outreach activities of ATLAS institutes and to grasp people’s attention in science exhibitions and during public events, a very detailed model of the experiment built entirely out of LEGO bricks as well as an outreach programme using LEGO bricks to get people to think about particle detectors and involve them into a conversation about particle physics in general have been created. A large LEGO model, consisting of about 9500 pieces, has been exported to more than 55 ATLAS institutes and has been used in numerous exhibitions to explain the proportion and composition of the experiment to the public. As part of the Build Your Own Particle Detector programme (byopd.org) more than 15 events have been conducted, either involving a competition to design and build the best particle detector from a random pile of pieces or to take part in the construction of one of the large models, as part of a full day outreach event. Recently, miniature models of all four main LHC experiments, that will be used at ...

  13. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 Front-End boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASICs and high-speed circuit board prototypes.

  14. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Antrim, Daniel Joseph; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small-strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 frontend boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASIC and board prototypes.

  15. Proposed data acquisition system for an associated particle neutron generator and a LYSO gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kwang Pyo; Sim, Cheul Muu; Em, V. T.; Lee, Seung Wook; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Park, Seong Yong; Park, Jin; Kim, Hee Jung [Kyungwon Enterprise, Seoul (Korea, Republic of)

    2005-07-01

    A data acquisition system has been designed that deals with essentially two signals: a sharp timing pulse (with a width of roughly 20 nanoseconds) from a Hamamatsu H6568 square photomultiplier tube utilizing a 16-pixel ZnO(Ga) phosphor-coated alpha particle detector, and a long energy pulse (with a falltime of roughly 200 microseconds) from a LYSO detector designed for extreme precision in measuring the energy of gamma rays. These two detectors have been selected because they exhibit ideal characteristics for the ultimate goal of this system: detection and identification of drugs, explosives, and chemical warfare agents at a comparably very high rate of speed while maintaining reliable decision-making capacity. The entire data acquisition Will be designed and each component Will be specified with a commercially-available electronic module utilizing a VME bus or high speed CAMAC.

  16. Investigation of charge multiplication in single crystalline CVD diamond particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muškinja, M.; Cindro, V.; Gorišek, A. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Kagan, H. [Department of Physics, Ohio State University (United States); Kramberger, G., E-mail: Gregor.Kramberger@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Mandić, I. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Mikuž, M. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Physics and Mathematics, University of Ljubljana (Slovenia); Phan, S.; Smith, D.S. [Department of Physics, Ohio State University (United States); Zavrtanik, M. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2017-01-01

    A special metallization pattern was created on a single crystalline diamond detector aimed at creating high enough electric field for impact ionization in the detector material. Electric field line focusing through electrode design and very high bias voltages were used to obtain high electric fields. Previous measurements and theoretical calculations indicated that drifting charge multiplication by impact ionization could take place. A large increase of induced charge was observed for the smallest dot electrode which points to charge multiplication while for the large dot and pad detector structure no such effect was observed. The evolution of induced currents was also monitored with the transient current technique. Induced current pulses with duration of order 1 μs were measured. The multiplication gain was found to depend on the particle rate.

  17. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    Science.gov (United States)

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  18. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  19. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  20. Large underground, liquid based detectors for astro-particle physics in Europe scientific case and prospects

    CERN Document Server

    Autiero, D; Badertscher, A; Bezrukov, L; Bouchez, J; Bueno, A; Busto, J; Campagne, J -E; Cavata, C; De Bellefon, A; Dumarchez, J; Ebert, J; Enqvist, T; Ereditato, A; Von Feilitzsch, F; Perez, P Fileviez; Goger-Neff, M; Gninenko, S; Gruber, W; Hagner, C; Hess, M; Hochmuth, K A; Kisiel, J; Knecht, L; Kreslo, I; Kudryavtsev, V A; Kuusiniemi, P; Lachenmaier, T; Laffranchi, M; Lefièvre, B; Lightfoot, P K; Lindner, M; Maalampi, J; Maltoni, M; Marchionni, A; Undagoitia, T Marrodan; Meregaglia, A; Messina, M; Mezzetto, M; Mirizzi, A; Mosca, L; Moser, U; Müller, A; Natterer, G; Oberauer, L; Otiougova, P; Patzak, T; Peltoniemi, J; Potzel, W; Pistillo, C; Raffelt, G G; Rondio, E; Roos, M; Rossi, B; Rubbia, André; Savvinov, N; Schwetz, T; Sobczyk, J; Spooner, N J C; Stefan, D; Tonazzo, A; Trzaska, W; Ulbricht, J; Volpe, C; Winter, J; Wurm, M; Zalewska-Bak, A; Zimmermann, R

    2007-01-01

    This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to open and outstanding physics issues such as the search for matter instability, the detection of astrophysical- and geo-neutrinos and to the possible use of these detectors in future high-intensity neutrino beams.

  1. A many particle-tracking detector with drift planes and segmented cathode readout

    International Nuclear Information System (INIS)

    Fischer, J.; Lissauer, D.; Ludlam, T.; Makowiecki, D.; O'Brien, E.; Radeka, V.; Rescia, S.; Rogers, L.; Smith, G.C.; Stephani, D.; Yu, B.; Greene, S.V.; Hemmick, T.K.; Mitchell, J.T.; Shivakumar, B.

    1990-01-01

    We describe the design and performance of a detector system for tracking charged particles in an environment of high track density and rates up to 1 MHz. The system operates in the forward spectrometer of the BNL Heavy Ion experiment E814 and uses principles of general interest in high rate, high multiplicity applications such as at RHIC or SSC. We require our system to perform over a large dynamic range, detecting singly charged particles as well as fully ionized relativistic 28 Si. Results on gas gain saturation, δ-ray suppression, and overall detector performance in the presence of a 14.6 GeV/nucleon 28 Si beam and a 14 GeV proton beam are presented. 6 refs., 9 figs

  2. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  3. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  4. Determination of alpha particle detection efficiency of an imaging plate (IP) detector

    International Nuclear Information System (INIS)

    Rahman, N.M; Iida, Takao; Yamazawa, Hiromi; Moriizumi, Jun

    2006-01-01

    In order to determine the detection efficiency of the imaging plate (IP) detector, the true radioactivity of the alpha particles, which sampled in the collection media, should be known. The true radioactivity could be accurately predicted with the help of the reference alpha spectrometer measurement. The detection efficiency calculated for the IP was estimated with the theoretical curve and the experimental data. It is assumed that the air sample contained the decay products of both 222 Rn and 220 Rn series, the most significant sources of alpha particles. The present study estimated the detection efficiency of the IP as 39.3% with an uncertainty of 2.9 that is well enough to confirm the future use of the IP as a radiation detector. Experimental materials and methods are described. (S.Y.)

  5. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  6. Low Voltage Power for the ATLAS New Small Wheel Muon Detector

    CERN Document Server

    Edgar, Ryan Christopher; The ATLAS collaboration

    2016-01-01

    The New Small Wheel (NSW) is an upgrade for enhanced triggering and reconstruction of muons in the forward region of the ATLAS detector at CERN's Large Hadron Collider. The large LV power demands necessitate a point-of-load architecture with on-detector power conversion. We present final results from an extensive campaign to test commercial power devices in radiation and magnetic fields, and describe an alternate solution based on a radiation-hard power conversion ASIC (the FEAST) produced by CERN microelectronics. We detail the challenges and solutions in integrating this device into the New Small Wheel, and outline the full resulting power system.

  7. Smashing Protons to Smithereens: Searching for the Origin of Mass Using the ATLAS Particle Detector

    International Nuclear Information System (INIS)

    Pleier, Marc-Andre

    2010-01-01

    During a free and public talk, Marc-Andre Pleier, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, will discuss the extraordinary research taking place at the Large Hadron Collider (LHC) - the world's newest, biggest, and highest energy particle accelerator located at CERN, the European physics lab in Switzerland. On March 30, 2010, the Large Hadron Collider launched a new era of particle physics by colliding protons at an energy that's three-and-a-half times greater than has ever been achieved. Smashing such high-energy protons to smithereens is providing the LHC's four particle detectors - including ATLAS - with lots of data to analyze in their search for the Higgs boson and other new physics phenomena. The goal of this particle smashing is to answer fundamental questions about the origin of mass, the nature of dark matter, and the earliest moments of the universe.

  8. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Ivanov, V.L.; Fedotovich, G.V.; Anisenkov, A.V.; Grebenuk, A.A.; Mikhailov, K.Yu.; Kozyrev, A.A.; Shebalin, V.E.; Ruban, A.A.; Bashtovoy, N.S.

    2017-01-01

    This paper describes a procedure of particle identification with the liquid Xenon calorimeter of the CMD-3 detector currently being developed. The procedure uses the boosted decision tree classification method with specific energy losses of charged particles in the liquid Xenon calorimeter as input variables. The efficiency of the procedure is illustrated by an example of the measurement of the cross section of the process e + e − → K + K − in the center-of-mass energy range from 1.8 to 2.0 GeV.

  9. Charged Particle Identification using the Liquid Xenon Calorimeter of the CMD-3 Detector

    CERN Document Server

    Akhmetshin, R R; Anisenkov, A V; Aulchenko, V M; Banzarov, V Sh; Bashtovoy, N S; Bondar, A E; Bragin, A V; Eidelman, S I; Epifanov, D A; Epshteyn, L B; Erofeev, A L; Fedotovich, G V; Gayazov, S E; Grebenuk, A A; Gribanov, S S; Grigoriev, D N; Ignatov, F V; Ivanov, V L; Karpov, S V; Kazanin, V F; Korobov, A A; Kovalenko, O A; Kozyrev, A N; Kozyrev, E A; Krokovny, P P; Kuzmenko, A E; Kuzmin, A S; Logashenko, I B; Lukin, P A; Mikhailov, K Yu; Okhapkin, V S; Pestov, Yu N; Popov, A S; Razuvaev, G P; Ruban, A A; Ryskulov, N M; Ryzhenenkov, A E; Shebalin, V E; Shemyakin, D N; Shwartz, B A; Sibidanov, A L; Solodov, E P; Talyshev, A A; Titov, V M; Vorobiov, A I; Yudin, Yu V

    2017-01-01

    This paper describes a currently being developed procedure of the charged particle identification for CMD-3 detector, installed at the VEPP-2000 collider. The procedure is based on the application of the boosted decision trees classification method, and uses as input variables, among others, the specific energy losses of charged particle in the layers of the liquid Xenon calorimeter. The efficiency of the procedure is demonstrated by an example of the extraction of events of e+e- to K+K- process in the center of mass energy range from 1.8 to 2.0 GeV.

  10. A calorimetric particle detector using an iridium superconducting phase transition thermometer

    International Nuclear Information System (INIS)

    Frank, M.; Dummer, D.; Cooper, S.; Igalson, J.; Proebst, F.; Seidel, W.

    1994-01-01

    We report on a calorimetric particles detector consisting of an 18.3 g silicon crystal and an iridium superconducting phase transition thermometer. The cryogenic calorimeter and the associated apparatus are described in detail. The pulses from irradiation with an α-particle source have a large unexpected overshoot in addition to the component expected from a naive thermal model. The pulse height spectrum displays an energy resolution of 1 percent FWHM at 6 MeV and good linearity. The noise, electrothermal feedback, and position dependence are discussed. (orig.)

  11. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    Energy Technology Data Exchange (ETDEWEB)

    Plaud-Ramos, K. O.; Freeman, M. S.; Wei, W.; Guardincerri, E.; Bacon, J. D.; Cowan, J.; Durham, J. M.; Huang, D.; Gao, J.; Hoffbauer, M. A.; Morley, D. J.; Morris, C. L.; Poulson, D. C.; Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a {sup 90}Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach.

  12. Search for Massive Long-lived Highly Ionizing Particles with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Bock, Rudolf; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Boser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bona, Marcella; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, Andre; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Montoya, German D.Carrillo; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G.; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; de la Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedes, George; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Dennis, Chris; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fohlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gollub, Nils Peter; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanere, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Henss, Tobias; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homer, Jim; Homma, Yasuhiro; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Konig, Stefan; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Serguei; Kotov, Vladislav; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Celine; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lehto, Mark; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, George; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandic, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mass, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McMahon, Tom; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Merkl, Doris; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitra, Ankush; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Odino, Gian Andrea; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Oye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottlander, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Ruhr, Frederik; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjolin, Jorgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Gary; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sebastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jike; Wang, Jin; Wang, Joshua C.; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovic, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-07-16

    A search is made for massive long-lived highly ionising particles with the ATLAS experiment at the Large Hadron Collider, using 3.1 pb-1 of pp collision data taken at sqrt(s)=7 TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic calorimeter is used. No such particles are found and limits on the production cross section for electric charges 6e <= |q| <= 17e and masses 200 GeV <= m <= 1000 GeV are set in the range 1-12 pb for different hypotheses on the production mechanism.

  13. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  14. Operation of a high-purity silicon diode alpha particle detector at 1. 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Martoff, C.J.; Kaczanowicz, E. (Temple Univ., Philadelphia, PA (USA)); Neuhauser, B.J.; Lopez, E.; Zhang, Y. (San Francisco State Univ., CA (USA)); Ziemba, F.P. (Quantrad Corp. (USA))

    1991-03-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm{sup 2} by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.).

  15. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  16. 3D monolithically stacked CMOS active pixel sensor detectors for particle tracking applications

    International Nuclear Information System (INIS)

    Passeri, D; Placidi, P; Servoli, L; Meroli, S; Magalotti, D; Marras, A

    2012-01-01

    In this work we propose an innovative approach to particle tracking based on CMOS Active Pixel Sensors layers, monolithically integrated in an all-in-one chip featuring multiple, stacked, fully functional detector layers capable to provide momentum measurement (particle impact point and direction) within a single detector. This will results in a very low material detector, thus dramatically reducing multiple scattering issues. To this purpose, we rely on the capabilities of the CMOS vertical scale integration (3D IC) technology. A first chip prototype has been fabricated within a multi-project run using a 130 nm CMOS Chartered/Tezzaron technology, featuring two layers bonded face-to-face. Tests have been carried out on full 3D structures, providing the functionalities of both tiers. To this purpose, laser scans have been carried out using highly focussed spot size obtaining coincidence responses of the two layers. Tests have been made as well with X-ray sources in order to calibrate the response of the sensor. Encouraging results have been found, fostering the suitability of both the adopted 3D-IC vertical scale fabrication technology and the proposed approach for particle tracking applications.

  17. Detection of low-energy antinuclei in space using an active-target particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Greenwald, Daniel; Konorov, Igor; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany)

    2015-07-01

    Measuring antimatter in space excellently probes various astrophysical processes. The abundances and energy spectra of antiparticles reveal a lot about the creation and propagation of cosmic-ray particles in the universe. Abnormalities in their spectra can reveal exotic sources or inaccuracies in our understanding of the involved processes. The measurement of antiprotons and the search for antideuterons and antihelium are optimal at low kinetic energies since background from high-energy cosmic-ray collisions is low. For this reason, we are developing an active-target particle detector capable of detecting ions and anti-ions in the energy range of 30-100 MeV per nucleon. The detector consists of 900 scintillating fibers coupled to silicon photomultipliers and is designed to operate on nanosatellites. The primary application of the detector will be the Antiproton Flux in Space (AFIS) mission, whose goal is the measurement of geomagnetically trapped antiprotons inside Earth's inner radiation belt. In this talk, we explain our particle identification technique and present results from first in-beam measurements with a prototype.

  18. A Light Universal Detector for the Study of Correlations between Photons and Charged Particles

    CERN Document Server

    2002-01-01

    The WA93 experiment combines two essential means of quark matter diagnosis: \\item a)~~~~the measurement of photon production rates relative to charged particles or $ \\pi ^0 ^{a}pos $s \\item b)~~~~the measurement of transverse momenta of charged and neutral particles and their correlations. \\end{enumerate} \\\\ \\\\ The experimental setup consists of highly segmented lead glass arrays (3780~modules) at a distance of 9~m from the target covering the range 2~$<$~y~$<$~3. The detector allows to reconstruct the transverse momentum of $ \\pi ^0 ^{a}pos $s and $ \\eta ^{a}pos $s. A preshower detector which can be operated in a hadron-blind mode complements the photon measurement in the range 3~$<$~y~$<$~5.5. The detector yields the number of photons and,~-~to a limited extend~-, information on the total electromagnetic transverse energy. Charged particle tracking is achieved by a set of newly developed multistep avalanche chambers read out by CCD cameras downstream of the GOLIATH vertex magnet. Bose-Einstein c...

  19. Study of SUSY particles properties at the future International Linear Collider with the International Large Detector

    International Nuclear Information System (INIS)

    Wichmann, K.

    2009-01-01

    Recently, Letters of Intent (LoI) for experiments at the International Linear Collider (ILC) have been submitted. Among the three proposals is the International Large Detector (ILD) concept which is at the focus of these studies. From various subjects addressed in the LoI, a wide spectrum of studies of SUSY particle properties is presented here. Most of them are benchmark reactions for the ILC and can be used both in physics studies and in work on detector design and optimization, respectively. All studies were performed with a full detector simulation using GEANT4, which is a great improvement compared to the previous results with much less detailed, so called f ast , simulation (SIMDET). The importance of this improved simulation is reflected in the results. The presented analyzes have been chosen to be the most challenging for the detector to study its performance and guide the detector development. Additionally an important problem of unavoidable beam induced backgrounds at linear colliders is addressed and ways of reducing its impact on physics studies are shown for an example SUSY analysis. (author)

  20. Characterization of a SiC MIS Schottky diode as RBS particle detector

    Science.gov (United States)

    Kaufmann, I. R.; Pick, A. C.; Pereira, M. B.; Boudinov, H. I.

    2018-02-01

    A 4H-SiC Schottky diode was investigated as a particle detector for Rutherford Backscattering Spectroscopy (RBS) experiment. The device was fabricated on a commercial 4H-SiC epitaxial n-type layer grown onto a 4H-SiC n+ type substrate wafer doped with nitrogen. Hafnium oxide with thickness of 1 nm was deposited by Atomic Layer Deposition and 10 nm of Ni were deposited by sputtering to form the Ni/HfO2/4H-SiC MIS Schottky structure. Current-Voltage curves with variable temperature were measured to extract the real Schottky Barrier Height (0.32 V) and ideality factor values (1.15). Reverse current and Capacitance-Voltage measurements were performed on the 4H-SiC detector and compared to a commercial Si barrier detector acquired from ORTEC. RBS data for four alpha energies (1, 1.5, 2 and 2.5 MeV) were collected from an Au/Si sample using the fabricated SiC and the commercial Si detectors simultaneously. The energy resolution for the fabricated detector was estimated to be between 75 and 80 keV.

  1. Effective ionization coefficients, electron drift velocities, and limiting breakdown fields for gas mixtures of possible interest to particle detectors

    International Nuclear Information System (INIS)

    Datskos, P.G.

    1991-01-01

    We have measured the gas-density, N, normalized effective ionization coefficient, bar a/N, and the electron drift velocity, w, as a function of the density-reduced electric field, E/N, and obtained the limiting, (E/N) lim , value of E/N for the unitary gases Ar, CO 2 , and CF 4 , the binary gas mixtures CO 2 :Ar (20: 80), CO 2 :CH 4 (20:80), and CF 4 :Ar (20:80), and the ternary gas mixtures CO 2 :CF 4 :Ar (10:10:80) and H 2 O: CF 4 :Ar (2:18:80). Addition of the strongly electron thermalizing gas CO 2 or H 2 O to the binary mixture CF 4 :Ar (1)''cools'' the mixture (i.e., lowers the electron energies), (2) has only a small effect on the magnitude of w(E/N) in the E/N range employed in the particle detectors, and (3) increases bar a/N for E/N ≥ 50 x 10 -17 V cm 2 . The increase in bar a/N, even though the electron energies are lower in the ternary mixture, is due to the Penning ionization of CO 2 (or H 2 O) in collisions with excited Ar* atoms. The ternary mixtures -- being fast, cool, and efficient -- have potential for advanced gas-filled particle detectors such as those for the SCC muon chambers. 17 refs., 8 figs., 1 tab

  2. Acquisition and visualization of particle detector data in Tcl/Tk

    CERN Document Server

    Beker, H; Mazzoni, M A; Ropotar, I; Tomasicchio, G; Ypsilantis, Thomas

    1999-01-01

    We present a general purpose data acquisition system for set-ups ranging from laboratory electronics tests, over test beams to small and medium sized High Energy Physics experiments. Special emphasis will be given to the on-line visualization of the detector data. We will show how the Tcl/Tk software development environment can be used to obtain professional detector images with a very limited development effort. The software has been developed in the context of R&D for the ALICE experiment at the CERN LHC, and its use in a number of applications will be illustrated. (10 refs).

  3. The Search for Highly Ionizing Particles in e$^{+}$e$^{-}$ Collisions at LEP using (MODAL) (MOnopole Detector At Lep)

    CERN Multimedia

    2002-01-01

    The experiment is designed to search for highly ionizing particles such as the monopole and the dyon. On the assumption that monopole-antimonopole pairs are produced via a virtual photon intermediate state, and have a mass in the range 0-100~GeV, a direct search for Dirac monopoles using e$^+$e$^-$ annihilation carries a distinct cross-sectional advantage over a search using hadron colliders.\\\\ \\\\ The MODAL detector is formed from Lexan/CR-39 dielectric track detector modules arranged in a polyhedral configuration outside of the vacuum pipe and around the intersection region, as shown on the opposite page. Etchable track detectors are more sensitive to particles at normal incidence, the shape of the detector was chosen with this fact in mind to allow for maximum acceptance of monopoles which leave the beam pipe. These dielectric track detectors will enable us to detect particles with magnetic charge: 20e$<$g$ _{d}

  4. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Oetringhaus, Jan Fiete

    2009-04-17

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN{sub ch}/d{eta}) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of {radical}(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of {radical}(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  5. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector.

    CERN Document Server

    Veeraraghavan, Venkatesh

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, $Q$, greater than that of the electron, $e$. A search for evidence of such particles was performed using 5.0~fb$^{-1}$ and 18.8~fb$^{-1}$ of proton-proton collision data collected at $\\sqrt{s}=7~$TeV and $\\sqrt{s}=8~$TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of-flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to $1e \\leq |Q| \\leq 8e$. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724~GeV are excluded for $|Q|=1e$, $2e$, $3e$, $4e$, $5e$, $6e$, $7e$, and $8e$, respectivel...

  6. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Venkatesh [Florida State Univ., Tallahassee, FL (United States)

    2013-10-30

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, Q, greater than that of the electron, e. A search for evidence of such particles was performed using 5.0 fb-1 and 18.8 fb-1 of proton-proton collision data collected at √s = 7 TeV and √s = 8 TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of- flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to 1e ≤ |Q| ≤ 8e. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724 GeV are excluded for |Q| = 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e, respectively.

  7. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Harraz, Farid A., E-mail: fharraz68@yahoo.com [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo 11421 (Egypt); Ali, Atif M. [Department of Physics, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Al-Sayari, S.A. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); College of Science and Arts-Sharoura, Najran University (Saudi Arabia); Al-Hajry, A. [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia)

    2016-09-11

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin {sup 241}Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R{sup 2}=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10{sup 7} particles/cm{sup 2}. Additionally, a correlation coefficient R{sup 2}=0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  8. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    International Nuclear Information System (INIS)

    Grosse-Oetringhaus, Jan Fiete

    2009-01-01

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN ch /dη) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of √(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of √(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  9. In-beam evaluation of a medium-size Resistive-Plate WELL gaseous particle detector

    CERN Document Server

    Moleri, L.

    2016-09-27

    In-beam evaluation of a fully-equipped medium-size 30$\\times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and APV25/SRS electronics. Similarly to previous results with small detector prototypes, stable operation at high detection efficiency (>98%) and low average pad multiplicity (~1.2) were recorded with 150 GeV muon and high-rate pion beams, in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$). This is an important step towards the realization of robust detectors suitable for applications requiring large-area coverage; among them Digital Hadron Calorimetry.

  10. Assessment of MicroDiamond PTW 60019 detector and its comparison with other detectors for relative dosimetry in small radiosurgery fields of the Leksell gamma knife perfexion

    International Nuclear Information System (INIS)

    Novotny, J. Jr.; Kozubikova, P.; Pastykova, V.; Pipek, J.; Bhatnagar, J. P.; Huq, M. S.; Veselsky, T.

    2014-01-01

    Measurement of relative output factors (ROF) for the Leksell Gamma Knife (LGK) is not a trivial task due to strict demands of an accurate set up and small size of measured radiosurgery fields. The purpose of this study was to perform an assessment of a new synthetic single crystal MicroDiamond PTW 60019 detector (volume 0.004 mm 3 ) for measurement of ROFs for 4 mm and 8 mm collimators for the LGK Perfexion. Small sensitive volume of this detector, near water equivalence and low energy dependence make it an attractive candidate for small field dosimetry. Results obtained in this study were compared with results measured by broad variety of different detectors and also Monte Carlo (MC) simulation. MicroDiamond detector connected to PTW UNIDOS electrometer was positioned in ELEKTA spherical phantom and pre-irradiated to dose of 5 Gy. Measurements were performed in two different detector positions: 1) parallel with table axis, 2) orthogonal to table axis. Electrometer timer of 1 min was used to measure subsequently signal from 16 mm, 8 mm and 4 mm beams. Altogether ten measurements were performed for each of three collimator sizes. Results from MicroDiamond were compared with those obtained from various types of detectors used in the past by authors for measurement of LGK ROFs. New synthetic single crystal MicroDiamond PTW 60019 detector appears to be a very promising detector for relative output factor measurements in very small radiosurgery fields. (authors)

  11. Micro-fabricated silicon devices for advanced thermal management and integration of particle tracking detectors

    CERN Document Server

    Romagnoli, Giulia; Gambaro, Carla

    Since their first studies targeting the cooling of high-power computing chips, micro-channel devices are proven to provide a very efficient cooling system. In the last years micro-channel cooling has been successfully applied to the cooling of particle detectors at CERN. Thanks to their high thermal efficiency, they can guarantee a good heat sink for the cooling of silicon trackers, fundamental for the reduction of the radiation damage caused by the beam interactions. The radiation damage on the silicon detector is increasing with temperature and furthermore the detectors are producing heat that should be dissipated in the supporting structure. Micro-channels guarantee a distributed and uniform thermal exchange, thanks to the high flexibility of the micro-fabrication process that allows a large variety of channel designs. The thin nature of the micro-channels etched inside silicon wafers, is fulfilling the physics requirement of minimization of the material crossed by the particle beam. Furthermore micro-chan...

  12. Current signal of silicon detectors facing charged particles and heavy ions

    International Nuclear Information System (INIS)

    Hamrita, H.

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  13. Investigations of the response of hybrid particle detectors for the Space Environmental Viewing and Analysis Network (SEVAN

    Directory of Open Access Journals (Sweden)

    A. Chilingarian

    2008-02-01

    Full Text Available A network of particle detectors located at middle to low latitudes known as SEVAN (Space Environmental Viewing and Analysis Network is being created in the framework of the International Heliophysical Year (IHY-2007. It aims to improve the fundamental research of the particle acceleration in the vicinity of the Sun and space environment conditions. The new type of particle detectors will simultaneously measure the changing fluxes of most species of secondary cosmic rays, thus turning into a powerful integrated device used for exploration of solar modulation effects. Ground-based detectors measure time series of secondary particles born in cascades originating in the atmosphere by nuclear interactions of protons and nuclei accelerated in the galaxy. During violent solar explosions, sometimes additional secondary particles are added to this "background" flux. The studies of the changing time series of secondary particles shed light on the high-energy particle acceleration mechanisms. The time series of intensities of high energy particles can also provide highly cost-effective information on the key characteristics of interplanetary disturbances. The recent results of the detection of the solar extreme events (2003–2005 by the monitors of the Aragats Space-Environmental Center (ASEC illustrate the wide possibilities provided by new particle detectors measuring neutron, electron and muon fluxes with inherent correlations. We present the results of the simulation studies revealing the characteristics of the SEVAN networks' basic measuring module. We illustrate the possibilities of the hybrid particle detector to measure neutral and charged fluxes of secondary CR, to estimate the efficiency and purity of detection; corresponding median energies of the primary proton flux, the ability to distinguish between neutron and proton initiated GLEs and some other important properties of hybrid particle detectors.

  14. Secondary particle in background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-06-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC (LHC) √s = 40 TeV (√s = 16 TeV) and L = 10 33 cm -2 s -1 (L = 3 x 10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the ''task force on radiation levels in the SSC interaction regions.'' The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes. Following Groom's work, extensive Monte Carlo simulations were performed to address the issues of backgrounds and radiation environments for the GEM and SD C3 experiments proposed at the SSC, and for the ATLAS and CMS experiments planned for the LHC. The purpose of the present article is to give a brief summary of some aspects of the methods, assumptions, and calculations performed to date (principally for the SSC detectors), and to stress the relevance of such calculations to the detectors proposed for the study of B-physics in particular

  15. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  16. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)

  17. TSV last for hybrid pixel detectors: Application to particle physics and imaging experiments

    CERN Document Server

    Henry, D; Berthelot, A; Cuchet, R; Chantre, C; Campbell, M

    Hybrid pixel detectors are now widely used in particle physics experiments and at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly [1]. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the a...

  18. Numerical study of the particle transport in fast neutron detectors with conversion layer

    International Nuclear Information System (INIS)

    Sedlackova, K.; Zatko, B.; Necas, V.

    2012-01-01

    This paper deals with fast neutron and recoil proton transport simulation using statistical analysis of Monte Carlo radiation transport code (MCNPX). Its possibilities in the detector design and optimization are presented. MCNPX proved as a very advantageous self-contained simulation program for fast neutron and secondary proton tracking. Simulations of respective particle transport through conversion layer of HDPE and further in the active volume of detector let us to follow important characteristics as neutron/proton flux density, reaction rate of elastic scattering on hydrogen nuclei and deposited energy as well as their dependencies on incident neutron energy and conversion layer/active region thickness. The efficiency of neutrons to protons conversion has been calculated and its maximum was reached for 500 μm thick conversion layer. The minimum active region thickness has been estimated to be about 300 μm.(authors)

  19. DEVELOPMENT OF WIRELESS TECHNIQUES IN DATA AND POWER TRANSMISSION APPLICATION FOR PARTICLE-PHYSICS DETECTORS

    CERN Document Server

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gonzales Gimenez, JL; Gustafsson, L; Kim, DW; Locci, E; Pfeiffer, U; Röhrich, D; Rydberg, D; Schöning, A; Siligaris, A; Soltveit, HK; Ullaland, K; Vincent, P; Vasquez, PR; Wiedner, D; Yang, S

    2017-01-01

    In the WADAPT project described in this Letter of Intent, we propose to develop wireless techniques for data and power transmission in particle-physics detectors. Wireless techniques have developed extremely fast over the last decade and are now mature for being considered as a promising alternative to cables and optical links that would revolutionize the detector design. The WADAPT consortium has been formed to identify the specific needs of different projects that might benefit from wireless techniques with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. The proposed R&D will aim at designing and testing wireless demonstrators for large instrumentation systems.

  20. Search for Supersymmetric Particles with the OPAL Detector at LEP2

    CERN Document Server

    Kanaya, N

    A search of Supersymmetric particles was performed using the data collected in 1999 and 2000 by the Opal detector at the LEP2 e+e- collider. The center-of-mass energies ranged from 192 GeV to 209 GeV, and the data analyzed correspond to an integrated luminosity of 432 pb-1. Supersymmetric models permit a large number of different experimental final states which should all be investigated. The search presented here is sensitive to final states with photons plus additional detector activity with missing energy. these topologies are characteristic of events expected in Gauge-Mediated Supersymmetry Breaking (GMSB) models. No significant evidence for their existence is observed. Finally, using various search results at centre-of-mass energy of 189 GeV, constraints on the parameters have been given within the framework of the minimal GMSB model.

  1. Charge-sensitive poly-silicon TFT amplifiers for a-Si:H pixel particle detectors

    International Nuclear Information System (INIS)

    Cho, G.; Perez-Mendez, V.; Hack, M.; Lewis, A.

    1992-04-01

    Prototype charge-sensitive poly-Si TFT amplifiers have been made for the amplification of signals (from an a-Si:H pixel diode used as an ionizing particle detector). They consist of a charge-sensitive gain stage, a voltage gain stage and a source follower output stage. The gain-bandwidth product of the amplifier is ∼ 300 MHz. When the amplifier is connected to a pixel detector of 0.2 pF, it gives a charge-to-voltage gain of ∼ 0.02 mV/electrons with a pulse rise time less than 100 nsec. An equivalent noise charge of the front-end TFT is ∼ 1000 electrons for a shaping time of 1 μsec

  2. Comparison of bulk and epitaxial 4H-SiC detectors for radiation hard particle tracking

    CERN Document Server

    Quinn, T; Bruzzi, M; Cunningham, W; Mathieson, K; Moll, M; Nelson, T; Nilsson, H E; Pintillie, I; Rahman, M; Reynolds, L; Sciortino, S; Sellin, P J; Strachan, H; Svensson, B G; Vaitkus, J

    2003-01-01

    Measurements and simulations have been carried out using bulk and epitaxial SiC detectors. Samples were irradiated to fluences of around 10**1**4 hardrons/cm**2. Material of thickness 40um gave a charge collection efficiency of 100% dropping to around 60% at 100mum thickness. Detailed MEDICI simulations incorporated the main defect levels in SiC, the vanadium center, Z-center and a mid-gap level as measured by deep level transient spectroscopy and other techniques. Calculated recombination currents and charge collection efficiencies at varying fluences were comparable to experimental data. The study suggests that SiC detectors will operate up to fluences around 10 **1**6/cm**2 as required by future particle physics experiments.

  3. A new and efficient transient noise analysis technique for simulation of CCD image sensors or particle detectors

    International Nuclear Information System (INIS)

    Bolcato, P.; Jarron, P.; Poujois, R.

    1993-01-01

    CCD image sensors or switched capacitor circuits used for particle detectors have a certain noise level affecting the resolution of the detector. A new noise simulation technique for these devices is presented that has been implemented in the circuit simulator ELDO. The approach is particularly useful for noise simulation in analog sampling circuits. Comparison between simulations and experimental results has been made and is shown for a 1.5 μ CMOS current mode amplifier designed for high-rate particle detectors. (R.P.) 5 refs., 7 figs

  4. Lepton identification at particle flow oriented detector for the future e+e- Higgs factories

    Science.gov (United States)

    Yu, Dan; Ruan, Manqi; Boudry, Vincent; Videau, Henri

    2017-09-01

    The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a toolkit for multivariate data analysis (TMVA) based lepton identification (LICH) has been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/μ μ H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.

  5. Ion beam evaluation of silicon carbide membrane structures intended for particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pallon, J., E-mail: jan.pallon@nuclear.lu.se [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden); Syväjärvi, M. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Wang, Q. [Sensor System, ACREO Swedish ICT AB, Box 1070, SE-164 25 Kista (Sweden); Yakimova, R.; Iakimov, T. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Elfman, M.; Kristiansson, P.; Nilsson, E.J.C.; Ros, L. [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2016-03-15

    Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 μm prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 μm, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure.

  6. A Silicon detector system on carbon fiber support at small radius

    International Nuclear Information System (INIS)

    Johnson, Marvin E.

    2004-01-01

    The design of a silicon detector for a p(bar p) collider experiment will be described. The detector uses a carbon fiber support structure with sensors positioned at small radius with respect to the beam. A brief overview of the mechanical design is given. The emphasis is on the electrical characteristics of the detector. General principles involved in grounding systems with carbon fiber structures will be covered. The electrical characteristics of the carbon fiber support structure will be presented. Test results imply that carbon fiber must be regarded as a conductor for the frequency region of interest of 10 to 100 MHz. No distinction is found between carbon fiber and copper. Performance results on noise due to pick-up through the low mass fine pitch cables carrying the analogue signals and floating metal is discussed

  7. Micromesh-selection for the ALTAS New Small Wheel Micromegas detectors

    CERN Document Server

    Kuger, Fabian; The ATLAS collaboration

    2016-01-01

    With New Small Wheel Upgrade scheduled for the next long LHC shutdown the innermost end-cap regions of the ATLAS Muon system will be equipped with eight layers of Micromegas detectors. The single quadruplet modules will be up to 2,5m long and 2,2m wide. A key component of a Micromegas are fine conductive meshes, dividing the gas volume into a drift and an amplification region. The selection of the correct mesh is an important design objective, effecting various detector aspects. Among others the electrical field configuration, electron losses during mesh transition and gas flow within the detectors have been studied. Mechanical stability requirements and production process related constrains have been investiaged in close colaboration with industrial partners.

  8. GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

    CERN Multimedia

    2004-01-01

    GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

  9. Measurement of Charged-Particle Distributions in Proton–Proton Interactions at $\\sqrt{s} $ = 8 TeV with the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00332935; Rudolph, Gerald; Salzburger, Andreas

    The majority of proton–proton interactions at the LHC can be described as inelastic soft-QCD processes, characterised by a small momentum transfer between their constituents. These interactions cannot be calculated from first principles with perturbation theory, and must hence be described by phenomenological models that are improved by tuning their parameters against experimental data. Measurements of the hadronic final states, presented as distributions of stable primary charged particles that were produced in the hadron collisions, can be used as an input for the tuning. To this end, distributions of reconstructed events and tracks are extracted from the recorded collision data, which must be corrected and unfolded to account for detector effects such as selection and reconstruction inefficiencies, migration effects and background contaminations. Some of these corrections are derived from Monte Carlo simulations of the full detector response to the particles that were generated by the phenomenological mo...

  10. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  11. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  12. Progress in the optoelectronic analog signal transfer for high energy particle detectors

    International Nuclear Information System (INIS)

    Tsang, T.; Radeka, V.

    1992-05-01

    We report the progress in the development of a radiation hard Optoelectronic analog system to transfer particle detector signals with high accuracy. We will present the motivation of this study, the operating principle of the optoelectronic system, the system noise study, the recent R ampersand D efforts on radiation effect, temperature stability, and the realization of an integrated l x l6 optical modulator. The issue of photon source for driving such a large-scale optoelectronic modulators is a major concern. We will address this problem by examining different possible photon sources and comment on other possible alternative for signal transfer

  13. International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2016)

    CERN Document Server

    Rossi, Leonardo; PIXEL2016

    2016-01-01

    The workshop will cover various topics related to pixel detector technology. Development and applications will be discussed for charged particle tracking in High Energy Physics, Nuclear Physics and Astrophysics, and for X-ray imaging in Astronomy, Biology, Medicine and Material Science. The conference program will also include reports on front and back end electronics, radiation effects, low mass mechanics, environmental control and construction techniques. Emerging technologies, such as monolithic and HV&HR CMOS, will also be treated. Will be published in: http://pos.sissa.it/

  14. A main amplifier circuit and data acquisition system for charged particle detector array

    International Nuclear Information System (INIS)

    Hao Rui; Ge Yucheng

    2011-01-01

    The charged particle detector array has huge amounts of signal and needs high counting rate. To meet the requirements, a main amplifier and analog-to-digital conversion circuit based on high-speed op-amp chips and ADC chip was designed. A 51-MCU was used to control the circuit of ADC and the USB communication chip. The signals were digitized and uploaded by the MCU-ADC-USB circuit. The whole system has a compact hardware structure and a reasonable controlling software, which meet the design requirements. (authors)

  15. Searches for supersymmetric particles in p pbar collisions with the D0 detector

    International Nuclear Information System (INIS)

    Merritt, W.

    1996-08-01

    We report on searches for supersymmetric particles with the D0 detector at the Fermilab pp collider at √s = 1800 GeV. The four searches are: (1) for squarks and gluinos in the jets + missing transverse energy channel, (2) for a light top squark in the jets + missing transverse energy channel, (3) for squarks and gluinos in the dielectron channel, and (4) for charginos and neutralinos in the trilepton channel. The first two searches use data from the 1992- 93 collider run, and the latter two use data from the 1994-95 collider run. 6 refs., 4 figs., 1 tab

  16. Particle identification using dE/dx in the Mark II detector at the SLC

    International Nuclear Information System (INIS)

    Boyarski, A.; Coupal, D.P.; Feldman, G.J.; Hanson, G.; Nash, J.; O'Shaughnessy, K.F.; Rankin, P.; Van Kooten, R.

    1989-04-01

    The central drift chamber in the Mark II detector at the SLAC Linear Collider has been instrumented with 100-MHz Flash-ADCs. Pulse digitization provides particle identification through the measurement of average ionization loss in the chamber. We present the results of a study of system performance and outline the systematic corrections that optimize resolution. The data used are from a short test run at PEP with one-third of the FADCs installed and an extensive cosmic ray sample with the fully instrumented chamber. 11 refs., 9 figs

  17. AMS_02 Particle Physics Detector Technologies Orbiting the Earth (2/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AMS-02 has taken the high performance technologies used in particle physics and implemented them for use in low Earth orbit. Safety aspects for the Space Shuttle flight, that carried AMS_02 to the International Space Station, Space environment and inaccessibility during the life of AMS_02 are some of the aspects which have driven the design of the experiment. The technical challenges to build such a detector have been surmounted through the close collaboration amongst the AMS scientists and industries around the world. Their efforts have resulted in the development of new technologies and higher standards of precision.

  18. AMS_02 Particle Physics Detector Technologies Orbiting the Earth (1/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AMS-02 has taken the high performance technologies used in particle physics and implemented them for use in low Earth orbit. Safety aspects for the Space Shuttle flight, that carried AMS_02 to the International Space Station, Space environment and inaccessibility during the life of AMS_02 are some of the aspects which have driven the design of the experiment. The technical challenges to build such a detector have been surmounted through the close collaboration amongst the AMS scientists and industries around the world. Their efforts have resulted in the development of new technologies and higher standards of precision.

  19. Charged particle production in p+Pb collisions measured by the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287239; The ATLAS collaboration

    2016-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pb interactions at $\\sqrt{s_{NN}}$ = 5.02 TeV. Results are presented as a function of transverse momentum and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval 3.2 < |η| < 4.9 in the direction of the lead beam. Three different calculations of the number of nucleons participating in p+Pb collisions have been performed, assuming the Glauber model and its Glauber-Gribov Colour Fluctuation extensions.

  20. Particle Identification performance for leptons in jets for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the particle identification performance for particles in jets for the CLIC ILD and CLIC SiD detector concepts as prepared in the CLIC Conceptual Design Report. The results are presented with and without the presence of the γγ → hadrons background events.

  1. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The planned Phase-I and Phase-II upgrades of the LHC accelerator drastically impacts the ATLAS trigger and trigger rates. A replacement of the ATLAS innermost endcap muon station with a new small wheel (NSW) detector is planned for the second long shutdown period of 2019 - 2020. This upgrade will allow us to maintain a low pT threshold for single muon and excellent tracking capability even after the High-Luminosity LHC upgrade. The NSW detector will feature two new detector technologies, Resistive Micromegas and small-strip Thin Gap Chambers. Both detector technologies will provide trigger and tracking primitives. The total number of trigger and readout channels is about 2.4 millions, and the overall power consumption is expected to be about 75 kW. The electronics design will be implemented in some 8000 front-end boards including the design of four custom front-end ASICs capable to drive trigger and tracking primitives with high speed sterilizers to drive trigger candidates to the backend trigger processor sy...

  2. SU-F-T-557: Evaluation of Detector Response in Rectangular Small Field Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, A [University of Toledo, Toledo, Ohio (United States); Tanny, S [SUNY Upstate Medical University, Syracuse NY (United States); Parsai, E; Sperling, N [University of Toledo Medical Center, Toledo, OH (United States)

    2016-06-15

    Purpose: As stereotactic treatment modalities grow towards becoming the standard of care, the need for accurate dose computation in small fields is becoming increasingly essential. The purpose of this study is to evaluate the response of different detectors, intended for small field dosimetry, in jaw defined small rectangular fields by analyzing output factors from a stereotactic clinical accelerator. Methods: Two Dosimeters, the Exradin A26 Microionization Chamber (Standard Imaging) and Edge Diode Detector (Sun Nuclear) were used to measure output factors taken on the Varian Edge Stereotactic Linear accelerator. Measurements were taken at 6MV and 6FFF at 10cm depth, 100cm SSD in a 48×48×40cm3 Welhoffer BluePhantom2 (IBA) with X and Y jaws set from 0.6 to 2.0cm. Output factors were normalized to a 5×5cm2 machine-specific reference field. Measurements were made in the vertical orientation for the A26 and horizontal orientation for both the A26 and Edge. Output factors were measured as: OF{sub FS} = M{sub FS}/M{sub ref} where M{sub FS} and M{sub ref} are the measured signals for the clinical field and the reference field, respectively. Measured output factors were then analyzed to establish relative responses of the detectors in small fields. Results: At 6MV the Edge detector exhibited a variation in output factors dependent on jaw positioning (X-by-Y vs Y-by-X) of 5.7% of the 5×5cm reference output and a variation of 3.33% at 6FFF. The A26 exhibited variation of output factor dependent on jaw positioning of upto 7.7% of the 5×5cm reference field at 6MV and upto 5.33% at 6FFF. Conclusion: Both the Edge detector and A26 responded as expected at small fields however a dependence on the jaw positioning was noted. At 6MV and 6FFF the detector response showed an increased dependence on the positioning of the X jaws as compared to the positioning of the Y jaws.

  3. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4 pi detector

    CERN Document Server

    Alderighi, M; Basssini, R; Berceanu, I; Blicharska, J; Boiano, C; Borderie, B; Bougault, R; Bruno, M; Cali, C; Cardella, G; Cavallaro, S; D'Agostino, M; D'andrea, M; Dayras, R; De Filippo, E; Fichera, F; Geraci, E; Giustolisi, F; Grzeszczuk, A; Guardone, N; Guazzoni, P; Guinet, D; Iacono-Manno, M; Kowalski, S; La Guidara, E; Lanchais, A L; Lanzalone, G; Lanzanò, G; Le Neindre, N; Li, S; Maiolino, C; Majka, Z; Manfredi, G; Nicotra, D; Paduszynski, T; Pagano, A; Papa, M; Petrovici, C M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rivet, M F; Rosato, E; Sacca, G; Sechi, G; Simion, V; Sperduto, M L; Steckmeyer, J C; Trifiró, A; Trimarchi, M; Urso, S; Vannini, G; Vigilante, M; Wilczynski, J; Wu, H; Xiao, Z; Zetta, L; Zipper, W

    2002-01-01

    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4 pi heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by (n,alpha) and (n,gamma) reactions is also discussed.

  4. The SEVAN Worldwide network of particle detectors: 10 years of operation

    Science.gov (United States)

    Chilingarian, A.; Babayan, V.; Karapetyan, T.; Mailyan, B.; Sargsyan, B.; Zazyan, M.

    2018-05-01

    The Space Environment Viewing and Analysis Network (SEVAN) aims to improve the fundamental research on particle acceleration in the vicinity of the sun, on space weather effects and on high-energy physics in the atmosphere and lightning initiation. This new type of a particle detector setup simultaneously measures fluxes of most species of secondary cosmic rays, thus being a powerful integrated device for exploration of solar modulation effects and electron acceleration in the thunderstorm atmosphere. The SEVAN modules are operating at the Aragats Space Environmental Center (ASEC) in Armenia, in Croatia, Bulgaria, Slovakia, the Czech Republic (from 2017) and in India. In this paper, we present the most interesting results of the SEVAN network operation during the last decade. We present this review on the occasion of the 10th anniversary of the International Heliophysical Year in 2007.

  5. Optical excitations in small particles and thin films

    International Nuclear Information System (INIS)

    Fuchs, R.

    1980-01-01

    The method of local optics can be used for calculating absorption and scattering of light by a small particle or a thin film. One writes D(r,ω) = epsilon (ω)E(r,ω), and solves Maxwell's equations using standard boundary conditions. A more exact approach is to use a nonlocal dielectric constant epsilon (r-r',ω), which is the same as that of the bulk material, in the expression: D(r,ω) = ∫ epsilon (r-r',ω)E(r',ω)d 3 r'. In such a theory one disregards the modification of the dielectric constant near the surface, and the surface is taken into account approximately by introducing appropriate additional boundary conditions. A still more microscopic or exact method, applicable to a metal, is to write the equation using a dielectric constant epsilon (r,r',ω) which depends on r and r' separately. This dielectric tensor contains information about the modified response near the surface, and includes effects of surface states. Another method, applicable to infrared properties on ionic crystals, relates the optical properties to the normal mode eigenvectors and eigenvalues

  6. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  7. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs

  8. The ATLAS Pixel detector and its use in a Search for Metastable Heavy Charged Particles

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399154

    The discovery of the Higgs boson, the missing piece in the Standard Model puzzle, at the electroweak scale in 2012 by the ATLAS and CMS experiments, closed an important season of particle physics and a search lasted 50 years. Even though the discovery of the Higgs boson is a great achievement, the Standard Model is incomplete, since it does not include the gravitational field and can not explain some experimental measurements such as the dark matter observed in galaxy studies and the matter and anti-matter asymmetry observed in the universe. The experiments at LHC have the exciting goal to give answers to the SM open questions and make available the hint or the evidence that may allow to proceed beyond it. An introduction on the Standard Model and the LHC is provided in Chapter 1 where the ATLAS detector is also described. ATLAS is the largest of the detectors placed along the LHC ring and is able to detect products from pp and heavy ion collisions. The detector has a cylindrical geometry around the interac...

  9. DEPFET detectors for direct detection of MeV dark matter particles

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, A.; Ninkovic, J.; Treis, J. [Max-Planck-Gesellschaft Halbleiterlabor, Munich (Germany); Kluck, H.; Schieck, J. [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Atominstitut, Technische Universitaet Wien, Vienna (Austria)

    2017-12-15

    The existence of dark matter is undisputed, while the nature of it is still unknown. Explaining dark matter with the existence of a new unobserved particle is among the most promising possible solutions. Recently dark matter candidates in the MeV mass region received more and more interest. In comparison to the mass region between a few GeV to several TeV, this region is experimentally largely unexplored. We discuss the application of a RNDR DEPFET semiconductor detector for direct searches for dark matter in the MeV mass region. We present the working principle of the RNDR DEPFET devices and review the performance obtained by previously performed prototype measurements. The future potential of the technology as dark matter detector is discussed and the sensitivity for MeV dark matter detection with RNDR DEPFET sensors is presented. Under the assumption of six background events in the region of interest and an exposure of 1 kg year a sensitivity of about anti σ{sub e} = 10{sup -41} cm{sup 2} for dark matter particles with a mass of 10 MeV can be reached. (orig.)

  10. 'Zero-time' detectors using microchannel plates for charged particle detection

    International Nuclear Information System (INIS)

    Girard, J.

    1977-01-01

    The mass identification of the reaction products detected in heavy ion nuclear reactions is generally obtained by the time-of-flight method. This method requires a device giving first the 'start' signal (zero time at the passage of the particle) and then the stop 'signal'. The interest lying in 'zero-time' detectors using a secondary electron emission has been considerably increased with using microchannel electron multipliers. Nevertheless such a device was shown to induce either fluctuations in the distance of flight or the use of detectors of different type in the 'start' and 'stop' channels respectively. In both cases, it remains an ambiguity as the access to time resolution, in the channel including the electron multiplier, is not direct and the effect of the different parameters on this resolution are masked. To palliate this drawback and study the qualities of microchannel plate multipliers in time measurement field, some devices mechanically and electronically symmetric have been developed. The resolution measurement in time of flight is obtained for electrons generated by the same particle and emitted from either side of a thin film. The distances of flight of the electrons on each side of the film are same, and so are the accelerating potentials. The microchannel electron multipliers and the processing electronic units are the same in each channel [fr

  11. The system of digital-image optical microscope in semiconductor particle detector development

    International Nuclear Information System (INIS)

    Han Lixiang; Li Zhankui; Jin Genming; Wang Zhusheng; Xiao Guoqing

    2009-01-01

    Optical microscopic detection is very important in the process of semiconductor particle detector development. A system of digital-image optical microscope has been constructed with rather low price, which performance is comparable with the moderate-level imports. The system mounts powerful dry objective, and a 2μm resolution could be achieved. Observations with bright and dark field, polarized light,and interference light can be carried out on it. The system have large area on-line monitor,and the photographic device can be controlled by PC. It can be used in the control of defects and contaminations, pattern test, identification of crystal backing, inspection of the smoothness and the flatness of the crystal surface. It can also be used in some precise procedures, such as test, assembly, packaging and repairing. The quality of the bond could be examined by observing the appearance of the bond point and the microscopic structure of the solder. The surface fluctuation can be precisely measured under the microscope with the technology of multi-beam interference. In the article, the application of this system for semiconductor particle detector development has been illustrated, and the construction information has been described in detail. (authors)

  12. Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Silva, J.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H.S.; Barak, L.; Baranov, S.P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A.E.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bobrovnikov, V.B.; Bocci, A.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckingham, R.M.; Buckley, A.G.; Buda, S.I.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E.J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Buttinger, W.; Byatt, T.; Cabrera Urban, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clifft, R.W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J.G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Dam, M.; Dameri, M.; Damiani, D.S.; Danielsson, H.O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Daum, C.; Dauvergne, J.P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawe, E.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedes, G.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S.P.; Dennis, C.; Derendarz, D.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietl, H.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Dowell, J.D.; Doxiadis, A.D.; Doyle, A.T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J.G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Duren, M.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Efthymiopoulos, I.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M.J.; Fisher, S.M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fohlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gapienko, V.A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gieraltowski, G.F.; Gilbert, L.M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Golovnia, S.N.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Gorski, B.T.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gouanere, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafstrom, P.; Grah, C.; Grahn, K-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Grebenyuk, O.G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Gris, P.L.Y.; Grishkevich, Y.V.; Grivaz, J.F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V.N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C.J.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harper, D.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B.M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayden, D; Hayward, H.S.; Haywood, S.J.; Hazen, E.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Herrberg, R.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hill, N.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homer, R.J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J-Y.; Hott, T.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howarth, J.; Howell, D.F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jezequel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M.D.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joo, K.K.; Joram, C.; Jorge, P.M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenney, C.J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoo, T.J.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kimura, N.; Kind, O.; King, B.T.; King, M.; King, R.S.B.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiver, A.M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knue, A.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Konig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G.M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S.V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kortner, S.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasel, O.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Landsman, H.; Lane, J.L.; Lange, C.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lapin, V.V.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lee JR, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leite, M.A.L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J-R.; Lesser, J.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Lewandowska, M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linde, F.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S.S.A.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V.P.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maass en, M.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magnoni, L.; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Mann, A.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C.P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti-Garcia, S.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, Ph.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Mass, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCarthy, T.G.; McCubbin, N.A.; McFarlane, K.W.; Mcfayden, J.A.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; Mclaughlan, T.; McMahon, S.J.; McMahon, T.R.; McMahon, T.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.; Metcalfe, J.; Mete, A.S.; Meuser, S.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Miele, P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, W.J.; Mills, C.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G.Y.; Mitsou, V.A.; Mitsui, S.; Miyagawa, P.S.; Miyazaki, K.; Mjornmark, J.U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A.M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R.W.; Moorhead, G.F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A.K.; Mornacchi, G.; Morone, M-C.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newman, P.R.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P.R.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B.J.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohska, T.K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J.P; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Oye, O.K.; Ozcan, V.E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th.D.; Paramonov, A.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Patel, N.; Pater, J.R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Peters, O.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Phillips, P.W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Pleskach, A.V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G.E.; Pospisil, S.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosendahl, P.L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L.P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rottlander, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N.C.; Rzaeva, S.; Saavedra, A.F.; Sadeh, I.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J.B.; Savard, P.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmidt, E.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schulz, H.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Short, D.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Sjursen, T.B.; Skinnari, L.A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T.J.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockmanns, T.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D.A.; Su, D.; Subramania, S.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, Y.; Sviridov, Yu.M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.; Taylor, G.N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K.K.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, A.S.; Thomson, E.; Thomson, M.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J.M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vest, A.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vovenko, A.S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.; Wang, J.C.; Wang, R.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Will, J.Z.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wooden, G.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S.L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V.G.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zalite, Yo.K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, A.V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-01-01

    Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is...

  13. Particle and jet production in heavy-ion collisions with the ATLAS detector at LHC

    CERN Document Server

    Debbe, R; The ATLAS collaboration

    2012-01-01

    Particles and jets produced in heavy ion collisions are used to understand the hot, dense matter created in these interactions. Because of its wide angular coverage, highly hermetic design, and high pT capabilities, the ATLAS detector at the LHC provides an ideal environment in which to study these collisions. ATLAS has measured a wide variety of observables characterizing the bulk medium properties as well as the response of the medium to high-pT probes. Measurements have been made of charged particle multiplicity, elliptic flow, and higher-order particle flow, which allow characterization of global properties of the system. For the first time at this energy, elliptic and higher order flow has been measured over 5 units of pseudorapidity, from -2.5 to 2.5, and over a broad range in transverse momentum, 0.5-20 GeV. The higher-order particle flow studies are providing new insight into the role of initial state geometric fluctuations in these observables, with results obtained for the first through the sixth Fo...

  14. A Search for Charged Massive Long-Lived Particles Using the D0 Detector

    International Nuclear Information System (INIS)

    Xie, Y.

    2009-01-01

    A search for charged massive stable particles has been performed with the D0 detector using 1.1 fb -1 of data. The speed of the particle has been calculated based on the time-of-flight and position information in the muon system. The present research is limited to direct pair-production of the charged massive long-lived particles. We do not consider CMSPs that result from the cascade decays of heavier particles. In this analysis, the exact values of the model parameters of the entire supersymmetric particle mass spectrum, relevant for cascade decays, are not important. We found no evidence of the signal. 95% CL cross-section upper limits have been set on the pair-productions of the stable scaler tau lepton, the gaugino-like charginos, and the higgsino-like charginos. The upper cross section limits vary from 0.31 pb to 0.04 pb, for stau masses in the range between 60 GeV and 300 GeV. We use the nominal value of the theoretical cross section to set limits on the mass of the pair produced charginos. We exclude the pair-produced stable gaugino-like charginos with mass below 206 GeV, and higgsino-like charginos below 171 GeV, respectively. Although the present sensitivity is insufficient to test the model of the pair produced stable staus, we do set cross section limits which can be applied to the pair production of any charged massive stable particle candidates with similar kinematics. These are the most restrictive limits to the present on the cross sections for CMSPs and the first published from the Tevatron Collider Run II. The manuscript has been published by Physical Review Letters in April 2009 and is available at arXiv as.

  15. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  16. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  17. Design and properties of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecki, Maciej; Bar, Jan; Budzyński, Tadeusz; CieŻ, Michal; Grabiec, Piotr; Kozłowski, Roman; Kulawik, Jan; Panas, Andrzej; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecka, Iwona; Wielunski, Marek; Witek, Krzysztof; Yakushev, Alexander; Zaborowski, Michał

    2013-07-01

    The paper discusses the design of charged-particle detectors commissioned and developed at the Institute of Electron Technology (ITE) in collaboration with foreign partners, used in international research on transactinide elements and to build personal radiation protection devices in Germany. Properties of these detectors and the results obtained using the devices are also presented. The design of the following epiplanar detector structures is discussed: ♢ 64-element chromatographic arrays for the COMPACT (Cryo On-line Multidetector for Physics And Chemistry of Transactinides) detection system used at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (GSI) for research on Hassium, Copernicium and Flerovium, as well as elements 119 and 120, ♢ 2-element flow detectors for the COLD (Cryo On-Line Detector) system used for research on Copernicium and Flerovium at the Joint Institute for Nuclear Research, Dubna, ♢ detectors for a radon exposimeter and sensors for a neutron dosimeter developed at the Institut für Strahlenschutz, Helmholtz Zentrum München. The design of planar detectors - single-sided and double-sided strip detectors for the Focal Plane Detector Box used at GSI for research on Flerovium and elements 119 and 120 is also discussed.

  18. Study on the performance of the Particle Identification Detectors at LHCb after the LHC First Long Shutdown (LS1)

    CERN Document Server

    Fontana, Marianna

    2016-01-01

    During the First Long Shutdown (LS1), the LHCb experiment has introduced major modification in the data-processing procedure and modified part of the detector to deal with the increased energy and the increased heavy-hadron production cross-section. In this contribution we review the performance of the particle identification detectors at LHCb, Rich, Calorimeters, and Muon system, after the LS1

  19. Trigger Data Serializer ASIC chip for the ATLAS New Small Wheel sTGC Detector

    CERN Document Server

    Wang, Jinhong; The ATLAS collaboration

    2014-01-01

    The small-strip Thin-Gap Chambers (sTGC) will be used as both trigger and precision tracking muon detectors for the Phase-I upgrade of the ATLAS New Small Wheel (NSW) muon detector. Signals from both the sTGC pad and strip detectors will be first read out by the Amplifier-Shaper-Discriminator (ASD) chip designed by the Brookhaven National Laboratory, and then collected and transmitted by a Trigger Data Serializer (TDS) chip at a rate of 4.8 Gbps to other related circuits. The pad-TDS chip checks the presence of pad hits and sends the information together with Bunching Crossing ID to the pad-trigger logic to define roads of interest. The strip-TDS chip collects and buffers strip charge information and transmits a range of strips within the road of interest to the router board located on the rim of the NSW. The large number of input channels (128 differential input channels), short time available to prepare and transmit trigger data (<100 ns), high speed output data rate (4.8 Gbps), harsh radiation environme...

  20. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Izaki, Kenji; Toui, Kouhei; Shimaoka, Takehiro; Morishita, Yuki; Tsubota, Youichi; Higuchi, Mikio

    2016-01-01

    An alpha particle detector was developed for continuous air monitoring of radioactive contamination in working chambers at plutonium handling facilities. A 5-cm-square Gd 2 Si 2 O 7 :Ce (cerium-doped gadolinium pyro-silicate, GPS:Ce) mosaic scintillator plate for alpha particle measurements was fabricated from GPS single-crystal grains of around 550 μm diameter; the GPS grains were made of a GPS polycrystalline body grown using a top seeded solution method. The scintillator layer thickness was approximately 100 μm. The surface filling rate of the GPS grains was ca. 62%. To suppress the influence of non-uniformity of pulse heights of a photomultiplier tube, a central part of ∅ 40 mm of a 76-mm-diameter photomultiplier tube was used. In addition, 3 mm thick high-transmission glass was used as a substrate of the scintillator plate. The detector achieved energy resolution of 13% for 5.5 MeV alpha particles, detection efficiency of 61% and a radon progeny nuclide reduction ratio of 64.5%. A new alpha particle detector was developed to achieve a high radon progeny nuclide reduction ratio approaching that of a silicon semiconductor detector, with high resistance to electromagnetic noise and corrosion. - Highlights: • An alpha particle detector was developed for continuous air monitoring. • The detector comprises a mosaic scintillator plate and a photomultiplier tube. • A 5-cm-square GPS mosaic scintillator plate was fabricated. • Its respective energy resolution and detection efficiency were 13 and 61%. • The radon progeny nuclide reduction ratio of the developed detector was 64.5%.

  1. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Ruddy, Frank H.; Seidel, John G.

    2007-01-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 deg. C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137 Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress

  2. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  3. Particle-flow reconstruction and global event description with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-06-15

    The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions.

  4. Higgs boson searches in cascade decays of supersymmetric particles with the Atlas detector at the LHC

    International Nuclear Information System (INIS)

    Consonni, M.

    2008-07-01

    The LHC (Large Hadron Collider) is expected to deliver the first proton-proton collisions in September 2008 and the ATLAS experiment is designed to explore a large spectrum of phenomena that could arise from these interactions. In the context of supersymmetric extensions of the Standard Model, the lightest Higgs boson can be produced via cascade decays of supersymmetric particles. We investigate the possibility of observing such events with the ATLAS detector at the LHC. First, we focus on the ATLAS capability in measuring the missing energy due to the passage of supersymmetric particles escaping the detection. Then, we show that, for some regions of the Minimal Supergravity parameter space compatible with the last LEP searches, the lightest Higgs boson can be discovered with less than 10 fb -1 , giving results competitive with standard Higgs production channels. We also study the possibility of measuring quantities related to the masses and couplings of the supersymmetric particles involved in the process. Finally, starting from these measurements, we use the SFitter tool to set up a global fit to the parameters of the underlying supersymmetric model, showing the validity of such procedure for constraining the theoretical interpretations of future LHC data. (author)

  5. A Study of Particle Production in Proton Induced Collisions Using the MIPP Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Sonam [Panjab Univ., Chandigarh (India)

    2015-01-01

    The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (Ckov), ring imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. The MIPP experiment is designed to measure particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams of $\\pi^{\\pm}, \\rm{K}^{\\pm}$, p and $\\bar{\\rm{p}}$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. The goal of the experiment is to measure hadron production cross sections or yields using these beams and targets. These hadronic interaction data can have a direct impact on the detailed understanding of the neutrino fluxes of several accelerator-based neutrino experiments like MINOS, MINER$\

  6. Design of the Front-End Detector Control System of the ATLAS New Small Wheels

    CERN Document Server

    Koulouris, Aimilianos; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment will be upgraded during the next LHC Long Shutdown (LS2). The flagship upgrade is the New Small Wheel (NSW), which consists of 2 disks of Muon Gas detectors. The detector technologies used are Micromegas (MM) and sTGC, providing a total of 16 layers of tracking and trigger. The Slow Control Adapter (SCA) is part of the GigaBit Transceiver (GBT) - “Radiation Hard Optical Link Project” family of chips designed at CERN, EP-ESE department, which will be used at the NSW upgrade. The SCA offers several interfaces to read analog and digital inputs, and configure front-end Readout ASICs, FPGAs, or other chips. This poster gives an overview of the system, data flow, and software developed for communicating with the SCA.

  7. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter; Diseno de un detector versatil para la deteccion de particulas cargadas, neutrones y rayos gamma. Interaccion neutronica con la materia

    Energy Technology Data Exchange (ETDEWEB)

    Perez P, J J [Comision Nacional de Seguridad Nuclear y Salvaguardias, Mexico, D.F. (Mexico)

    1991-07-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector.

  8. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  9. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  10. A ''quick DYECET'' method for ECE particle tracks in polymer detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Mahdi, S.

    1993-01-01

    The new dyed electrochemically etched track (DEYCET) method recently developed at the National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) using sensitization and dyeing steps is a useful and powerful method for dyeing charged particle and neutron-induced-recoil tracks in polymer detectors. This original DYECET method is effective but time consuming due to the steps for sensitization and dyeing which usually takes several hours. A ''Quick DYECET'' method, also recently developed in our laboratory, is introduced in this paper which dyes ECE tracks effectively in different colours within a few minutes. This new method can dye ECE tracks, cracks, fractures and fractals with different water and/or alcohol soluble dyes using cold or hot dyebaths. The method provides a high contrast and a high resolution of ECE tracks for visual track counting especially at high track densities. Some preliminary results are reported and discussed. (author)

  11. arXiv Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb

    CERN Document Server

    INSPIRE-00260081; Papucci, Michele; Robinson, Dean J.

    2018-02-01

    We advocate for the construction of a new detector element at the LHCb experiment, designed to search for displaced decays of beyond Standard Model long-lived particles, taking advantage of a large shielded space in the LHCb cavern that is expected to soon become available. We discuss the general features and putative capabilities of such an experiment, as well as its various advantages and complementarities with respect to the existing LHC experiments and proposals such as SHiP and MATHUSLA. For two well-motivated beyond Standard Model benchmark scenarios—Higgs decay to dark photons and B meson decays via a Higgs mixing portal—the reach either complements or exceeds that predicted for other LHC experiments.

  12. Track detectors in particle accelerator environment: an overview on existing and new methods

    International Nuclear Information System (INIS)

    Tripathy, S.P.; Sarkar, P.K.

    2011-01-01

    The advent of high energy, high intensity particle accelerators, with increasing applications in various fields has lead to the involvement of more users and operators. The complex (secondary) radiation field in an accelerator environment, generated by the primary beam hitting a target, is highly directional, dynamic, pulsed and mixed in nature, which poses a unique challenge for the radiological safety aspects, specially the neutrons contributing to a significant dose even beyond the shields. Solid polymeric track detectors (SPTDs), due to their insensitivity to low LET radiations and integrating nature of signal registration, are found to be effective and convenient for neutron measurements. This paper reviews some of the existing and frequently used methods of neutron spectrometry and dosimetry using SPTDs and explores new approaches as well. The paper elaborates on the extended energy response and rapid etching techniques of SPTDs along with some new results. An overview on the recently introduced microwave-induced chemical etching (MICE) technique is also presented. (author)

  13. Noise behaviour of semiinsulating GaAs particle detectors at various temperatures before and after irradiation

    International Nuclear Information System (INIS)

    Tenbusch, F.; Braunschweig, W.; Chu, Z.; Krais, R.; Kubicki, T.; Luebelsmeyer, K.; Pandoulas, D.; Rente, C.; Syben, O.; Toporowski, M.; Wittmer, B.; Xiao, W.J.

    1998-01-01

    We investigated the noise behaviour of surface barrier detectors (double sided Schottky contact) made of semiinsulating GaAs. Two types of measurements were performed: equivalent noise charge (ENC) and noise power density spectra in a frequency range from 10 Hz to 500 kHz. The shape of the density spectra are a powerful tool to examine the physical origin of the noise, before irradiation it is dominated by generation-recombination processes caused by deep levels. Temperature dependent noise measurements reveal the deep level parameters like activation energy and cross section, which are also extracted by analyzing the time transients of the charge pulse from α-particles. After irradiation with protons, neutrons and pions the influence of the deep levels being originally responsible for the noise is found to decrease and a reduction of the noise over the entire frequency range with increasing fluence is observed. (orig.)

  14. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  15. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    CERN Document Server

    Bravar, U; Karadzhov, Y; Kolev, D; Russinov, I; Tsenov, R; Wang, L; Xu, F Y; Zheng, S X; Bertoni, R; Bonesini, M; Mazza, R; Palladino, V; Cecchet, G; de Bari, A; Capponi, M; Iaciofano, A; Orestano, D; Pastore, F; Tortora, L; Ishimoto, S; Suzuki, S; Yoshimura, K; Mori, Y; Kuno, Y; Sakamoto, H; Sato, A; Yano, T; Yoshida, M; Filthaut, F; Vretenar, M; Ramberger, S; Blondel, A; Cadoux, F; Masciocchi, F; Graulich, J S; Verguilov, V; Wisting, H; Petitjean, C; Seviour, R; Ellis, M; Kyberd, P; Littlefield, M; Nebrensky, J J; Forrest, D; Soler, F J P; Walaron, K; Cooke, P; Gamet, R; Alecou, A; Apollonio, M; Barber, G; Dobbs, A; Dornan, P; Fish, A; Hare, R; Jamdagni, A; Kasey, V; Khaleeq, M; Long, K; Pasternak, J; Sakamoto, H; Sashalmi, T; Blackmore, V; Cobb, J; Lau, W; Rayner, M; Tunnell, C D; Witte, H; Yang, S; Alexander, J; Charnley, G; Griffiths, S; Martlew, B; Moss, A; Mullacrane, I; Oats, A; York, S; Apsimon, R; Alexander, R J; Barclay, P; Baynham, D E; Bradshaw, T W; Courthold, M; Hayler, R Edgecock T; Hills, M; Jones, T; McNubbin, N; Murray, W J; Nelson, C; Nicholls, A; Norton, P R; Prior, C; Rochford, J H; Rogers, C; Spensley, W; Tilley, K; Booth, C N; Hodgson, P; Nicholson, R; Overton, E; Robinson, M; Smith, P; Adey, D; Back, J; Boyd, S; Harrison, P; Norem, J; Bross, A D; Geer, S; Moretti, A; Neuffer, D; Popovic, M; Qian, Z; Raja, R; Stefanski, R; Cummings, M A C; Roberts, T J; DeMello, A; Green, M A; Li, D; Sessler, A M; Virostek, S; Zisman, M S; Freemire, B; Hanlet, P; Huang, D; Kafka, G; Kaplan, D M; Snopok, P; Torun, Y; Onel, Y; Cline, D; Lee, K; Fukui, Y; Yang, X; Rimmer, R A; Cremaldi, L M; Hart, T L; Summers, D J; Coney, L; Fletcher, R; Hanson, G G; Heidt, C; Gallardo, J; Kahn, S; Kirk, H; Palmer, R B; C11-08-09

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) de...

  16. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Neal, E-mail: neal.hartman@cern.ch; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-21

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”)

  17. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  18. High resolution time-of-flight (TOF) detector for particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Merlin; Lehmann, Albert; Pfaffinger, Markus; Uhlig, Fred [Physikalisches Institut, Universitaet Erlangen-Nuernberg (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    Several prototype tests were performed with the PANDA DIRC detectors at the CERN T9 beam line. A mixed hadron beam with pions, kaons and protons was used at momenta from 2 to 10 GeV/c. For these tests a good particle identification was mandatory. We report about a high resolution TOF detector built especially for this purpose. It consists of two stations each consisting of a Cherenkov radiator read out by a Microchannel-Plate Photomultiplier (MCP-PMT) and a Scintillating Tile (SciTil) counter read out by silicon photomultipliers (SiPMs). With a flight path of 29 m a pion/kaon separation up to 5 GeV/c and a pion/proton separation up to 10 GeV/c was obtained. From the TOF resolutions of different counter combinations the time resolution (sigma) of the individual MCP-PMTs and SciTils was determined. The best counter reached a time resolution of 50 ps.

  19. Secondary particle background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-01-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC(LHC) √s=40TeV (√s=16TeV) and L=10 33 cm -2 s -1 (L=3x10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the open-quotes task force on radiation levels in the SSC interaction regions.close quotes The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes

  20. Fluorescent and Raman scattering by molecules embedded in small particles: Final report

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1987-02-01

    The model takes into account the physical properties and the morphology of the particles, as well as the locations of the scatter(s). Brief descriptions of various applications of the model are presented. Brief descriptions of experimental studies of scattering by finite dielectric and cylindrical microstructures in plastic track detector plane surfaces are given

  1. The performance of silicon detectors for the SiliPET project: A small animal PET scanner based on stacks of silicon detectors

    International Nuclear Information System (INIS)

    Auricchio, Natalia; Domenico, Giovanni di; Zavattini, Guido; Milano, Luciano; Malaguti, Roberto

    2011-01-01

    We propose a new scanner for small animal Positron Emission Tomography (PET) based on stacks of double sided silicon detectors. Each stack is made of 40 planar detectors with dimension 60x60x1 mm 3 and 128 orthogonal strips on both sides to read the two coordinates of interaction, the third being the detector number in the stack. Multiple interactions in a stack are discarded by an exclusive OR applied between each detector plane of a stack. In this way we achieve a precise determination of the interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results were obtained with MEGA prototype tracker (11 double sided Si detector layers), divided into two stacks 2 cm apart made of, respectively, 5 and 6 prototype layers, placing a small spherical 22 Na source in different positions. We report on the results, spatial resolution, imaging and timing performances obtained with double sided silicon detectors, manufactured by ITC-FBK, having an active area of 3x3 cm 2 , thickness of 1 mm and a strip pitch of 500μm. Two different strip widths of 300 and 200μm equipped with 64 orthogonal p and n strips on opposite sides were read out with the VATAGP2.5 ASIC, a 128-channel 'general purpose' charge sensitive amplifier.

  2. Is there a contraction of the interatomic distance in small metal particles?

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet

    1990-01-01

    A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...

  3. The efficient neutron-gamma pulse shape discrimination with small active volume scintillation detector

    International Nuclear Information System (INIS)

    Phan Van Chuan; Nguyen Duc Hoa; Nguyen Xuan Hai; Nguyen Ngoc Anh; Tuong Thi Thu Huong; Nguyen Nhi Dien; Pham Dinh Khang

    2016-01-01

    A small detector with EJ-301 liquid scintillation was manufactured for the study on the neutron-gamma pulse shape discrimination. In this research, four algorithms, including Threshold crossing time (TCT), Pulse gradient analysis (PGA), Charge comparison method (CCM), and Correlation pattern recognition (CPR) were developed and compared in terms of their discrimination effectiveness between neutrons and gamma rays. The figures of merits (FOMs) obtained for 100 ÷ 2000 keVee (keV energy electron equivalent) neutron energy range show the charge comparison method was the most efficient of the four algorithms. (author)

  4. 3D integration technology for hybrid pixel detectors designed for particle physics and imaging experiments

    International Nuclear Information System (INIS)

    Henry, D.; Berthelot, A.; Cuchet, R.; Chantre, C.; Campbell, M.; Tick, T.

    2012-01-01

    Hybrid pixel detectors are now widely used in particle physics experiments and are becoming established at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the advantages of 3D Integration come from reduced inter chip dead area even on large surfaces and from improved detector construction yield resulting from the use of single chip 4-side buttable tiles. For many years, numerous R and centres and companies have put a lot of effort into developing 3D integration technologies and today, some mature technologies are ready for prototyping and production. The core technology of the 3D integration is the TSV (Through Silicon Via) and for many years, LETI has developed those technologies for various types of applications. In this paper we present how one of the TSV approaches developed by LETI, called TSV last, has been applied to a readout wafer containing readout chips intended for a hybrid pixel detector assembly. In the first part of this paper, the 3D design adapted to the read-out chip will be described. Then the complete process flow will be explained and, finally, the test strategy adopted and

  5. Design and realization of a fast low noise electronics for a hybrid pixel X-ray detector dedicated to small animal imaging

    International Nuclear Information System (INIS)

    Chantepie, B.

    2008-12-01

    Since the invention of computerized tomography (CT), charge integration detector were widely employed for X-ray biomedical imaging applications. Nevertheless, other options exist. A new technology of direct detection using semiconductors has been developed for high energy physics instrumentation. This new technology, called hybrid pixel detector, works in photon counting mode and allows for selecting the minimum energy of the counted photons. The ImXgam research team at CPPM develops the PIXSCAN demonstrator, a CT-scanner using the hybrid pixel detector XPAD. The aim of this project is to evaluate the improvement in image quality and in dose delivered during X-ray examinations of a small animal. After a first prototype of a hybrid pixel detector XPAD1 proving the feasibility of the project, a complete imager XPAD2 was designed and integrated in the PIXSCAN demonstrator. Since then, with the evolution of microelectronic industry, important improvements are conceivable. To reducing the size of pixels and to improving the energy resolution of detectors, a third design XPAD3 was conceived and will be soon integrated in a second generation of PIXSCAN demonstrator. In this project, my thesis work consisted in taking part to the design of the detector readout electronics, to the characterization of the chips and of the hybrid pixel detectors, and also to the definition of a auto-zeroing architecture for pixels. The first and second chapters present X-ray medical imaging and particle detection with semi-conductors and its modelling. The third chapter deals with the specifications of electronic circuits for imaging applications first for analog pixels then for digital pixels and describes the general architecture of the integrated circuits. The validation tests are presented in the fourth chapter while the last chapter gives an account of expected changes in pixel electronics

  6. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Peter, E-mail: porel@hawaii.edu; Varner, Gary S.; Niknejadi, Pardis

    2017-06-11

    Vertex detectors provide space–time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  7. Analytical expressions for noise and crosstalk voltages of the High Energy Silicon Particle Detector

    Science.gov (United States)

    Yadav, I.; Shrimali, H.; Liberali, V.; Andreazza, A.

    2018-01-01

    The paper presents design and implementation of a silicon particle detector array with the derived closed form equations of signal-to-noise ratio (SNR) and crosstalk voltages. The noise analysis demonstrates the effect of interpixel capacitances (IPC) between center pixel (where particle hits) and its neighbouring pixels, resulting as a capacitive crosstalk. The pixel array has been designed and simulated in a 180 nm BCD technology of STMicroelectronics. The technology uses the supply voltage (VDD) of 1.8 V and the substrate potential of -50 V. The area of unit pixel is 250×50 μm2 with the substrate resistivity of 125 Ωcm and the depletion depth of 30 μm. The mathematical model includes the effects of various types of noise viz. the shot noise, flicker noise, thermal noise and the capacitive crosstalk. This work compares the results of noise and crosstalk analysis from the proposed mathematical model with the circuit simulation results for a given simulation environment. The results show excellent agreement with the circuit simulations and the mathematical model. The average relative error (AVR) generated for the noise spectral densities with respect to the simulations and the model is 12% whereas the comparison gives the errors of 3% and 11.5% for the crosstalk voltages and the SNR results respectively.

  8. Synthetic radiation diagnostics in PIConGPU. Integrating spectral detectors into particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, Richard; Burau, Heiko; Huebl, Axel; Steiniger, Klaus [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Debus, Alexander; Widera, Rene; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present the in-situ far field radiation diagnostics in the particle-in-cell code PIConGPU. It was developed to close the gap between simulated plasma dynamics and radiation observed in laser plasma experiments. Its predictive capabilities, both qualitative and quantitative, have been tested against analytical models. Now, we apply this synthetic spectral diagnostics to investigate plasma dynamics in laser wakefield acceleration, laser foil irradiation and plasma instabilities. Our method is based on the far field approximation of the Lienard-Wiechert potential and allows predicting both coherent and incoherent radiation spectrally from infrared to X-rays. Its capability to resolve the radiation polarization and to determine the temporal and spatial origin of the radiation enables us to correlate specific spectral signatures with characteristic dynamics in the plasma. Furthermore, its direct integration into the highly-scalable GPU framework of PIConGPU allows computing radiation spectra for thousands of frequencies, hundreds of detector positions and billions of particles efficiently. In this talk we will demonstrate these capabilities on resent simulations of laser wakefield acceleration (LWFA) and high harmonics generation during target normal sheath acceleration (TNSA).

  9. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  10. Advantages of CaF2 over ZnS in an α-particle scintillation detector

    International Nuclear Information System (INIS)

    Sabol, B.; Schery, S.D.

    1981-01-01

    Results are reported for using a europium-activated calcium fluoride (CaF 2 ) scintillation crystal as a α-particle detector in a two-filter monitor of atmospheric radon. CaF 2 detectors are cheaper and can cover a larger surface area than the higher-resolution solid-state detectors. Compared to ZnS scintillators, the energy resolution for CaF 2 is improved from 3.0 MeV to 1.1 MeV for 4.7 MeV α-particles; however the light output from CaF 2 is considerably lower. It is concluded that a thin CaF 2 crystal is a cost-effective method of improving energy and time resolutions for the two-filter monitor. (U.K.)

  11. Characterization of a high-purity germanium detector for small-animal SPECT.

    Science.gov (United States)

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  12. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.

    2016-11-11

    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  13. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Science.gov (United States)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  14. Alpha-particle dosimetry using solid state nuclear track detectors. Application to 222Rn and its daughters

    International Nuclear Information System (INIS)

    Barillon, R.; Chambaudet, A.

    2000-01-01

    A methodology for the determination of the detection efficiency of a solid state nuclear track detector for radon and its short-lived daughters was presented. First, particular attention is paid to the α-particles having energies and angles of incidence that lead to observable tracks after an adapted chemical etching. The results are then incorporated in a mathematical model to determine the theoretical radon detection efficiency of a polymeric detector placed in a cylindrical cell. When applied to LR115 and CR39 detectors, the model reveals the influence of the position of the radon daughters inside the cell. Radon daughters tend to link up with natural atmospheric aerosols and then settle on the cell's inside wall. This model allows to determine, among other things, the cell size for which the detector response is independent of the fraction daughters plated out. (author)

  15. Measurements of multi-particle correlations and collective flow with the ATLAS detector

    CERN Document Server

    Bold, Tomasz; The ATLAS collaboration

    2017-01-01

    The measurement of flow harmonics of charged particles from v_2 to v_7 in Pb+Pb collisions in the wide range of transverse momentum and pseudorapidity provides not only a way to study the initial state of the nuclear collisions and soft particle collective dynamics, but also provides insight into jet quenching via the measurement of flow harmonics at high transverse momenta. The longitudinal fluctuations of the v_n and event-plane angles Psi_n are also presented. The longitudinal flow decorrelations have contributions from v_n-magnitude fluctuations and event plane twist. A four-particle correlator is used to separate these two effects. Results show both effects have a linear dependence on pseudorapidity separation from v_2 to v_5, and show a small but measurable variation with collision energy. While collectivity is well established in collisions involving heavy nuclei, its evidence in pp collisions is less clear. In order to assess the collective nature of multi-particle production, the correlation measurem...

  16. Measurements of multi-particle correlations and collective flow with the ATLAS detector

    CERN Document Server

    Bold, Tomasz; The ATLAS collaboration

    2017-01-01

    The measurement of flow harmonics of charged particles from $v_2$ to $v_7$ in Pb+Pb collisions in the wide range of transverse momentum and pseudorapidity provides not only a way to study the initial state of the nuclear collisions and soft particle collective dynamics, but also provides insight into jet quenching via the measurement of flow harmonics at high transverse momenta. The longitudinal fluctuations of the $v_n$ and event-plane angles $\\Psi_n$ are also presented. The longitudinal flow decorrelations have contributions from $v_n$-magnitude fluctuations and event plane twist. A four-particle correlator is used to separate these two effects. Results show both effects have a linear dependence on pseudorapidity separation from $v_2$ to $v_5$, and show a small but measurable variation with collision energy. While collectivity is well established in collisions involving heavy nuclei, its evidence in pp collisions is less clear. In order to assess the collective nature of multi-particle production, the corre...

  17. Structure of magnetic particles studied by small angle neutron scattering. [Magnetic colloid particles in stable liquid dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cebula, D J; Charles, S W; Popplewell, J

    1981-03-01

    The purpose of this note is to show how the use of small angle neutron scattering (SANS) can provide fundamental information on the structure of magnetic colloid particles in stable liquid dispersion. A more detailed account elaborating the use of the technique to provide fundamental information on interactions will appear later. This contribution contains some principal results on particle structure. The technique of SANS provides a very sensitive means of measuring particle size by measuring the scattered neutron intensity, I(Q), as a function of scattered wave vector, Q.

  18. Particles with small violations of Fermi or Bose statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1991-01-01

    I discuss the statistics of ''quons'' (pronounced to rhyme with muons), particles whose annihilation and creation operators obey the q-deformed commutation relation (the quon algebra or q-mutator) which interpolates between fermions and bosons. Topics discussed include representations of the quon algebra, proof of the TCP theorem, violation of the usual locality properties, and experimental constraints on violations of the Pauli exclusion principle (i.e., Fermi statistics) and of Bose statistics

  19. Nucleon and composite-particle production in spallation reactions studied with the multi-purpose detector NESSI

    International Nuclear Information System (INIS)

    Herbach, C.M.; Hilscher, D.; Jahnke, U.; Tishchenko, V.G.; Galin, J.; Lott, B.; Letourneau, A.; Peghaire, A.; Filges, D.; Goldenbaum, F.; Nuenighoff, K.; Schaal, H.; Sterzenbach, G.; Wohlmuther, M.; Pienkowski, L.; Kostecke, D.; Schroeder, W.U.; Toke, J.

    2003-01-01

    NESSI, a 4π-detector for neutrons and charged particles, was used in studies of proton-induced spallation reactions at the COSY facility. Due to the high detection efficiency of NESSI for particles evaporated from excited nuclei, measured particle multiplicities provide event-by-event information on the nuclear excitation energy. Data obtained for proton-induced reactions on thin targets ranging from Al to U and proton energies from 0.8 to 2.5 GeV are compared with model predictions. (orig.)

  20. Zenith: A Radiosonde Detector for Rapid-Response Ionizing Atmospheric Radiation Measurements During Solar Particle Events

    Science.gov (United States)

    Dyer, A. C. R.; Ryden, K. A.; Hands, A. D. P.; Dyer, C.; Burnett, C.; Gibbs, M.

    2018-03-01

    Solar energetic particle events create radiation risks for aircraft, notably single-event effects in microelectronics along with increased dose to crew and passengers. In response to this, some airlines modify their flight routes after automatic alerts are issued. At present these alerts are based on proton flux measurements from instruments onboard satellites, so it is important that contemporary atmospheric radiation measurements are made and compared. This paper presents the development of a rapid-response system built around the use of radiosondes equipped with a radiation detector, Zenith, which can be launched from a Met Office weather station after significant solar proton level alerts are issued. Zenith is a compact, battery-powered solid-state radiation monitor designed to be connected to a Vaisala RS-92 radiosonde, which transmits all data to a ground station as it ascends to an altitude of 33 km. Zenith can also be operated as a stand-alone detector when connected to a laptop, providing real-time count rates. It can also be adapted for use on unmanned aerial vehicles. Zenith has been flown on the Met Office Civil Contingency Aircraft, taken to the European Organization for Nuclear Research-EU high energy Reference Field facility for calibration and launched on a meteorological balloon at the Met Office's weather station in Camborne, Cornwall, UK. During this sounding, Zenith measured the Pfotzer-Regener maximum to be at an altitude of 18-20 km where the count rate was measured to be 1.15 c s-1 cm-2 compared to 0.02 c s-1 cm-2 at ground level.

  1. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  2. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  3. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    International Nuclear Information System (INIS)

    Lindstroem, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hoenniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Roeder, Ralf

    2006-01-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of Φ eq =10 16 cm -2 . Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E C -0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90 Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of

  4. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Gunnar [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany)]. E-mail: gunnar.lindstroem@desy.de; Dolenc, Irena [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Hoenniger, Frank [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Kramberger, Gregor [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Moll, Michael [CERN, Geneva, 1211 (Switzerland); Nossarzewska, Elsbieta [ITME, Institute for Electronocs Materials Technology, Warsaw, 01919 (Poland); Pintilie, Ioana [National Institute of Materials Physics, Bucharest, 077125 (Romania); Roeder, Ralf [CiS Institute for Microsensors gGmbH, Erfurt, 99099 (Germany)

    2006-11-30

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 {mu}m had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of {phi} {sub eq}=10{sup 16} cm{sup -2}. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E {sub C}-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with {sup 90}Sr electrons (mip's) is also almost identical to what was expected

  5. Experimental light scattering by small particles in Amsterdam and Granada

    Directory of Open Access Journals (Sweden)

    Volten H.

    2010-06-01

    Full Text Available We report on two light scattering instruments located in Amsterdam and Granada, respectively. These instruments enable measuring scattering matrices as functions of the scattering angle of collections of randomly orieneted irregular particles. In the past decades, the experimental setup located in Amsterdam, The Netherlands, has produced a significant amount of experimental data. Unfortunately, this setup was officially closed a couple of years ago. We also present a modernized descendant of the Dutch experimental setup recently constructed at the Instituto de Astrofísica de Andalucía (IAA in Granada, Spain. We give a brief description of the instruments, and present some representative results.

  6. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  7. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  8. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  9. The effect of charge collection recovery in silicon p-n junction detectors irradiated by different particles

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Abreu, M.; Anbinderis, P.; Anbinderis, T.; D'Ambrosio, N.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chen, W.; Cindro, V.; Dezillie, B.; Dierlamm, A.; Eremin, V.; Gaubas, E.; Gorbatenko, V.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Haerkoenen, J.; Ilyashenko, I.; Janos, S.; Jungermann, L.; Kalesinskas, V.; Kapturauskas, J.; Laiho, R.; Li, Z.; Mandic, I.; De Masi, Rita; Menichelli, D.; Mikuz, M.; Militaru, O.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Perea Solano, B.; Piotrzkowski, K.; Pirollo, S.; Pretzl, K.; Rato Mendes, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Tuominen, E.; Vaitkus, J.; Da Via, C.; Wobst, E.; Zavrtanik, M.

    2003-01-01

    The recovery of the charge collection efficiency (CCE) at low temperatures, the so-called 'Lazarus effect', was studied in Si detectors irradiated by fast reactor neutrons, by protons of medium and high energy, by pions and by gamma-rays. The experimental results show that the Lazarus effect is observed: (a) after all types of irradiation; (b) before and after space charge sign inversion; (c) only in detectors that are biased at voltages resulting in partial depletion at room temperature. The experimental temperature dependence of the CCE for proton-irradiated detectors shows non-monotonic behaviour with a maximum at a temperature defined as the CCE recovery temperature. The model of the effect for proton-irradiated detectors agrees well with that developed earlier for detectors irradiated by neutrons. The same midgap acceptor-type and donor-type levels are responsible for the Lazarus effect in detectors irradiated by neutrons and by protons. A new, abnormal 'zigzag'-shaped temperature dependence of the CCE was observed for detectors irradiated by all particles (neutrons, protons and pions) and by an ultra-high dose of γ-rays, when operating at low bias voltages. This effect is explained in the framework of the double-peak electric field distribution model for heavily irradiated detectors. The redistribution of the space charge region depth between the depleted regions adjacent to p + and n + contacts is responsible for the 'zigzag'- shaped curves. It is shown that the CCE recovery temperature increases with reverse bias in all detectors, regardless of the type of radiation

  10. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    International Nuclear Information System (INIS)

    Friedman, P.G.

    1986-01-01

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for 14 C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV 14 C at 10 -2 counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10 -4 counts/sec and excellent background suppression. With the cyclotron tuned near the 13 CH background peak, to the frequency for 14 C, the detector suppresses the background to 6 x 10 -4 counts/sec. For each 14 C ion the detectors grazing-incidence Al 2 O 3 conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive 12 C, 23 Na, 39 K, 41 K, 85 Rb, 87 Rb, and 133 Cs at 5 to 40 keV, and with 36 keV negative 12 C and 13 CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10 -7 Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode

  11. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no rest...... as to handling of nanoparticles in lab-on-a-chip systems.......We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well...

  12. The Formation of Small Particles and Aggregates in the Rhine Estuary

    NARCIS (Netherlands)

    Eisma, D.; Kalf, J.; Veenhuis, M.

    1980-01-01

    Particulate matter in suspension in the Southern Bight of the North Sea consists mainly of more or less round, often loose aggregates (particles glued together with organic matter) and further of single mineral grains, some small (

  13. X-Ray Beam Studies of Charge Sharing in Small Pixel, Spectroscopic, CdZnTe Detectors

    Science.gov (United States)

    Allwork, Christopher; Kitou, Dimitris; Chaudhuri, Sandeep; Sellin, Paul J.; Seller, Paul; Veale, Matthew C.; Tartoni, Nicola; Veeramani, Perumal

    2012-08-01

    Recent advances in the growth of CdZnTe material have allowed the development of small pixel, spectroscopic, X-ray imaging detectors. These detectors have applications in a diverse range of fields such as medical, security and industrial sectors. As the size of the pixels decreases relative to the detector thickness, the probability that charge is shared between multiple pixels increases due to the non zero width of the charge clouds drifting through the detector. These charge sharing events will result in a degradation of the spec