WorldWideScience

Sample records for small molecule catalysts

  1. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  2. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  3. The electrocatalytic properties of carbon supported PtRu/C nanoalloys in oxidation of small organic molecules: Comparison with Pt/C catalyst

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2012-01-01

    Full Text Available The electrocatalytic activity of carbon supported PtRu/C catalysts, with different composition, toward the electrooxidation of methanol, CO and formic acid were examined in acid and alkaline solution at ambient temperature using thin-film rotating disk electrode (RDE method and compared with activity of Pt/C. The catalysts were characterized by XRD, AFM and STM techniques. XRD pattern revealed that PtRu-1/C catalyst is consisted of two structures e.g. Pt-Ru-fcc and Ru-hcp (the solid solution of Ru in Pt and the small amount of Ru or solid solution of Pt in Ru, as opposed to PtRu-2/C catalyst which is consisted of one structure mostly, Pt-Ru-fcc. According to STM images, PtRu as well as Pt, particles size were between 2 and 6 nm, which is in a good agreement with the mean particles size determined by XRD. To establish the activity and stability of the catalysts potentiodynamic and quasi steady-state measurements were performed. It was found that the activity of Pt and PtRu for CO and methanol oxidation is a strong function of pH of solution. The kinetics are much higher in alkaline than in acid solution and the difference between Pt/C and PtRu/C is much less pronounced in alkaline media. Results presented in this work indicate that activity of PtRu catalysts depends on catalyst composition, e.g. on Pt/Ru atomic ratio, as well as on alloying degree of catalysts. Comparison of CO, methanol and formic acid oxidation on PtRu-2/C, PtRu-1/C and Pt/C catalysts revealed that PtRu-2/C is the most active one. It was shown that the PtRu-2/C catalyst, due to fact that it is consisted of only one phase, with high alloying degree, through the bifunctional mechanism improved by electronic effect, achieve the activity two times higher related to PtRu-1/C in the oxidation of all organic molecules investigated, and about three times higher compared to Pt/C in the oxidation of methanol and CO, and five times higher in formic acid oxidation.

  4. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy

    NARCIS (Netherlands)

    Goetze, Joris; Yarulina, I.; Gascon Sabate, J.; Kapteijn, F.; Weckhuysen, Bert M.

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose

  5. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  6. Waved graphene: Unique structure for the adsorption of small molecules

    International Nuclear Information System (INIS)

    Pan, Hui

    2017-01-01

    We propose waved graphenes for the strong adsorption of molecules and investigate their potential applications. We find that the physical adsorption of molecules on waved graphene is greatly enhanced by compression. At optimal compression, the physical adsorption energies of H_2, N_2, NO, and CO are increased by 6–9 times, and that for O_2 is more than 2 times. We show that the energy for their chemical adsorption on waved graphene decreases dramatically with the increment of compression. The energy of dissociation of H_2 on flat graphene is 1.63 eV and reduced to 0.06 eV (96% reduction) on waved graphene at a compression of 50%, respectively. The energy for chemical adsorption of O_2 on waved graphenes is extremely reduced from 0.98 eV to −0.57 eV as with compression increasing from 0 to 50%, indicating the transition of endothermic chemical adsorption to exothermic. We further show that the electronic properties of waved graphenes are modified, leading to the change of electrical characters. We see that the waved graphenes may find applications in gas storage, sensor and catalyst because of enhanced physical and chemical adsorption and the induced change of electronic properties. - Highlights: • Adsorption of small molecules on waved graphene is greatly enhanced. • Strong physical adsorption in the trough of waved graphene can be achieved by tuning the curvature. • Chemical adsorption is on the crest of waved graphene. • Exothermic dissociation of H2 and O2 can be realized on waved graphene under high compression. • Wave graphene can be candidates as catalysts and gas storage/sensor.

  7. Waved graphene: Unique structure for the adsorption of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hui, E-mail: huipan@umac.mo

    2017-03-01

    We propose waved graphenes for the strong adsorption of molecules and investigate their potential applications. We find that the physical adsorption of molecules on waved graphene is greatly enhanced by compression. At optimal compression, the physical adsorption energies of H{sub 2}, N{sub 2}, NO, and CO are increased by 6–9 times, and that for O{sub 2} is more than 2 times. We show that the energy for their chemical adsorption on waved graphene decreases dramatically with the increment of compression. The energy of dissociation of H{sub 2} on flat graphene is 1.63 eV and reduced to 0.06 eV (96% reduction) on waved graphene at a compression of 50%, respectively. The energy for chemical adsorption of O{sub 2} on waved graphenes is extremely reduced from 0.98 eV to −0.57 eV as with compression increasing from 0 to 50%, indicating the transition of endothermic chemical adsorption to exothermic. We further show that the electronic properties of waved graphenes are modified, leading to the change of electrical characters. We see that the waved graphenes may find applications in gas storage, sensor and catalyst because of enhanced physical and chemical adsorption and the induced change of electronic properties. - Highlights: • Adsorption of small molecules on waved graphene is greatly enhanced. • Strong physical adsorption in the trough of waved graphene can be achieved by tuning the curvature. • Chemical adsorption is on the crest of waved graphene. • Exothermic dissociation of H2 and O2 can be realized on waved graphene under high compression. • Wave graphene can be candidates as catalysts and gas storage/sensor.

  8. Catalyst deterioration over the lifetime of small utility engines.

    Science.gov (United States)

    Doll, Nicholas J; Reisel, John R

    2007-10-01

    In this paper, the deterioration of catalysts in small, four-stroke, spark-ignition engines is described. The laboratory testing performed followed a proven test method that mimics the lifetime of a small air-cooled utility engine operating under normal field conditions. The engines used were single-cylinder, 6.5-hp, side-valve engines. These engines have a nominal 125-hr lifetime. The effectiveness of the catalysts was determined by testing exhaust emissions before and after the catalyst to determine the catalyst's efficiency. This was done several times during the lifetime of the engines to determine the deterioration in the performance of the catalysts at lowering pollutant emissions. Additional testing was performed on the catalysts to determine wear patterns, contamination, and recoverable activity. The results indicate that considerable catalyst deterioration is occurring over the lifetime of the engine. The results reveal that soot buildup, poisons, and active surface loss appear to be the contributing factors to the deterioration. These results were determined after analyzing the exhaust emissions data, scanning electron microscope results analysis, and the impact of regeneration attempts. An ANOVA statistical analysis was performed, and it was determined that the emissions are also impacted, to some degree, by time and the engine itself.

  9. Ship-in-a-bottle catalysts

    Science.gov (United States)

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  10. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  11. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    KAUST Repository

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M.

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained

  12. Recent advances in developing small molecules targeting RNA.

    Science.gov (United States)

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  13. Mapping the Small Molecule Interactome by Mass Spectrometry.

    Science.gov (United States)

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  14. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  15. Toward Generalization of Iterative Small Molecule Synthesis.

    Science.gov (United States)

    Lehmann, Jonathan W; Blair, Daniel J; Burke, Martin D

    2018-02-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.

  16. Toward Generalization of Iterative Small Molecule Synthesis

    Science.gov (United States)

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  17. Strategy to discover diverse optimal molecules in the small molecule universe.

    Science.gov (United States)

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  18. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  20. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst.

    Science.gov (United States)

    Vara, Brandon A; Struble, Thomas J; Wang, Weiwei; Dobish, Mark C; Johnston, Jeffrey N

    2015-06-17

    Carbon dioxide exhibits many of the qualities of an ideal reagent: it is nontoxic, plentiful, and inexpensive. Unlike other gaseous reagents, however, it has found limited use in enantioselective synthesis. Moreover, unprecedented is a tool that merges one of the simplest biological approaches to catalysis-Brønsted acid/base activation-with this abundant reagent. We describe a metal-free small molecule catalyst that achieves the three component reaction between a homoallylic alcohol, carbon dioxide, and an electrophilic source of iodine. Cyclic carbonates are formed enantioselectively.

  2. RNA as a small molecule druggable target.

    Science.gov (United States)

    Rizvi, Noreen F; Smith, Graham F

    2017-12-01

    Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Small molecule annotation for the Protein Data Bank.

    Science.gov (United States)

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  4. Small Molecule PET-Radiopharmaceuticals

    NARCIS (Netherlands)

    Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    This review describes several aspects required for the development of small molecule PET-tracers. Design and selection criteria are important to consider before starting to develop novel PET-tracers. Principles and latest trends in C-11 and F-18-radiochemistry are summarized. In addition an update

  5. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  6. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kneebone, Jared L. [Univ. of Rochester, Rochester, NY (United States); Daifuku, Stephanie L. [Univ. of Rochester, Rochester, NY (United States); Kehl, Jeffrey A. [Univ. of Rochester, Rochester, NY (United States); Wu, Gang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chung, Hoon T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Michael Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alp, E. Ercan [Argonne National Lab. (ANL), Argonne, IL (United States); More, Karren L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zelenay, Piotr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neidig, Michael L. [Univ. of Rochester, Rochester, NY (United States)

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O2 or O2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe active sites in complex ORR catalysts that combines an effective probe molecule (NO(g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO(g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO(g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO(g) probe molecules. Moreover, such sites are likely also reactive to O2, possibly serving as the ORR active sites in the synthesized materials.

  7. Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Minireview.

    Science.gov (United States)

    An, Guohua

    2017-02-01

    Nonlinearities are commonplace in pharmacokinetics, and 1 special source is the saturable binding of the drug to a high-affinity, low-capacity target, a phenomenon known as target-mediated drug disposition (TMDD). Compared with large-molecule compounds undergoing TMDD, which has been well recognized due to its high prevalence, TMDD in small-molecule compounds is more counterintuitive and has not been well appreciated. With more and more potent small-molecule drugs acting on highly specific targets being developed as well as increasingly sensitive analytical techniques becoming available, many small-molecule compounds have recently been reported to have nonlinear pharmacokinetics imparted by TMDD. To expand our current knowledge of TMDD in small-molecule compounds and increase the awareness of this clinically important phenomenon, this minireview provides an overview of the small-molecule compounds that demonstrate nonlinear pharmacokinetics imparted by TMDD. The present review also summarizes the general features of TMDD in small-molecule compounds and highlights the differences between TMDD in small-molecule compounds and large-molecule compounds. © 2016, The American College of Clinical Pharmacology.

  8. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  10. Small molecules: the missing link in the central dogma.

    Science.gov (United States)

    Schreiber, Stuart L

    2005-07-01

    Small molecules have critical roles at all levels of biological complexity and yet remain orphans of the central dogma. Chemical biologists, working with small molecules, expand our understanding of these central elements of life.

  11. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christine M. [Brandeis Univ., Waltham, MA (United States)

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  12. Design of small-molecule epigenetic modulators

    Science.gov (United States)

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  13. Application of a small molecule radiopharmaceutical concept to improve kinetics

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2016-01-01

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals

  14. Application of a small molecule radiopharmaceutical concept to improve kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals.

  15. Hierarchical virtual screening approaches in small molecule drug discovery.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm(-3)).

    Science.gov (United States)

    Ong, Ai Lien; Inglis, Kenneth K; Whelligan, Daniel K; Murphy, Sam; Varcoe, John R

    2015-05-14

    This study investigates the effect of 1 mmol dm(-3) concentrations of a selection of small cationic molecules on the performance of a fuel cell grade oxygen reduction reaction (ORR) catalyst (Johnson Matthey HiSPEC 3000, 20 mass% Pt/C) in aqueous KOH (1 mol dm(-3)). The cationic molecules studied include quaternary ammonium (including those based on bicyclic systems) and imidazolium types as well as a phosphonium example: these serve as fully solubilised models for the commonly encountered head-groups in alkaline anion-exchange membranes (AAEM) and anion-exchange ionomers (AEI) that are being developed for application in alkaline polymer electrolyte fuel cells (APEFCs), batteries and electrolysers. Both cyclic and hydrodynamic linear sweep rotating disk electrode voltammetry techniques were used. The resulting voltammograms and subsequently derived data (e.g. apparent electrochemical active surface areas, Tafel plots, and number of [reduction] electrons transferred per O2) were compared. The results show that the imidazolium examples produced the highest level of interference towards the ORR on the Pt/C catalyst under the experimental conditions used.

  17. HYDROGEN MOLECULE INTERACTION WITH CpCr(CO3 CATALYST

    Directory of Open Access Journals (Sweden)

    T. Spataru

    2013-12-01

    Full Text Available The hydrogen molecule interaction with CpCr (CO3 catalyst has been studied using the B3LYP, B86 functionals and the 6-311++G** , LACV3P basis sets. The best results in the testing calculations of the analyzed reaction have been obtained by using the B86/6-311++G** DFT version giving quite good agreement between experimental and theoretical calculated enthalpies. The dispersion corrected DFT Grimme’s and Head-Gordon and coworkers’functionals have been attempted without any improvement of the results. The free energies of the initial reactants, transition states, intermediate compounds and fi nal products of the typical six-ring bond modifi cation mechanism have been calculated. The energy barriersof the reaction pathways are too high in the DFT approximation.

  18. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  19. Small molecule fluoride toxicity agonists.

    Science.gov (United States)

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Application of zeolite-based catalyst to hydrocracking of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Sato, T.; Yoshimura, Y.; Hinata, A.; Yoshitomi, S.; Castillo Mares, A.; Nishijima, A. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-06-01

    Y-zeolite supported catalysts were applied to the hydrocracking of coal-derived liquids. By the introduction of two-stage upgrading consisting of hydrotreating and hydrocracking, Wandoan coal-derived middle distillate was hydrocracked over Ni-Mo/Y-zeolite, producing a high gasoline fraction yield. Zeolite supported catalysts gave little hydrocracked compounds in the hydroprocessing of coal-derived heavy oils, even after hydrotreatment. The reaction inhibitors which seriously poison the active sites of zeolites were found to be small nitrogen-containing molecules. In the hydroprocessing of coal-derived heavy oils, zeolite supported catalysts were inferior to alumina supported catalysts. This is due to the high hydrocracking but low hydrogenation activity of zeolite supported catalysts. 22 refs., 5 figs., 11 tabs.

  1. Design of small molecule epigenetic modulators.

    Science.gov (United States)

    Pachaiyappan, Boobalan; Woster, Patrick M

    2014-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...... and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types...

  3. Small molecule-guided thermoresponsive supramolecular assemblies

    KAUST Repository

    Rancatore, Benjamin J.

    2012-10-23

    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.

  4. Small molecule-guided thermoresponsive supramolecular assemblies

    KAUST Repository

    Rancatore, Benjamin J.; Mauldin, Clayton E.; Frechet, Jean; Xu, Ting

    2012-01-01

    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.

  5. A small-angle neutron scattering investigation of coke deposits on catalysts

    International Nuclear Information System (INIS)

    Acharya, D.R.; Hughes, R.; Allen, A.J.

    1990-01-01

    Small-angle neutron scattering (SANS) has been used to characterize a silica-alumina catalyst before and after coke deposition. The reaction used to deactivate the catalyst was the isomerization of xylenes. The results showed that, while most of the surface area in this type of catalyst resides in the ultrafine pores of diameters less than 1 nm occupying about 7% of the sample volume, there appears to be no coke deposition in these pores. The coke seems to coat the solid structures of 3.3-nm diameter which are of capillary shape. Such structures occupy about 6% of the sample volume. The coke was found to correspond to amonolayer of composition CH 0.3 with a density of 1660 kg/m 3

  6. Small-molecule pheromones and hormones controlling nematode development.

    Science.gov (United States)

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  7. X-ray characterization of solid small molecule organic materials

    Science.gov (United States)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  8. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S. [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  9. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    Science.gov (United States)

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  10. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  11. Small molecule inhibitors of anthrax edema factor.

    Science.gov (United States)

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; O'Malley, Sean; Leppla, Stephen H; Johnson, Alan T

    2018-01-15

    Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Small Molecule Modifiers of the microRNA and RNA Interference Pathway

    OpenAIRE

    Deiters, Alexander

    2009-01-01

    Recently, the RNA interference (RNAi) pathway has become the target of small molecule inhibitors and activators. RNAi has been well established as a research tool in the sequence-specific silencing of genes in eukaryotic cells and organisms by using exogenous, small, double-stranded RNA molecules of approximately 20 nucleotides. Moreover, a recently discovered post-transcriptional gene regulatory mechanism employs microRNAs (miRNAs), a class of endogenously expressed small RNA molecules, whic...

  13. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    Science.gov (United States)

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Methods to enable the design of bioactive small molecules targeting RNA.

    Science.gov (United States)

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  15. Augmented-plane-wave calculations on small molecules

    International Nuclear Information System (INIS)

    Serena, P.A.; Baratoff, A.; Soler, J.M.

    1993-01-01

    We have performed ab initio calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic structure of molecules, solids, and surfaces. It is based on the local-density approximation (LDA) for exchange and correlation and the nonlinear augmented-plane-wave method. Very accurate atomic forces are obtained directly. This allows for implementation of Car-Parrinello-like techniques to determine simultaneously the self-consistent electron wave functions and the equilibrium atomic positions within an iterative scheme. We find excellent agreement with the best existing LDA-based calculations and remarkable agreement with experiment for the equilibrium geometries, vibrational frequencies, and dipole moments of a wide variety of molecules, including strongly bound homopolar and polar molecules, hydrogen-bound and electron-deficient molecules, and weakly bound alkali and noble-metal dimers, although binding energies are overestimated

  16. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    Science.gov (United States)

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  17. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  18. Mechanism-Based Design of Green Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rybak-Akimova, Elena [Tufts Univ., Medford, MA (United States)

    2015-03-16

    In modern era of scarce resources, developing chemical processes that can eventually generate useful materials and fuels from readily available, simple, cheap, renewable starting materials is of paramount importance. Small molecules, such as dioxygen, dinitrogen, water, or carbon dioxide, can be viewed as ideal sources of oxygen, nitrogen, or carbon atoms in synthetic applications. Living organisms perfected the art of utilizing small molecules in biosynthesis and in generating energy; photosynthesis, which couples carbohydrate synthesis from carbon dioxide with photocatalytic water splitting, is but one impressive example of possible catalytic processes. Small molecule activation in synthetic systems remains challenging, and current efforts are focused on developing catalytic reactions that can convert small molecules into useful building blocks for generating more complicated organic molecules, including fuels. Modeling nature is attractive in many respects, including the possibility to use non-toxic, earth-abundant metals in catalysis. Specific systems investigated in our work include biomimetic catalytic oxidations with dioxygen, hydrogen peroxide, and related oxygen atom donors. More recently, a new direction was been also pursued in the group, fixation of carbon dioxide with transition metal complexes. Mechanistic understanding of biomimetic metal-catalyzed oxidations is critical for the design of functional models of metalloenzymes, and ultimately for the rational synthesis of useful, selective and efficient oxidation catalysts utilizing dioxygen and hydrogen peroxide as terminal oxidants. All iron oxidases and oxygenases (both mononuclear and dinuclear) utilize metal-centered intermediates as reactive species in selective substrate oxidation. In contrast, free radical pathways (Fenton chemistry) are common for traditional inorganic iron compounds, producing hydroxyl radicals as very active, non-selective oxidants. Recent developments, however, changed this

  19. Organic small molecule semiconducting chromophores for use in organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    2018-02-13

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  20. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Science.gov (United States)

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-04-01

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  1. Integrated Transmission Electron and Single‐Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanović, Zoran; Kalirai, Sam; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans C.; Weckhuysen, Bert M.

    2017-01-01

    Abstract Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single‐molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed secti...

  2. Computational mass spectrometry for small molecules

    Science.gov (United States)

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  3. Restrictive liquid-phase diffusion and reaction in bidispersed catalysts

    International Nuclear Information System (INIS)

    Lee, S.Y.; Seader, J.D.; Tsai, C.H.; Massoth, F.E.

    1991-01-01

    In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al 2 O 3 catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone

  4. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.

    Science.gov (United States)

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M

    2018-03-02

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  5. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    Science.gov (United States)

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  6. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    KAUST Repository

    Goetze, Joris

    2018-02-06

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  7. High power passive μDMFC with low catalyst loading for small power generation

    International Nuclear Information System (INIS)

    Ahmad, M.M.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.

    2010-01-01

    The main constraint for commercialization of micro direct methanol fuel cell (μDMFC) for small power generation is the performance of the fuel cell. In this study, a high power μDMFC with a power output of 56 mW and an active area of 4 cm 2 was successfully developed. The cell required low catalyst loading of 5 mg cm -2 and 0.5 mg cm -2 at the anode and cathode, respectively. Optimal design parameters for methanol concentration and catalyst loading were examined. Finally, long-term performance testing was performed and OCV curves are reported. The results obtained for this gives the highest power density at low catalyst loading as compare to other researchers in this area.

  8. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanovic, Zoran; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans; Weckhuysen, Bert M.

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a ...

  9. Targeting p53 by small molecules in hematological malignancies

    OpenAIRE

    Saha, Manujendra N; Qiu, Lugui; Chang, Hong

    2013-01-01

    p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their ant...

  10. Development of novel small molecules for imaging and drug release

    Science.gov (United States)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  11. [In situ diffuse reflectance FTIR spectroscopy study of CO adsorption on Ni2P/mesoporous molecule sieve catalysts].

    Science.gov (United States)

    Liu, Qian-qian; Ji, Sheng-fu; Wu, Ping-yi; Hu, Lin-hua; Huang, Xiao-fan; Zhu, Ji-qin; Li, Cheng-yue

    2009-05-01

    Abstract The supported nickel phosphate precursors were prepared by incipient wetness impregnation using nickel nitrate as nickel source, diammonium hydrogen phosphate as phosphorus source, and MCM-41, MCM-48, SBA-15 and SBA-16 as supports, respectively. Then, the supported Ni2 P catalysts were prepared by temperature-programmed reduction in flowing Hz from their nickel phosphate precursors. The in situ diffuse reflectance FTIR spectroscopy (DRIFTS) analysis with the probe molecule CO was carried out to characterize the surface properties. The results indicated that there were significant differences in the spectral features of the samples. The upsilon(CO) absorbances observed for adsorbed CO on mesoporous molecule sieve was attributed to weak physical adsorption. There are four different kinds of upsilon(CO) absorbances observed for adsorbed CO on Ni2 P/MCM-41 catalyst with the following assignments: (1) the formation of Ni(CO)4 at 2055 cm(-1). (2) CO terminally bonded to cus Ni(delta+) (0catalysts. The absorbance observed at 2051-2055 cm(-1) for CO adsorption on Ni2P/MCM-48, Ni2P/SBA-15 and Ni2P/SBA-16 catalysts is due to the formation of Ni(CO)4 species. The other upsilon absorbances observed at 2093-2096 cm(-1) was attributed to CO terminally bonded to cus Ni(delta+) (0

  12. Small-molecule compounds exhibiting target-mediated drug disposition - A case example of ABT-384.

    Science.gov (United States)

    An, Guohua; Liu, Wei; Dutta, Sandeep

    2015-10-01

    Nonlinearities are frequently encountered in pharmacokinetics, and they can occur when 1 or more processes of absorption, distribution, metabolism, and excretion are saturable. One special source of nonlinearity that has been noticed recently is the saturable binding of the drug to a high-affinity-low-capacity target, a phenomenon known as target-mediated drug disposition (TMDD). Although TMDD can occur in both small-molecule compounds and large-molecule compounds, the latter has received much more attention because of its high prevalence. With the development of more potent small-molecule drugs acting on highly specific targets and the availability of increasingly sensitive analytical techniques, small-molecule compounds exhibiting TMDD have been increasingly reported in the past several years. ABT-384 is a small-molecule drug candidate that exhibited significant nonlinear pharmacokinetics, potentially imparted by TMDD, in a first-in-human clinical trial conducted in healthy volunteers. Compared with published small-molecule compounds exhibiting TMDD, ABT-384 pharmacokinetic characteristics are more consistent with TMDD. To expand current knowledge of TMDD of small-molecule compounds and increase awareness of this interesting and clinically important phenomenon, in this review the general features of small-molecule compounds exhibiting TMDD are highlighted, with ABT-384 provided as an example. © 2015, The American College of Clinical Pharmacology.

  13. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  14. Tritium labelling of molecules constrained in microporous catalysts

    International Nuclear Information System (INIS)

    Long, M.A.; Garnett, J.L.; Than, Chit

    1989-01-01

    The use of microporous aluminophosphate catalysts for exchange between tritium gas or tritiated water and organic substrates is described. The results are compared with those of microporous zeolites. Results are interpreted in terms of the influence of the constraints imposed on molecular configuration by the catalyst pore geometry. The use of these porous structures for minimising byproduct formation in radiation induced labelling processes with tritium gas is described. (author). 10 refs.; 3 tabs

  15. Recent progress in the development of small-molecule glucagon receptor antagonists.

    Science.gov (United States)

    Sammons, Matthew F; Lee, Esther C Y

    2015-10-01

    The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Prospective Method to Guide Small Molecule Drug Design

    Science.gov (United States)

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  17. Mapping small molecule binding data to structural domains.

    Science.gov (United States)

    Kruger, Felix A; Rostom, Raghd; Overington, John P

    2012-01-01

    Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes

  18. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    Science.gov (United States)

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.

  19. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  20. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  1. Small molecule alteration of RNA sequence in cells and animals.

    Science.gov (United States)

    Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D

    2017-10-18

    RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG) exp . The small molecule, 2H-4-Ru, binds to r(CUG) exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    1982-01-01

    Studies are reported in these areas: double resonance in fluorescent and Raman scattering; surface enhanced Raman scattering; fluorescence by molecules embedded in small particles; fluorescence by a liquid droplet; and fluorescence by conical pits in surfaces

  4. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...

  5. Blu-ray based optomagnetic aptasensor for detection of small molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Pinto, Alessandro

    2016-01-01

    This paper describes an aptamer-based optomagnetic biosensor for detection of a small molecule based on target binding-induced inhibition of magnetic nanoparticle (MNP) clustering. For the detection of a target small molecule, two mutually exclusive binding reactions (aptamer-target binding...... the hydrodynamic size distribution of MNPs and their clusters. A commercial Blu-ray optical pickup unit is used for optical signal acquisition, which enables the establishment of a low-cost and miniaturized biosensing platform. Experimental results show that the degree of MNP clustering correlates well...

  6. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas Eiland; Clausen, Mads Hartvig

    2016-01-01

    Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function, and ther......Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function...

  7. RNA targeting by small molecules: Binding of protoberberine ...

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Studies on RNA targeting by small molecules to specifically control certain cellular functions is an .... form secondary structures such as stem-loop, hairpin, etc. ..... paired third strand of the triplex without affecting the stability.

  8. TSH Receptor Signaling Abrogation by a Novel Small Molecule.

    Science.gov (United States)

    Latif, Rauf; Realubit, Ronald B; Karan, Charles; Mezei, Mihaly; Davies, Terry F

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves' disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3-0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin - a post receptor activator of adenylyl cyclase - confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC 50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the

  9. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound.

    Science.gov (United States)

    Gai, Meiyu; Frueh, Johannes; Tao, Tianyi; Petrov, Arseniy V; Petrov, Vladimir V; Shesterikov, Evgeniy V; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-06-01

    Long term encapsulation combined with spatiotemporal release for a precisely defined quantity of small hydrophilic molecules on demand remains a challenge in various fields ranging from medical drug delivery, controlled release of catalysts to industrial anti-corrosion systems. Free-standing individually sealed polylactic acid (PLA) nano- and microchamber arrays were produced by one-step dip-coating a PDMS stamp into PLA solution for 5 s followed by drying under ambient conditions. The wall thickness of these hydrophobic nano-microchambers is tunable from 150 nm to 7 μm by varying the PLA solution concentration. Furthermore, small hydrophilic molecules were successfully in situ precipitated within individual microchambers in the course of solvent evaporation after sonicating the PLA@PDMS stamp to remove air-bubbles and to load the active substance containing solvent. The cargo capacity of single chambers was determined to be in the range of several picograms, while it amounts to several micrograms per cm 2 . Two different methods for sealing chambers were compared: microcontact printing versus dip-coating whereby microcontact printing onto a flat PLA sheet allows for entrapment of micro-air-bubbles enabling microchambers with both ultrasound responsiveness and reduced permeability. Cargo release triggered by external high intensity focused ultrasound (HIFU) stimuli is demonstrated by experiment and compared with numerical simulations.

  10. [Innovative application of small molecules to influence -pathogenicity of dental plaque].

    Science.gov (United States)

    Janus, M M; Volgenant, C M C; Krom, B P

    2018-05-01

    Current preventive measures against infectious oral diseases are mainly focussed on plaque removal and promoting a healthy lifestyle. This in vitro study investigated a third preventive method: maintaining healthy dental plaque with the use of small molecules. As a model of dental plaque, in vitro biofilms were cultivated under conditions that induce pathogenic characteristics. The effect of erythritol and other small molecules on the pathogenic characteristics and bacterial composition of the biofilm was evaluated. The artificial sweetener erythritol and the molecule 3-Oxo-N-(2-oxycyclohexyl)dodecanamide (3-Oxo-N) had no clinically relevant effect on total biofilm formation. Erythritol did, however, lower the gingivitis related protease activity of the biofilm, while 3-Oxo-N blocked the caries related lactic acid accumulation. Furthermore, both substances ensured the biofilm maintained a young, non-pathogenic microbial composition. This shows it is possible to influence the dental plaque in a positive manner in vitro with the help of small molecules. Further research is necessary before this manipulation of dental plaque can be applied.

  11. A semantic web ontology for small molecules and their biological targets.

    Science.gov (United States)

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  12. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    Science.gov (United States)

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  13. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  14. Urea transporter proteins as targets for small-molecule diuretics.

    Science.gov (United States)

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  15. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  16. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators.

    Science.gov (United States)

    Zou, Xiaojing; Qu, Mingyi; Fang, Fang; Fan, Zeng; Chen, Lin; Yue, Wen; Xie, Xiaoyan; Pei, Xuetao

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  17. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    Directory of Open Access Journals (Sweden)

    Xiaojing Zou

    2017-01-01

    Full Text Available Platelets (PLTs are produced by megakaryocytes (MKs that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI, nicotinamide (NIC, Src inhibitor (SI, and Aurora B inhibitor (ABI and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  18. Advanced SPARQL querying in small molecule databases

    Czech Academy of Sciences Publication Activity Database

    Galgonek, Jakub; Hurt, T.; Michlíková, V.; Onderka, P.; Schwarz, J.; Vondrášek, Jiří

    2016-01-01

    Roč. 8, Jun 6 (2016), č. článku 31. ISSN 1758-2946 R&D Projects: GA MŠk(CZ) LM2015047 Institutional support: RVO:61388963 Keywords : Resource Description Framework * SPARQL query language * Database of small molecules Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.220, year: 2016 http://jcheminf.springeropen.com/articles/10.1186/s13321-016-0144-4

  19. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  20. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Science.gov (United States)

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  1. Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells

    DEFF Research Database (Denmark)

    Huang, Jianhua; Zhang, Shanlin; jiang, Bo

    2016-01-01

    With respect to the successes from symmetric small molecules, asymmetric ones have recently emerged as an alternative choice. In this paper, we present the synthesis and photovoltaic properties of four asymmetric small molecule donors. The benzo[1,2-b:4,5-b']dithiophene (BDT) end in the asymmetri...

  2. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    International Nuclear Information System (INIS)

    Sharma, G. D.

    2011-01-01

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm 2 has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  3. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Simulation of diffusion time of small molecules in protein crystals.

    Science.gov (United States)

    Geremia, Silvano; Campagnolo, Mara; Demitri, Nicola; Johnson, Louise N

    2006-03-01

    A simple model for evaluation of diffusion times of small molecule into protein crystals has been developed, which takes into account the physical and chemical properties both of protein crystal and the diffusing molecules. The model also includes consideration of binding and the binding affinity of a ligand to the protein. The model has been validated by simulation of experimental set-ups of several examples found in the literature. These experiments cover a wide range of situations: from small to relatively large diffusing molecules, crystals having low, medium, or high protein density, and different size. The reproduced experiments include ligand exchange in protein crystals by soaking techniques. Despite the simplifying assumptions of the model, theoretical and experimental data are in agreement with available data, with experimental diffusion times ranging from a few seconds to several hours. The method has been used successfully for planning intermediate cryotrapping experiments in maltodextrin phosphorylase crystals.

  5. Small molecule hydration energy and entropy from 3D-RISM

    Science.gov (United States)

    Johnson, J.; Case, D. A.; Yamazaki, T.; Gusarov, S.; Kovalenko, A.; Luchko, T.

    2016-09-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.

  6. Small molecule hydration energy and entropy from 3D-RISM

    International Nuclear Information System (INIS)

    Johnson, J; Case, D A; Yamazaki, T; Gusarov, S; Kovalenko, A; Luchko, T

    2016-01-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases. (paper)

  7. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Synthesis of triazole-based and imidazole-based zinc catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, Carlos A.; Satcher, Jr., Joe H.; Aines, Roger D.; Baker, Sarah E.

    2013-03-12

    Various methods and structures of complexes and molecules are described herein related to a zinc-centered catalyst for removing carbon dioxide from atmospheric or aqueous environments. According to one embodiment, a method for creating a tris(triazolyl)pentaerythritol molecule includes contacting a pentaerythritol molecule with a propargyl halide molecule to create a trialkyne molecule, and contacting the trialkyne molecule with an azide molecule to create the tris(triazolyl)pentaerythritol molecule. In another embodiment, a method for creating a tris(imidazolyl)pentaerythritol molecule includes alkylating an imidazole 2-carbaldehyde molecule to create a monoalkylated aldehyde molecule, reducing the monoalkylated aldehyde molecule to create an alcohol molecule, converting the alcohol molecule to create an alkyl halide molecule using thionyl halide, and reacting the alkyl halide molecule with a pentaerythritol molecule to create a tris(imidazolyl)pentaerythritol molecule. In another embodiment, zinc is bound to the tris(triazolyl)pentaerythritol molecule to create a zinc-centered tris(triazolyl)pentaerythritol catalyst for removing carbon dioxide from atmospheric or aqueous environments.

  9. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  10. Carbon-doped boron nitride nanosheet as a promising catalyst for N2O reduction by CO or SO2 molecule: A comparative DFT study

    Science.gov (United States)

    Esrafili, Mehdi D.; Saeidi, Nasibeh

    2018-06-01

    We report for the first time, the catalytic activity of the experimentally available carbon-doped boron nitride nanosheet (C-BNNS) towards the reduction of N2O in the presence of CO or SO2 molecule. According to our density functional theory calculations, C-doping can introduce high spin density into BN monolayer which is mainly localized over the C and its neighboring N atoms. The Hirshfeld charge density analysis reveals that the electron-rich C-BNNS acts as an electron donating support to activate N2O molecule which is an important step in the reduction of N2O. The N2O reduction reaction starts with the dissociative adsorption of N2O over the C-BNNS surface, yielding the N2 molecule and an activated oxygen moiety (Oads) adsorbed over the C atom. The reaction then proceeds via the elimination of Oads by a CO or SO2 molecule. The obtained low activation energies clearly indicate that the metal-free C-BNNS surface can be regarded as a highly active catalyst for the reduction of N2O. The results of this study may open new avenues in searching low cost and highly active BN-based catalysts for low temperature reduction of N2O.

  11. Small Molecules, Diversity and Great Expectations

    Indian Academy of Sciences (India)

    Small Molecules, Diversity and Great Expectations · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25 · Slide 26 · Slide 27.

  12. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    Science.gov (United States)

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  13. Fully synthetic phage-like system for screening mixtures of small molecules in live cells.

    Science.gov (United States)

    Byk, Gerardo; Partouche, Shirly; Weiss, Aryeh; Margel, Shlomo; Khandadash, Raz

    2010-05-10

    A synthetic "phage-like" system was designed for screening mixtures of small molecules in live cells. The core of the system consists of 2 mum diameter cross-linked monodispersed microspheres bearing a panel of fluorescent tags and peptides or small molecules either directly synthesized or covalently conjugated to the microspheres. The microsphere mixtures were screened for affinity to cell line PC-3 (prostate cancer model) by incubation with live cells, and as was with phage-display peptide methods, unbound microspheres were removed by repeated washings followed by total lysis of cells and analysis of the bound microspheres by flow-cytometry. Similar to phage-display peptide screening, this method can be applied even in the absence of prior information about the cellular targets of the candidate ligands, which makes the system especially interesting for selection of molecules with high affinity for desired cells, tissues, or tumors. The advantage of the proposed system is the possibility of screening synthetic non-natural peptides or small molecules that cannot be expressed and screened using phage display libraries. A library composed of small molecules synthesized by the Ugi reaction was screened, and a small molecule, Rak-2, which strongly binds to PC-3 cells was found. Rak-2 was then individually synthesized and validated in a complementary whole cell-based binding assay, as well as by live cell microscopy. This new system demonstrates that a mixture of molecules bound to subcellular sized microspheres can be screened on plated cells. Together with other methods using subcellular sized particles for cellular multiplexing, this method represents an important milestone toward high throughput screening of mixtures of small molecules in live cells and in vivo with potential applications in the fields of drug delivery and diagnostic imaging.

  14. Along the Central Dogma-Controlling Gene Expression with Small Molecules.

    Science.gov (United States)

    Schneider-Poetsch, Tilman; Yoshida, Minoru

    2018-05-04

    The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.

    Science.gov (United States)

    McAfee, Seth M; Topple, Jessica M; Payne, Abby-Jo; Sun, Jon-Paul; Hill, Ian G; Welch, Gregory C

    2015-04-27

    An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    Science.gov (United States)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  17. Supported Metal Zeolites as Environmental Catalysts for Reduction of NOx Molecules

    International Nuclear Information System (INIS)

    May Nwe Win; Tin Tin Aye; Kyaw Myo Naing; Nyunt Wynn; Maung Maung Htay

    2005-09-01

    The NOx contamination of air is a major pollutant due to its reaction with the volatile organic compounds, which give rise to ground level (tropospheric) ozone. It is a conventional fact that NOx are one of the major components of car exhaust. In view of that fact, to sustain the tropospheric ozone is to reduce the amount of NOx in the air. Therefore, this paper is concerned with the catalytic activity of Fe-loaded zeolite and Cu-loaded zeolite used to decompose NIOx by SCR (selective catalytic reduction) reaction with very high activity have been studied. Their preparations, characterization by XRD, FT-IR and SEM were also studied. Fe and Cu containig were prepared by soild state ion-exchange method under ambient presure and at the temperature of 600C for 4 hours. From this study, selective catalytic reduction rection was observed, showing about 87% conversion of the NOx molecule with the corresponding optimum amount of catalyst (1.0+-0.5)g working under the reactor space volume of 30cm3 at ambient temperature (30-32)C

  18. Adsorption of small gas molecules on B36 nanocluster

    Indian Academy of Sciences (India)

    Supplementary Information. Journal of Chemical Sciences. Adsorption of small gas molecules on B36 nanocluster. YOUNES VALADBEIGI. *. , HOSSEIN FARROKHPOUR and MAHMOUD TABRIZCHI. Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran. *. Corresponding Author: Younes ...

  19. Small organic molecule based flow battery

    Science.gov (United States)

    Huskinson, Brian; Marshak, Michael; Aziz, Michael J.; Gordon, Roy G.; Betley, Theodore A.; Aspuru-Guzik, Alan; Er, Suleyman; Suh, Changwon

    2018-05-08

    The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.

  20. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement; Bukhriakov, Konstantin; Bertrand, Olivier; Vu, Khanh B.; Gohy, Jean-Francois; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2016-01-01

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  1. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement

    2016-03-22

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  2. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  3. A small-molecule switch for Golgi sulfotransferases.

    Science.gov (United States)

    de Graffenried, Christopher L; Laughlin, Scott T; Kohler, Jennifer J; Bertozzi, Carolyn R

    2004-11-30

    The study of glycan function is a major frontier in biology that could benefit from small molecules capable of perturbing carbohydrate structures on cells. The widespread role of sulfotransferases in modulating glycan function makes them prime targets for small-molecule modulators. Here, we report a system for conditional activation of Golgi-resident sulfotransferases using a chemical inducer of dimerization. Our approach capitalizes on two features shared by these enzymes: their requirement of Golgi localization for activity on cellular substrates and the modularity of their catalytic and localization domains. Fusion of these domains to the proteins FRB and FKBP enabled their induced assembly by the natural product rapamycin. We applied this strategy to the GlcNAc-6-sulfotransferases GlcNAc6ST-1 and GlcNAc6ST-2, which collaborate in the sulfation of L-selectin ligands. Both the activity and specificity of the inducible enzymes were indistinguishable from their WT counterparts. We further generated rapamycin-inducible chimeric enzymes comprising the localization domain of a sulfotransferase and the catalytic domain of a glycosyltransferase, demonstrating the generality of the system among other Golgi enzymes. The approach provides a means for studying sulfate-dependent processes in cellular systems and, potentially, in vivo.

  4. Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction.

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Yakubov

    Full Text Available Tissue transglutaminase (TG2 mediates protein crosslinking through generation of ε-(γ-glutamyl lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53 potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination.

  5. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    Science.gov (United States)

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  6. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  8. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions.

    Science.gov (United States)

    Kanoh, Naoki; Asami, Aya; Kawatani, Makoto; Honda, Kaori; Kumashiro, Saori; Takayama, Hiroshi; Simizu, Siro; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Hatakeyama, Satoru; Tsuganezawa, Keiko; Utata, Rei; Tanaka, Akiko; Yokoyama, Shigeyuki; Tashiro, Hideo; Osada, Hiroyuki

    2006-12-18

    We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure-activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process.

  9. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming

    Directory of Open Access Journals (Sweden)

    Kyung Tae Lim

    2016-04-01

    Full Text Available Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps. However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.

  10. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    Directory of Open Access Journals (Sweden)

    Shan L

    2015-09-01

    Full Text Available Lingling Shan,1 Ming Liu,2 Chao Wu,1 Liang Zhao,1 Siwen Li,3 Lisheng Xu,1 Wengen Cao,1 Guizhen Gao,1 Yueqing Gu3 1Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People’s Republic of China; 2Department of Biology, University of South Dakota, Vermillion, SD, USA; 3Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX, composed of folic acid (FA, target, amino acids (Arg or Glu, linker, and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. Keywords: multi-small molecules, paclitaxel, prodrugs, targeting, tumor therapy

  11. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  12. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    OpenAIRE

    Terry W. Moody; Nicole Tashakkori; Samuel A. Mantey; Paola Moreno; Irene Ramos-Alvarez; Marcello Leopoldo; Robert T. Jensen

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar ...

  13. Small molecule antagonists of integrin receptors.

    Science.gov (United States)

    Perdih, A; Dolenc, M Sollner

    2010-01-01

    The complex and widespread family of integrin receptors is involved in numerous physiological processes, such as tissue remodeling, angiogenesis, development of the immune response and homeostasis. In addition, their key role has been elucidated in important pathological disorders such as cancer, cardiovascular diseases, osteoporosis, autoimmune and inflammatory diseases and in the pathogenesis of infectious diseases, making them highly important targets for modern drug design campaigns. In this review we seek to present a concise overview of the small molecule antagonists of this diverse and highly complex receptor family. Integrin antagonists are classified according to the targeted integrin receptor and are discussed in four sections. First we present the fibrinogen alpha(IIb)beta3 and the vitronectin alpha (V)beta(3) receptor antagonists. The remaining selective integrin antagonists are examined in the third section. The final section is dedicated to molecules with dual or multiple integrin activity. In addition, the use of antibodies and peptidomimetic approaches to modulate the integrin receptors are discussed, as well providing the reader with an overall appreciation of the field.

  14. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  15. A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile

    Directory of Open Access Journals (Sweden)

    Rajani Thanissery

    2018-06-01

    Full Text Available Antibiotics are considered to be the first line of treatment for mild to moderately severe Clostridium difficile infection (CDI in humans. However, antibiotics are also risk factors for CDI as they decrease colonization resistance against C. difficile by altering the gut microbiota and metabolome. Finding compounds that selectively inhibit different stages of the C. difficile life cycle, while sparing the indigenous gut microbiota is important for the development of alternatives to standard antibiotic treatment. 2-aminoimidazole (2-AI molecules are known to disrupt bacterial protection mechanisms in antibiotic resistant bacteria such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, but are yet to be evaluated against C. difficile. A comprehensive small molecule-screening pipeline was developed to investigate how novel small molecules affect different stages of the C. difficile life cycle (growth, toxin, and sporulation in vitro, and a library of commensal bacteria that are associated with colonization resistance against C. difficile. The initial screening tested the efficacy of eleven 2-AI molecules (compound 1 through 11 against C. difficile R20291 compared to a vancomycin (2 μg/ml control. Molecules were selected for their ability to inhibit C. difficile growth, toxin activity, and sporulation. Further testing included growth inhibition of other C. difficile strains (CD196, M68, CF5, 630, BI9, M120 belonging to distinct PCR ribotypes, and a commensal panel (Bacteroides fragilis, B. thetaiotaomicron, C. scindens, C. hylemonae, Lactobacillus acidophilus, L. gasseri, Escherichia coli, B. longum subsp. infantis. Three molecules compound 1 and 2, and 3 were microbicidal, whereas compounds 4, 7, 9, and 11 inhibited toxin activity without affecting the growth of C. difficile strains and the commensal microbiota. The antimicrobial and anti-toxin effects of 2-AI molecules need to be further characterized for mode of

  16. [Progress in sample preparation and analytical methods for trace polar small molecules in complex samples].

    Science.gov (United States)

    Zhang, Qianchun; Luo, Xialin; Li, Gongke; Xiao, Xiaohua

    2015-09-01

    Small polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper. Meanwhile, the applications and developments of analytical methods of polar small molecules, such as reversed-phase liquid chromatography, hydrophilic interaction chromatography, etc., are also reviewed.

  17. Small Molecules that Enhance the Catalytic Efficiency of HLA-DM

    International Nuclear Information System (INIS)

    Nicholson, M.; Moradi, B.; Seth, N.; Xing, X.; Cuny, G.; Stein, R.; Wucherpfenning, K.

    2006-01-01

    HLA-DM (DM) plays a critical role in Ag presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. Large lateral surfaces involved in the DM:HLA-DR (DR) interaction have been defined, but the mechanism of catalysis is not understood. In this study, we describe four small molecules that accelerate DM-catalyzed peptide exchange. Mechanistic studies demonstrate that these small molecules substantially enhance the catalytic efficiency of DM, indicating that they make the transition state of the DM:DR/peptide complex energetically more favorable. These compounds fall into two functional classes: two compounds are active only in the presence of DM, and binding data for one show a direct interaction with DM. The remaining two compounds have partial activity in the absence of DM, suggesting that they may act at the interface between DM and DR/peptide. A hydrophobic ridge in the DMβ1 domain was implicated in the catalysis of peptide exchange because the activity of three of these enhancers was substantially reduced by point mutations in this area

  18. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle.

    Directory of Open Access Journals (Sweden)

    Ali Akgul

    Full Text Available Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7 were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products.

  19. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    Science.gov (United States)

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  20. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    Science.gov (United States)

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  1. New small molecules targeting apoptosis and cell viability in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Doris Maugg

    Full Text Available Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS, the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2 nor primary human osteoblasts (hOB. In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS.

  2. Small Molecule Drug Discovery at the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The therapeutic success of peptide glucagon-like peptide-1 (GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of “ligand bias” and “probe dependency” for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

  3. Advances in treating psoriasis in the elderly with small molecule inhibitors.

    Science.gov (United States)

    Cline, Abigail; Cardwell, Leah A; Feldman, Steven R

    2017-12-01

    Due to the chronic nature of psoriasis, the population of elderly psoriasis patients is increasing. However, many elderly psoriatic patients are not adequately treated because management is challenging as a result of comorbidities, polypharmacy, and progressive impairment of organ systems. Physicians may hesitate to use systemic or biologic agents in elderly psoriasis patients because of an increased risk of adverse events in this patient population. Small molecule medications are emerging as promising options for elderly patients with psoriasis and other inflammatory conditions. Areas covered: Here we review the efficacy, safety and tolerability of small molecule inhibitors apremilast, tofacitinib, ruxolitinib, baricitinib, and peficitinib in the treatment of psoriasis, with focus on their use in the elderly population. Expert opinion: Although small molecule inhibitors demonstrate efficacy in elderly patients with psoriasis, they will require larger head-to-head studies and post-marketing registries to evaluate their effectiveness and safety in specific patient populations. Apremilast, ruxolitinib, and peficitinib are effective agents with favorable side effect profiles; however, physicians should exercise caution when prescribing tofacitinib or baricitinib in elderly populations due to adverse events. The high cost of these drugs in the U.S. is likely to limit their use.

  4. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  6. Psmir: a database of potential associations between small molecules and miRNAs.

    Science.gov (United States)

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  7. Detecting and identifying small molecules in a nanopore flux capacitor

    International Nuclear Information System (INIS)

    Bearden, Samuel; Zhang, Guigen; McClure, Ethan

    2016-01-01

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye’s analysis of the electrical atmosphere of electrolyte solutions. (paper)

  8. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... is to identify which sites are active towards specific molecules and in getting insight to what the ideal catalyst should look like in terms of morphology. Dimethyl carbonate is an environmentally benign compound that can be used as a solvent and precursor in chemical synthesis or as a fuel and fuel additive...... processes currently used. It is found that noble metals can be used as electrocatalysts for the synthesis of dimethyl carbonate, significantly lowering the potential when using copper instead of gold. Besides being active, copper was found to be selective towards dimethyl carbonate. A non-selective catalyst...

  9. Light incoupling in small molecule organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, Nikola; Meiss, Jan; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01069 Dresden (Germany); Gnehr, Wolf-Michael [Heliatek GmbH, Liebigstrasse 26, 01187 Dresden (Germany)

    2008-07-01

    Light incoupling is an essential topic for optimization of organic solar cells. In our group, we examine light incoupling of different kinds of transparent contacting materials as well as external dielectric coatings, using optical simulation of thin film systems and experimental methods. Thin films of small molecules are prepared by thermal evaporation in a multi-chamber UHV system. Complex refraction indices of various materials are calculated from reflection and transmission measurements of monolayers. For modelling of optical properties of thin film systems, we developed a numerical simulation program based on the transfer matrix method. The cell structures investigated consist of nanolayers of small molecules, using ZnPc/C60 as an acceptor-donor heterojunction. As contact materials, we compare the expensive standard material indium tin oxide (ITO) with more cost-efficient alternatives like thin Ag layers or spin-coated layers of the polymer PEDOT:PSS, and discuss the resulting cell properties. Additional dielectric layers of varying materials, like tris(8-hydroxy-quinolinate)-aluminum (Alq3) or N,N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), are deposited on top of the stack and their influence on cell efficiencies is investigated.

  10. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  11. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-12-01

    Full Text Available Human pluripotent stem cells, including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs, hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4, epidermal growth factor (EGF, fibroblast growth factor (FGF, keratinocyte growth factor (KGF, hepatocyte growth factor (HGF, noggin, transforming growth factor (TGF-α, and WNT3A are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.

  12. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    Science.gov (United States)

    Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Singh, A. J. A. Ranjith; Peng, I-Chia; Priya, Sivan Padma; Hamat, Rukman Awang; Higuchi, Akon

    2014-01-01

    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation. PMID:25526563

  13. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening.

    Science.gov (United States)

    Douglas, Anna; Carter, Rachel; Li, Mengya; Pint, Cary L

    2018-05-23

    Small-diameter carbon nanotubes (CNTs) often require increased sophistication and control in synthesis processes, but exhibit improved physical properties and greater economic value over their larger-diameter counterparts. Here, we study mechanisms controlling the electrochemical synthesis of CNTs from the capture and conversion of ambient CO 2 in molten salts and leverage this understanding to achieve the smallest-diameter CNTs ever reported in the literature from sustainable electrochemical synthesis routes, including some few-walled CNTs. Here, Fe catalyst layers are deposited at different thicknesses onto stainless steel to produce cathodes, and atomic layer deposition of Al 2 O 3 is performed on Ni to produce a corrosion-resistant anode. Our findings indicate a correlation between the CNT diameter and Fe metal layer thickness following electrochemical catalyst reduction at the cathode-molten salt interface. Further, catalyst coarsening during long duration synthesis experiments leads to a 2× increase in average diameters from 3 to 60 min durations, with CNTs produced after 3 min exhibiting a tight diameter distribution centered near ∼10 nm. Energy consumption analysis for the conversion of CO 2 into CNTs demonstrates energy input costs much lower than the value of CNTs-a concept that strictly requires and motivates small-diameter CNTs-and is more favorable compared to other costly CO 2 conversion techniques that produce lower-value materials and products.

  14. Dissociation in small molecules

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The study of molecular dissociation processes is one of the most interesting areas of modern spectroscopy owing to the challenges presented bt even the simplest of diatomic molecules. This paper reviews the commonly used descriptions of molecular dissociation processes for diatomic molecules, the selection rules for predissociation, and a few of the principles to be remembered when one is forced to speculate about dissociation mechanisms in a new molecule. Some of these points will be illustrated by the example of dissociative ionization in O 2

  15. Identification and characterization of small molecule inhibitors of a PHD finger§

    Science.gov (United States)

    Wagner, Elise K.; Nath, Nidhi; Flemming, Rod; Feltenberger, John B.; Denu, John M.

    2012-01-01

    A number of histone-binding domains are implicated in cancer through improper binding of chromatin. In a clinically reported case of acute myeloid leukemia (AML), a genetic fusion protein between nucleoporin 98 and the third plant homeodomain (PHD) finger of JARID1A drives an oncogenic transcriptional program that is dependent on histone binding by the PHD finger. By exploiting the requirement for chromatin binding in oncogenesis, therapeutics targeting histone readers may represent a new paradigm in drug development. In this study, we developed a novel small molecule screening strategy that utilizes HaloTag technology to identify several small molecules that disrupt binding of the JARID1A PHD finger to histone peptides. Small molecule inhibitors were validated biochemically through affinity pull downs, fluorescence polarization, and histone reader specificity studies. One compound was modified through medicinal chemistry to improve its potency while retaining histone reader selectivity. Molecular modeling and site-directed mutagenesis of JARID1A PHD3 provided insights into the biochemical basis of competitive inhibition. PMID:22994852

  16. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    Science.gov (United States)

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  17. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    Science.gov (United States)

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  18. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    Science.gov (United States)

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  19. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1...

  20. Small molecules as therapy for uveitis: a selected perspective of new and developing agents.

    Science.gov (United States)

    Pleyer, Uwe; Algharably, Engi Abdel-Hady; Feist, Eugen; Kreutz, Reinhold

    2017-09-01

    Intraocular inflammation (uveitis) remains a significant burden of legal blindness. Because of its immune mediated and chronic recurrent nature, common therapy includes corticosteroids, disease-modifying anti-rheumatic drugs and more recently biologics as immune modulatory agents. The purpose of this article is to identify the role of new treatment approaches focusing on small molecules as therapeutic option in uveitis. Areas covered: A MEDLINE database search was conducted through February 2017 using the terms 'uveitis' and 'small molecule'. To provide ongoing and future perspectives in treatment options, also clinical trials as registered at ClinicalTrials.gov were included. Both, results from experimental as well as clinical research in this field were included. Since this field is rapidly evolving, a selection of promising agents had to be made. Expert opinion: Small molecules may interfere at different steps of the inflammatory cascade and appear as an interesting option in the treatment algorithm of uveitis. Because of their highly targeted molecular effects and their favorable bioavailability with the potential of topical application small molecules hold great promise. Nevertheless, a careful evaluation of these agents has to be made, since current experience is almost exclusively based on experimental uveitis models and few registered trials.

  1. Immobilization of small molecules and proteins by radio-derivatized polystyrene

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1990-01-01

    When molded polystyrene (PS) products (e.g., microtiter plates) or latex particles are irradiated with high-energy (1-10 Mrads) gamma rays in the presence of nonpolymerizable small molecules such as aromatic amines, some of these molecules incorporate into PS, which leads to the formation of radio-derivatized PS (RDPS). Two classes of RDPS can be identified regarding their ability for immobilization of biologically important molecules: (1) reactive RDPS that are able to form covalent bonds with molecules such as proteins without the help of cross-linkers, and (2) functionalized RDPS that can be used for the immobilization of molecules with activators (e.g., carbodiimides) or cross-linkers. The method can be used for the production of low-noise supports for binding assays. Most of the RDPS can be produced without impairment of the optical quality of PS, making derivatized microtiter plates suitable for colorimetric assays. The principle can be applied for the preparation of affinity sorbents, e.g., for high-performance affinity chromatography and for the immobilization of enzymes using latex PS particles

  2. Small-molecule azomethines : Organic photovoltaics via Schiff base condensation chemistry

    NARCIS (Netherlands)

    Petrus, M.L.; Bouwer, R.K.M.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J.

    2014-01-01

    Conjugated small-molecule azomethines for photovoltaic applications were prepared via Schiff base condensation chemistry. Bulk heterojunction (BHJ) devices exhibit efficiencies of 1.2% with MoOx as the hole-transporting layer. The versatility and simplicity of the chemistry is illustrated by

  3. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    Science.gov (United States)

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantum superposition of the state discrete spectrum of mathematical correlation molecule for small samples of biometric data

    Directory of Open Access Journals (Sweden)

    Vladimir I. Volchikhin

    2017-06-01

    Full Text Available Introduction: The study promotes to decrease a number of errors of calculating the correlation coefficient in small test samples. Materials and Methods: We used simulation tool for the distribution functions of the density values of the correlation coefficient in small samples. A method for quantization of the data, allows obtaining a discrete spectrum states of one of the varieties of correlation functional. This allows us to consider the proposed structure as a mathematical correlation molecule, described by some analogue continuous-quantum Schrödinger equation. Results: The chi-squared Pearson’s molecule on small samples allows enhancing power of classical chi-squared test to 20 times. A mathematical correlation molecule described in the article has similar properties. It allows in the future reducing calculation errors of the classical correlation coefficients in small samples. Discussion and Conclusions: The authors suggest that there are infinitely many mathematical molecules are similar in their properties to the actual physical molecules. Schrödinger equations are not unique, their analogues can be constructed for each mathematical molecule. You can expect a mathematical synthesis of molecules for a large number of known statistical tests and statistical moments. All this should make it possible to reduce calculation errors due to quantum effects that occur in small test samples.

  6. Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates.

    Science.gov (United States)

    Escande, Vincent; Olszewski, Tomasz K; Petit, Eddy; Grison, Claude

    2014-07-01

    Polymetallic hyperaccumulating plants growing on wastes from former mining activity were used as the starting material in the preparation of novel plant-based Lewis acid catalysts. The preparation of biosourced Lewis acid catalysts is a new way to make use of mining wastes. These catalysts were characterized by X-ray fluorescence, X-ray diffraction, inductively coupled plasma mass spectrometry, and direct infusion electrospray ionization mass spectrometry. These analyses revealed a complex composition of metal species, present mainly as polymetallic chlorides. The catalysts proved to be efficient and recyclable in a solid-state version of the Garcia Gonzalez reaction, which has been underexploited until now in efforts to use carbohydrates from biomass. This methodology was extended to various carbohydrates to obtain the corresponding polyhydroxyalkyl furans in 38-98% yield. These plant-based catalysts may be a better alternative to classical Lewis acid catalysts that were previously used for the Garcia Gonzalez reaction, such as ZnCl2 , FeCl3 , and CeCl3 , which are often unrecyclable, require aqueous treatments, or rely on metals, the current known reserves of which will be consumed in the coming decades. Moreover, the plant-based catalysts allowed novel control of the Garcia Gonzalez reaction, as two different products were obtained depending on the reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  8. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola; Wadsworth, Andrew; Moser, Maximilian; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2018-01-01

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  9. Evaluation of EML4-ALK Fusion Proteins in Non–Small Cell Lung Cancer Using Small Molecule Inhibitors

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    2011-01-01

    Full Text Available The echinoderm microtubule–associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non–small cell lung cancer and is mu-tually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non–small cell lung cancer (NSCLC. We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mech-anism of EML4-ALK inhibition by a small molecule inhibitor.

  10. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    Science.gov (United States)

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  11. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  12. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    International Nuclear Information System (INIS)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-01-01

    Highlights: • The reduction of N 2 O by CO molecule is investigated over Al- and Si-decorated graphene oxides (Al-/Si-GO). • The N 2 O decomposition process can take place with a negligible activation energy over both surfaces. • Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions. - Abstract: The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Al−O or Si−O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N 2 O by CO molecule. It is found that the adsorption and decomposition of N 2 O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (E ads ) and charge transfer (q CT ) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small E ads and q CT values. Therefore, at the presence of N 2 O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N 2 O molecule. Our results indicate that the N 2 O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N 2 molecule can be easily released from the surface. Then, the activated oxygen atom (O ads ) which remains over the surface reacts with the CO molecule to form the CO 2 molecule via the reaction O ads + CO → CO 2 . Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions.

  13. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    Science.gov (United States)

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    Science.gov (United States)

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  15. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Terry W. Moody

    2017-07-01

    Full Text Available While peptide antagonists for the gastrin-releasing peptide receptor (BB2R, neuromedin B receptor (BB1R, and bombesin (BB receptor subtype-3 (BRS-3 exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM. AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  16. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Science.gov (United States)

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  17. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  18. Small Molecule Library Synthesis Using Segmented Flow

    Directory of Open Access Journals (Sweden)

    Christina M. Thompson

    2011-11-01

    Full Text Available Flow chemistry has gained considerable recognition as a simple, efficient, and safe technology for the synthesis of many types of organic and inorganic molecules ranging in scope from large complex natural products to silicon nanoparticles. In this paper we describe a method that adapts flow chemistry to the synthesis of libraries of compounds using a fluorous immiscible solvent as a spacer between reactions. The methodology was validated in the synthesis of two small heterocycle containing libraries. The reactions were performed on a 0.2 mmol scale, enabling tens of milligrams of material to be generated in a single 200 mL reaction plug. The methodology allowed library synthesis in half the time of conventional microwave synthesis while maintaining similar yields. The ability to perform multiple, potentially unrelated reactions in a single run is ideal for making small quantities of many different compounds quickly and efficiently.

  19. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    Science.gov (United States)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  20. Anti-chemokine small molecule drugs: a promising future?

    Science.gov (United States)

    Proudfoot, Amanda E I; Power, Christine A; Schwarz, Matthias K

    2010-03-01

    Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.

  1. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  2. Chemical de-conjugation for investigating the stability of small molecule drugs in antibody-drug conjugates.

    Science.gov (United States)

    Chen, Tao; Su, Dian; Gruenhagen, Jason; Gu, Christine; Li, Yi; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-05

    Antibody-drug conjugates (ADCs) offer new therapeutic options for advanced cancer patients through precision killing with fewer side effects. The stability and efficacy of ADCs are closely related, emphasizing the urgency and importance of gaining a comprehensive understanding of ADC stability. In this work, a chemical de-conjugation approach was developed to investigate the in-situ stability of the small molecule drug while it is conjugated to the antibody. This method involves chemical-mediated release of the small molecule drug from the ADC and subsequent characterization of the released small molecule drug by HPLC. The feasibility of this technique was demonstrated utilizing a model ADC containing a disulfide linker that is sensitive to the reducing environment within cancer cells. Five reducing agents were screened for use in de-conjugation; tris(2-carboxyethyl) phosphine (TCEP) was selected for further optimization due to its high efficiency and clean impurity profile. The optimized de-conjugation assay was shown to have excellent specificity and precision. More importantly, it was shown to be stability indicating, enabling the identification and quantification of the small molecule drug and its degradation products under different formulation pHs and storage temperatures. In summary, the chemical de-conjugation strategy demonstrated here offers a powerful tool to assess the in-situ stability of small molecule drugs on ADCs and the resulting information will shed light on ADC formulation/process development and storage condition selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and synthesis of small molecule agonists of EphA2 receptor.

    Science.gov (United States)

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  4. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    Science.gov (United States)

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  5. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Science.gov (United States)

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that

  6. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Morgan A Wambaugh

    2017-06-01

    Full Text Available Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M. O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT. We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional

  7. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    Science.gov (United States)

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  8. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  9. Potential of Nonfullerene Small Molecules with High Photovoltaic Performance.

    Science.gov (United States)

    Li, Wanning; Yao, Huifeng; Zhang, Hao; Li, Sunsun; Hou, Jianhui

    2017-09-05

    Over the past decades, fullerene derivatives have become the most successful electron acceptors in organic solar cells (OSCs) and have achieved great progress, with power conversion efficiencies (PCEs) of over 11 %. However, fullerenes have some drawbacks, such as weak absorption, limited energy-level tunability, and morphological instability. In addition, fullerene-based OSCs usually suffer from large energy losses of over 0.7 eV, which limits further improvements in the PCE. Recently, nonfullerene small molecules have emerged as promising electron acceptors in OSCs. Their highly tunable absorption spectra and molecular energy levels have enabled fine optimization of the resulting devices, and the highest PCE has surpassed 12 %. Furthermore, several studies have shown that OSCs based on small-molecule acceptors (SMA) have very efficient charge generation and transport efficiency at relatively low energy losses of below 0.6 eV, which suggests great potential for the further improvement of OSCs. In this focus review, we analyze the challenges and potential of SMA-based OSCs and discuss molecular design strategies for highly efficient SMAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Small-Molecule Inhibitors of the Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Lingling Gu

    2015-09-01

    Full Text Available Drug-resistant pathogens have presented increasing challenges to the discovery and development of new antibacterial agents. The type III secretion system (T3SS, existing in bacterial chromosomes or plasmids, is one of the most complicated protein secretion systems. T3SSs of animal and plant pathogens possess many highly conserved main structural components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a major virulence determinant, and using the T3SS, the bacteria secrete and inject effector proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria from injecting effector proteins and from causing pathophysiology in host cells. Targeting the virulence of Gram-negative pathogens, rather than their survival, is an innovative and promising approach that may greatly reduce selection pressures on pathogens to develop drug-resistant mutations. This article summarizes recent progress in the search for promising small-molecule T3SS inhibitors that target the secretion and translocation of bacterial effector proteins.

  11. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates.

    Science.gov (United States)

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-01

    Antibody-drug conjugates (ADCs) are complex therapeutic agents that use the specific targeting properties of antibodies and the highly potent cytotoxicity of small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. Two critical quality attributes of ADCs are the purity and stability of the active small molecule drug linked to the ADC, but these are difficult to assess once the drug is conjugated to the antibody. In this study, we report a enzyme deconjugation approach to cleave small molecule drugs from ADCs, which allows the drugs to be subsequently characterized by reversed-phase high performance liquid chromatography. The model ADC we used in this study utilizes a valine-citrulline linker that is designed to be sensitive to endoproteases after internalization by tumor cells. We screened several proteases to determine the most effective enzyme. Among the 3 cysteine proteases evaluated, papain had the best efficiency in cleaving the small molecule drug from the model ADC. The deconjugation conditions were further optimized to achieve complete cleavage of the small molecule drug. This papain deconjugation approach demonstrated excellent specificity and precision. The purity and stability of the active drug on an ADC drug product was evaluated and the major degradation products of the active drug were identified. The papain deconjugation method was also applied to several other ADCs, with the results suggesting it could be applied generally to ADCs containing a valine-citrulline linker. Our results indicate that the papain deconjugation method is a powerful tool for characterizing the active small molecule drug conjugated to an ADC, and may be useful in ensuring the product quality, efficacy and the safety of ADCs.

  12. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  13. Upgrading Lignocellulosic Biomasses: Hydrogenolysis of Platform Derived Molecules Promoted by Heterogeneous Pd-Fe Catalysts

    Directory of Open Access Journals (Sweden)

    Claudia Espro

    2017-03-01

    Full Text Available This review provides an overview of heterogeneous bimetallic Pd-Fe catalysts in the C–C and C–O cleavage of platform molecules such as C2–C6 polyols, furfural, phenol derivatives and aromatic ethers that are all easily obtainable from renewable cellulose, hemicellulose and lignin (the major components of lignocellulosic biomasses. The interaction between palladium and iron affords bimetallic Pd-Fe sites (ensemble or alloy that were found to be very active in several sustainable reactions including hydrogenolysis, catalytic transfer hydrogenolysis (CTH and aqueous phase reforming (APR that will be highlighted. This contribution concentrates also on the different synthetic strategies (incipient wetness impregnation, deposition-precipitaion, co-precipitaion adopted for the preparation of heterogeneous Pd-Fe systems as well as on the main characterization techniques used (XRD, TEM, H2-TPR, XPS and EXAFS in order to elucidate the key factors that influence the unique catalytic performances observed.

  14. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    Science.gov (United States)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  15. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  16. Validation and extraction of molecular-geometry information from small-molecule databases.

    Science.gov (United States)

    Long, Fei; Nicholls, Robert A; Emsley, Paul; Graǽulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Murshudov, Garib N

    2017-02-01

    A freely available small-molecule structure database, the Crystallography Open Database (COD), is used for the extraction of molecular-geometry information on small-molecule compounds. The results are used for the generation of new ligand descriptions, which are subsequently used by macromolecular model-building and structure-refinement software. To increase the reliability of the derived data, and therefore the new ligand descriptions, the entries from this database were subjected to very strict validation. The selection criteria made sure that the crystal structures used to derive atom types, bond and angle classes are of sufficiently high quality. Any suspicious entries at a crystal or molecular level were removed from further consideration. The selection criteria included (i) the resolution of the data used for refinement (entries solved at 0.84 Å resolution or higher) and (ii) the structure-solution method (structures must be from a single-crystal experiment and all atoms of generated molecules must have full occupancies), as well as basic sanity checks such as (iii) consistency between the valences and the number of connections between atoms, (iv) acceptable bond-length deviations from the expected values and (v) detection of atomic collisions. The derived atom types and bond classes were then validated using high-order moment-based statistical techniques. The results of the statistical analyses were fed back to fine-tune the atom typing. The developed procedure was repeated four times, resulting in fine-grained atom typing, bond and angle classes. The procedure will be repeated in the future as and when new entries are deposited in the COD. The whole procedure can also be applied to any source of small-molecule structures, including the Cambridge Structural Database and the ZINC database.

  17. Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1 Mediated Cartilage Degradation

    Science.gov (United States)

    Kar, Saptarshi; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2016-01-01

    Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system—direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and

  18. Two-color studies of autoionizing states of small molecules

    International Nuclear Information System (INIS)

    Pratt, S.T.; Dehmer, P.M.; Dehmer, J.L.; Tomkins, F.S.; O'Halloran, M.A.

    1989-01-01

    Two-color, resonantly enhanced multiphoton ionization is proving to be a valuable technique for the study of autoionizing states of small molecules. In this talk, results obtained by combining REMPI, photoelectron spectroscopy, and mass spectrometry will be discussed and will be illustrated by examples from our recent studies of rotational and vibrational autoionization in molecular hydrogen and rotational autoionization in nitric oxide. 2 refs., 1 fig

  19. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    Science.gov (United States)

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  20. Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics.

    Science.gov (United States)

    Tolliday, Nicola; Clemons, Paul A; Ferraiolo, Paul; Koehler, Angela N; Lewis, Timothy A; Li, Xiaohua; Schreiber, Stuart L; Gerhard, Daniela S; Eliasof, Scott

    2006-09-15

    In 2002, the National Cancer Institute created the Initiative for Chemical Genetics (ICG), to enable public research using small molecules to accelerate the discovery of cancer-relevant small-molecule probes. The ICG is a public-access research facility consisting of a tightly integrated team of synthetic and analytical chemists, assay developers, high-throughput screening and automation engineers, computational scientists, and software developers. The ICG seeks to facilitate the cross-fertilization of synthetic chemistry and cancer biology by creating a research environment in which new scientific collaborations are possible. To date, the ICG has interacted with 76 biology laboratories from 39 institutions and more than a dozen organic synthetic chemistry laboratories around the country and in Canada. All chemistry and screening data are deposited into the ChemBank web site (http://chembank.broad.harvard.edu/) and are available to the entire research community within a year of generation. ChemBank is both a data repository and a data analysis environment, facilitating the exploration of chemical and biological information across many different assays and small molecules. This report outlines how the ICG functions, how researchers can take advantage of its screening, chemistry and informatic capabilities, and provides a brief summary of some of the many important research findings.

  1. Solution-processed white organic light-emitting devices based on small-molecule materials

    International Nuclear Information System (INIS)

    Wang Dongdong; Wu Zhaoxin; Zhang Xinwen; Wang Dawei; Hou Xun

    2010-01-01

    We investigated solution-processed films of 4,4'-bis(2,2-diphenylvinyl)-1,1'-bibenyl (DPVBi) and its blends with N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m 2 , a maximum luminance of 22500 cd/m 2 , and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.

  2. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity.

    Science.gov (United States)

    Kimani, Stanley G; Kumar, Sushil; Bansal, Nitu; Singh, Kamalendra; Kholodovych, Vladyslav; Comollo, Thomas; Peng, Youyi; Kotenko, Sergei V; Sarafianos, Stefan G; Bertino, Joseph R; Welsh, William J; Birge, Raymond B

    2017-03-08

    TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC 50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics.

  3. Activation of TRPM7 channels by small molecules under physiological conditions.

    Science.gov (United States)

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  4. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.; Yiu, Alan T.; Beaujuge, Pierre; Woo, Claire; Holcombe, Thomas W.; Millstone, Jill E.; Douglas, Jessica D.; Chen, Mark S.; Frechet, Jean

    2011-01-01

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.

    2011-10-21

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Small Molecule Modulator of p53 Signaling Pathway: Application for Radiosensitizing or Radioprotection Agents

    International Nuclear Information System (INIS)

    Oh, Sang Taek; Cho, Mun Ju; Gwak, Jung Sug; Ryu, Min Jung; Song, Jie Young; Yun, Yeon Sook

    2009-01-01

    The tumor suppressor p53 is key molecule to protect the cell against genotoxic stress and..the most frequently mutated..protein..in cancer cells. Lack of functional p53..is accompanied by high rate of genomic instability, rapid tumor progression, resistance to anticancer therapy, and increased angiogenesis. In response to DNA damage, p53 protein rapidly accumulated through attenuated proteolysis and is also activated as transcription factor. Activated p53 up-regulates target genes involved in cell cycle arrest and/or apoptosis and then lead to suppression of malignant transformation and the maintenance of genomic integrity. Chemical genetics is a new technology to uncover the signaling networks that regulated biological phenotype using exogenous reagents such as small molecules. Analogous to classical forward genetic screens in model organism, this approach makes use of high throughput, phenotypic assay to identify small molecules that disrupt gene product function in a way that alters a phenotype of interest. Recently, interesting small molecules were identified from cell based high throughput screening and its target protein or mechanism of action were identified by various methods including affinity chromatography, protein array profiling, mRNA or phage display, transcription profiling, and RNA interference

  7. Small Molecule Modulator of p53 Signaling Pathway: Application for Radiosensitizing or Radioprotection Agents

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sang Taek; Cho, Mun Ju; Gwak, Jung Sug; Ryu, Min Jung [PharmacoGenomics Research Center, Inje University, Busan (Korea, Republic of); Song, Jie Young; Yun, Yeon Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The tumor suppressor p53 is key molecule to protect the cell against genotoxic stress and..the most frequently mutated..protein..in cancer cells. Lack of functional p53..is accompanied by high rate of genomic instability, rapid tumor progression, resistance to anticancer therapy, and increased angiogenesis. In response to DNA damage, p53 protein rapidly accumulated through attenuated proteolysis and is also activated as transcription factor. Activated p53 up-regulates target genes involved in cell cycle arrest and/or apoptosis and then lead to suppression of malignant transformation and the maintenance of genomic integrity. Chemical genetics is a new technology to uncover the signaling networks that regulated biological phenotype using exogenous reagents such as small molecules. Analogous to classical forward genetic screens in model organism, this approach makes use of high throughput, phenotypic assay to identify small molecules that disrupt gene product function in a way that alters a phenotype of interest. Recently, interesting small molecules were identified from cell based high throughput screening and its target protein or mechanism of action were identified by various methods including affinity chromatography, protein array profiling, mRNA or phage display, transcription profiling, and RNA interference.

  8. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    Science.gov (United States)

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  9. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Science.gov (United States)

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  10. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  11. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    International Nuclear Information System (INIS)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-01-01

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer

  12. Small molecule inhibitors of bromodomain-acetyl-lysine interactions.

    Science.gov (United States)

    Brand, Michael; Measures, Angelina R; Measures, Angelina M; Wilson, Brian G; Cortopassi, Wilian A; Alexander, Rikki; Höss, Matthias; Hewings, David S; Rooney, Timothy P C; Paton, Robert S; Conway, Stuart J

    2015-01-16

    Bromodomains are protein modules that bind to acetylated lysine residues. Their interaction with histone proteins suggests that they function as "readers" of histone lysine acetylation, a component of the proposed "histone code". Bromodomain-containing proteins are often found as components of larger protein complexes with roles in fundamental cellular process including transcription. The publication of two potent ligands for the BET bromodomains in 2010 demonstrated that small molecules can inhibit the bromodomain-acetyl-lysine protein-protein interaction. These molecules display strong phenotypic effects in a number of cell lines and affect a range of cancers in vivo. This work stimulated intense interest in developing further ligands for the BET bromodomains and the design of ligands for non-BET bromodomains. Here we review the recent progress in the field with particular attention paid to ligand design, the assays employed in early ligand discovery, and the use of computational approaches to inform ligand design.

  13. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  14. Excipients used in lyophilization of small molecules

    Directory of Open Access Journals (Sweden)

    Ankit Baheti

    2010-03-01

    Full Text Available This review deals with the excipients used in various lyophilized formulations of small molecules. The role of excipients such as bulking agents, buffering agents, tonicity modifiers, antimicrobial agents, surfactants and co-solvents has been discussed. Additionally, a decision making process for their incorporation into the formulation matrix has been proposed. A list of ingredients used in lyophilized formulations marketed in USA has been created based on a survey of the Physician Desk Reference (PDR and the Handbook on Injectable Drugs. Information on the recommended quantities of various excipients has also been provided, based on the details given in the Inactive Ingredient Guide (IIG.

  15. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  16. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease.

    Science.gov (United States)

    Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R; Challa, Pavan Kumar; Cohen, Samuel I A; Linse, Sara; Dobson, Christopher M; Knowles, Tuomas P J; Vendruscolo, Michele

    2017-01-10

    The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.

  17. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  18. Small-molecule azomethines: Organic photovoltaics via Schiff base condensation chemistry

    OpenAIRE

    Petrus, M.L.; Bouwer, R.K.M.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J.

    2014-01-01

    Conjugated small-molecule azomethines for photovoltaic applications were prepared via Schiff base condensation chemistry. Bulk heterojunction (BHJ) devices exhibit efficiencies of 1.2% with MoOx as the hole-transporting layer. The versatility and simplicity of the chemistry is illustrated by preparing a photovoltaic device directly from the reaction mixture without any form of workup.

  19. Molecular locks and keys: the role of small molecules in phytohormone research

    Directory of Open Access Journals (Sweden)

    Sandra eFonseca

    2014-12-01

    Full Text Available Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signalling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signalling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function.Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signalling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated responses. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.

  20. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.

    Science.gov (United States)

    Glasgow, Jeff E; Asensio, Michael A; Jakobson, Christopher M; Francis, Matthew B; Tullman-Ercek, Danielle

    2015-09-18

    Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.

  1. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    Directory of Open Access Journals (Sweden)

    Joel S Greenberger

    2012-01-01

    Full Text Available Mitochondrial targeted radiation damage protectors (delivered prior to irradiation and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome have been a recent focus in drug discovery for 1 normal tissue radiation protection during fractionated radiotherapy, and 2 radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new irradiation dose modifying molecules to protect normal tissue includes: clonagenic radiation survival curves; assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.

  2. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, Joel S.; Clump, David [Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States); Kagan, Valerian [Environmental and Occupational Health Department, University of Pittsburgh, Pittsburgh, PA (United States); Bayir, Hülya [Critical Care Medicine Department, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Lazo, John S. [Pharmacology Department, University of Virginia, Charlottesville, VA (United States); Wipf, Peter [Department of Chemistry, Accelerated Chemical Discovery Center, University of Pittsburgh, Pittsburgh, PA (United States); Li, Song; Gao, Xiang [Pharmaceutical Science Department, University of Pittsburgh, Pittsburgh, PA (United States); Epperly, Michael W., E-mail: greenbergerjs@upmc.edu [Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States)

    2012-01-13

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.

  3. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  4. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    Science.gov (United States)

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  5. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    Science.gov (United States)

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  6. Characterization of Small Molecule Scaffolds that Bind to the Shigella Type III Secretion System Protein IpaD

    Science.gov (United States)

    Dey, Supratim; Anbanandam, Asokan; Mumford, Ben E.; De Guzman, Roberto N.

    2017-01-01

    Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salts sterols. Here, we identified four new small molecule scaffolds that bind to IpaD based on the methylquinoline, pyrrolidin-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small molecule inhibitors of IpaD that could lead to new anti-infectives. PMID:28750143

  7. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  8. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    Science.gov (United States)

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection.

    Science.gov (United States)

    Niu, Xin; Brahmbhatt, Hetal; Mergenthaler, Philipp; Zhang, Zhi; Sang, Jing; Daude, Michael; Ehlert, Fabian G R; Diederich, Wibke E; Wong, Eve; Zhu, Weijia; Pogmore, Justin; Nandy, Jyoti P; Satyanarayana, Maragani; Jimmidi, Ravi K; Arya, Prabhat; Leber, Brian; Lin, Jialing; Culmsee, Carsten; Yi, Jing; Andrews, David W

    2017-04-20

    Aberrant apoptosis can lead to acute or chronic degenerative diseases. Mitochondrial outer membrane permeabilization (MOMP) triggered by the oligomerization of the Bcl-2 family proteins Bax/Bak is an irreversible step leading to execution of apoptosis. Here, we describe the discovery of small-molecule inhibitors of Bax/Bak oligomerization that prevent MOMP. We demonstrate that these molecules disrupt multiple, but not all, interactions between Bax dimer interfaces thereby interfering with the formation of higher-order oligomers in the MOM, but not recruitment of Bax to the MOM. Small-molecule inhibition of Bax/Bak oligomerization allowed cells to evade apoptotic stimuli and rescued neurons from death after excitotoxicity, demonstrating that oligomerization of Bax is essential for MOMP. Our discovery of small-molecule Bax/Bak inhibitors provides novel tools for the investigation of the mechanisms leading to MOMP and will ultimately facilitate development of compounds inhibiting Bax/Bak in acute and chronic degenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pharmaceutical structure montages as catalysts for design and discovery.

    Science.gov (United States)

    Njarðarson, Jon T

    2012-05-01

    Majority of pharmaceuticals are small molecule organic compounds. Their structures are most effectively described and communicated using the graphical language of organic chemistry. A few years ago we decided to harness this powerful language to create new educational tools that could serve well for data mining and as catalysts for discovery. The results were the Top 200 drug posters, which we have posted online for everyone to enjoy and update yearly. This article details the origin and motivation for our design and highlights the value of this graphical format by presenting and analyzing a new pharmaceutical structure montage (poster) focused on US FDA approved drugs in 2011.

  11. Library design practices for success in lead generation with small molecule libraries.

    Science.gov (United States)

    Goodnow, R A; Guba, W; Haap, W

    2003-11-01

    The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation. Despite an industry trend for smaller, more focused libraries, the need to generate novel lead structures makes larger libraries a necessary strategy. For libraries of a several thousand or more members, solid phase synthesis approaches are the most suitable. While the technology and chemistry necessary for small molecule library synthesis continue to advance, success in lead generation requires rigorous consideration in the library design process to ensure the synthesis of molecules possessing the proper characteristics for subsequent lead optimization. Without proper selection of library templates and building blocks, solid phase synthesis methods often generate molecules which are too heavy, too lipophilic and too complex to be useful for lead optimization. The appropriate filtering of virtual library designs with multiple computational tools allows the generation of information-rich libraries within a drug-like molecular property space. An understanding of the hit-to-lead process provides a practical guide to molecular design characteristics. Examples of leads generated from library approaches also provide a benchmarking of successes as well as aspects for continued development of library design practices.

  12. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-08-01

    Full Text Available Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag, by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  13. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  14. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    Science.gov (United States)

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  15. Small-molecule inhibitor leads of ribosome-inactivating proteins developed using the doorstop approach.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2011-03-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL, thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2, produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2 from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays.

  16. Considerable improvement in the stability of solution processed small molecule OLED by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mao Guilin [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Wu Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); He Qiang [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of UAV, Wuhan Ordnance Noncommissioned Officers Academy, Wuhan, 430075 (China); Jiao Bo; Xu Guojin; Hou Xun [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Chen Zhijian; Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871 (China)

    2011-06-15

    We investigated the annealing effect on solution processed small organic molecule organic films, which were annealed with various conditions. It was found that the densities of the spin-coated (SC) films increased and the surface roughness decreased as the annealing temperature rose. We fabricated corresponding organic light emitting diodes (OLEDs) by spin coating on the same annealing conditions. The solution processed OLEDs show the considerable efficiency and stability, which were prior or equivalent to the vacuum-deposited (VD) counterparts. Our research shows that annealing process plays a key role in prolonging the lifetime of solution processed small molecule OLEDs, and the mechanism for the improvement of the device performance upon annealing was also discussed.

  17. Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles

    International Nuclear Information System (INIS)

    Bian, Tengfei; Autry, Joseph M.; Casemore, Denise; Li, Ji; Thomas, David D.; He, Gaohong; Xing, Chengguo

    2016-01-01

    We have developed a charge-mediated fusion method to reconstitute the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA) in giant unilamellar vesicles (GUV). Intracellular Ca 2+ transport by SERCA controls key processes in human cells such as proliferation, signaling, and contraction. Small-molecule effectors of SERCA are urgently needed as therapeutics for Ca 2+ dysregulation in human diseases including cancer, diabetes, and heart failure. Here we report the development of a method for efficiently reconstituting SERCA in GUV, and we describe a streamlined protocol based on optimized parameters (e.g., lipid components, SERCA preparation, and activity assay requirements). ATP-dependent Ca 2+ transport by SERCA in single GUV was detected directly using confocal fluorescence microscopy with the Ca 2+ indicator Fluo-5F. The GUV reconstitution system was validated for functional screening of Ca 2+ transport using thapsigargin (TG), a small-molecule inhibitor of SERCA currently in clinical trials as a prostate cancer prodrug. The GUV system overcomes the problem of inhibitory Ca 2+ accumulation for SERCA in native and reconstituted small unilamellar vesicles (SUV). We propose that charge-mediated fusion provides a widely-applicable method for GUV reconstitution of clinically-important membrane transport proteins. We conclude that GUV reconstitution is a technological advancement for evaluating small-molecule effectors of SERCA.

  18. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  19. Characterization of Small-Molecule Scaffolds That Bind to the Shigella Type III Secretion System Protein IpaD.

    Science.gov (United States)

    Dey, Supratim; Anbanandam, Asokan; Mumford, Ben E; De Guzman, Roberto N

    2017-09-21

    Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salt sterols. In this study we identified four new small-molecule scaffolds that bind to IpaD, based on the methylquinoline, pyrrolidine-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small-molecule inhibitors of IpaD that could lead to new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Process Intensification Tools in the Small‐Scale Pharmaceutical Manufacturing of Small Molecules

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Gernaey, Krist V.

    2015-01-01

    of processes are in a state of change. However, it is important to note that not all processes can be intensified easily, such as slow chemical reactions, processes with solids, slurries, and on the like. This review summarizes applications of promising tools for achieving process intensification in the small......‐scale pharmaceutical manufacturing of so‐called small molecules. The focus is on microwave radiation, microreactors, ultrasounds, and meso‐scale tubular reactors....

  1. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.

    Science.gov (United States)

    Lorenz, Daniel A; Song, James M; Garner, Amanda L

    2015-01-21

    MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.

  3. Current practices in generation of small molecule new leads.

    Science.gov (United States)

    Goodnow, R A

    2001-01-01

    The current drug discovery processes in many pharmaceutical companies require large and growing collections of high quality lead structures for use in high throughput screening assays. Collections of small molecules with diverse structures and "drug-like" properties have, in the past, been acquired by several means: by archive of previous internal lead optimization efforts, by purchase from compound vendors, and by union of separate collections following company mergers. More recently, many drug discovery companies have established dedicated efforts to effect synthesis by internal and/or outsourcing efforts of targeted compound libraries for new lead generation. Although high throughput/combinatorial chemistry is an important component in the process of new lead generation, the selection of library designs for synthesis and the subsequent design of library members has evolved to a new level of challenge and importance. The potential benefits of screening multiple small molecule compound library designs against multiple biological targets offers substantial opportunity to discover new lead structures. Subsequent optimization of such compounds is often accelerated because of the structure-activity relationship (SAR) information encoded in these lead generation libraries. Lead optimization is often facilitated due to the ready applicability of high-throughput chemistry (HTC) methods for follow-up synthesis. Some of the strategies, trends, and critical issues central to the success of lead generation processes are discussed below. Copyright 2002 Wiley-Liss, Inc.

  4. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  5. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  6. A new component of the interstellar matter - Small grains and large aromatic molecules

    International Nuclear Information System (INIS)

    Puget, J.L.

    1989-01-01

    Predictions from dust models constructed to account for the interstellar extinction curve are in conflict with emission data. This paper shows that the introduction of small grains and large aromatic molecules as a new component of the interstellar matter can resolve this conflict. Observational evidence for the existence of very small grains is also reviewed, along with the physics of IR emission by thermal fluctuations and its relation to very small particles. 99 refs

  7. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    Science.gov (United States)

    The expected results from this project include: a new formula and preparation procedures for Ru-Ni-S catalyst; demonstration of CO and S tolerance of the new catalyst; a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

  8. Photoionization of atoms and small molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Ferrett, T.A.

    1986-11-01

    The combination of synchrotron radiation and time-of-flight electron spectroscopy has been used to study the photoionization dynamics of atoms (Li) and small molecules (SF 6 , SiF 4 , and SO 2 ). Partial cross sections and angular distribution asymmetry parameters have been measured for Auger electrons and photoelectrons as functions of photon energy. Emphasis is on the basic understanding of electron correlation and resonant effects as manifested in the photoemission spectra for these systems. 254 refs., 46 figs., 10 tabs

  9. Characterization of steam-reforming catalysts

    Directory of Open Access Journals (Sweden)

    Santos D. C. R.M.

    2004-01-01

    Full Text Available The effect of the addition of Mg and Ca to Ni/ a-Al2O3 catalysts was investigatedstudied, aiming to detail the promotion mechanismaddress their role as promoters in the steam reforming reaction. Temperature- programmed reduction and H2 and CO temperature-programmed desorption experiments indicated that Mg interacts with the metallic phase. Mg-promoted catalysts showed a greater difficulty for Ni precursors reduction besides different probe molecules (H2 and CO adsorbed states. In the conversion of cyclohexane, Mg inhibited the formation of hydrogenolysis products. Nonetheless, the presence of Ca did not influence the metallic phase.

  10. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    Science.gov (United States)

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  11. Hierarchical ZSM-5 zeolite catalysts for the selective oxidation of benzene

    NARCIS (Netherlands)

    Koekkoek, A.J.J.

    2011-01-01

    Zeolites are widely used as catalysts, especially in oil refining and the petrochemical industries. Nowadays the cracking of heavy oil feeds as well as the processing of larger (bio)molecules demands for improved catalysts that can overcome the pore size constraints and diffusion limitations of the

  12. [Effect of annealing temperature on the crystallization and spectroscopic response of a small-molecule semiconductor doped in polymer film].

    Science.gov (United States)

    Yin, Ming; Zhang, Xin-Ping; Liu, Hong-Mei

    2012-11-01

    The crystallization properties of the perylene (EPPTC) molecules doped in the solid film of the derivative of polyfluorene (F8BT) at different annealing temperatures, as well as the consequently induced spectroscopic response of the exciplex emission in the heterojunction structures, were studied in the present paper. Experimental results showed that the phase separation between the small and the polymer molecules in the blend film is enhanced with increasing the annealing temperature, which leads to the crystallization of the EPPTC molecules due to the strong pi-pi stacking. The size of the crystal phase increases with increasing the annealing temperature. However, this process weakens the mechanisms of the heterojunction configuration, thus, the total interfacial area between the small and the polymer molecules and the amount of exciplex are reduced significantly in the blend film. Meanwhile, the energy transfer from the polymer to the small molecules is also reduced. As a result, the emission from the exciplex becomes weaker with increasing the annealing temperature, whereas the stronger emission from the polymer molecules and from the crystal phase of the small molecules can be observed. These experimental results are very important for understanding and tailoring the organic heterojunction structures. Furthermore, this provides photophysics for improving the performance of photovoltaic or solar cell devices.

  13. Determining the optimal size of small molecule mixtures for high throughput NMR screening

    International Nuclear Information System (INIS)

    Mercier, Kelly A.; Powers, Robert

    2005-01-01

    High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional information about the nature of small molecule-protein interactions compared to traditional HTS methods. In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for an NMR screen has been lacking. A model for calculating OMS based on the application of the hypergeometric distribution function to determine the probability of a 'hit' for various mixture sizes and hit rates is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These methods have been applied in a high-throughput NMR screening assay using a small, directed library

  14. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-03-16

    The adsorption behavior of sulfur-based toxic gases (H 2 S and SO 2 ) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H 2 S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H 2 S gas molecule. Conversely, upon SO 2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO 2 detection as well as a catalyst for H 2 S reduction. Graphical abstract Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H 2 S and SO 2 adsorbed on them.

  15. PD-1/PD-L1 Inhibitors for Immuno-oncology: From Antibodies to Small Molecules.

    Science.gov (United States)

    Geng, Qiaohong; Jiao, Peifu; Jin, Peng; Su, Gaoxing; Dong, Jinlong; Yan, Bing

    2018-02-12

    The recent regulatory approvals of immune checkpoint protein inhibitors, such as ipilimumab, pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab ushered a new era in cancer therapy. These inhibitors do not attack tumor cells directly but instead mobilize the immune system to re-recognize and eradicate tumors, which endows them with unique advantages including durable clinical responses and substantial clinical benefits. PD-1/PD-L1 inhibitors, a pillar of immune checkpoint protein inhibitors, have demonstrated unprecedented clinical efficacy in more than 20 cancer types. Besides monoclonal antibodies, diverse PD- 1/PD-L1 inhibiting candidates, such as peptides, small molecules have formed a powerful collection of weapons to fight cancer. The goal of this review is to summarize and discuss the current PD-1/PD-L1 inhibitors including candidates under clinical development, their molecular interactions with PD-1 or PD-L1, the disclosed structureactivity relationships of peptides and small molecules as inhibitors. Current PD-1/PD-L1 inhibitors under clinical development are exclusively dominated by antibodies. The molecular interactions of therapeutic antibodies with PD-1 or PD-L1 have been gradually elucidated for the design of novel inhibitors. Various peptides and traditional small molecules have been investigated in preclinical model to discover novel PD-1/PD-L1 inhibitors. Peptides and small molecules may play an important role in immuno-oncology because they may bind to multiple immune checkpoint proteins via rational design, opening opportunity for a new generation of novel PD-1/PD-L1 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Detection of protein-small molecule binding using a self-referencing external cavity laser biosensor.

    Science.gov (United States)

    Meng Zhang; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T

    2014-01-01

    High throughput screening of protein-small molecule binding interactions using label-free optical biosensors is challenging, as the detected signals are often similar in magnitude to experimental noise. Here, we describe a novel self-referencing external cavity laser (ECL) biosensor approach that achieves high resolution and high sensitivity, while eliminating thermal noise with sub-picometer wavelength accuracy. Using the self-referencing ECL biosensor, we demonstrate detection of binding between small molecules and a variety of immobilized protein targets with binding affinities or inhibition constants in the sub-nanomolar to low micromolar range. The demonstrated ability to perform detection in the presence of several interfering compounds opens the potential for increasing the throughput of the approach. As an example application, we performed a "needle-in-the-haystack" screen for inhibitors against carbonic anhydrase isozyme II (CA II), in which known inhibitors are clearly differentiated from inactive molecules within a compound library.

  17. Identification and characterization of small molecule modulators of the Epstein-Barr virus-induced gene 2 (EBI2) receptor

    DEFF Research Database (Denmark)

    Gessier, Francois; Preuss, Inga; Yin, Hong

    2014-01-01

    immune response and has been genetically linked to autoimmune diseases such as type I diabetes ( Nature 2010 , 467 , 460 ). Here we describe the isolation of a potent small molecule antagonist for the EBI2 receptor. First, we identified a small molecule agonist NIBR51 (1), which enabled identification...

  18. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Nalbant, Perihan [University of Duisburg-Essen, Faculty of Biology, Institute of Molecular Cell Biology (Germany); Buer, Jan; Knuschke, Torben; Westendorf, Astrid M. [University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-06-15

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  19. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Science.gov (United States)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  20. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    International Nuclear Information System (INIS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-01-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  1. Small-molecule AT2 receptor agonists

    DEFF Research Database (Denmark)

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha

    2018-01-01

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist...... with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8......, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also...

  2. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope.

    Science.gov (United States)

    Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.

  3. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules.

    Science.gov (United States)

    Trobe, Melanie; Burke, Martin D

    2018-04-09

    Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Evaluation of Novel Camphor-derived Ligands as Catalysts in ...

    African Journals Online (AJOL)

    The evaluation of a series of camphor-derived ligands as catalysts in the asymmetric Henry reaction is reported. The synthesis of two novel derivatives is detailed and these molecules are also screened as catalysts in this reaction. The single crystal X-ray structure of one of the novel compounds is reported. The reaction is ...

  5. Isonitrile ligand effects on small-molecule-sequestering in bimetalladodecaborane clusters

    Czech Academy of Sciences Publication Activity Database

    Bould, Jonathan; Londesborough, Michael Geoffrey Stephen; Kennedy, JD.; Macias, R.; Winter, REK.; Císařová, I.; Kubát, Pavel; Lang, Kamil

    2013-01-01

    Roč. 747, december (2013), s. 76-84 ISSN 0022-328X R&D Projects: GA ČR GAP207/11/1577; GA ČR GAP208/10/1678; GA ČR GAP207/11/0705 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Metallaboranes * Small molecule * Sequestration * DFT * Isonitrile * Carbon monoxide Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.302, year: 2013

  6. Antibacterial small molecules targeting the conserved TOPRIM domain of DNA gyrase.

    Directory of Open Access Journals (Sweden)

    Scott S Walker

    Full Text Available To combat the threat of antibiotic-resistant Gram-negative bacteria, novel agents that circumvent established resistance mechanisms are urgently needed. Our approach was to focus first on identifying bioactive small molecules followed by chemical lead prioritization and target identification. Within this annotated library of bioactives, we identified a small molecule with activity against efflux-deficient Escherichia coli and other sensitized Gram-negatives. Further studies suggested that this compound inhibited DNA replication and selection for resistance identified mutations in a subunit of E. coli DNA gyrase, a type II topoisomerase. Our initial compound demonstrated weak inhibition of DNA gyrase activity while optimized compounds demonstrated significantly improved inhibition of E. coli and Pseudomonas aeruginosa DNA gyrase and caused cleaved complex stabilization, a hallmark of certain bactericidal DNA gyrase inhibitors. Amino acid substitutions conferring resistance to this new class of DNA gyrase inhibitors reside exclusively in the TOPRIM domain of GyrB and are not associated with resistance to the fluoroquinolones, suggesting a novel binding site for a gyrase inhibitor.

  7. Greater bottoms upgrading with Albemarle's e-bed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Toshima, H.; Sedlacek, Z.; Backhouse, D.; Mayo, S.; Plantenga, F. [Albemarle Catalysts, Houston, TX (United States)

    2006-07-01

    The E-bed process is a heavy oil upgrading technology that produces near isothermal reactor conditions at a constant catalytic activity. However, E-bed conversion optimization is limited by reactor and downstream fouling problems caused by asphaltene precipitation. While asphaltene precipitation can controlled by reducing hydrogenation, high hydrogenation activity is needed for the removal of sulfur and heavy metals. This presentation described an asphaltene molecule management concept to reduce the fouling of E-bed units. Sediment reduction and high hydrogenation catalysts were used in a modified E-bed process with a variety of feeds and operating conditions. It was observed that the KF1312 catalyst achieved much higher sediment-reduction capability along with satisfactory hydrogenation activity with the different kinds of crude oil sources tested. The catalyst hydrocracked the asphaltenes into smaller molecules, which created greater asphaltene solubility. The sediment reduction capacity of the catalyst-staging technology is now being optimized. It was concluded that the technology will help to reduce fouling in E-bed processes and lead to improved conversion rates for refineries. refs., tabs., figs.

  8. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform

    International Nuclear Information System (INIS)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng

    2016-01-01

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  9. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong [School of Environment and Natural Resources, Renmin University of China, Beijing (China); Shi, Hanchang [School of Environment, Tsinghua University, Beijing (China); Long, Feng, E-mail: longf04@ruc.edu.cn [School of Environment and Natural Resources, Renmin University of China, Beijing (China)

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  10. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  11. Cycloxygenase-2(cox-2) - a potential target for screening of small molecules as radiation countermeasure agents: an in silico study

    International Nuclear Information System (INIS)

    Joshi, Jayadev; Shrivastava, Nitisha; Dimri, Manali; Ghosh, Subhajit; Mandal, Rahul Shubhra; Prem Kumar, I.; Barik, Tapan Kumar

    2012-01-01

    COX-2 is well established for its role in inflammation and cancer, and has also been reported to play a significant role in radiation induced inflammation and by standard effect. It's already reported to have a role in protection against radiation induced damage suggesting it to be an important target for identifying novel radiation countermeasure agents. Present study aims at identifying novel small molecules from pharmacopoeia using COX-2 as target in-silico. Systematic search of the reported molecules exhibiting radiation protection revealed lat around 29 % (40 in 138) of them have a role in inflammation and a small percentage of these molecules (20 %; 8 in 40) are reported to as non steroidal anti-inflammatory drugs (NSAIDS). Docking studies performed further clarified that all these 8 radioprotective molecules shows high binding affinity and inhibit COX-2. Further Johns Hopkins clinical compound library (JHCCL), a collection of small molecule clinical compounds, were screened virtually for COX-2 inhibition by docking approach. Docking of around 1400 small molecules against COX-2 lead to identification of a number of previously unreported molecules which are likely to act as radioprotectors. (author)

  12. Cycloxygenase-2(cox-2) - a potential target for screening of small molecules as radiation countermeasure agents: an in silico study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jayadev; Shrivastava, Nitisha; Dimri, Manali; Ghosh, Subhajit; Mandal, Rahul Shubhra; Prem Kumar, I., E-mail: prem_indra@yahoo.co.in [Radiation Biosciences Division, Institute of Nuclear Medicine and Allied Sciences, Delhi (India); Barik, Tapan Kumar [P.G. Department of Zoology, Berhampur University, Berhampur (India)

    2012-07-01

    COX-2 is well established for its role in inflammation and cancer, and has also been reported to play a significant role in radiation induced inflammation and by standard effect. It's already reported to have a role in protection against radiation induced damage suggesting it to be an important target for identifying novel radiation countermeasure agents. Present study aims at identifying novel small molecules from pharmacopoeia using COX-2 as target in-silico. Systematic search of the reported molecules exhibiting radiation protection revealed lat around 29 % (40 in 138) of them have a role in inflammation and a small percentage of these molecules (20 %; 8 in 40) are reported to as non steroidal anti-inflammatory drugs (NSAIDS). Docking studies performed further clarified that all these 8 radioprotective molecules shows high binding affinity and inhibit COX-2. Further Johns Hopkins clinical compound library (JHCCL), a collection of small molecule clinical compounds, were screened virtually for COX-2 inhibition by docking approach. Docking of around 1400 small molecules against COX-2 lead to identification of a number of previously unreported molecules which are likely to act as radioprotectors. (author)

  13. Small-molecule modulators of PXR and CAR

    Science.gov (United States)

    Chai, Sergio C.; Cherian, Milu T.; Wang, Yue-Ming; Chen, Taosheng

    2016-01-01

    Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. PMID:26921498

  14. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  15. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  16. Small molecules, inhibitors of DNA-PK, targeting DNA repair and beyond

    Directory of Open Access Journals (Sweden)

    David eDavidson

    2013-01-01

    Full Text Available Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining (NHEJ a major mechanism for the repair of double strand breaks (DSB in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK. The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA

  17. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.

    Science.gov (United States)

    Prier, Christopher K; Arnold, Frances H

    2015-11-11

    Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts.

  18. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    Science.gov (United States)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  19. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  20. Rapid parameterization of small molecules using the Force Field Toolkit.

    Science.gov (United States)

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  1. Process for the regeneration of metallic catalysts

    Science.gov (United States)

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  2. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  3. A size exclusion-reversed phase two dimensional-liquid chromatography methodology for stability and small molecule related species in antibody drug conjugates.

    Science.gov (United States)

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Zhang, Kelly; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2015-05-08

    Antibody drug conjugates (ADCs) are complex therapeutic agents combining the specific targeting properties of antibodies and highly potent cytotoxic small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. One unique critical quality attribute of ADCs is the content of unconjugated small molecule drug present from either incomplete conjugation or degradation of the ADC. In this work, size exclusion chromatography (SEC) was coupled with reversed-phase (RP) HPLC in an online 2-dimensional chromatography format for identification and quantitation of unconjugated small molecule drugs and related small molecule impurities in ADC samples directly without sample preparation. The SEC method in the 1st dimension not only separated the small molecule impurities from the intact ADC, but also provided information about the size variants (monomer, dimer, aggregates, etc.) of the ADC. The small molecule peak from the SEC was trapped and sent to a RP-HPLC in the 2nd dimension to further separate and quantify the different small molecule impurities present in the ADC sample. This SEC-RP 2D-LC method demonstrated excellent precision (%RSDmolecule degradation products and aggregation of the conjugate were observed in the stability samples and the degradation pathways of the ADC were investigated. This 2D-LC method offers a powerful tool for ADC characterization and provides valuable information for conjugation and formulation development. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes

    International Nuclear Information System (INIS)

    Cabria, I.; Lopez, M. J.; Alonso, J. A.; Amovilli, C.; March, N. H.

    2006-01-01

    The electrostrictive response of small carbon clusters, hydrocarbon molecules, and carbon nanotubes is investigated using the density functional theory. For ringlike carbon clusters, one can get insight on the deformations induced by an electric field from a simple two-dimensional model in which the positive charge of the carbon ions is smeared out in a circular homogeneous line of charge and the electronic density is calculated for a constant applied electric field within a two-dimensional Thomas-Fermi method. According to the Hellmann-Feynman theorem, this model predicts, for fields of about 1 V/A ring , only a small elongation of the ring clusters in the direction of the electric field. Full three-dimensional density functional calculations with an external electric field show similar small deformations in the ring carbon clusters compared to the simple model. The saturated benzene and phenanthrene hydrocarbon molecules do not experience any deformation, even under the action of relatively intense (1 V/A ring ) electric fields. In contrast, finite carbon nanotubes experience larger elongations (∼2.9%) induced by relatively weak (0.1 V/A ring ) applied electric fields. Both C-C bond length elongation and the deformation of the honeycomb structure contribute equally to the nanotube elongation. The effect of the electric field in hydrogen terminated nanotubes is reduced with respect to the nanotubes with dangling bonds in the edges

  5. Synthesis of molecular complexes for small molecule activation

    International Nuclear Information System (INIS)

    Andrez, Julie

    2016-01-01

    The redox chemistry of f-elements is drawing the attention of inorganic chemists due to their unusual reaction pathways. Notably low-valent f-element complexes have been shown to be able to activate small molecules such as CO_2 and N_2 in mild conditions. Compared to d-block metals, f-elements present a coordination chemistry dominated by electrostatic interactions and steric constraints. Molecular complexes of f-elements could thus provide new catalytic routes to transform small molecules into valuable chemicals. However the redox chemistry of low valent f-elements is dominated by single-electron transfers while the reductions of CO_2 and N_2 require multi-electronic processes. Accordingly the first approach of this PhD work was the use of redox active ligands as electron reservoir to support f-element centres increasing the electron number available for reduction events. The coordination of uranium with tridentate Schiff base ligand was investigated and led to isolation of a dinuclear electron-rich species able to undertake up to eight-electron reduction combining the redox activity of the ligands and the uranium centres. In order to obtain electron-rich compounds potentially able to polarize the C=O bond of CO_2, the synthesis of hetero-bimetallic species supported by salophen Schiff base ligand was also studied. In a second approach we have used bulky ligands with strong donor-character to tune the reducing abilities of low valent f-elements. In this case a bimolecular electron-transfer process is often observed. The reactivity of the U(III) siloxid complex [U(OSi(OtBu)_3)_4K] was further investigated. Notably, reaction with Ph_3PS led to the formation of a terminal U(IV) sulfide complex with multiple U-S bond which was analysed by DFT studies to better understand the bonding nature. Preliminary studies on the role of the counter-cation (M) in the system [U(OSi(OtBu)_3)_4M] on the outcome of the reactivity with CS_2 and CO_2 have also been performed. The

  6. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kmetko, Jan [Kenyon College, Gambier, OH 43022 (United States); Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Kenyon College, Gambier, OH 43022 (United States)

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  7. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    International Nuclear Information System (INIS)

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions

  8. Promiscuity and selectivity of small-molecule inhibitors across TAM receptor tyrosine kinases in pediatric leukemia.

    Science.gov (United States)

    Liu, Mao-Hua; Chen, Shi-Bing; Yu, Juan; Liu, Cheng-Jun; Zhang, Xiao-Jing

    2017-08-01

    The TAM receptor tyrosine kinase family member Mer has been recognized as an attractive therapeutic target for pediatric leukemia. Beside Mer the family contains other two kinases, namely, Tyro3 and Axl, which are highly homologues with Mer and thus most existing small-molecule inhibitors show moderate or high promiscuity across the three kinases. Here, the structural basis and energetic property of selective binding of small-molecule inhibitors to the three kinases were investigated at molecular level. It is found that the selectivity is primarily determined by the size, shape and configuration of kinase's ATP-binding site; the Mer and Axl possess a small, closed active pocket as compared to the bulky, open pocket of Tyro3. The location and conformation of active-site residues of Mer and Axl are highly consistent, suggesting that small-molecule inhibitors generally have a low Mer-over-Axl selectivity and a high Mer-over-Tyro3 selectivity. We demonstrated that the difference in ATP binding potency to the three kinases is also responsible for inhibitor selectivity. We also found that the long-range interactions and allosteric effect arising from rest of the kinase's active site can indirectly influence inhibitor binding and selectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High-affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidicacid

    DEFF Research Database (Denmark)

    Khandelia, Himanshu

    2008-01-01

    , comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction of XPA ) 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 ( 80 × 106. An MD simulation on the siramesine:PA interaction...

  10. Small molecule therapeutics for inflammation-associated chronic musculoskeletal degenerative diseases: Past, present and future.

    Science.gov (United States)

    Chen, Yangwu; Huang, Jiayun; Tang, Chenqi; Chen, Xiao; Yin, Zi; Heng, Boon Chin; Chen, Weishan; Shen, Weiliang

    2017-10-01

    Inflammation-associated chronic musculoskeletal degenerative diseases (ICMDDs) like osteoarthritis and tendinopathy often results in morbidity and disability, with consequent heavy socio-economic burden. Current available therapies such as NSAIDs and glucocorticoid are palliative rather than disease-modifying. Insufficient systematic research data on disease molecular mechanism also makes it difficult to exploit valid therapeutic targets. Small molecules are designed to act on specific signaling pathways and/or mechanisms of cellular physiology and function, and have gradually shown potential for treating ICMDDs. In this review, we would examine and analyze recent developments in small molecule drugs for ICMDDs, suggest possible feasible improvements in treatment modalities, and discuss future research directions. Copyright © 2017. Published by Elsevier Inc.

  11. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors.

    Science.gov (United States)

    Thurber, Greg M; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer H; Weissleder, Ralph

    2014-04-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.

  12. Effect of Small Molecule Modification on Single Cell Pharmacokinetics of PARP Inhibitors

    Science.gov (United States)

    Thurber, Greg M.; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer; Weissleder, Ralph

    2014-01-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging given the complex tumor microenvironment including intra- and inter-tumor heterogeneity. The difficulty in studying this distribution is even more significant for small molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model. PMID:24552776

  13. Interplay between efficiency and device architecture for small molecule organic solar cells.

    Science.gov (United States)

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  14. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences.

    Science.gov (United States)

    Kunig, Verena; Potowski, Marco; Gohla, Anne; Brunschweiger, Andreas

    2018-06-27

    DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.

  16. Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.

    Science.gov (United States)

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V; Mulchandani, Ashok

    2010-12-15

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure-based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Small-molecule inhibitors of toxT expression in Vibrio cholerae.

    Science.gov (United States)

    Anthouard, Rebecca; DiRita, Victor J

    2013-08-06

    Vibrio cholerae, a Gram-negative bacterium, infects humans and causes cholera, a severe disease characterized by vomiting and diarrhea. These symptoms are primarily caused by cholera toxin (CT), whose production by V. cholerae is tightly regulated by the virulence cascade. In this study, we designed and carried out a high-throughput chemical genetic screen to identify inhibitors of the virulence cascade. We identified three compounds, which we named toxtazin A and toxtazin B and B', representing two novel classes of toxT transcription inhibitors. All three compounds reduce production of both CT and the toxin-coregulated pilus (TCP), an important colonization factor. We present evidence that toxtazin A works at the level of the toxT promoter and that toxtazins B and B' work at the level of the tcpP promoter. Treatment with toxtazin B results in a 100-fold reduction in colonization in an infant mouse model of infection, though toxtazin A did not reduce colonization at the concentrations tested. These results add to the growing body of literature indicating that small-molecule inhibitors of virulence genes could be developed to treat infections, as alternatives to antibiotics become increasingly needed. V. cholerae caused more than 580,000 infections worldwide in 2011 alone (WHO, Wkly. Epidemiol. Rec. 87:289-304, 2012). Cholera is treated with an oral rehydration therapy consisting of water, glucose, and electrolytes. However, as V. cholerae is transmitted via contaminated water, treatment can be difficult for communities whose water source is contaminated. In this study, we address the need for new therapeutic approaches by targeting the production of the main virulence factor, cholera toxin (CT). The high-throughput screen presented here led to the identification of two novel classes of inhibitors of the virulence cascade in V. cholerae, toxtazin A and toxtazins B and B'. We demonstrate that (i) small-molecule inhibitors of virulence gene production can be

  18. In situ click chemistry: from small molecule discovery to synthetic antibodies

    Science.gov (United States)

    Agnew, Heather D.; Lai, Bert; Lee, Su Seong; Lim, Jaehong; Nag, Arundhati; Pitram, Suresh; Rohde, Rosemary; Heath, James R.

    2013-01-01

    Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents. PMID:22836343

  19. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    Science.gov (United States)

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  20. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  1. Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells.

    Science.gov (United States)

    Sherman, Sean P; Pyle, April D

    2013-01-01

    Differentiated cells from human embryonic stem cells (hESCs) provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs) provides a potential supply of pluripotent cells that avoid immune rejection and could provide patient-tailored therapy. In addition, the use of pluripotent cells for drug screening could enable routine toxicity testing and evaluation of underlying disease mechanisms. However, prior to establishment of patient specific cells for cell therapy it is important to understand the basic regulation of cell fate decisions in hESCs. One critical issue that hinders the use of these cells is the fact that hESCs survive poorly upon dissociation, which limits genetic manipulation because of poor cloning efficiency of individual hESCs, and hampers production of large-scale culture of hESCs. To address the problems associated with poor growth in culture and our lack of understanding of what regulates hESC signaling, we successfully developed a screening platform that allows for large scale screening for small molecules that regulate survival. In this work we developed the first large scale platform for hESC screening using laser scanning cytometry and were able to validate this platform by identifying the pro-survival molecule HA-1077. These small molecules provide targets for both improving our basic understanding of hESC survival as well as a tool to improve our ability to expand and genetically manipulate hESCs for use in regenerative applications.

  2. A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation.

    Science.gov (United States)

    Wang, Lan; Guan, Xin; Wang, Huihui; Shen, Bin; Zhang, Yu; Ren, Zhihua; Ma, Yupo; Ding, Xinxin; Jiang, Yongping

    2017-07-18

    Accumulated evidence supports the potent stimulating effects of multiple small molecules on the expansion of hematopoietic stem cells (HSCs) which are important for the therapy of various hematological disorders. Here, we report a novel, optimized formula, named the SC cocktail, which contains a combination of three such small molecules and four cytokines. Small-molecule candidates were individually screened and then combined at their optimal concentration with the presence of cytokines to achieve maximum capacity for stimulating the human CD34 + cell expansion ex vivo. The extent of cell expansion and the immunophenotype of expanded cells were assessed through flow cytometry. The functional preservation of HSC stemness was confirmed by additional cell and molecular assays in vitro. Subsequently, the expanded cells were transplanted into sublethally irradiated NOD/SCID mice for the assessment of human cell viability and engraftment potential in vivo. Furthermore, the expression of several genes in the cell proliferation and differentiation pathways was analyzed through quantitative polymerase chain reaction (qPCR) during the process of CD34 + cell expansion. The SC cocktail supported the retention of the immunophenotype of hematopoietic stem/progenitor cells remarkably well, by yielding purities of 86.6 ± 11.2% for CD34 + cells and 76.2 ± 10.5% for CD34 + CD38 - cells, respectively, for a 7-day culture. On day 7, the enhancement of expansion of CD34 + cells and CD34 + CD38 - cells reached a maxima of 28.0 ± 5.5-fold and 27.9 ± 4.3-fold, respectively. The SC cocktail-expanded CD34 + cells preserved the characteristics of HSCs by effectively inhibiting their differentiation in vitro and retained the multilineage differentiation potential in primary and secondary in vivo murine xenotransplantation trials. Further gene expression analysis suggested that the small-molecule combination strengthened the ability of the cytokines to enhance the Notch

  3. Inhibition of DNA glycosylases via small molecule purine analogs.

    Directory of Open Access Journals (Sweden)

    Aaron C Jacobs

    Full Text Available Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.

  4. A small molecule fusion inhibitor of dengue virus.

    Science.gov (United States)

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter

    2009-12-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.

  5. Small molecule inhibitors of HCV replication from Pomegranate

    Science.gov (United States)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  6. A geometry-based simulation of the hydration of ions and small molecules

    International Nuclear Information System (INIS)

    Plumridge, T.H.

    2001-01-01

    The behaviour of solutes in water is of universal significance, but still not fully understood. This thesis provides details of a new computer simulation technique used to investigate the hydration of ions and small molecules. In contrast to conventional techniques such as molecular dynamics, this is a purely geometric method involving no forcefield or energy terms. Molecules of interest are modelled using crystallographic data to ensure that the structures are accurate. Water molecules are added randomly at any hydrogen bonding site in chains. At each addition the chain is rotated through all available space testing for the possibility of ring formation. The constraints used by the program to decide whether a ring should be conserved, i.e. whether the ring-forming hydrogen bond is viable were derived from a survey of (i) all available ice and clathrate hydrate structures and (ii) the hydrates of small biological molecules from the Cambridge Crystallographic Data Centre. If a ring forms, it is conserved and the process restarted with the addition of another random water. If the chain reaches a certain length and no hydrogen bonding opportunities are detected, the water chain is dissolved, and the process restarted. Using these techniques structure makers such as sulfate will readily allow structured water to form around them leading to large networks, whereas structure breakers such as urea will not allow any water chains to bridge the hydrogen bonding groups. The software has been tested with a set of twenty widely varying solutes and has produced results which generally agree with experimental data for structure makers and breakers, and also agrees well with traditional techniques such as molecular dynamics and Monte Carlo techniques. (author)

  7. Small-molecule quinolinol inhibitor identified provides protection against BoNT/A in mice.

    Directory of Open Access Journals (Sweden)

    Padma Singh

    Full Text Available Botulinum neurotoxins (BoNTs, etiological agents of the life threatening neuroparalytic disease botulism, are the most toxic substances currently known. The potential for the use as bioweapon makes the development of small-molecule inhibitor against these deadly toxins is a top priority. Currently, there are no approved pharmacological treatments for BoNT intoxication. Although an effective vaccine/immunotherapy is available for immuno-prophylaxis but this cannot reverse the effects of toxin inside neurons. A small-molecule pharmacological intervention, especially one that would be effective against the light chain protease, would be highly desirable. Similarity search was carried out from ChemBridge and NSC libraries to the hit (7-(phenyl(8-quinolinylaminomethyl-8-quinolinol; NSC 84096 to mine its analogs. Several hits obtained were screened for in silico inhibition using AutoDock 4.1 and 19 new molecules selected based on binding energy and Ki. Among these, eleven quinolinol derivatives potently inhibited in vitro endopeptidase activity of botulinum neurotoxin type A light chain (rBoNT/A-LC on synaptosomes isolated from rat brain which simulate the in vivo system. Five of these inhibitor molecules exhibited IC(50 values ranging from 3.0 nM to 10.0 µM. NSC 84087 is the most potent inhibitor reported so far, found to be a promising lead for therapeutic development, as it exhibits no toxicity, and is able to protect animals from pre and post challenge of botulinum neurotoxin type A (BoNT/A.

  8. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    Science.gov (United States)

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  10. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  11. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    International Nuclear Information System (INIS)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti; Wu, Chih-I

    2013-01-01

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts

  12. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  13. Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%

    DEFF Research Database (Denmark)

    Liu, Wenqing; Liu, Shiyong; Zawacka, Natalia Klaudia

    2014-01-01

    All solution-processed flexible large area small molecule bulk heterojunction solar cells were fabricated via roll-coating technology. Our devices were produced from slot-die coating on a lab-scale mini roll-coater under ambient conditions without the use of spin-coating or vacuum evaporation.......01%, combined with an open circuit voltage of 0.73 V, a short-circuit current density of 3.13 mA cm (2) and a fill factor of 44% were obtained for the device with SM1, which was the first example reported for efficient roll-coating fabrication of flexible large area small molecule solar cells with PCE exceeding...... methods. Four diketopyrrolopyrrole based small molecules (SMs 1-4) were utilized as electron donors with (6,6)phenyl- C61-butyric acid methyl ester as an acceptor and their photovoltaic performances based on roll-coated devices were investigated. The best power conversion efficiency (PCE) of 1...

  14. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Hansen, Gert H

    2016-01-01

    Pinocytosis at the small intestinal brush border was studied in postweaned porcine cultured mucosal explants, using the fluorescent polar probes Alexa hydrazide (AH, MW 570), Texas red dextran (TRD, MW ~ 3000), and Cascade blue dextran (CBD, MW ~ 10,000). Within 1 h, AH appeared in a string...... of subapical punctae in enterocytes, indicative of an ongoing constitutive pinocytosis. By comparison, TRD was taken up less efficiently into the same compartment, and no intracellular labeling of CBD was detectable, indicating that only small molecules are pinocytosed from the postweaned gut lumen. AH...

  15. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  16. Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Wang, Ruihong; Xie, Ying; Shi, Keying; Wang, Jianqiang; Tian, Chungui; Shen, Peikang; Fu, Honggang

    2012-06-11

    The synergistic effect between Pt and WC is beneficial for methanol electro-oxidation, and makes Pt-WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small-sized and contacting Pt-WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small-sized, well-dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre-existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2-3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt-WC nanostructures. These results are consistent with the theoretical findings. X-ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt-WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two strategies for the development of mitochondrion-targeted small molecule radiation damage mitigators

    NARCIS (Netherlands)

    Rwigema, Jean-Claude M.; Beck, Barbara; Wang, Wei; Doemling, Alexander; Epperly, Michael W.; Shields, Donna; Goff, Julie P.; Franicola, Darcy; Dixon, Tracy; Frantz, Marie-Céline; Wipf, Peter; Tyurina, Yulia; Kagan, Valerian E.; Wang, Hong; Greenberger, Joel S.

    2011-01-01

    Purpose: To evaluate the effectiveness of mitigation of acute ionizing radiation damage by mitochondrion-targeted small molecules. Methods and Materials: We evaluated the ability of nitroxide-linked alkene peptide isostere JP4-039, the nitric oxide synthase inhibitor-linked alkene peptide esostere

  18. Atomically precise cluster catalysis towards quantum controlled catalysts

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide

    2014-01-01

    Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. (review)

  19. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  20. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  1. Race and sex differences in small-molecule metabolites and metabolic hormones in overweight and obese adults.

    Science.gov (United States)

    Patel, Mahesh J; Batch, Bryan C; Svetkey, Laura P; Bain, James R; Turer, Christy Boling; Haynes, Carol; Muehlbauer, Michael J; Stevens, Robert D; Newgard, Christopher B; Shah, Svati H

    2013-12-01

    In overweight/obese individuals, cardiometabolic risk factors differ by race and sex categories. Small-molecule metabolites and metabolic hormone levels might also differ across these categories and contribute to risk factor heterogeneity. To explore this possibility, we performed a cross-sectional analysis of fasting plasma levels of 69 small-molecule metabolites and 13 metabolic hormones in 500 overweight/obese adults who participated in the Weight Loss Maintenance trial. Principal-components analysis (PCA) was used for reduction of metabolite data. Race and sex-stratified comparisons of metabolite factors and metabolic hormones were performed. African Americans represented 37.4% of the study participants, and females 63.0%. Of thirteen metabolite factors identified, three differed by race and sex: levels of factor 3 (branched-chain amino acids and related metabolites, phormones regulating body weight homeostasis. Among overweight/obese adults, there are significant race and sex differences in small-molecule metabolites and metabolic hormones; these differences may contribute to risk factor heterogeneity across race and sex subgroups and should be considered in future investigations with circulating metabolites and metabolic hormones.

  2. Small-molecule inhibitors of Ataxia Telangiectasia and Rad3 related kinase (ATR) sensitize lymphoma cells to UVA radiation

    DEFF Research Database (Denmark)

    Biskup, Edyta; Naym, David Gram; Gniadecki, Robert

    2016-01-01

    inhibited by small molecule antagonists VE-821, VE-822 or Chir-124, or by small interfering RNAs (siRNAs). Cell cycle and viability were assessed by flow cytometry. RESULTS: Small molecule inhibitors of ATR and Chk1 potently sensitized all cell lines to PUVA and, importantly, also to UVA, which by itself...... did not cause apoptotic response. VE-821/2 blocked ATR pathway activation and released the cells from the G2/M block caused by UVA and PUVA, but did not affect apoptosis caused by other chemotherapeutics (etoposide, gemcitabine, doxorubicine) or by hydrogen peroxide. Knockdown of ATR and Chk1 with si......RNA also blocked the ATR pathway and released the cells from G2/M block but did not sensitize the cells to UVA as observed with the small molecule inhibitors. The latter suggested that the synergism between VE-821/2 or Chir-124 and UVA was not solely caused by specific blocking of ATR kinase but also ATR...

  3. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.

    Science.gov (United States)

    Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong

    2017-09-15

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope

    OpenAIRE

    Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is...

  5. Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1.

    Science.gov (United States)

    Maher, Christina M; Thomas, Jeffrey D; Haas, Derick A; Longen, Charles G; Oyer, Halley M; Tong, Jane Y; Kim, Felix J

    2018-02-01

    Emerging evidence suggests that Sigma1 ( SIGMAR1 , also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy. Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This

  6. CRISPR Approaches to Small Molecule Target Identification. | Office of Cancer Genomics

    Science.gov (United States)

    A long-standing challenge in drug development is the identification of the mechanisms of action of small molecules with therapeutic potential. A number of methods have been developed to address this challenge, each with inherent strengths and limitations. We here provide a brief review of these methods with a focus on chemical-genetic methods that are based on systematically profiling the effects of genetic perturbations on drug sensitivity.

  7. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    Science.gov (United States)

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.

  8. Hydrodeoxygenation of Levulinic Acid over Supported Catalysts

    NARCIS (Netherlands)

    Luo, Wenhao|info:eu-repo/dai/nl/341385972

    2014-01-01

    Levulinic acid (LA), which can be produced from the sugar fractions of lignocellulosic biomass, is a promising sustainable platform molecule that can play a major role in future biorefineries. The work described was aimed at the development of heterogeneous catalysts for the selective conversion of

  9. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  10. Allene or alkyne treatment of olefin conversion catalysts

    International Nuclear Information System (INIS)

    Banks, R.L.

    1986-01-01

    This patent describes a disproportionation process which comprises contacting at least one olefin from the group consisting of: acyclic mono- and polyenes having at least 3 up to 10 carbon atoms per molecule, and cycloalkyl and aryl derivatives thereof; cyclic mono- and polyenes having at least 4 to 10 carbon atoms per molecule, and alkyl and aryl derivatives thereof; mixtures of two or more of the above olefins; and mixtures of ethylene with one or more of the above olefins capable of undergoing disproportionation with a tungsten oxide on silica disproportionation catalyst system under disproportionation conditions, the improvement comprising contacting the catalyst with an activating amount of at least one alkyne conforming to the formula: R-C=C-R wherein each R is independently H or a C/sub 1/-C/sub 6/ carbon radical per mole of tungsten oxide

  11. Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Sean P Sherman

    Full Text Available Differentiated cells from human embryonic stem cells (hESCs provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs provides a potential supply of pluripotent cells that avoid immune rejection and could provide patient-tailored therapy. In addition, the use of pluripotent cells for drug screening could enable routine toxicity testing and evaluation of underlying disease mechanisms. However, prior to establishment of patient specific cells for cell therapy it is important to understand the basic regulation of cell fate decisions in hESCs. One critical issue that hinders the use of these cells is the fact that hESCs survive poorly upon dissociation, which limits genetic manipulation because of poor cloning efficiency of individual hESCs, and hampers production of large-scale culture of hESCs. To address the problems associated with poor growth in culture and our lack of understanding of what regulates hESC signaling, we successfully developed a screening platform that allows for large scale screening for small molecules that regulate survival. In this work we developed the first large scale platform for hESC screening using laser scanning cytometry and were able to validate this platform by identifying the pro-survival molecule HA-1077. These small molecules provide targets for both improving our basic understanding of hESC survival as well as a tool to improve our ability to expand and genetically manipulate hESCs for use in regenerative applications.

  12. A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Doessing, Holger B.; Long, Katherine S.

    2018-01-01

    -SELEX, a selection strategy that uses an RNA library to yield ligand-responsive RNA aptamers targeting small organic molecules in solution. To demonstrate the power of this method we selected several aptamers with specificity towards either the natural sweetener rebaudioside A or the food-coloring agent carminic...

  13. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  14. Regulation of metabolic networks by small molecule metabolites

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2007-03-01

    Full Text Available Abstract Background The ability to regulate metabolism is a fundamental process in living systems. We present an analysis of one of the mechanisms by which metabolic regulation occurs: enzyme inhibition and activation by small molecules. We look at the network properties of this regulatory system and the relationship between the chemical properties of regulatory molecules. Results We find that many features of the regulatory network, such as the degree and clustering coefficient, closely match those of the underlying metabolic network. While these global features are conserved across several organisms, we do find local differences between regulation in E. coli and H. sapiens which reflect their different lifestyles. Chemical structure appears to play an important role in determining a compounds suitability for use in regulation. Chemical structure also often determines how groups of similar compounds can regulate sets of enzymes. These groups of compounds and the enzymes they regulate form modules that mirror the modules and pathways of the underlying metabolic network. We also show how knowledge of chemical structure and regulation could be used to predict regulatory interactions for drugs. Conclusion The metabolic regulatory network shares many of the global properties of the metabolic network, but often varies at the level of individual compounds. Chemical structure is a key determinant in deciding how a compound is used in regulation and for defining modules within the regulatory system.

  15. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  16. A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Huanran Feng; Miaomiao Li; Wang Ni; Bin Kan; Yunchuang Wang; Yamin Zhang; Hongtao Zhang; Xiangjian Wan; Yongsheng Chen

    2017-01-01

    Three acceptor-donor-acceptor(A-D-A) small molecules DCAODTBDT,DRDTBDT and DTBDTBDT using dithieno[2,3-d:2’,3’-d’]benzo[l,2-b:4,5-b’]dithiophene as the central building block,octyl cyanoacetate,3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells(OPVs).The impacts of these different electron withdrawing end groups on the photophysical properties,energy levels,charge carrier mobility,morphologies of blend films,and their photovoltaic properties have been systematically investigated.OPVs device based on DRDTBDT gave the best power conversion efficiency(PCE) of 8.34%,which was significantly higher than that based on DCAODTBDT(4.83%) or DTBDTBDT(3.39%).These results indicate that rather dedicated and balanced consideration of absorption,energy levels,morphology,mobility,etc.for the design of small-molecule-based OPVs(SM-OPVs)and systematic investigations are highly needed to achieve high performance for SM-OPVs.

  17. A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Huanran Feng; Miaomiao Li; Wang Ni; Bin Kan; Yunchuang Wang; Yamin Zhang; Hongtao Zhang; Xiangjian Wan; Yongsheng Chen

    2017-01-01

    Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT,DRDTBDT and DTBDTBDT using dithieno[2,3-d∶2',3'-d']benzo[1,2-b∶4,5-b']dithiophene as the central building block,octyl cyanoacetate,3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs).The impacts of these different electron withdrawing end groups on the photophysical properties,energy levels,charge carrier mobility,morphologies of blend films,and their photovoltaic properties have been systematically investigated.OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%,which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%).These results indicate that rather dedicated and balanced consideration of absorption,energy levels,morphology,mobility,etc.for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.

  18. The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts

    DEFF Research Database (Denmark)

    Johansson, Roger; Hruby, S.L.; Hansen, Jeppe Rass

    2009-01-01

    It is shown that the conversion of ethanol-to-gasoline over an HZSM-5 catalyst yields essentially the same product distribution as for methanol-to-gasoline performed over the same catalyst. Interestingly, there is a significant difference between the identity of the hydrocarbon molecules trapped...... inside the HZSM-5 catalyst when ethanol is used as a feed instead of methanol. In particular, the hydrocarbon pool contains a significant amount of ethylsubstituted aromatics when ethanol is used as feedstock, but there remains only methyl-substituted aromatics in the product slate....

  19. Database of Small Molecule Thermochemistry for Combustion

    KAUST Repository

    Goldsmith, C. Franklin; Magoon, Gregory R.; Green, William H.

    2012-01-01

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems. © 2012 American Chemical Society.

  20. Database of Small Molecule Thermochemistry for Combustion

    KAUST Repository

    Goldsmith, C. Franklin

    2012-09-13

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems. © 2012 American Chemical Society.

  1. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2017-01-01

    The ubiquitous role of microRNAs (miRNAs) in a number of pathological processes has suggested that they could act as potential drug targets. RNA-binding small molecules offer an attractive means for modulating miRNA function. The availability of bioassay data sets for a variety of biological assays and molecules in public domain provides a new opportunity toward utilizing them to create models and further utilize them for in silico virtual screening approaches to prioritize or assign potential functions for small molecules. Here, we describe a computational strategy based on machine learning for creation of predictive models from high-throughput biological screens for virtual screening of small molecules with the potential to inhibit microRNAs. Such models could be potentially used for computational prioritization of small molecules before performing high-throughput biological assay.

  2. Correlated, Static and Dynamic Polarizabilities of Small Molecules. Comparison of Four "Black Box" Methods

    DEFF Research Database (Denmark)

    Dalskov, Erik K.; Sauer, Stephan P. A.

    1998-01-01

    Molecular static and dynamic polarizabilities for thirteen small molecules have been calculated using four "black box" ab initio methods, the random phase approximation, RPA, the second-order polarization propagator approximation, SOPPA, the second-order polarization propagator approximation...

  3. Small Molecule Binding, Docking, and Characterization of the Interaction between Pth1 and Peptidyl-tRNA

    Directory of Open Access Journals (Sweden)

    Mary C. Hames

    2013-11-01

    Full Text Available Bacterial Pth1 is essential for viability. Pth1 cleaves the ester bond between the peptide and nucleotide of peptidyl-tRNA generated from aborted translation, expression of mini-genes, and short ORFs. We have determined the shape of the Pth1:peptidyl-tRNA complex using small angle neutron scattering. Binding of piperonylpiperazine, a small molecule constituent of a combinatorial synthetic library common to most compounds with inhibitory activity, was mapped to Pth1 via NMR spectroscopy. We also report computational docking results, modeling piperonylpiperazine binding based on chemical shift perturbation mapping. Overall these studies promote Pth1 as a novel antibiotic target, contribute to understanding how Pth1 interacts with its substrate, advance the current model for cleavage, and demonstrate feasibility of small molecule inhibition.

  4. Penetration route of functional molecules in stratum corneum studied by time-resolved small- and wide-angle x-ray diffraction

    International Nuclear Information System (INIS)

    Hatta, Ichiro; Ohta, Noboru; Yagi, Naoto; Nakazawa, Hiromitsu; Obata, Yasuko; Inoue, Katsuaki

    2011-01-01

    We studied effects of functional molecules on corneocytes in stratum corneum using time-resolved small- and wide-angle x-ray diffraction after applying a functional molecule. From these results it was revealed that in the stratum corneum a typical hydrophilic molecule, ethanol, penetrates via the transcellular route and on the other hand a typical hydrophobic molecule, d-limonene, penetrates via the intercellular route.

  5. Faradaic Impedance Spectroscopy for Detection of Small Molecules Binding using the Avidin-Biotin Model

    International Nuclear Information System (INIS)

    Yoetz-Kopelman, Tal; Ram, Yaron; Freeman, Amihay; Shacham-Diamand, Yosi

    2015-01-01

    The changes in the Faradaic impedance of gold/biomolecules system due to specific binding of small molecule to a significantly larger binding protein molecule were investigated. The biotin (244.31 Da) - avidin (66000 Da) couple was used as a model for small ligand - binding protein biorecognition. The study was carried out under open circuit potential in the presence of [Fe(CN) 6 ] −3/−4 redox couple. An equivalent electrical circuit was proposed and used for the interpretation of the recorded impedance spectra. Adsorption of thiolated avidin increased the electron transfer resistance, R ct , by a factor of about 7.5 while subsequent addition of biotin within the concentration range of 4.1-40.9 nM reduced the value of R ct by amount proportional to the biotin concentration. The addition of biotin did not affect, however, the equivalent double layer capacitance or other equivalent circuit parameters. A simple model based on effective surface coverage by the avidin molecules and the effect of the added biotin on electron transfer through the coated surface is proposed. A model for the minimum detection limit based on the random distribution of the binding protein and its dimensions is proposed

  6. Catalytic Pyrolysis of Tar Model Compound with Various Bio-Char Catalysts to Recycle Char from Biomass Pyrolysis

    Directory of Open Access Journals (Sweden)

    Jinmiao Liu

    2016-03-01

    Full Text Available Tar and char can be regarded as unwanted byproducts during the gasification process. In this study, three types of catalyst, i.e., biomass char (bio-char, nickel supported on biomass (Ni+bio-char, and nickel supported on bio-char (bio-char+Ni, were studied to compare the catalytic effects of different preparation methods on tar model compound removal. The structural characteristics of the three catalysts were also investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Brunauer-Emmett-Teller (BET methods. The results revealed that Ni+bio-char catalyst showed much higher activity for the reformation of toluene (C7H8 as a tar model compound than the other two catalysts. Toluene could be completely converted to small gas molecules at a conversion rate of 99.92% at 800 °C, and the maximum yield of gas was 432 mL/(mL C7H8. In particular, the H2 and CH4 yields were 339 and 85 mL/(mL C7H8 at 850 °C, respectively. An N2 absorption-desorption experiment demonstrated that the specific surface area of Ni+bio-char was 32.87 times that of bio-char and 8.39 times that of bio-char+Ni. Moreover, metallic nickel (Ni0 particles could be generated in the carbon matrix of Ni+bio-char catalyst. SEM analysis confirmed that the Ni+bio-char catalyst had a more porous structure. Nickel supported on biomass might be a promising catalyst for tar reformation because of its excellent catalytic activities.

  7. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander; Treat, Neil D.; Love, John A.; Toney, Michael F.; Stingelin, Natalie; Nguyen, Thuc-Quyen

    2014-01-01

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  8. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander

    2014-08-12

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  9. The effect of catalysts blending on coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, F.; Gulyurtlu, I.; Lobo, L.S.; Cabrita, I. [INETI, Lisbon (Portugal)

    1999-05-01

    The effect of several catalysts on coal hydropyrolysis efficiency was studied, having selected catalysts with different characteristics and behaviours. For the experimental conditions used Fe{sub 2}O{sub 3} and ICI 41-6 showed selectivity towards lighter fractions, whilst ZnCl{sub 2} led to the highest coal conversion and to the greatest preasphaltenes yields. These results suggested the use of mixtures of catalysts. The heavier molecules of asphaltenes produced as a result of ZnCl{sub 2} action, could then be converted into lighter fractions by the action of a selective catalyst. Coal hydropyrolysis tests were undertaken using ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3} or ICI 41-6. These mixtures of catalysts led to increased conversions and higher product yields. The best results were obtained in the presence of ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3}. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM. 17 refs., 11 figs., 1 tab.

  10. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    Science.gov (United States)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  11. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  12. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells.

    Science.gov (United States)

    Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R

    2018-04-01

    Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.

  13. A magnetic nanoparticle-clustering biosensor for blu-ray based optical detection of small-molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    MNP-clustering facilitates high-resolution small-molecule assays. For experiments, aptamer-functionalized MNPs (Apt-MNPs) were first incubated with adenosine-5'-triphosphate (ATP) followed by adding MNPs with linker strands (linker-MNPs). The linker hybridizes with a region of aptamer sequences...

  14. Spectroscopy, microscopy and theoretical study of NO adsorption on MoS2 and Co-Mo-S hydrotreating catalysts

    DEFF Research Database (Denmark)

    Topsøe, Nan-Yu; Tuxen, Anders Kyrme; Hinnemann, Berit

    2011-01-01

    nfrared (IR) spectroscopy using NO as a probe molecule has been one of the important methods for characterizing hydrotreating catalysts, since this technique provides information on the nature and quantity of active edge sites of these catalysts. However, due to the strong adsorption of NO, which......) calculations, we present new atomic-scale insight into the nature of NO adsorption on MoS2 and Co-Mo-S nanoclusters. The DFT calculations and STM experiments show that NO does not adsorb at fully sulfided MoS2 edges not containing hydrogen. However, typical sulfided catalysts will have hydrogen present...... NO as a probe molecule to obtain detailed atomic-scale information on hydrotreating catalysts and the origins of activity differences. (C) 2011 Published by Elsevier Inc....

  15. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  16. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    Science.gov (United States)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-11-01

    The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Alsbnd O or Sisbnd O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N2O by CO molecule. It is found that the adsorption and decomposition of N2O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (Eads) and charge transfer (qCT) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small Eads and qCT values. Therefore, at the presence of N2O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N2O molecule. Our results indicate that the N2O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N2 molecule can be easily released from the surface. Then, the activated oxygen atom (Oads) which remains over the surface reacts with the CO molecule to form the CO2 molecule via the reaction Oads + CO → CO2. Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N2O molecule at ambient conditions.

  17. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  18. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    Science.gov (United States)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  19. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    Science.gov (United States)

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  20. 2-Methyl-2,4-pentanediol (MPD boosts as detergent-substitute the performance of ß-barrel hybrid catalyst for phenylacetylene polymerization

    Directory of Open Access Journals (Sweden)

    Julia Kinzel

    2017-07-01

    Full Text Available Covering hydrophobic regions with stabilization agents to solubilize purified transmembrane proteins is crucial for their application in aqueous media. The small molecule 2-methyl-2,4-pentanediol (MPD was used to stabilize the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA utilized as host for the construction of a rhodium-based biohybrid catalyst. Unlike commonly used detergents such as sodium dodecyl sulfate or polyethylene polyethyleneglycol, MPD does not form micelles in solution. Molecular dynamics simulations revealed the effect and position of stabilizing MPD molecules. The advantage of the amphiphilic MPD over micelle-forming detergents is demonstrated in the polymerization of phenylacetylene, showing a ten-fold increase in yield and increased molecular weights.

  1. Support for Natural Small-Molecule Phenols as Anxiolytics

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-12-01

    Full Text Available Natural small-molecule phenols (NSMPs share some bioactivities. The anxiolytic activity of NSMPs is attracting attention in the scientific community. This paper provides data supporting the hypothesis that NSMPs are generally anxiolytic. The anxiolytic activities of seven simple phenols, including phloroglucinol, eugenol, protocatechuic aldehyde, vanillin, thymol, ferulic acid, and caffeic acid, were assayed with the elevated plus maze (EPM test in mice. The oral doses were 5, 10 and 20 mg/kg, except for phloroglucinol for which the doses were 2.5, 5 and 10 mg/kg. All tested phenols had anxiolytic activity in mice. The phenolic hydroxyl group in 4-hydroxycinnamic acid (4-OH CA was essential for the anxiolytic activity in the EPM test in mice and rats compared to 4-chlorocinnamic acid (4-Cl CA. The in vivo spike recording of rats’ hippocampal neurons also showed significant differences between 4-OH CA and 4-Cl CA. Behavioral and neuronal spike recording results converged to indicate the hippocampal CA1 region might be a part of the anxiolytic pathways of 4-OH CA. Therefore, our study provides further experimental data supporting NSMPs sharing anxiolytic activity, which may have general implications for phytotherapy because small phenols occur extensively in herbal medicines.

  2. Electrostatic similarities between protein and small molecule ligands facilitate the design of protein-protein interaction inhibitors.

    Directory of Open Access Journals (Sweden)

    Arnout Voet

    Full Text Available One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs. We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs.

  3. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126

    International Nuclear Information System (INIS)

    Kanapathipillai, Mathumai; Ku, Sook Hee; Girigoswami, Koyeli; Park, Chan Beum

    2008-01-01

    In prion diseases, the posttranslational modification of host-encoded prion protein PrP c yields a high β-sheet content modified protein PrP sc , which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrP c to PrP sc . Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs-ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity

  4. Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Umeda, Minoru; Kokubo, Mitsuhiro; Mohamedi, Mohamed; Uchida, Isamu

    2003-01-01

    We have developed a porous-microelectrode (PME) to investigate the electroactivity of catalyst particles for proton exchange membrane fuel cells. The cavity at the tip of the PME was filled with Pt/C catalysts prepared by impregnation method. Cyclic voltammograms (CVs) recorded in 1 N H 2 SO 4 aqueous solution revealed that the active area of the stacked catalysts exist not only at the surface but also inside of the stack. For methanol electrooxidation, 30 wt.% Pt/C exhibited the highest electroactivity, whereas the 50 wt.% Pt/C showed extremely small current. The small current is considered as a result of a small active-surface area. Methanol oxidation peak potential shifted toward cathodic direction as Pt-loading decreased, which agrees well with the Pt-oxide formation potential. The activation energy for methanol oxidation was assessed to be 44±3 kJ mol -1 for all Pt/C catalysts and Pt-disc electrode

  5. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    Science.gov (United States)

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  6. Siloxides as supporting ligands in uranium(III)-mediated small-molecule activation

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Camp, Clement; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble (France); Coperet, Christophe [Laboratory of Inorganic Chemistry, ETH Zurich (Switzerland); Maron, Laurent; Kefalidis, Christos E. [LPCNO, CNRS and INSA, UPS, Universite de Toulouse (France)

    2012-12-03

    Siloxides can support U..in the reduction of small molecules with uranium complexes. The treatment of [U{N(SiMe_3)_2}{sub 3}] with HOSi(OtBu){sub 3} (3 equiv) yielded a novel homoleptic uranium(III) siloxide complex 1, which acted as a two-electron reducing agent toward CS{sub 2} and CO{sub 2}. Complex 1 also reduced toluene to afford a diuranium inverted-sandwich complex. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.

    Science.gov (United States)

    Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan

    2018-05-31

    Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    Science.gov (United States)

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  9. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Mallika, A. [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Badiger, Jayasree [HKE' s Smt. V.G. College for Women, Aiwan-E-Shahi Area, Gulbarga, KA 585 102 (India); Alinakhi [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Talukdar, Pinaki [Department of Chemistry, Indian Institute of Science Education and Research, First Floor, Central Tower, Sai Trinity Building Garware Circle, Sutarwadi, PashanPune, Maharashtra 411 021 (India); Sachchidanand [Lupin Research Park, 46/47, A, Village Nande, Taluka Mulshi, Dist. Pune 411 042 (India)

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.

  10. Fluorescent scattering by molecules embedded in small particles. Progress report, February 1, 1981-January 31, 1982

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1982-01-01

    In earlier work a model of fluorescent and Raman scattering by active molecules represented as classical electric dipoles embedded in small particles was developed. The intensity and angular distribution of the inelastically scattered radiation was shown to depend on the geometric and optical properties of the particle. The model was originally developed for particles having spherical shape and later extended to concentric spheres, cylinders, and prolate spheroids. The active molecules were originally assumed to be isotropically polarizable. The model has been recently extended to certain types of anisotropically polarizable molecules. The model had also been applied to particles having internal structure

  11. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  12. Small Molecules Inspired by the Natural Product Withanolides as Potent Inhibitors of Wnt Signaling.

    Science.gov (United States)

    Sheremet, Michael; Kapoor, Shobhna; Schröder, Peter; Kumar, Kamal; Ziegler, Slava; Waldmann, Herbert

    2017-09-19

    Wnt signaling is a fundamental pathway that drives embryonic development and is essential for stem cell maintenance and tissue homeostasis. Dysregulation of Wnt signaling is linked to various diseases, and a constitutively active Wnt pathway drives tumorigenesis. Thus, disruption of the Wnt response is deemed a promising strategy for cancer drug discovery. However, only few clinical drug candidates that target Wnt signaling are available so far, and new small-molecule modulators of Wnt-related processes are in high demand. Here we describe the synthesis of small molecules inspired by withanolide natural products by using a pregnenolone-derived β-lactone as the key intermediate that was transformed into a δ-lactone appended to the D-ring of the steroidal scaffold. This natural-product-inspired compound library contained potent inhibitors of Wnt signaling that act upstream of the destruction complex to stabilize Axin in a tankyrase-independent manner. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...

  14. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  15. A DNA-Mediated Homogeneous Binding Assay for Proteins and Small Molecules

    DEFF Research Database (Denmark)

    Zhang, Zhao; Hejesen, Christian; Kjelstrup, Michael Brøndum

    2014-01-01

    . The shift occurs upon binding of a protein, for example, an antibody to its target. We demonstrate nanomolar detection of small molecules such as biotin, digoxigenin, vitamin D, and folate, in buffer and in plasma. The method is flexible, and we also show nanomolar detection of the respective antibodies......Optical detection of molecular targets typically requires immobilization, separation, or chemical or enzymatic processing. An important exception is aptamers that allow optical detection in solution based on conformational changes. This method, however, requires the laborious selection of aptamers...

  16. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  17. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  18. Evaluation of malt spent rootlets biochar as catalyst for biodiesel production.

    Science.gov (United States)

    Pantiora, Dimitra

    2014-05-01

    Evaluation of malt spent rootlets biochar as catalyst for biodiesel production. Dimitra Pantiora1, Hrissi K. Karapanagioti1, Ioannis D. Manariotis2, Alexis Lycourghiotis1, Christos Kordulis1,3 (1) University of Patras, Department of Chemistry, GR 26500, Patras, Greece, (2) University of Patras, Department of Civil Engineering, Patras, Greece, (3) Institute of Chemical Engineering Science (FORTH/ ICE-HT), Stadiou Str., Platani, GR 26500, Patras, Greece Biodiesel is an attractive renewable fuel, environmentally friendly, and can readily be synthesized from the triglycerides found in animal fats and vegetable oils. It can be used in existing engines. Biodiesel consists of fatty acid alkyl esters. Conversion of triglycerides to biodiesel fuel is commonly achieved through a series of transesterification reactions involving the reaction of an alkoxy group of an ester (i.e., mono-, di-, or triglyceride) with that of a small alcohol (usually methanol). This reaction is traditionally catalyzed by homogeneous catalysts, such as bases or mineral acids. Basic catalysts have been proved to be much more active than acidic ones. However, due to environmental (waste water) and economic concerns (catalyst separation and product and by-product cleaning), heterogeneous catalysts are much more desirable. In the present study we have evaluated the use of biochar, produced from malt spent rootlets, as a potential basic catalyst, for transesterification of triglycerides using triacetin as a probe molecule. The biochar used in this study was prepared by heating malt spent rootlets in an oxygen-limited environment. It is a carbon rich material, containing 66% C, 22% O, 0.45% Mg, 0.86% Si, 5.7% K, 1.5% Cl, 0.61% Ca, and 2.4% P. Aqueous suspension of this material equilibrates at pH= 10. This is probably due to high K content. Furthermore, it exhibits high specific surface area (SSA= 183 m2g-1). The above described characteristics make this material very promising catalyst for

  19. Characterisation and activation of catalysts for recombination of radiolysis gas

    International Nuclear Information System (INIS)

    Bolz, Michael; Koehler, Jan; Schorle, Rolf; Helf, Achim

    2011-01-01

    Radiolysis gas is produced by radiolysis of cooling water during the operation of boiling water reactors. Small amounts of radiolysis gas can accumulate at dead ends of pipes in the water-steam circuit. Under certain conditions, it can accumulate even to higher concentrations. To avoid these accumulations, small catalysts are built in. As part of a diploma thesis, the catalysts were analysed and characterised. (orig.)

  20. Identification of potential small molecule binding pockets on Rho family GTPases.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ortiz-Sanchez

    Full Text Available Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100 and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

  1. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    Science.gov (United States)

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  3. Next-generation small molecule therapies for heart failure: 2015 and beyond.

    Science.gov (United States)

    Malinowski, Justin T; St Jean, David J

    2018-05-15

    Poor prognosis coupled with significant economic burden makes heart failure (HF) one of the largest issues currently facing the world population. Although a significant number of new therapies have emerged over the past 20 years to treat the underlying physiological risk factors, only two new medications specifically for HF have been approved since 2007. This perspective provides an overview of recently approved treatment options for HF and as well as an update on additional small molecule therapies currently in clinical development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    International Nuclear Information System (INIS)

    Kim, Sun Young; Song, Kyung-A; Kieff, Elliott; Kang, Myung-Soo

    2012-01-01

    Highlights: ► Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. ► A small molecule and a peptide as EBNA1 dimerization inhibitors identified. ► Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. ► Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)’s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459–607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-Jκ binding to the Jκ site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560–574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with EBNA1 in vitro, and repressed EBNA1-dependent transcription in vivo. Collectively, this study describes two

  5. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Song, Kyung-A [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kieff, Elliott [Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Kang, Myung-Soo, E-mail: mkang@skku.edu [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  6. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  7. Novel Small Molecule Inhibitors of Choline Kinase Identified by Fragment-Based Drug Discovery.

    Science.gov (United States)

    Zech, Stephan G; Kohlmann, Anna; Zhou, Tianjun; Li, Feng; Squillace, Rachel M; Parillon, Lois E; Greenfield, Matthew T; Miller, David P; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Xu, Yongjin; Miret, Juan J; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2016-01-28

    Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism.

  8. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors.

    Directory of Open Access Journals (Sweden)

    Andrew R Schwendeman

    Full Text Available Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.

  9. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    Science.gov (United States)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  10. Toward Additive-Free Small-Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics

    KAUST Repository

    Abdelsamie, Maged

    2015-09-29

    The ease with which small-molecule donors crystallize during solution processing is directly linked to the need for solvent additives. Donor molecules that get trapped in disordered (H1) or liquid crystalline (T1) mesophases require additive processing to promote crystallization, phase separation, and efficient light harvesting. A donor material (X2) that crystallizes directly from solution yields additive-free solar cells with an efficiency of 7.6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. THEORETICAL CALCULATIONS OF THE MAGNETIZABILITY OF SOME SMALL FLUORINE-CONTAINING MOLECULES USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Ruud, K.; Helgaker, T.; Jørgensen, Poul

    1994-01-01

    We report a systematic investigation of the magnetizability of a series of small molecules. The use of London atomic orbitals ensures gauge invariance and a fast basis set convergence. Good agreement is obtained with experimental magnetizabilities, both isotropic and anisotropic. The calculations...

  12. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    Science.gov (United States)

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Test and survey on a next generation coal liquefying catalyst. Coal molecule scientific test and survey as the base for commercializing the coal liquefying technology; Jisedai sekitan ekika shokubai shiken chosa. Sekitan ekika gijutsu shogyoka kiban to shite no sekitan bunshi kagaku shiken chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The test and survey on a next generation coal liquefying catalyst present a new proposal to raise catalytic activity in coal liquefaction, and perform demonstration experiments in a laboratory scale to search for possibility of developing a new coal liquefying catalyst from various viewpoints. To explain, discussions were given on the catalyst to perform the followings: liquefaction under extremely mild conditions by using ultra strong acids not limited only to metals; ion exchange method and swell carrying method to raise catalyst dispersion very highly, enhance the catalytic activity, and reduce the amount of catalyst to be used; mechanism of producing catalyst activating species to further enhance the activity of iron catalysts; and pursuit of morphological change in the activating species. The coal molecule scientific test and survey as the base for commercializing the coal liquefying technology performed the studies on the following items: pretreatment of coal that can realize reduction of coal liquefaction cost; configuration of the liquefaction reaction, liquefying catalysts, hydrocarbon gas generating mechanism, status of catalysts after liquefaction reaction, and reduction in gas purification cost by using gas separating membranes. Future possibilities were further searched through frank and constructive opinion exchanges among the committee members. (NEDO)

  14. Catalytic cracking of iso-hexene over sapo-34 catalyst

    International Nuclear Information System (INIS)

    Nawaz, Z.; Shu, Q.

    2009-01-01

    The catalytic cracking of model feed compound, iso-hexene (2-methyl-1-pentene) was experimentally studied over 100% pure SAPO-34 zeolite catalyst. The critical focus was given to obtain maximum propylene selectivity. The product distributions were analyzed at temperature between 450-600 degree C. time-on-stream (TOS) from 1 to 5 min. and at WHSV = 7.9 h/sub -1/ The reaction behavior was quantified on both direct and indirect carbenium ion mechanisms owing to catalyst's small pore diameter with respect to 2-methyl-l-pentene kinetic diameter. The propylene yield and selectivity obtained was 41.2% and 43.1% respectively. with higher overall olefins selectivity 90.3%. The small pore size and week surface acid sites of 1000 percent pure SAPO-34 catalyst were found to be suitable for light olefins production and eliminate chances of bimolecular reactions. It was observed that both conversion and selectivity were strongly effected by TOS, as coke precursors become dominant and deactivate catalyst at higher TOS. (author)

  15. Fragmentation of small molecules induced by 46 keV/amu N+ and N2+ projectiles

    International Nuclear Information System (INIS)

    Kovacs, S.T.S.; Juhasz, Z.; Herczku, P.; Sulik, B.

    2012-01-01

    Complete text of publication follows. Collisional molecule fragmentation experiments has gain increasing attention in several research and applied fields. In order to understand the fundamental processes of molecule fragmentation one has to start with collisions of small few-atomic molecules. Moreover, fragments of small molecules such as water can cause damages of large molecules (DNA) very effectively in living tissues. In the last few years a new experimental setup was developed at Atomki. It was designed especially for molecule fragmentation experiments. Now the measurements using this system are running routinely. In 2012 the studied targets were water vapor, methane and nitrogen gases, injected into the collision area by an effusive molecular gas jet system. 650 keV N + and 1,3 MeV N 2 + ions were used as projectiles produced by the VdG-5 electrostatic accelerator. The velocity of the two types of projectiles was the same. Energy and angular distribution of the produced fragments was measured by an energy dispersive electrostatic spectrometer. For atomic ionization a symmetric, diatomic molecular projectile (e.g. N 2 + ) yields about twice more electrons compared to those of singly charged ion projectiles of the same atom (N + ) at the same velocity. In such cases the two atomic centers in the molecular ion can be considered as two individual atomic centers. For the fragmentation of molecular targets the picture is not so simple because in this case close collision of two extended systems is investigated. As figure 1 and 2 show, the measured yields for molecular projectile is not simply twice of the ones for atomic projectile. The shape of the energy spectra are different. The measured data are under evaluation. Acknowledgements. This work was supported by the Hungarian National Science Foundation OTKA (Grant: K73703) and by the TAMOP-4.2.2/B-10/1-2010-0024 project. The project is cofinanced by the European Union and the European Social Fund.

  16. A novel small molecule inhibitor of hepatitis C virus entry.

    Directory of Open Access Journals (Sweden)

    Carl J Baldick

    Full Text Available Small molecule inhibitors of hepatitis C virus (HCV are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc, blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.

  17. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  18. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  19. Small organic molecules modulating iodine uptake in thyroid

    International Nuclear Information System (INIS)

    Ambroise, Y.

    2006-01-01

    The thyroid gland accumulates large quantities of iodine. This uptake is needed for the production of iodinated hormones (T3 and T4). The first step in the iodine accumulation is a basolateral transport of iodide ions by the cloned 'Natrium Iodide Sym-porter' also called NIS. Using high-throughput screening techniques, we have identified a series of inhibitors of the iodide uptake in thyrocytes. These compounds are of medical significance in case of thyroid deregulation and can also offer solutions for radio-iodine detoxification in case of emergency situations (nuclear industry...). In addition, these small organic molecules can be important tools for the understanding of NIS structure and functions In parallel, we have identified and characterized a single compound capable to strongly enhance the amount of intra-cellular iodide in rat thyrocytes (FRTL5) as well as in HEK293 cells transfected with hNIS (Natrium/Iodide Sym-porter). Preliminary studies show that this effect is NIS dependant, and is induced by alternative and unknown mechanisms. Future work will consist in unraveling the mode of action of this molecule. These informations will help us not only to better understand the iodide pathways in the thyroid, but also to design more active analogues. We will use photo-labelling techniques to identify new proteins involved in the iodide transfer and retention. In addition, preliminary experiments are underway to validate our compound as an anti-cancer agent. Targeted NIS gene delivery into tumors plus radio-iodide injection leads to tumor size regression. Unfortunately, doses of radioactivity are to high for safe treatment. Our compound may lead to enhanced radio-iodide entrapment, thus necessitating lower doses of radioactivity for tumor regression. (author)

  20. Hangman Catalysis for Photo–and Photoelectro–Chemical Activation of Water Proton-Coupled Electron Transfer Mechanisms of Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel G. [Harvard Univ., Cambridge, MA (United States)

    2013-03-15

    The weakest link for the large-scale deployment of solar energy and for that matter, any renewable energy source, is its storage. The energy needs of future society demands are so large that storage must be in the form of fuels owing to their high energy density. Indeed, society has intuitively understood this disparity in energy density as it has developed over the last century as all large-scale energy storage in our society is in the form of fuels. But these fuels are carbon-based. The imperative for the discipline of chemistry, and more generally science, is to develop fuel storage methods that are easily scalable, carbon-neutral and sustainable. These methods demand the creation of catalysts to manage the multi-electron, multi-proton transformations of the conversion of small molecules into fuels. The splitting of water using solar light is a fuel-forming reaction that meets the imperative of large scale energy storage. As light does not directly act on water to engender its splitting into its elemental components, we have designed “hangman” catalysts to effect the energy conversion processes needed for the fuel forming reactions. The hangman construct utilizes a pendant acid/base functionality within the secondary coordination sphere that is “hung” above the redox platform onto which substrate binds. In this way, we can precisely control the delivery of a proton to the substrate, thus ensuring efficient coupling between the proton and electron. An emphasis was on the coupling of electron and proton in the hydrogen evolution reaction (HER) on Ni, Co and Fe porphyrin platforms. Electrokinetic rate laws were developed to define the proton-coupled electron transfer (PCET) mechanism. The HER of Co and Fe porphyrins was metal-centered. Surprisingly, HER this was not the case for Ni porphyrins. In this system, the PCET occurred at the porphyrin platform to give rise to a phlorin. This is one of the first examples of an HER occurring via ligand non

  1. Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-02-19

    Development of precision therapeutics is of immense interest, particularly as applied to the treatment of cancer. By analyzing the preferred cellular RNA targets of small molecules, we discovered that 5"-azido neomycin B binds the Drosha processing site in the microRNA (miR)-525 precursor. MiR-525 confers invasive properties to hepatocellular carcinoma (HCC) cells. Although HCC is one of the most common cancers, treatment options are limited, making the disease often fatal. Herein, we find that addition of 5"-azido neomycin B and its FDA-approved precursor, neomycin B, to an HCC cell line selectively inhibits production of the mature miRNA, boosts a downstream protein, and inhibits invasion. Interestingly, neomycin B is a second-line agent for hepatic encephalopathy (HE) and bacterial infections due to cirrhosis. Our results provocatively suggest that neomycin B, or second-generation derivatives, may be dual functioning molecules to treat both HE and HCC. Collectively, these studies show that rational design approaches can be tailored to disease-associated RNAs to afford potential lead therapeutics.

  2. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    Science.gov (United States)

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  3. Controlling destiny through chemistry: small-molecule regulators of cell fate.

    Science.gov (United States)

    Firestone, Ari J; Chen, James K

    2010-01-15

    Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.

  4. A study of small molecule ingress into planar and cylindrical materials using ion beam analysis

    International Nuclear Information System (INIS)

    Smith, R.W.

    2001-12-01

    Ion beam analysis techniques have been developed to allow profiling of small molecules diffused into materials at depths ranging from 10 -7 to 10 -1 m. A model DPS/PS/DPS triple-layer film and D( 3 He,p) 4 He nuclear reaction analysis was used to test the applicability of a novel data processing program - the IBA DataFurnace - to nuclear reaction data. The same reaction and program were used to depth profile the diffusion of heavy water into cellophane. A scanning 3 He micro-beam technique was developed to profile the diffusion of small molecules into both planar and cylindrical materials. The materials were exposed to liquids containing deuterium labelled molecules. A cross-section was exposed by cutting the material perpendicular to the surface and this was bombarded by a scanning 3 He micro-beam. Nuclear reaction analysis was used to profile the diffusing molecules, particle induced X-ray emission (in most cases) to locate the matrix and Rutherford backscattering for normalisation. Two-dimensional maps showing the molecular distribution over the cross-section were obtained. From these one-dimensional concentration profiles were produced. Water diffusion was studied into a planar and a cylindrical polymer, three different planar fibre optic grade glasses and both a fibre optic pressure sensor and communication fibre. The diffusion of dye into hair was also investigated. These studies have provided information about the diffusion mechanisms that take place, and where relevant diffusion coefficients have been obtained using either a semi-infinite medium Fickian planar diffusion model or a cylindrical Fickian diffusion model. (author)

  5. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    Science.gov (United States)

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  6. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  7. Pharmacological Correction of Stress-Induced Gastric Ulceration by Novel Small-Molecule Agents with Antioxidant Profile

    Directory of Open Access Journals (Sweden)

    Konstantin V. Kudryavtsev

    2014-01-01

    Full Text Available This study was designed to determine novel small-molecule agents influencing the pathogenesis of gastric lesions induced by stress. To achieve this goal, four novel organic compounds containing structural fragments with known antioxidant activity were synthesized, characterized by physicochemical methods, and evaluated in vivo at water immersion restraint conditions. The levels of lipid peroxidation products and activities of antioxidative system enzymes were measured in gastric mucosa and correlated with the observed gastroprotective activity of the active compounds. Prophylactic single-dose 1 mg/kg treatment with (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline efficiently decreases up to 86% stress-induced stomach ulceration in rats. Discovered small-molecule antiulcer agents modulate activities of gastric mucosa tissue superoxide dismutase, catalase, and xanthine oxidase in concerted directions. Gastroprotective effect of (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline at least partially depends on the correction of gastric mucosa oxidative balance.

  8. Inhibiting AMPylation: a novel screen to identify the first small molecule inhibitors of protein AMPylation.

    Science.gov (United States)

    Lewallen, Daniel M; Sreelatha, Anju; Dharmarajan, Venkatasubramanian; Madoux, Franck; Chase, Peter; Griffin, Patrick R; Orth, Kim; Hodder, Peter; Thompson, Paul R

    2014-02-21

    Enzymatic transfer of the AMP portion of ATP to substrate proteins has recently been described as an essential mechanism of bacterial infection for several pathogens. The first AMPylator to be discovered, VopS from Vibrio parahemolyticus, catalyzes the transfer of AMP onto the host GTPases Cdc42 and Rac1. Modification of these proteins disrupts downstream signaling events, contributing to cell rounding and apoptosis, and recent studies have suggested that blocking AMPylation may be an effective route to stop infection. To date, however, no small molecule inhibitors have been discovered for any of the AMPylators. Therefore, we developed a fluorescence-polarization-based high-throughput screening assay and used it to discover the first inhibitors of protein AMPylation. Herein we report the discovery of the first small molecule VopS inhibitors (e.g., calmidazolium, GW7647, and MK886) with Ki's ranging from 6 to 50 μM and upward of 30-fold selectivity versus HYPE, the only known human AMPylator.

  9. Small Talk: Children's Everyday `Molecule' Ideas

    Science.gov (United States)

    Jakab, Cheryl

    2013-08-01

    This paper reports on 6-11-year-old children's `sayings and doings' (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, Cultural Studies of Science Education 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's everyday awareness of and meaning-making with cultural molecular artefacts. Our everyday world is populated with an ever increasing range of molecular or nanoworld words, symbols, images, and games. What do children today say about these artefacts that are used to represent molecular world entities? What are the material and social resources that can influence a child's everyday and developing scientific ideas about `molecules'? How do children interact with these cognitive tools when given expert assistance? What meaning-making is afforded when children are socially and materially assisted in using molecular tools in early chemical and nanoworld thinking? Tool-dependent discursive studies show that provision of cultural artefacts can assist and direct developmental thinking across many domains of science (Schoultz et al., Human Development 44:103-118, 2001; Siegal 2008). Young children's use of molecular artefacts as cognitive tools has not received much attention to date (Jakab 2009a, b). This study shows 6-11-year-old children expressing everyday ideas of molecular artefacts and raising their own questions about the artefacts. They are seen beginning to domesticate (Erneling 2010) the words, symbols, and images to their own purposes when given the opportunity to interact with such artefacts in supported activity. Discursive analysis supports the notion that using `molecules' as cultural tools can help young children to begin `putting on molecular spectacles' (Kind 2004). Playing with an interactive game (ICT) is shown to be particularly helpful in assisting children's early meaning-making with representations of molecules, atoms, and their chemical symbols.

  10. Formation of nitrogen compounds from nitrogen-containing rings during oxidative regeneration of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Nielsen, M.; Jurasek, P. [CANMET, Ottawa, ON (Canada). Energy Research Laboratories

    1995-05-01

    Commercial CoMo and NiMo catalysts in an oxidic and sulfided form and a {gamma}-alumina were deposited with pyrrole, pyridine, and quinoline. The deposited catalysts and two spent hydroprocessing catalysts were pyrolyzed and oxidized under conditions typical of regeneration of hydroprocessing catalysts. The formation of NH{sub 3} and HCN, as well as selected cases of N{sub 2}O and NO, was monitored during the experiments. NH{sub 3} and HCN were formed during pyrolysis of pyrrole-deposited catalysts whereas only NH{sub 3} was formed during that of pyridine-and quinoline-deposited catalysts. For all deposited catalysts, both NH{sub 3} and HCN were formed during temperature programmed oxidation in 2% O{sub 2}. For spent catalysts, a small amount of N{sub 2}O was formed in 2 and 4% O{sub 2}. For pyrrole-deposited catalysts, large yields of N{sub 2}O were formed in 4% O{sub 2}. Under the same conditions, N{sub 2}O yields for pyridine- and quinoline-deposited catalysts were very small. 13 refs., 12 figs., 6 tabs.

  11. Small-molecule inhibitors of sodium iodide sym-porter function

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Merer, G.; Lopez, R.; Rousseau, B.; Ambroise, Y.; Pourcher, T.

    2008-01-01

    The Na + /l - sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  12. Small-molecule inhibitors of sodium iodide sym-porter function

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Merer, G.; Lopez, R.; Rousseau, B.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem et Isotop Labelling, Inst Biol et Biotechnol iBiTecS, F-91191 Gif Sur Yvette (France); Pourcher, T. [Univ Nice Sophia Antipolis, Dept Biochem et Nucl Toxicol, F-06107 Nice (France)

    2008-07-01

    The Na{sup +}/l{sup -} sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  13. Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    KAUST Repository

    Chou, Kang Wei; Khan, Hadayat Ullah; Niazi, Muhammad Rizwan; Yan, Buyi; Li, Ruipeng; Payne, Marcia M.; Anthony, John Edward; Smilgies, Detlef Matthias; Amassian, Aram

    2014-01-01

    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis

  14. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  15. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors.

    Science.gov (United States)

    Cacace, Angela; Banks, Martyn; Spicer, Timothy; Civoli, Francesca; Watson, John

    2003-09-01

    G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.

  16. Durable platinum/graphene catalysts assisted with polydiallyldimethylammonium for proton-exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Lei, M.; Liang, C.; Wang, Y.J.; Huang, K.; Ye, C.X.; Liu, G.; Wang, W.J.; Jin, S.F.; Zhang, R.; Fan, D.Y.; Yang, H.J.; Wang, Y.G.

    2013-01-01

    High performance and electrochemically stable Pt/graphene catalysts assisted with polydiallyldimethylammonium (PDDA) have been synthesized for PEM fuel cells. The preparation procedure and properties of the catalysts are investigated in detail. With the introduction of PDDA molecules, Pt nanoparticles can be well-dispersed on graphene support, resulting in improved electrochemical surface area and enhanced electrocatalytic activity. The corresponding electrochemical surface areas (ECSA) of catalyst layers calculated from the hydrogen desorption peak on cyclic voltammogram curves are 78.3, 72.5 and 73.6 cm 2 g −1 for catalyst layers with Pt/graphene, Pt-PDDA/graphene, and Pt/graphene-PDDA catalysts, respectively. Both PDDA modified Pt nanoparticles and PDDA modified graphene supports also exhibit high durability toward electrochemical oxidation cycles compared with the conventional produced Pt/graphene catalyst at the same conditions. After 3000 cycles, only 23.52% of the initial ECSA remains for Pt/graphene electrocatalyst whereas 43.04% and 37.7% of the initial ECSA for the Pt/graphene-PDDA and Pt-PDDA/graphene catalysts remain, respectively

  17. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    Science.gov (United States)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  18. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-12-22

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  19. Identification of a new class of small molecules that efficiently reactivate latent Epstein-Barr virus

    Science.gov (United States)

    Tikhmyanova, Nadezhda; Schultz, David C.; Lee, Theresa; Salvino, Joseph M.; Lieberman, Paul M.

    2014-01-01

    Epstein-Barr Virus (EBV) persists as a latent infection in many lymphoid and epithelial malignancies, including Burkitt's lymphomas, nasopharyngeal carcinomas, and gastric carcinomas. Current chemotherapeutic treatments of EBV-positive cancers include broad- spectrum cytotoxic drugs that ignore the EBV-positive status of tumors. An alternative strategy, referred to as oncolytic therapy, utilizes drugs that stimulate reactivation of latent EBV to enhance the selective killing of EBV positive tumors, especially in combination with existing inhibitors of herpesvirus lytic replication, like Ganciclovir (GCV). At present, no small molecule, including histone deacetylase (HDAC) inhibitors, have proven safe or effective in clinical trials for treatment of EBV positive cancers. Aiming to identify new chemical entities that induce EBV lytic cycle, we have developed a robust high throughput cell-based assay to screen 66,840 small molecule compounds. Five structurally related tetrahydrocarboline derivatives were identified, two of which had EC50 measurements in the range of 150-170 nM. We show that these compounds reactivate EBV lytic markers ZTA and EA-D in all EBV-positive cell lines we have tested independent of the type of latency. The compounds reactivate a higher percentage of latently infected cells than HDAC inhibitors or phorbol esters in many cell types. The most active compounds showed low toxicity to EBV-negative cells, but were highly effective at selective cell killing of EBV-positive cells when combined with GCV. We conclude that we have identified a class of small molecule compounds that are highly effective at reactivating latent EBV infection in a variety of cell types, and show promise for lytic therapy in combination with GCV. PMID:24028149

  20. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Anantpinijwatna, Amata; Woodley, John

    2017-01-01

    This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organic......; compounds participating in the reaction; use of organic solvents and their function; information for single step and multistep reactions; target products; reaction conditions and reaction data. Information for reactor scale-up together with information for the separation and other relevant information...

  1. An anti-CCR5 monoclonal antibody and small molecule CCR5 antagonists synergize by inhibiting different stages of human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Safarian, Diana; Carnec, Xavier; Tsamis, Fotini; Kajumo, Francis; Dragic, Tatjana

    2006-01-01

    HIV-1 coreceptors are attractive targets for novel antivirals. Here, inhibition of entry by two classes of CCR5 antagonists was investigated. We confirmed previous findings that HIV-1 isolates vary greatly in their sensitivity to small molecule inhibitors of CCR5-mediated entry, SCH-C and TAK-779. In contrast, an anti-CCR5 monoclonal antibody (PA14) similarly inhibited entry of diverse viral isolates. Sensitivity to small molecules was V3 loop-dependent and inversely proportional to the level of gp120 binding to CCR5. Moreover, combinations of the MAb and small molecules were highly synergistic in blocking HIV-1 entry, suggesting different mechanisms of action. This was confirmed by time course of inhibition experiments wherein the PA14 MAb and small molecules were shown to inhibit temporally distinct stages of CCR5 usage. We propose that small molecules inhibit V3 binding to the second extracellular loop of CCR5, whereas PA14 preferentially inhibits subsequent events such as CCR5 recruitment into the fusion complex or conformational changes in the gp120-CCR5 complex that trigger fusion. Importantly, our findings suggest that combinations of CCR5 inhibitors with different mechanisms of action will be central to controlling HIV-1 infection and slowing the emergence of resistant strains

  2. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS.

    Science.gov (United States)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-04-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.

  3. Study of the synthesis of ammonia over technetium catalysts

    International Nuclear Information System (INIS)

    Spetsyn, V.I.; Mikhailenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    The catalytic properties of technetium in the synthesis of ammonia have been studied in the present work. Technetium catalysts according to specific yield surpass all know catalysts for the synthesis of ammonia. The enhanced catalytic activity of technetium compared to manganese and rhenium is apparently explained by the presence of the radioactivity of 99 Tc. The processes of adsorption, orientation of the adsorbed molecules, and their binding energies can differ during radiation action. Irradiation of the carrier, occurring through #betta#-emission of 99 Tc, with doses of 4-8 x 10 3 rad/day, increased the number of defects in the crystal structure where stabilization of technetium atoms was possible. The existence of charged centers can cause an increase in the dissociative chemisorption of nitrogen, which is the limiting stage of the process. Technetium catalysts possess a stable catalytic activity and do not require its restoration for several months. Results suggest that the use of technetium as a catalyst for the synthesis of ammonia has real advantages and potential possibilities

  4. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    Directory of Open Access Journals (Sweden)

    Mikaela Lindgren

    2014-02-01

    Full Text Available Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE, where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  5. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  6. Small Molecules for Early Endosome-Specific Patch Clamping.

    Science.gov (United States)

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  8. Bispecific small molecule-antibody conjugate targeting prostate cancer.

    Science.gov (United States)

    Kim, Chan Hyuk; Axup, Jun Y; Lawson, Brian R; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V; Schultz, Peter G

    2013-10-29

    Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ~ 100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors.

  9. Synthesis, characterization of bay-substituted perylene diimide based D-A-D type small molecules and their applications as a non-fullerene electron acceptor in polymer solar cells

    Directory of Open Access Journals (Sweden)

    Ramasamy Ganesamoorthy

    2018-03-01

    Full Text Available We report a series of bay substituted perylene diimide based donor-acceptor-donor (D-A-D type small molecule acceptor derivatives such as S-I, S-II, S-III and S-IV for small molecule based organic solar cell (SM-OSC applications. The electron rich thiophene derivatives such as thiophene, 2-hexylthiophene, 2,2′-bithiophene, and 5-hexyl-2,2′-bithiophene were used as a donor (D, and perylene diimide was used as an acceptor (A. The synthesized small molecules were confirmed by FT-IR, NMR, and HR-MS. The small molecules showed wide and strong absorption in the UV-vis region up to 750 nm, which reduced the optical band gap to <2 eV. The calculated highest occupied molecular orbital (HOMO and the lowest unoccupied molecular orbital (LUMO were comparable with those of the PC61BM. Scanning electron microscope (SEM studies confirmed the aggregation of the small molecules, S-I to S-IV. Small molecules showed thermal stability up to 300 °C. In bulk heterojunction organic solar cells (BHJ-OSCs, the S-I based device showed a maximum power conversion efficiency (PCE of 0.12% with P3HT polymer donor. The PCE was declined with respect to the number of thiophene units and the flexible alkyl chain in the bay position. Keywords: Perylene diimide, Donor–acceptor, Small molecule, Non-fullerene, Suzuki coupling

  10. A mapping of drug space from the viewpoint of small molecule metabolism.

    Directory of Open Access Journals (Sweden)

    James Corey Adams

    2009-08-01

    Full Text Available Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the "effect space" comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism.

  11. A mapping of drug space from the viewpoint of small molecule metabolism.

    Science.gov (United States)

    Adams, James Corey; Keiser, Michael J; Basuino, Li; Chambers, Henry F; Lee, Deok-Sun; Wiest, Olaf G; Babbitt, Patricia C

    2009-08-01

    Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the "effect space" comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism.

  12. Medicinal chemistry of small molecule CCR5 antagonists for blocking HIV-1 entry: a review of structural evolution.

    Science.gov (United States)

    Tian, Ye; Zhang, Dujuan; Zhan, Peng; Liu, Xinyong

    2014-01-01

    CCR5, a member of G protein-coupled receptors superfamily, plays an important role in the HIV-1 entry process. Antagonism of this receptor finally leads to the inhibition of R5 strains of HIV entry into the human cells. The identification of CCR5 antagonists as antiviral agents will provide more option for HAART. Now, more than a decade after the first small molecule CCR5 inhibitor was discovered, great achievements have been made. In this article, we will give a brief introduction of several series of small molecule CCR5 antagonists, focused on their appealing structure evolution, essential SAR information and thereof the enlightenment of strategies on CCR5 inhibitors design.

  13. DG-AMMOS: a new tool to generate 3d conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening.

    Science.gov (United States)

    Lagorce, David; Pencheva, Tania; Villoutreix, Bruno O; Miteva, Maria A

    2009-11-13

    Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  14. Selective small-molecule inhibition of an RNA structural element

    Energy Technology Data Exchange (ETDEWEB)

    Howe, John A.; Wang, Hao; Fischmann, Thierry O.; Balibar, Carl J.; Xiao, Li; Galgoci, Andrew M.; Malinverni, Juliana C.; Mayhood, Todd; Villafania, Artjohn; Nahvi, Ali; Murgolo, Nicholas; Barbieri, Christopher M.; Mann, Paul A.; Carr, Donna; Xia, Ellen; Zuck, Paul; Riley, Dan; Painter, Ronald E.; Walker, Scott S.; Sherborne, Brad; de Jesus, Reynalda; Pan, Weidong; Plotkin, Michael A.; Wu, Jin; Rindgen, Diane; Cummings, John; Garlisi, Charles G.; Zhang, Rumin; Sheth, Payal R.; Gill, Charles J.; Tang, Haifeng; Roemer , Terry (Merck)

    2015-09-30

    Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.

  15. Study of the effect of ionizing radiation for utilization of spent cracking catalysts

    International Nuclear Information System (INIS)

    Kondo, Fernando Mantovani

    2014-01-01

    Catalyst is a substance that changes the rate of a reaction. In the petroleum industry the commonly catalysts are used for Fluid Catalytic Cracking (FCC) and Hydrocatalytic Cracking (HCC), which one applied in a specific stage. These catalysts are used to facilitate the molecular chains cracking which will generate a mixture of hydrocarbons. However, the catalyst gradually loses its activity, either by changing its original molecular structure or by its contamination from other petroleum molecules. The application of ionizing radiation (electron beam and gamma rays) over these spent catalysts was studied to contribute with the extraction of metals or rare-earths of high added-value. Tests carried out with FCC catalysts were used the techniques of 60 Co irradiation and electron beam (EB) and had as a subject the extraction of lanthanum (La 2 O 3 ), regeneration and utilization of these catalysts. However, the use of ionizing radiation has not contributed in these processes. Meanwhile with HCC catalysts the irradiation used was electron beam and had as a subject the extraction of molybdenum (MoO 3 ). In temperature around 750°C, these irradiated catalysts of the lower region have an extraction yield twice higher compared to non-irradiated ones, in other words 57.65% and 26.24% respectively. (author)

  16. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    2017-03-01

    Full Text Available Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP, to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  17. A three-dimensional tetrahedral-shaped conjugated small molecule for organic solar cells

    Directory of Open Access Journals (Sweden)

    QIN Yang

    2014-04-01

    Full Text Available We report the synthesis of a novel three-dimensional tetrahedral-shaped small molecule,SO,containing a tetraphenylsilane core and cyanoester functionalized terthiophene arms.A deep lying HOMO energy level of -5.3 eV and a narrow bandgap of 1.9 eV were obtained from cyclic voltammetry measurements.Absorption,X-ray scattering and differential scanning calorimetry experiments all indicate high crystallinity of this compound.Solar cells employing SO were fabricated and evaluated.The relatively low performance was mainly ascribed to lack of appreciable phase separation,which is confirmed by optical microscopy.

  18. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Chang, Joan; Lucas, Morghan C; Leonte, Lidia Elena

    2017-01-01

    inhibitor in the MDA-MB-231 human model of breast cancer. We confirmed a functional role for LOXL2 activity in the progression of primary breast cancer. Inhibition of LOXL2 activity inhibited the growth of primary tumors and reduced primary tumor angiogenesis. Dual inhibition of LOXL2 and LOX showed...... a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer....

  19. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  20. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  1. Transmembrane α-Helix 2 and 7 Are Important for Small Molecule-Mediated Activation of the GLP-1 Receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Møller Knudsen, Sanne; Schjellerup Wulff, Birgitte

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study, the structur......Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study......, the structurally related small molecule, compound 3, stimulated cAMP production from GLP-1R, but not from the homologous glucagon receptor (GluR). The receptor selectivity encouraged a chimeric receptor approach to identify domains important for compound 3-mediated activation of GLP-1R. A subsegment of the GLP-1R...... transmembrane domain containing TM2 to TM5 was sufficient to transfer compound 3 responsiveness to GluR. Therefore, divergent residues in this subsegment of GLP-1R and GluR are responsible for the receptor selectivity of compound 3. Functional analyses of other chimeric receptors suggested that the existence...

  2. Effects of quantum chemistry models for bound electrons on positron annihilation spectra for atoms and small molecules

    International Nuclear Information System (INIS)

    Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M

    2012-01-01

    The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)

  3. Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices

    Science.gov (United States)

    Szarko, Jodi M.; Guo, Jianchang; Rolczynski, Brian S.; Chen, Lin X.

    2011-01-01

    Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems. PMID:22110870

  4. Discovery of novel small molecule modulators of Clavibacter michiganensis subsp. michiganensis

    Directory of Open Access Journals (Sweden)

    Xiulan eXu

    2015-10-01

    Full Text Available Clavibacter michiganensis subsp. michiganensis (Cmm is a Gram-positive seed-transmitted bacterial phytopathogen responsible for substantial economic losses by adversely affecting tomato production worldwide. A high-throughput, cell-based screen was adapted to identify novel small molecule growth inhibitors to serve as leads for future bactericide development. A library of 4,182 compounds known to be bioactive against Saccharomyces cerevisiae was selected for primary screening against Cmm wild-type strain C290 for whole-cell growth inhibition. Four hundred sixty-eight molecules (11.2% hit rate were identified as bacteriocidal or bacteriostatic against Cmm at 200 M. Seventy-seven candidates were selected based on Golden Triangle analyses for secondary screening. Secondary screens showed that several of these candidates were strain-selective. Several compounds were inhibitory to multiple Cmm strains as well as Bacillus subtilis, but not Pseudomonas fluorescens, Mitsuaria sp., Lysobacter enzymogenes, Lactobacillus rhamnosus, Bifidobacter animalis, or Escherichia coli. Most of the compounds were not phytotoxic and did not show overt host toxicity. Using a novel 96-well bioluminescent Cmm seedling infection assay, we assessed effects of selected compounds on pathogen infection. The 12 most potent novel molecules were identified by compiling the scores from all secondary screens combined with the reduction of pathogen infection in planta. When tested for ability to develop resistance to the top-12 compounds, no resistant Cmm were recovered, suggesting that the discovered compounds are unlikely to induce resistance. In conclusion, here we report top-12 compounds that provide chemical scaffolds for future Cmm-specific bactericide development.

  5. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor

    NARCIS (Netherlands)

    Moonen, Roel; Ras, Erik Jan; Harvey, Clare; Alles, Jeroen; Moulijn, J.A.

    2017-01-01

    Small-scale parallel trickle-bed reactors were used to evaluate the performance of a commercial hydrodesulfurization catalyst under industrially relevant conditions. Catalyst extrudates were loaded as a single string in reactor tubes. It is demonstrated that product sulfur levels and densities

  6. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  7. Activation of CO2 and Related Small Molecules by Neopentyl-Derivatized Uranium Complexes

    OpenAIRE

    Schmidt, Anna-Corina

    2015-01-01

    The world´s concern about the environment has continued to intensify as the effects of greenhouse gases or complicated work-up and disposal of radioactive substances become more obvious and profound. Unsurprisingly, the number of publications related to the solution of these issues has greatly increased in the last 15 years. Thus, a basic understanding of the specific properties and behavior of small molecules is crucial for the reduction of greenhouse gases, which may be realized through act...

  8. Interaction of different poisons with MgCl{sub 2}/TiCl{sub 4} based Ziegler-Natta catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bahri-Laleh, Naeimeh, E-mail: n.bahri@ippi.ac.ir

    2016-08-30

    Highlights: • The interactions between different classes of poison molecules and TiCl{sub 4}/MgCl{sub 2} type Ziegler-Natta catalyst is considered. • Poisons strongly stabilize MgCl{sub 2} crystal surfaces, mostly Ti active center relative to the unpoisoned solid. • Poison molecules decrease catalyst activity by increasing E{sub TS} in olefin polymerization. • Poison molecules do not have significant effect in stereospecifity of ZN catalysts in propylene polymerization. - Abstract: Adsorption of different poison molecules on activated MgCl{sub 2} is investigated within DFT using a cluster model of the MgCl{sub 2} surface with (MgCl{sub 2}){sub 16} formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1–4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl{sub 2}, as well as their adsorption on [MgCl{sub 2}]/TiCl{sub 2}Et active center and AlEt{sub 3} cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (E{sub TS}) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change E{sub TS}, coordination of it into the first Mg atom increases E{sub TS} by 0.9–1.2 kcal mol{sup −1}. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.

  9. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    International Nuclear Information System (INIS)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V 8 C 7 . The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  10. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    Science.gov (United States)

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  11. De-repressing LncRNA-Targeted Genes to Upregulate Gene Expression: Focus on Small Molecule Therapeutics

    Directory of Open Access Journals (Sweden)

    Roya Pedram Fatemi

    2014-01-01

    Full Text Available Non-protein coding RNAs (ncRNAs make up the overwhelming majority of transcripts in the genome and have recently gained attention for their complex regulatory role in cells, including the regulation of protein-coding genes. Furthermore, ncRNAs play an important role in normal development and their expression levels are dysregulated in several diseases. Recently, several long noncoding RNAs (lncRNAs have been shown to alter the epigenetic status of genomic loci and suppress the expression of target genes. This review will present examples of such a mechanism and focus on the potential to target lncRNAs for achieving therapeutic gene upregulation by de-repressing genes that are epigenetically silenced in various diseases. Finally, the potential to target lncRNAs, through their interactions with epigenetic enzymes, using various tools, such as small molecules, viral vectors and antisense oligonucleotides, will be discussed. We suggest that small molecule modulators of a novel class of drug targets, lncRNA-protein interactions, have great potential to treat some cancers, cardiovascular disease, and neurological disorders.

  12. Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening.

    Science.gov (United States)

    Wagner, Bridget K; Carrinski, Hyman A; Ahn, Young-Hoon; Kim, Yun Kyung; Gilbert, Tamara J; Fomina, Dina A; Schreiber, Stuart L; Chang, Young-Tae; Clemons, Paul A

    2008-04-02

    A small molecule capable of distinguishing the distinct states resulting from cellular differentiation would be of enormous value, for example, in efforts aimed at regenerative medicine. We screened a collection of fluorescent small molecules for the ability to distinguish the differentiated state of a mouse skeletal muscle cell line. High-throughput fluorescence-based screening of C2C12 myoblasts and myotubes resulted in the identification of six compounds with the desired selectivity, which was confirmed by high-content screening in the same cell states. The compound that resulted in the greatest fluorescence intensity difference between the cell states was used as the screening agent in a pilot screen of 84 kinase inhibitors, each present in four doses, for inhibition of myogenesis. Of the kinase inhibitors, 17 resulted in reduction of fluorescence at one or more concentrations; among the "hits" included known inhibitors of myogenesis, confirming that this compound is capable of detecting the differentiated myotube state. We suggest that the strategy of screening for screening agents reported here may be extended more broadly in the future.

  13. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  14. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  15. Development of a Unique Small Molecule Modulator of CXCR4

    Science.gov (United States)

    Yoon, Younghyoun; Lin, Songbai; Sasaki, Maiko; Klapproth, Jan-Michael A.; Yang, Hua; Grossniklaus, Hans E.; Xu, Jianguo; Rojas, Mauricio; Voll, Ronald J.; Goodman, Mark M.; Arrendale, Richard F.; Liu, Jin; Yun, C. Chris; Snyder, James P.; Liotta, Dennis C.; Shim, Hyunsuk

    2012-01-01

    Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for

  16. Development of a unique small molecule modulator of CXCR4.

    Directory of Open Access Journals (Sweden)

    Zhongxing Liang

    Full Text Available Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4 and its ligand stromal cell-derived factor-1 (CXCL12 interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites.We describe the actions of N,N'-(1,4-phenylenebis(methylenedipyrimidin-2-amine (designated MSX-122, a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using (18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles.We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4

  17. A Novel Small-molecule WNT Inhibitor, IC-2, Has the Potential to Suppress Liver Cancer Stem Cells.

    Science.gov (United States)

    Seto, Kenzo; Sakabe, Tomohiko; Itaba, Noriko; Azumi, Junya; Oka, Hiroyuki; Morimoto, Minoru; Umekita, Yoshihisa; Shiota, Goshi

    2017-07-01

    The presence of cancer stem cells (CSCs) contributes to metastasis, recurrence, and resistance to chemo/radiotherapy in hepatocellular carcinoma (HCC). The WNT signaling pathway is reportedly linked to the maintenance of stemness of CSCs. In the present study, in order to eliminate liver CSCs and improve the prognosis of patients with HCC, we explored whether small-molecule compounds targeting WNT signaling pathway suppress liver CSCs. The screening was performed using cell proliferation assay and reporter assay. We next investigated whether these compounds suppress liver CSC properties by using flow cytometric analysis and sphere-formation assays. A mouse xenograft model transplanted with CD44-positive HuH7 cells was used to examine the in vivo antitumor effect of IC-2. In HuH7 human HCC cells, 10 small-molecule compounds including novel derivatives, IC-2 and PN-3-13, suppressed cell viability and WNT signaling activity. Among them, IC-2 significantly reduced the CD44-positive population, also known as liver CSCs, and dramatically reduced the sphere-forming ability of both CD44-positive and CD44-negative HuH7 cells. Moreover, CSC marker-positive populations, namely CD90-positive HLF cells, CD133-positive HepG2 cells, and epithelial cell adhesion molecule-positive cells, were also reduced by IC-2 treatment. Finally, suppressive effects of IC-2 on liver CSCs were also observed in a xenograft model using CD44-positive HuH7 cells. The novel derivative of small-molecule WNT inhibitor, IC-2, has the potential to suppress liver CSCs and can serve as a promising therapeutic agent to improve the prognosis of patients with HCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emel Maden; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2015-09-15

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  19. The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

    International Nuclear Information System (INIS)

    GarcIa, J.; Gomes, H.T.; Figueiredo, J.L.; Faria, J.L.; Garcia, J.; Serp, P.; Kalck, P.

    2005-01-01

    High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO 3 modified) and MWNT-COONa (HNO 3 /Na 2 CO 3 modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT)≥RuCl 3 ≥Ru(C 5 H 5 ) 2 . The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained in terms of the high dispersion of

  20. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    Directory of Open Access Journals (Sweden)

    Katharina Peters

    2016-06-01

    Full Text Available Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs. Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl-N,N’-diphenyl-(1,1’-biphenyl-4,4’-diamine and BAlq (Bis(8-hdroxy-2methylquinoline-(4-phenylphenoxyaluminum, originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  1. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Katharina; Raupp, Sebastian, E-mail: sebastian.raupp@kit.edu; Scharfer, Philip; Schabel, Wilhelm [Institute of Thermal Process Engineering, Thin Film Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hummel, Helga [Philips Technologie GmbH Innovative Technologies, Aachen (Germany); Bruns, Michael [Institute for Applied Materials and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-06-15

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  2. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Directory of Open Access Journals (Sweden)

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  3. How Diverse are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors?

    Science.gov (United States)

    Friedrich, Nils-Ole; Simsir, Méliné; Kirchmair, Johannes

    2018-03-01

    Knowledge of the bioactive conformations of small molecules or the ability to predict them with theoretical methods is of key importance to the design of bioactive compounds such as drugs, agrochemicals and cosmetics. Using an elaborate cheminformatics pipeline, which also evaluates the support of individual atom coordinates by the measured electron density, we compiled a complete set (“Sperrylite Dataset”) of high-quality structures of protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a total of 10,936 high-quality structures of 4548 unique ligands. Based on this dataset, we assessed the variability of the bioactive conformations of 91 small molecules—each represented by a minimum of ten structures—and found it to be largely independent of the number of rotatable bonds. Sixty-nine molecules had at least two distinct conformations (defined by an RMSD greater than 1 Å). For a representative subset of 17 approved drugs and cofactors we observed a clear trend for the formation of few clusters of highly similar conformers. Even for proteins that share a very low sequence identity, ligands were regularly found to adopt similar conformations. For cofactors, a clear trend for extended conformations was measured, although in few cases also coiled conformers were observed. The Sperrylite Dataset is available for download from http://www.zbh.uni-hamburg.de/sperrylite_dataset.

  4. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.; Fleet, Luke R.; Burgess, Claire H.; McLachlan, Martyn A.

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  5. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.

    2014-11-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  6. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2016-05-07

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  7. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    International Nuclear Information System (INIS)

    Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B.

    2016-01-01

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO 2 -MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO 2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  8. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Directory of Open Access Journals (Sweden)

    Kohei Koyanagi

    2016-11-01

    Full Text Available Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA that has α-cyclodextrin (α-CD as a host molecule (α-CD-CTA. Prior to the polymerization of N,N-dimethylacrylamide (DMA, we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-ylpropane dihydrochloride (VA-044 as an initiator in an aqueous solution, poly(DMA was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.

  9. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy ... the synthesis of relatively large and complex molecules .... of ethylene diamine in hydrothermal ZnO nanorod syn- thesis. Di- and ...

  11. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction.

    Science.gov (United States)

    Waters, Stephen M; Brodbeck, Robbin M; Steflik, Jeremy; Yu, Jianying; Baltazar, Carolyn; Peck, Amy E; Severance, Daniel; Zhang, Lu Yan; Currie, Kevin; Chenard, Bertrand L; Hutchison, Alan J; Maynard, George; Krause, James E

    2005-12-09

    Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.

  12. Genetic Manipulation of Outer Membrane Permeability: Generating Porous Heterogeneous Catalyst Analogs in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Patel, TN; Park, AHA; Bantat, S

    2014-12-01

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilities (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.

  13. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    Two approaches are undertaken in the present work to reduce the emission of NO{sub x}: by means of catalytic removal, and by NO absorption in ionic liquids. The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N{sub 2}. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts in the flue gas when biomass is combusted. By co-firing with large amounts of CO{sub 2}-neutral straw or wood (to meet stringent CO{sub 2} emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2}. This work, together with an introduction to the catalytic removal of NO{sub x}, are described in chapter 3. The remainder of the first part is concerned with the catalytic NO{sub x} removal (chapter 4) and it addresses the upscaling of the best catalyst candidate. The catalyst was mixed with the natural binding clay (sepiolite) to upscale the selected catalyst to the monolithic level, suitable for installation in gas stream with high flows, e.g. a flue gas duct of a power plant. A series of catalyst pellets with increasing levels of sepiolite were

  14. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.

    Science.gov (United States)

    Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng

    2014-08-01

    Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae.

    Directory of Open Access Journals (Sweden)

    Takeshi Suzuki

    Full Text Available The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.

  16. High performance photovoltaic applications using solution-processed small molecules.

    Science.gov (United States)

    Chen, Yongsheng; Wan, Xiangjian; Long, Guankui

    2013-11-19

    Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we

  17. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm

    Science.gov (United States)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  18. Dynamic covalent gels assembled from small molecules:from discrete gelators to dynamic covalent polymers

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zhang; Li-Hua Zeng; Juan Feng

    2017-01-01

    Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules.First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding.Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators.Dynamic covalent bonding can be involved to form low molecular weight gelators.Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators.Two catalogues of gels show different properties arising from their different structures.This review aims to illustrate the structure-property relationships of these dynamic covalent gels.

  19. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  20. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haixia [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Jiang Bingying [School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400040 (China); Xiang Yun, E-mail: yunatswu@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Yuyong; Chai Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-03-04

    A novel strategy for 'signal on' and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the 'signal on' detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.

  1. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior

    KAUST Repository

    Ladelta, Viko

    2018-03-16

    Poly(macrolactones) (PMLs) can be considered as biodegradable alternatives of polyethylene; however, controlling the ring-opening polymerization (ROP) of macrolactone (ML) monomers remains a challenge due to their low ring strain. To overcome this problem, phosphazene (t-BuP4), a strong superbase, has to be used as catalyst. Unfortunately, the one-pot sequential block copolymerization of MLs with small lactones (SLs) is impossible since the high basicity of t-BuP4 promotes both intra- and intermolecular transesterification reactions, thus leading to random copolymers. By using ROP and the “catalyst-switch” strategy [benzyl alcohol, t-BuP4/neutralization with diphenyl phosphate/(t-BuP2)], we were able to synthesize different well-defined PML-b-PSL block copolymers (MLs: dodecalactone, ω-pentadecalactone, and ω-hexadecalactone; SLs: δ-valerolactone and ε-caprolactone). The thermal properties and the phase behavior of these block copolymers were studied by differential scanning calorimetry and X-ray diffraction spectroscopy. This study shows that the thermal properties and phase behavior of PMLs-b-PSLs are largely influenced by the PMLs block if PMLs components constitute the majority of the block copolymers.

  2. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior

    KAUST Repository

    Ladelta, Viko; Kim, Joey D.; Bilalis, Panagiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2018-01-01

    Poly(macrolactones) (PMLs) can be considered as biodegradable alternatives of polyethylene; however, controlling the ring-opening polymerization (ROP) of macrolactone (ML) monomers remains a challenge due to their low ring strain. To overcome this problem, phosphazene (t-BuP4), a strong superbase, has to be used as catalyst. Unfortunately, the one-pot sequential block copolymerization of MLs with small lactones (SLs) is impossible since the high basicity of t-BuP4 promotes both intra- and intermolecular transesterification reactions, thus leading to random copolymers. By using ROP and the “catalyst-switch” strategy [benzyl alcohol, t-BuP4/neutralization with diphenyl phosphate/(t-BuP2)], we were able to synthesize different well-defined PML-b-PSL block copolymers (MLs: dodecalactone, ω-pentadecalactone, and ω-hexadecalactone; SLs: δ-valerolactone and ε-caprolactone). The thermal properties and the phase behavior of these block copolymers were studied by differential scanning calorimetry and X-ray diffraction spectroscopy. This study shows that the thermal properties and phase behavior of PMLs-b-PSLs are largely influenced by the PMLs block if PMLs components constitute the majority of the block copolymers.

  3. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  4. Identification of a selective small molecule inhibitor of breast cancer stem cells.

    Science.gov (United States)

    Germain, Andrew R; Carmody, Leigh C; Morgan, Barbara; Fernandez, Cristina; Forbeck, Erin; Lewis, Timothy A; Nag, Partha P; Ting, Amal; VerPlank, Lynn; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito

    2012-05-15

    A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  6. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    Full Text Available Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC. In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell

  7. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells.

    Science.gov (United States)

    Zhao, Jiangang; Li, Songhui; Trilok, Suprita; Tanaka, Makoto; Jokubaitis-Jameson, Vanta; Wang, Bei; Niwa, Hitoshi; Nakayama, Naoki

    2014-10-01

    Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ. © 2014. Published by The Company of Biologists Ltd.

  8. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation.

    Science.gov (United States)

    Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren

    2013-07-24

    Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

  9. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-04

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells.

  11. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero.

    Science.gov (United States)

    Jia, Shihai; Zhou, Jing; Fanelli, Christopher; Wee, Yinshen; Bonds, John; Schneider, Pascal; Mues, Gabriele; D'Souza, Rena N

    2017-10-15

    Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9 -/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2 , proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9 -/- Dkk1 f/+ ;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9 +/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero , while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders. © 2017. Published by The Company of Biologists Ltd.

  12. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    Science.gov (United States)

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  13. Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist

    Science.gov (United States)

    Cao, Benjamin; Zhang, Zhen; Grassinger, Jochen; Williams, Brenda; Heazlewood, Chad K.; Churches, Quentin I.; James, Simon A.; Li, Songhui; Papayannopoulou, Thalia; Nilsson, Susan K.

    2016-01-01

    The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9β1/α4β1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ−/− model, demonstrated by a significant increase in PB CD34+ cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9β1/α4β1 within the endosteal niche. These results support using dual α9β1/α4β1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications. PMID:26975966

  14. Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors.

    Science.gov (United States)

    Gruter, Gert-Jan M; Sipos, Laszlo; Adrianus Dam, Matheus

    2012-02-01

    High Throughput experimentation has been well established as a tool in early stage catalyst development and catalyst and process scale-up today. One of the more challenging areas of catalytic research is polymer catalysis. The main difference with most non-polymer catalytic conversions is the fact that the product is not a well defined molecule and the catalytic performance cannot be easily expressed only in terms of catalyst activity and selectivity. In polymerization reactions, polymer chains are formed that can have various lengths (resulting in a molecular weight distribution rather than a defined molecular weight), that can have different compositions (when random or block co-polymers are produced), that can have cross-linking (often significantly affecting physical properties), that can have different endgroups (often affecting subsequent processing steps) and several other variations. In addition, for polyolefins, mass and heat transfer, oxygen and moisture sensitivity, stereoregularity and many other intrinsic features make relevant high throughput screening in this field an incredible challenge. For polycondensation reactions performed in the melt often the viscosity becomes already high at modest molecular weights, which greatly influences mass transfer of the condensation product (often water or methanol). When reactions become mass transfer limited, catalyst performance comparison is often no longer relevant. This however does not mean that relevant experiments for these application areas cannot be performed on small scale. Relevant catalyst screening experiments for polycondensation reactions can be performed in very efficient small scale parallel equipment. Both transesterification and polycondensation as well as post condensation through solid-stating in parallel equipment have been developed. Next to polymer synthesis, polymer characterization also needs to be accelerated without making concessions to quality in order to draw relevant conclusions.

  15. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water

    International Nuclear Information System (INIS)

    Zhang, Qing; Wang, Tiejun; Xu, Ying; Zhang, Qi; Ma, Longlong

    2014-01-01

    Graphical abstract: MCM-41-modified Ni/HZSM-5 catalyst was developed by impregnation method with high catalytic performance for sorbitol hydrogenation in water. Appropriate amount of MCM-41 addition can distinctly promote the improvement in the surface structure and modulation of acidic sites of the catalyst. The scission of C–O bond in the sorbitol molecule into liquid alkanes was easily carried out on the catalyst containing more Lewis acidic sites. - Highlights: • Ni/HZSM-5 promoted with MCM-41 is active for sorbitol hydrogenation to liquid alkanes. • Lewis acidic sites of Ni/HZSM-5 can be modulated by pure silica MCM-41. • MCM-41 added can distinctly decrease carbon deposition on the catalyst surface. - Abstract: Liquid fuels derived from renewable biomass are of great importance on the potential substitution for diminishing fossil fuels. The conversion of sorbitol (a product of biomass-derived glucose hydrogenation) into liquid alkanes such as pentane and hexane over the Ni/HZSM-5 catalysts with or without MCM-41 addition was investigated in the presence of hydrogen in water medium. The production distribution of sorbitol hydrogenation can be controlled by adjusting the acidity of the catalyst. The scission of C–C bond in the sorbitol molecule into light C 1 –C 4 alkanes was mainly carried out over Ni/HZSM-5 containing strong Brønsted acid sites, while C–O bond scission into heavier alkanes was dominated over the catalysts added by MCM-41 containing weak Lewis acid sites. The sorbitol conversion and total liquid alkanes selectivity were found to be 67.1% and 98.7% over 2%Ni/HZSM-5 modified by 40 wt% of MCM-41, whereas the corresponding value was 40% and 35.6% over 2%Ni/HZSM-5 in the absence of MCM-41. The effect of MCM-41 on the structure, acidity, and reducibility of Ni/HZSM-5 was investigated by using XRD, Py-IR, IR, and H 2 -TPR. Meanwhile, the resistance of carbon deposition over the catalyst modified by MCM-41 was studied by using TG

  16. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    Science.gov (United States)

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  17. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    Science.gov (United States)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  18. Chemical annotation of small and peptide-like molecules at the Protein Data Bank

    Science.gov (United States)

    Young, Jasmine Y.; Feng, Zukang; Dimitropoulos, Dimitris; Sala, Raul; Westbrook, John; Zhuravleva, Marina; Shao, Chenghua; Quesada, Martha; Peisach, Ezra; Berman, Helen M.

    2013-01-01

    Over the past decade, the number of polymers and their complexes with small molecules in the Protein Data Bank archive (PDB) has continued to increase significantly. To support scientific advancements and ensure the best quality and completeness of the data files over the next 10 years and beyond, the Worldwide PDB partnership that manages the PDB archive is developing a new deposition and annotation system. This system focuses on efficient data capture across all supported experimental methods. The new deposition and annotation system is composed of four major modules that together support all of the processing requirements for a PDB entry. In this article, we describe one such module called the Chemical Component Annotation Tool. This tool uses information from both the Chemical Component Dictionary and Biologically Interesting molecule Reference Dictionary to aid in annotation. Benchmark studies have shown that the Chemical Component Annotation Tool provides significant improvements in processing efficiency and data quality. Database URL: http://wwpdb.org PMID:24291661

  19. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Science.gov (United States)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  20. Chemically Aware Model Builder (camb): an R package for property and bioactivity modelling of small molecules.

    Science.gov (United States)

    Murrell, Daniel S; Cortes-Ciriano, Isidro; van Westen, Gerard J P; Stott, Ian P; Bender, Andreas; Malliavin, Thérèse E; Glen, Robert C

    2015-01-01

    In silico predictive models have proved to be valuable for the optimisation of compound potency, selectivity and safety profiles in the drug discovery process. camb is an R package that provides an environment for the rapid generation of quantitative Structure-Property and Structure-Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both advanced and beginner R users. camb's capabilities include the standardisation of chemical structure representation, computation of 905 one-dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques from the R package caretEnsemble). Results can be visualised through high-quality, customisable plots (R package ggplot2). Overall, camb constitutes an open-source framework to perform the following steps: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre-processing and model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are included which demonstrate camb's application.Graphical abstractFrom compounds and data to models: a complete model building workflow in one package.