WorldWideScience

Sample records for small magnetic loops

  1. Magnetization configurations and hysteresis loops of small permalloy ellipses

    International Nuclear Information System (INIS)

    Schneider, M; Liszkowski, J; Rahm, M; Wegscheider, W; Weiss, D; Hoffmann, H; Zweck, J

    2003-01-01

    We investigated systematically the easy axis magnetization reversal of 20 nm thick permalloy ellipses with a fixed major axis of 1.47 μm and minor axes of 0.22-1.47 μm. Lorentz transmission electron microscopy was used to image the micromagnetic configurations during magnetization reversal. Hysteresis loops of single ellipses were recorded by means of micro-Hall magnetometry and could be traced back to certain reversal mechanisms observed by Lorentz microscopy. In most cases, the magnetization reversal is initiated by the evolution of a magnetization buckling, followed by the formation of a single, a double, or a trapped vortex configuration. For ellipses with high aspect ratio (length-to-width ratio), the magnetization switches in the reversed magnetic field without creation of a stable vortex configuration. Our experiments show that the characteristic field values for vortex creation, single vortex annihilation, and switching strongly depend on the shape anisotropy of the elements

  2. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  3. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  4. Microwave emission from flaring magnetic loops

    International Nuclear Information System (INIS)

    Vlahos, L.

    1980-01-01

    The microwave emission from a flaring loop is considered. In particular the author examines the question: What will be the characteristics of the radio emission at centimeter wavelengths from a small compact flaring loop when the mechanism which pumps magnetic energy into the plasma in the form of heating and/or electron acceleration satisfies the conditions: (a) the magnetic energy is released in a small volume compared to the volume of the loop, and the rate at which magnetic energy is transformed into plasma energy is faster than the energy losses from the same volume. This causes a local enhancement of the temperature by as much as one or two orders of magnitude above the coronal temperature; (b) The bulk of the energy released goes into heating the plasma and heats primarily the electrons. (Auth.)

  5. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  6. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  7. Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...

    Indian Academy of Sciences (India)

    field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.

  8. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  9. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  10. Thermal instabilities in magnetically confined plasmas: Solar coronal loops

    International Nuclear Information System (INIS)

    Habbal, S.R.; Rosner, R.

    1979-01-01

    The thermal stability of confined solar coronal structures (''loops'') is investigated, following both normal mode and a new, global instability analysis. We demonstrate that: (a) normal mode analysis shows modes with size scales comparable to that of loops to be unstable, but to be strongly affected by the loop boundary conditions; (b) a global analysis, based upon variation of the total loop energy losses and gains, yields loop stability conditions for global modes dependent upon the coronal loop heating process, with magnetically coupled heating processes giving marginal stability. The connection between the present analysis and the minimum flux corona of Hearn is also discussed

  11. Successive Two-sided Loop Jets Caused by Magnetic Reconnection between Two Adjacent Filamentary Threads

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhanjun; Liu, Yu; Shen, Yuandeng [Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216 (China); Elmhamdi, Abouazza; Kordi, Ayman S. [Department of Physics and Astronomy, King Saud University, P.O. Box 2455, 11451 (Saudi Arabia); Su, Jiangtao [University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Ying D., E-mail: ydshen@ynao.ac.cn [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-08-20

    We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope and the space-borne Solar Dynamics Observatory . The two successive two-sided loop jets manifested similar evolution processes and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging, and cancellation processes at the jet’s source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading in opposite directions along the paths of the two filamentary threads at a typical speed for two-sided loop jets of the order 150 km s{sup −1}. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

  12. Energy considerations concerning current loops and magnetic objects

    NARCIS (Netherlands)

    Fluitman, J.H.J.

    1980-01-01

    In the thermodynamics of compound magnetic systems there is an ambiguity in defining the free energies connected to the constituent parts or subsystems. It is argued that the choice, usually made in defining the energy of a magnetized body, leads to an expression for the energy of a current loop or

  13. Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

    Directory of Open Access Journals (Sweden)

    Jun Hur

    2018-04-01

    Full Text Available This paper proposes a design of small controlled reception pattern antenna (CRPA arrays using circular microstrip loops with frequencyinsensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

  14. Simulations of magnetic hysteresis loops for dual layer recording media

    Science.gov (United States)

    Fal, T. J.; Plumer, M. L.; Whitehead, J. P.; Mercer, J. I.; van Ek, J.; Srinivasan, K.

    2013-05-01

    A Kinetic Monte-Carlo algorithm is applied to examine MH loops of dual-layer magnetic recording media at finite temperature and long time scales associated with typical experimental measurements. In contrast with standard micromagnetic simulations, which are limited to the ns-μs time regime, our approach allows for the direct calculation of magnetic configurations over periods from minutes to years. The model is used to fit anisotropy and coupling parameters to experimental data on exchange-coupled composite media which are shown to deviate significantly from standard micromagnetic results. Sensitivities of the loops to anisotropy, inter-layer exchange coupling, temperature, and sweep rate are examined.

  15. Design and operation of a small (benchtop) pumped sodium loop

    International Nuclear Information System (INIS)

    Trevillion, E.A.; Rowe, D.M.J.

    1975-08-01

    The report outlines the design and operation of a small (benchtop) pumped sodium loop (sodium, 650g). The loop incorporates a diffusion cold trap to control the oxygen impurity level in the sodium and a sodium sampler/distillation unit to enable sodium samples to be analysed for impurities. Sodium flow rates of up to 5.5cm.s -1 (1cm 3 .s -1 ) have been achieved at temperatures up to 673.2K (400 0 C) and temperatures of up to 1023.2K (750 0 C) have been achieved under static conditions. A device for the addition and removal of metallic speciments to and from the loop sodium without contamination of either the specimens or the sodium is also described. (author)

  16. Experimental investigation of magnetically confined plasma loops

    International Nuclear Information System (INIS)

    Tenfelde, Jan

    2012-01-01

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  17. Experimental investigation of magnetically confined plasma loops

    Energy Technology Data Exchange (ETDEWEB)

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  18. Magnetic fields with photon beams: Use of circular current loops

    International Nuclear Information System (INIS)

    Jette, David

    2001-01-01

    Strong transverse magnetic fields can produce very large dose enhancements and reductions in localized regions of a patient under irradiation by a photon beam. Through EGS4 Monte Carlo simulations, we have examined the effects of applying a magnetic field produced by a pair of circular current loops to a photon beam penetrating a water phantom of finite thickness. We have indeed found very substantial localized dose enhancements, albeit with no corresponding dose reduction just distal to the region of dose enhancement. (However, dose reduction does occur near the distal end of the phantom.) We have also observed two phenomena to be concerned with, for this configuration: significant broadening of the penumbra close to the current loop, and narrowness of the enhanced dose region in a plane parallel to the planes of the loops. We have also examined the use of a single current loop to produce the magnetic field, and have found great asymmetry in the dose distribution; this asymmetry appears to make it impossible to treat with a single circular magnet a tumor of large dimension extending below the application surface

  19. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-12-01

    Full Text Available Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM above a cylindrical high temperature superconductor (HTS moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC, however, the lateral stiffness in field cooling (FC and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  20. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    Science.gov (United States)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  1. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops

    International Nuclear Information System (INIS)

    Baikov, P.

    2013-07-01

    The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.

  2. The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P. [Moscow State Univ. (Russian Federation). D.V. Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen, Garching (Germany). Physics Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-07-15

    The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.

  3. Topological and trivial magnetic oscillations in nodal loop semimetals

    Science.gov (United States)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  4. The loop I superbubble and the local interstellar magnetic field

    International Nuclear Information System (INIS)

    Frisch, Priscilla Chapman

    2014-01-01

    Recent data on the interstellar magnetic field in the low density nearby interstellar medium suggest a new perspective for understanding interstellar clouds within 40 pc. The directions of the local interstellar magnetic field found from measurements of optically polarized starlight and the very local field found from the Ribbon of energetic neutral atoms discovered by IBEX nearly agree. The geometrical relation between the local magnetic field, the positions and kinematics of local interstellar clouds, and the Loop I S1 superbubble, suggest that the Sun is located in the boundary of this evolved superbubble. The quasiperpendicular angle between the bulk kinematics and magnetic field of the local ISM indicates that a complete picture of low density interstellar clouds needs to include information on the interstellar magnetic field.

  5. Small-scale Magnetic Flux Emergence in the Quiet Sun

    Science.gov (United States)

    Moreno-Insertis, F.; Martinez-Sykora, J.; Hansteen, V. H.; Muñoz, D.

    2018-06-01

    Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up and pulled out of the interior by a nascent granule. The sheet-like structures that we found in the models may match the recent observations of Centeno et al.

  6. Method and apparatus for balancing the magnetic field detecting loops of a cryogenic gradiometer using trimming coils and superconducting disks

    International Nuclear Information System (INIS)

    Lutes, C.L.

    1982-01-01

    An apparatus for and a method of measuring the difference in intensity between two coplanar magnetic field vector components at two different points in space. The device is comprised of two interconnected, relatively large, loop patterns of opposite, flux cancelling, winding sense. One or both loops include a trimming element that is itself formed of two interconnected, relatively small, loop patterns of opposite, flux cancelling, winding sense. The device is analyzed for imbalance between the two large loops and is then balanced by placing a balancing superconducting disk of the proper characteristic in or near one of the two small loops of the trimming element. The so-trimmed apparatus forms a gradiometer of substantially improved mensuration

  7. Small polaron hopping in magnetic semiconductors

    International Nuclear Information System (INIS)

    Emin, D.; Liu, N.L.H.

    1978-01-01

    In a number of magnetic insulators it has been hypothesized that the charge carriers form small polarons. The transfer of an electron between magnetic sites and how the magnetic nature of the material affects the rate which characterizes small-polaron hops between magnetic sites were studied. The basic transfer processes are addressed from a many-electron point in which the itinerant electron is treated as indistinguishable from those which contribute unpaired spins at the magnetic sites

  8. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    Science.gov (United States)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  9. Dynamics of post-flare ejections and magnetic loop geometry

    International Nuclear Information System (INIS)

    Mein, P.; Mein, N.

    1982-01-01

    Flare-associated mass ejections have been observed at the solar limb on June 29, 1980 in the Hα line, with the Multichannel Subtractive Double Pass spectrograph of the Meudon solar tower. Radial velocities were measured as a function of time in a two dimensional field, and kinematics investigated in one selected fine structure. A simple model of locally dipole-type magnetic field increasing with time can be fitted to the data. It can be checked from extrapolation that the model is consistent with an ejection starting roughly from the same point at the same time. Height of the loops (approx. equal to 135,000 km) is consistent with other determinations. Magnetic field is found to be increasing locally by a factor 1.14 within 10 min. (orig.)

  10. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    Science.gov (United States)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  11. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  12. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  13. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  14. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  15. Small and smart magnet design

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Beleggia, Marco; Brok, Erik

    2014-01-01

    Society faces an accumulated need to find ways to produce super strong magnets that can fulfill thegrowing demands for green technology products such as compact and efficient generators and motors. Next‐generation magnets could very likely be composite materials built bottom‐up from nanoparticles....... However, combining the nanoparticles into a compact magnetic material where all magnetic moments are aligned is an engineering challenge. We investigate ‐ with nanoparticle‐resolution – principles of assembly processes and particle arrangements that can generate optimal magnetic order in new materials...... (see e.g.Fig. 1). These studies are enabled by advanced transmission electron microscopy, magnetic modelling and new synthesis protocols. Examples of magnetic ordering and self‐organization will be given....

  16. On the atomic displacement fields of small interstitial dislocation loops

    International Nuclear Information System (INIS)

    Zhou, Z.; Dudarev, S.L.; Jenkins, M.L.; Sutton, A.P.; Kirk, M.A.

    2005-01-01

    The atomic displacement fields of dislocation loops of size 1-5 nm formed by self-interstitial atoms in α-Fe have been calculated using isotropic elasticity theory and anisotropic elasticity theory, and compared with atomic simulations for loops formed by 43-275 self-interstitial atoms. The atomic displacements predicted by anisotropic elasticity theory were in good agreement with those given by the atomistic simulations at distances greater than 3 nm from the loop plane, but the displacements predicted by isotropic elasticity theory showed significant discrepancies at distances up to 15 nm

  17. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-01-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties

  18. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  19. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2015-01-15

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.

  20. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-01-01

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics

  1. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.

    Science.gov (United States)

    Kitagawa, Jiro; Uemura, Ryohei

    2017-08-14

    There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.

  2. Physics behind the magnetic hysteresis loop--a survey of misconceptions in magnetism literature

    International Nuclear Information System (INIS)

    Sung, H.W.F.; Rudowicz, C.

    2003-01-01

    An extensive survey of misinterpretations and misconceptions concerning presentation of the hysteresis loop for ferromagnetic materials occurring in undergraduate textbooks has recently been carried out. As a follow-up, this article provides similar examples, now drawn from recent magnetism literature. The distinction between the two notions of 'coercivity' referred to the B vs. H curve and the M vs. H curve, which turn out to be often confused in textbooks is elucidated. Various misinterpretations and conceptual problems revealed by our survey of recent magnetism-related scientific journals are summarized. In order to counteract the misinterpretations in question, some real examples of hysteresis loops showing the correct characteristics have also been identified in this search. Various ways of presenting units for the same physical quantity, i.e. the SI or cgs units as well as both units mixed, have been revealed in the regular articles. This is a worrying factor, which calls for a concerted action at the level of the whole magnetism community. A number of intricacies and fundamental conceptual problems in magnetism encountered in a recent review are dealt with in a separate note

  3. SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP

    Directory of Open Access Journals (Sweden)

    V. S. Grinchenko

    2015-04-01

    Full Text Available The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in local spaces by means of passive loops is not considered in detail yet. So, the present study considers shielding capabilities of a circular passive loop. The authors have performed an analytical and numerical modeling of a process of a uniform harmonic magnetic field shielding. The simulated results permit to find out the spatial distribution of the shielded magnetic field. Dependencies of shielding effectiveness on the passive loop radius and cross-section are determined. Moreover, the non-monotonic behavior of the loop radius dependence is shown. We have substantiated that the shielded volume of a circular passive loop is advisable to limit by the sphere with a half loop radius. Presented results give parameters of the circular passive loop that reduces the rms value of the magnetic flux density by 30 %.

  4. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  5. Unimodular gravity and the lepton anomalous magnetic moment at one-loop

    Energy Technology Data Exchange (ETDEWEB)

    Martín, Carmelo P., E-mail: carmelop@fis.ucm.es [Departamento de Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2017-07-01

    We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.

  6. Stagnant loop syndrome resulting from small-bowel irradiation injury and intestinal by-pass

    International Nuclear Information System (INIS)

    Swan, R.W.

    1974-01-01

    Stagnant or blind-loop syndrome includes vitamin B12 malabsorption, steatorrhea, and bacterial overgrowth of the small intestine. A case is presented to demonstrate this syndrome occurring after small-bowel irradiation injury with exaggeration postenterocolic by-pass. Alteration of normal small-bowel flora is basic to development of the stagnant-loop syndrome. Certain strains of bacteria as Bacteriodes and E. coli are capable of producing a malabsorption state. Definitive therapy for this syndrome developing after severe irradiation injury and intestinal by-pass includes antibiotics. Rapid symptomatic relief from diarrhea and improved malabsorption studies usually follow appropriate antibiotic therapy. Recolonization of the loop(s) with the offending bacterial species may produce exacerbation of symptoms. Since antibiotics are effective, recognition of this syndrome is important. Foul diarrheal stools should not be considered a necessary consequence of irradiation injury and intestinal by-pass

  7. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2013-01-01

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  8. Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Hervé, A.; Loveless, R.

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/...

  9. LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS

    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko

    2016-05-01

    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  10. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  11. Electron contribution to the muon anomalous magnetic moment at four loops

    International Nuclear Information System (INIS)

    Kurz, Alexander; Liu, Tao; Smirnov, Alexander V.; Smirnov, Vladimir A.; Humboldt-Universitaet, Berlin; Humboldt-Universitaet, Berlin; Steinhauser, Matthias

    2016-02-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  12. Closed loop control of the induction heating process using miniature magnetic sensors

    Science.gov (United States)

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  13. Preliminary design of a small air loop for system analysis and validation of Cathare code

    International Nuclear Information System (INIS)

    Marchand, M.; Saez, M.; Tauveron, N.; Tenchine, D.; Germain, T.; Geffraye, G.; Ruby, G.P.

    2007-01-01

    The French Atomic Energy Commission (Cea) is carrying on the design of a Small Air Loop for System Analysis (SALSA), devoted to the study of gas cooled nuclear reactors behaviour in normal and incidental/accidental operating conditions. The reduced size of the SALSA components compared to a full-scale reactor and air as gaseous coolant instead of Helium will allow an easy management of the loop. The main purpose of SALSA will be the validation of the associated thermal hydraulic safety simulation codes, like CATHARE. The main goal of this paper is to present the methodology used to define the characteristics of the loop. In a first step, the study has been focused on a direct-cycle system for the SALSA loop with few global constraints using a similarity analysis to support the definition and design of the loop. Similarity requirements have been evaluated to determine the scale factors which have to be applied to the SALSA loop components. The preliminary conceptual design of the SALSA plant with a definition of each component has then be carried out. The whole plant has been modelled using the CATHARE code. Calculations of the SALSA steady-state in nominal conditions and of different plant transients in direct-cycle have been made. The first system results obtained on the global behaviour of the loop confirm that SALSA can be representative of a Gas-Cooled nuclear reactor with some minor design modifications. In a second step, the current prospects focus on the SALSA loop capability to reproduce correctly the heat transfer occurring in specific incidental situations. Heat decay removal by natural convection is a crucial point of interest. The first results show that the behaviour and the efficiency of the loop are strongly influenced by the definition of the main parameters for each component. A complete definition of SALSA is under progress. (authors)

  14. A Statistical Model of Current Loops and Magnetic Monopoles

    International Nuclear Information System (INIS)

    Ayyer, Arvind

    2015-01-01

    We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs

  15. Lift, drag, and guidance forces on alternating polarity magnets, using loop guideways

    International Nuclear Information System (INIS)

    Lindenbaum, S.D.; Lee, M.S.

    1975-01-01

    Exact solutions of track current, lift force, and drag force, together with their velocity dependence, have been computed for a vehicle carrying a finite number of fixed current alternating polarity superconducting magnets, suspended at various heights over structured track guideways of the single- and double-loop (''null'') types. Results for the double-loop case are compared with those of a previously reported approximate analysis. The analytical method is then applied to a study of a low-drag guidance loop guideway which is integrable with lift loop guideways utilizing a common set of vehicle magnets. Solutions are obtained for guidance track restoring forces, lateral destabilization forces, and lift force degradation as functions of lateral displacement from symmetry. The dependence of lift, drag, and lift-to-drag on track loop parameters is studied and the linear dependence of lift-to-drag on loop time constant confirmed. The contribution to the forces made by successive addition of alternating polarity magnets is calculated and the marked reduction in lift force pulsation noted

  16. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  17. A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2012-03-01

    Magnetic beads are utilized effectively in a wide variety of medical applications due to their small size, biocompatibility and large surface to volume ratio. Microfluidic lab-on-a-chip (LOC) devices, which utilize magnetic beads, are promising tools for accurate and rapid cell sorting and counting. Effective manipulation of beads is a critical factor for the performance of LOC devices. In this paper we propose a planar conducting micro-loop structure to trap, manipulate and transport magnetic beads. Current through the micro-loops produces magnetic field gradients that are proportional to the force required to manipulate the beads. Numerical analyses were performed to study the magnetic forces and their spatial distributions. Experimental results showed that magnetic beads could not only be transported towards a target region, e.g., for sensing purposes, but also the trapping rate could be increased by switching current between the different loops in the micro-loop structure. This method could lead to rapid and accurate quantification of biological entities tagged with magnetic beads. Copyright © 2012 American Scientific Publishers. All rights reserved.

  18. One-turn stub-loaded loop patch antenna on a small ground plane

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2005-01-01

    A small 1.1-cm3 one-turn loop patch antenna located 2.5 mm above an 18 × 25 mm ground plane separated by a dielectric substrate with relative permittivity of 9.8 is presented. By varying the length of a thin quarter-wavelength matching line, it is possible to change the resonant frequency. An RLC...

  19. Eddy current analysis by BEM utilizing loop electric and surface magnetic currents as unknowns

    International Nuclear Information System (INIS)

    Ishibashi, Kazuhisa

    2002-01-01

    The surface integral equations whose unknowns are the surface electric and magnetic currents are widely used in eddy current analysis. However, when the skin depth is thick, computational error is increased especially in obtaining electromagnetic fields near the edge of the conductor. In order to obtain the electromagnetic field accurately, we propose an approach to solve surface integral equations utilizing loop electric and surface magnetic currents as unknowns. (Author)

  20. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-01-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  1. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  2. Wireless Magnetic-Based Closed-Loop Control of Self-Propelled Microjets

    Science.gov (United States)

    Khalil, Islam S. M.; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G.; Misra, Sarthak

    2014-01-01

    In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.310−10 A.m2 at magnetic field and linear velocity of 2 mT and 100 µm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 m/s, and within an average region-of-convergence of 365 m. PMID:24505244

  3. Computerized J-H loop tracer for soft magnetic thick films in the audio frequency range

    Directory of Open Access Journals (Sweden)

    Loizos G.

    2014-07-01

    Full Text Available A computerized J-H loop tracer for soft magnetic thick films in the audio frequency range is described. It is a system built on a PXI platform combining PXI modules for control signal generation and data acquisition. The physiscal signals are digitized and the respective data strems are processed, presented and recorded in LabVIEW 7.0.

  4. The Effect of a Twisted Magnetic Field on the Phase Mixing of the Kink Magnetohydrodynamic Waves in Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Zanyar; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2017-08-10

    There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model and the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.

  5. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-10-01

    Full Text Available The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δz or Δx, for example, 1 or 2 mm, can be generally caused a large deviation.

  6. Closed loop obstructions of the small bowel: role of Computed Tomography

    International Nuclear Information System (INIS)

    Barbiera, F.; Ciraulo, R.; Cusma', S.

    1999-01-01

    Small bowel obstructions can be distinguished into more simple and closed loop obstructions. The latter is a more severe condition which is often complicated by strangulation with vascular impairment, edema and intramural and mesenteric hemorrhage. Consequent arterial insufficiency rapidly leads to ischemia, infarction and necrosis. The radiologist plays a role in the early recognition of the closed loop obstruction and of any sign of strangulation. The role of CT in the diagnosis and workup of patients with suspected intestinal occlusion has been analyzed in the literature with reported 63% sensitivity, 78% specificity and 66% accuracy. CT is also capable of revealing the causes of occlusion in 73-95% of cases. The above CT signs allow to identify closed loop obstruction and also small bowel strangulation, thus supplying a valuable contribution to diagnosis and accurate preoperative evaluation. The conclusion is that CT can accurately demonstrate the presence of closed loop obstruction and can be the technique of choice in patients in whom obstruction is associated with clinical signs suggestive of strangulation [it

  7. Engineering challenges and solutions for the ITER magnetic diagnostics flux loops

    International Nuclear Information System (INIS)

    Clough, M.; Casal, N.; Suarez Diaz, A.; Vayakis, G.; Walsh, M.

    2014-01-01

    The Magnetic Diagnostics Flux Loops (MDFL) are a key diagnostic for the ITER tokamak, providing important information about the shape of the plasma boundary, instabilities and magnetic error fields. In total, 237 flux loops will be installed on ITER, on the inside and outside walls of the Vacuum Vessel, and will range in area from 1 m 2 to 250 m 2 . This paper describes the detailed engineering design of the MDFL, explaining the solutions developed to maintain measurement accuracy within their difficult operating environment and other requirements: ultra-high vacuum conditions, strong magnetic fields, high gamma and neutron radiation doses, challenging installation, very high reliability and no maintenance during the 20 year machine lifetime. In addition, the paper discusses testing work undertaken to validate the design and outlines the remaining tasks to be performed. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. (authors)

  8. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    OpenAIRE

    Pereira, H; Haug, F; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of...

  9. Self-Resonant Electrically Small Loop Antennas for Hearing-Aids Application

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    Two novel self-resonant electrically small antennas are proposed in this paper, which are designed for hearing aids applications. They are miniaturized by using the capacitive and inductive coupling mechanism between two loops, and the antenna impedance can be matched to a specific value without...... using any additional matching network and lumped components. The dimension of the proposed antenna is 0.10λ0×0.03λ0, and it is designed to be resonant at 900 MHz. Both the analytical model and numerical simulations are discussed and explained. The antenna is also fabricated and measured in an anechoic...... chamber. The measurement methods for electrically small antennas are reported....

  10. TLTA/6431, Two-Loop-Test-Apparatus, BWR/6 Simulator, Small-Break LOCA

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The Two-Loop-Test-Apparatus (TLTA) is a 1:624 volume scaled BWR/6 simulator. It was the predecessor of the better-scaled FIST facility. The facility is capable of full BWR system pressure and has a simulated core with a full size 8 x 8, full power single bundle of indirect electrically heated rods. All major BWR systems are simulated including lower plenum, guide tube, core region (bundle and bypass), upper plenum, steam separator, steam dome, annular downcomer, recirculation loops and ECC injection systems. The fundamental scaling consideration was to achieve real-time response. A number of the scaling compromises present in TLTA were corrected in the FIST configuration. These compromises include a number of regional volumes and component elevations. 2 - Description of test: 64.45 sqcm small break LOCA with activation of the full emergency core cooling system, but without activation of the automatic decompression system

  11. High-Altitude Closed Magnetic Loops at Mars Observed by MAVEN

    Science.gov (United States)

    Xu, Shaosui; Mitchell, David; Luhmann, Janet; Ma, Yingjuan; Fang, Xiaohua; Harada, Yuki; Hara, Takuya; Brain, David; Weber, Tristan; Mazelle, Christian; DiBraccio, Gina A.

    2017-11-01

    With electron and magnetic field data obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, we have identified closed magnetic field lines, with both foot points embedded in the dayside ionosphere, extending up to 6,200 km altitude into the Martian tail. This topology is deduced from photoelectrons produced in the dayside ionosphere being observed traveling both parallel and antiparallel to the magnetic field. At trapped-zone pitch angles (within a range centered on 90° where electrons magnetically reflect before interacting with the atmosphere), cases with either solar wind electrons or photoelectrons have been found, indicating different formation mechanisms for these closed loops. These large closed loops are present in MHD simulations. The case with field-aligned photoelectrons mixed with solar wind electrons having trapped-zone pitch angles is likely to be associated with reconnection, while the case with photoelectrons at all pitch angles is probably due to closed field lines being pulled tailward by the surrounding plasma flow. By utilizing an algorithm for distinguishing photoelectrons from solar wind electrons in pitch angle-resolved energy spectra, we systematically map the spatial distribution and occurrence rate of these closed magnetic loops over the region sampled by the MAVEN orbit. We find that the occurrence rate ranges from a few percent to a few tens of percent outside of the optical shadow and less than one percent within the shadow. These observations can be used to investigate the general magnetic topology in the tail, which is relevant to cold ion escape, reconnection, and flux ropes.

  12. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    International Nuclear Information System (INIS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-01-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  13. Self-driven cooling loop for a large superconducting magnet in space

    Science.gov (United States)

    Mord, A. J.; Snyder, H. A.

    1992-01-01

    Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.

  14. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  15. Prediction of loop seal formation and clearing during small break loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    Behavior of loop seal formation and clearing during small break loss of coolant accident is investigated using the RELAP5/MOD2 and /MOD3 codes with the test of SB-CL-18 of the LSTF(Large Scale Test Facility). The present study examines the thermal-hydraulic mechanisms responsible for early core uncovery includeing the manometric effect due to an asymmetric coolant holdup in the steam generator upflow and downflow side. The analysis with the RELAP5/ MOD2 demonstrates the main phenomena occuring in the depressurization transient including the loop seal formation and clearing with sufficient accuracy. Nevertheless, several differences regarding the evolution of phenomena and their timing have been pointed out in the base calculations. The RELAP5/MOD3 predicts overall phenomena, particularly the steam generator liquid holdup better than the RELAP5/MOD2. The nodalization study in the components of the steam generator U-tubes and the cross-over legs with the RELAP5/MOD3 results in good prediction of the loop seal clearing phenomena and their timing. (Author)

  16. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Practice

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    Practical aspects of applying a magnetic core to approach the Chu lower bound for the radiation Q factor of an electrically small magnetic dipole antenna are considered. It is shown that although a magnetic core does reduce the Q factor, its effect is not as strong as predicted by Wheeler...

  17. Small-polaron formation and motion in magnetic semiconductors

    International Nuclear Information System (INIS)

    Emin, D.

    1979-01-01

    The fundamental physical processes associated with small-polaron formation are described with various magnetic semi-conductors being cited as examples. Attention is then directed toward the mechanisms of charge transfer and small-polaron hopping motion in magnetic semiconductors

  18. Small-threshold behaviour of two-loop self-energy diagrams: two-particle thresholds

    International Nuclear Information System (INIS)

    Berends, F.A.; Davydychev, A.I.; Moskovskij Gosudarstvennyj Univ., Moscow; Smirnov, V.A.; Moskovskij Gosudarstvennyj Univ., Moscow

    1996-01-01

    The behaviour of two-loop two-point diagrams at non-zero thresholds corresponding to two-particle cuts is analyzed. The masses involved in a cut and the external momentum are assumed to be small as compared to some of the other masses of the diagram. By employing general formulae of asymptotic expansions of Feynman diagrams in momenta and masses, we construct an algorithm to derive analytic approximations to the diagrams. In such a way, we calculate several first coefficients of the expansion. Since no conditions on relative values of the small masses and the external momentum are imposed, the threshold irregularities are described analytically. Numerical examples, using diagrams occurring in the standard model, illustrate the convergence of the expansion below the first large threshold. (orig.)

  19. Small-scale dynamo at low magnetic Prandtl numbers

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  20. Small-scale dynamo at low magnetic Prandtl numbers.

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  1. The muon magnetic moment in the 2HDM: complete two-loop result

    International Nuclear Information System (INIS)

    Cherchiglia, Adriano; Kneschke, Patrick; Stöckinger, Dominik; Stöckinger-Kim, Hyejung

    2017-01-01

    We study the 2HDM contribution to the muon anomalous magnetic moment a μ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned 2HDM, which has general Yukawa couplings and contains the type I, II, X, Y models as special cases. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document their general behavior. Taking into account constraints on parameters, we find that the full 2HDM contribution to a μ can accommodate the current experimental value, and the complete two-loop bosonic contribution can amount to (2⋯4)×10 −10 , more than the future experimental uncertainty.

  2. Open-loop correction for an eddy current dominated beam-switching magnet.

    Science.gov (United States)

    Koseki, K; Nakayama, H; Tawada, M

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.

  3. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas...

  4. Small-scale magnetic fluctuations inside the Macrotor tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Menyuk, C.R.; Taylor, R.J.

    1979-01-01

    Magnetic pickup loops inserted into the Macrotor tokamak have shown a broad spectrum of oscillation in B/sub r/ and B/sub p/ up to f approx. = 100 kHz. The high-frequency B/sub r/ have short radial and poloidal correlation lengths L > 5 cm. The observed magnitude summationvertical-barB/sub r/vertical-bar/B/sub T/ > 10 -5 , where the summation extends over all f > 30 kHz, is in the range in which such radial magnetic perturbations may be contributing to anomalous electron energy transport

  5. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)

    2017-06-20

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  6. Transequatorial magnetic flux loops on the sun: a possible new source of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Takao Saito

    2009-11-01

    Full Text Available Following the traditional way of expression, geomagnetic storms have been classified into three types; flare-type Sc storms, CH-type Sg storms, and DB-type Sc storms (Sc:sudden commencement;CH:coronal hole;g:gradual;DB:disparition brusque.We have discovered that some transequatorial loops (TEL give rise to geomagnetic storms, when the TEL explodes near the central meridian of the sun. The axial magnetic direction of the TEL can be inferred, since TELs connect sunspot groups or remnant magnetic regions between the northern and southern hemispheres. Since the axial fields tend to have a large Bz component in interplanetary space, we have examined various effects on the configuration of geomagnetic storms. Topics are proposed for future works on the TEL-type Sc storms.

  7. Chain of Dirac spectrum loops of nodes in crossed magnetic and electric fields

    Science.gov (United States)

    Gavrilenko, V. I.; Perov, A. A.; Protogenov, A. P.; Turkevich, R. V.; Chulkov, E. V.

    2018-03-01

    New semimetal systems along with Dirac and Weyl semimetals contain compounds, in which the energy of electron excitations vanishes not at nodes but on lines. A higher dimension of the degeneracy space changes many physical properties. We consider a chain of loops consisting of Dirac spectrum nodes in nonsymmorphic crystalline compounds placed in external mutually perpendicular magnetic and electric fields. An exact solution for the spectrum is obtained under the assumption of particle-hole symmetry. An analysis of this spectrum shows the existence of a line of critical values of the magnetic and electric fields, at which a quantum phase transition to a gapless state occurs. The use of the obtained spectrum allows also predicting a number of new oscillation and resonance effects in the field of magneto-optical phenomena.

  8. Magnetic Biasing of a Ferroelectric Hysteresis Loop in a Multiferroic Orthoferrite

    Science.gov (United States)

    Tokunaga, Y.; Taguchi, Y.; Arima, T.; Tokura, Y.

    2014-01-01

    In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign.

  9. The role of magnetic loops in particle acceleration at nearly perpendicular shocks

    Science.gov (United States)

    Decker, R. B.

    1993-01-01

    The acceleration of superthermal ions is investigated when a planar shock that is on average nearly perpendicular propagates through a plasma in which the magnetic field is the superposition of a constant uniform component plus a random field of transverse hydromagnetic fluctuations. The importance of the broadband nature of the transverse magnetic fluctuations in mediating ion acceleration at nearly perpendicular shocks is pointed out. Specifically, the fluctuations are composed of short-wavelength components which scatter ions in pitch angle and long-wavelength components which are responsible for a spatial meandering of field lines about the mean field. At nearly perpendicular shocks the field line meandering produces a distribution of transient loops along the shock. As an application of this model, the acceleration of a superthermal monoenergetic population of seed protons at a perpendicular shock is investigated by integrating along the exact phase-space orbits.

  10. Design and static simulation of secondary loop of small PWR nuclear power plants

    International Nuclear Information System (INIS)

    Martin Lopez, L.A.N.

    1989-01-01

    A computer program that has been developed with the purpose of making easier the decisions concerning the design of the secondary loop of small PWR nuclear power plants through numerical experiments of low running costs and short time is presented. Initially, the first part of the computer program is described. It aims to preliminarily design several major components of the secondary circuit from user-defined design conditions. Next, the second part of the computer program is presented. It simulates the steady state operation at part-load conditions of the preliminary design of the plant by generating and solving systems of simultaneous nonlinear algebraic equations, their number varying from 17 to 107. The computer program has been tested for several application cases. The program results are discussed in the last part of the work, along with several aspects to be added to the program in future works. (author)

  11. Engineering design of IFMIF/EVEDA lithium test loop. Electro-magnetic pump and pressure drop

    International Nuclear Information System (INIS)

    Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Wakai, Eiichi; Nakamura, Kazuyuki; Horiike, H.; Yamaoka, N.; Matsushita, I.

    2011-01-01

    The Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeding as one of the ITER Broader Approach (ITER-BA). A Li circulation loop for testing hydraulic stability of the Li target (high speed free-surface flow of liquid Li as a beam target) and Li purification traps are under construction in the Japan Atomic Energy Agency as a major Japanese activities in the EVEDA. This paper presents specification of an electro-magnetic pump (EMP) for the EVEDA Li Test Loop (ELTL) and evaluation of the pressure drop in the main loop of the ELTL. The EMP circulates the liquid Li at a large flow rate up to 0.05 m 3 /s (3000 l/min) under a vacuum cover gas (Ar) pressure of 10 -3 Pa, thus the evaluation of cavitation generation is a crucial issue. The EMP used in the ELTL consists of two EMPs aligned in series through a U-tube whose size of one EMP is 0.8 m square and 2.6 m in length. The calculation of the pressure drop in the main Li loop to the EMP is approx. 25 kPa at the design maximum flow rate of 0.05 m 3 /s. On the other hand the height from the EMP to a Li tank to supply Li to the EMP is designed to be 9.72 m, and secures a static pressure and the cavitation number of 18 kPa and 3.4 respectively at the maximum flow rate in a vacuum condition. As a result, it is confirmed to prevent cavitation at the inlet of the EMP in this design. (author)

  12. Kerr hysteresis loop tracer with alternate driving magnetic field up to 10 kHz

    Science.gov (United States)

    Callegaro, Luca; Fiorini, Carlo; Triggiani, Giacomo; Puppin, Ezio

    1997-07-01

    A magneto-optical Kerr loop tracer for hysteresis loop measurements in thin films with field excitation frequency f0 from 10 mHz to 10 kHz is described. A very high sensitivity is obtained by using an ultrabright light-emitting diode as a low-noise light source and a novel acquisition process. The field is generated with a coil driven by an audio amplifier connected to a free-running oscillator. The conditioned detector output constitutes the magnetization signal (M); the magnetic field (H) is measured with a fast Hall probe. The acquisition electronics are based on a set of sample-and-hold amplifiers which allow the simultaneous sampling of M, H, and dH/dt. Acquisition is driven by a personal computer equipped with a multifunction I/O board. Test results on a 120 nm Fe film on Si substrate are shown. The coercive field of the film increases with frequency and nearly doubles at 10 kHz with respect to dc.

  13. Magnetic self-assembly of small parts

    Science.gov (United States)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  14. Vascular loops in the anterior inferior cerebellar artery, as identified by magnetic resonance imaging, and their relationship with otologic symptoms

    Directory of Open Access Journals (Sweden)

    Luiz de Abreu Junior

    Full Text Available Abstract Objective: To use magnetic resonance imaging to identify vascular loops in the anterior inferior cerebellar artery and to evaluate their relationship with otologic symptoms. Materials and Methods: We selected 33 adults with otologic complaints who underwent magnetic resonance imaging at our institution between June and November 2013. Three experienced independent observers evaluated the trajectory of the anterior inferior cerebellar artery in relation to the internal auditory meatus and graded the anterior inferior cerebellar artery vascular loops according to the Chavda classification. Kappa and chi-square tests were used. Values of p < 0.05 were considered significant. Results: The interobserver agreement was moderate. Comparing ears that presented vascular loops with those that did not, we found no association with tinnitus, hearing loss, or vertigo. Similarly, we found no association between the Chavda grade and any otological symptom. Conclusion: Vascular loops do not appear to be associated with otoneurological manifestations.

  15. Behavior of small ferromagnetic particles in traveling magnetic field

    Science.gov (United States)

    Deych, V. G.; Terekhov, V. P.

    1985-03-01

    Forces and moments acting on a magnetizable body in a traveling magnetic field are calculated for a body with dimensions much smaller than the wavelength of the magnetic field. It is assumed that a particle of given linear dimension does not have a constant magnetic moment. The material of a particle is characterized by its magnetic permeability and electrical conductivity. The hypothesis that rotation plays a major role in the behavior of small particles is confirmed and the fact that a small particle rolls on a plane, without sliding, when the surface is perfectly rough, in the opposite direction from which the magnetic field travels is explained. Calculations are based on the magnetohydrodynamic equations for a quasi steady magnetic field, and the induced Foucault eddy currents are considered. The results are applicable to transport of ferrofluids and to such metallurgical devices as separators.

  16. Quench tests of Nb3Al small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; Fermilab; NIMC, Tsukuba; KEK, Tsukuba

    2007-01-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed

  17. Quench tests of Nb3Al small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  18. New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED

    Science.gov (United States)

    Volkov, Sergey

    2017-11-01

    This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.

  19. Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order

    International Nuclear Information System (INIS)

    Kurz, Alexander; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2015-08-01

    The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.

  20. Small angle neutron scattering measurements of magnetic cluster sizes in magnetic recorging disks

    CERN Document Server

    Toney, M

    2003-01-01

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  1. Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA

    Directory of Open Access Journals (Sweden)

    Na Feng

    Full Text Available ABSTRACT We developed a loop-mediated isothermal amplification (LAMP assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.

  2. Local hysteresis loops measurements on irradiated FeSiB patterned dots by magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Coïsson, M., E-mail: m.coisson@inrim.it [INRIM, Electromagnetism Division, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, Electromagnetism Division, strada delle Cacce 91, 10135 Torino (Italy); Università di Torino, Dipartimento di Chimica, via P. Giuria 9, 10125 Torino (Italy); Celegato, F.; Enrico, E.; Olivetti, E.S.; Tiberto, P.; Vinai, F. [INRIM, Electromagnetism Division, strada delle Cacce 91, 10135 Torino (Italy)

    2015-01-01

    Magnetic Force Microscopy (MFM) has been exploited to develop a technique capable of investigating the field-dependent magnetisation reversal processes in patterned systems, allowing the full reconstruction of a local hysteresis loop. Fe–Si–B dots with a lateral size of 6μm and a thickness of 250 nm have been prepared by sputtering and optical lithography. In the as-prepared state, the dots are characterised by a dense stripe domain configuration, clearly visible at the MFM. Subsequently, the dots have been thinned by means of exposition to a focussed ion beam, consisting of Ga{sup +} ions having an energy of 30 keV. The local hysteresis loops have been measured by means of the MFM-derived technique. The progressive thinning of the dots results in the disappearance of the perpendicular anisotropy responsible for the dense stripe domain configuration, with the dominance of the shape anisotropy for thickness values below ≈70nm. The results are consistent with the spin reorientation transition effect studied on similar systems in the form of continuous thin films.

  3. Local hysteresis loops measurements on irradiated FeSiB patterned dots by magnetic force microscopy

    International Nuclear Information System (INIS)

    Coïsson, M.; Barrera, G.; Celegato, F.; Enrico, E.; Olivetti, E.S.; Tiberto, P.; Vinai, F.

    2015-01-01

    Magnetic Force Microscopy (MFM) has been exploited to develop a technique capable of investigating the field-dependent magnetisation reversal processes in patterned systems, allowing the full reconstruction of a local hysteresis loop. Fe–Si–B dots with a lateral size of 6μm and a thickness of 250 nm have been prepared by sputtering and optical lithography. In the as-prepared state, the dots are characterised by a dense stripe domain configuration, clearly visible at the MFM. Subsequently, the dots have been thinned by means of exposition to a focussed ion beam, consisting of Ga + ions having an energy of 30 keV. The local hysteresis loops have been measured by means of the MFM-derived technique. The progressive thinning of the dots results in the disappearance of the perpendicular anisotropy responsible for the dense stripe domain configuration, with the dominance of the shape anisotropy for thickness values below ≈70nm. The results are consistent with the spin reorientation transition effect studied on similar systems in the form of continuous thin films

  4. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  5. Thermal performance of a small-scale loop heat pipe for terrestrial application

    International Nuclear Information System (INIS)

    Chung, Won Bok; Boo, Joon Hong

    2004-01-01

    A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm x 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of 100 .deg. C. The minimum thermal load of 10 W (0.8 W/cm 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 .deg. C with horizontal position

  6. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  7. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Oliveira, Cristiano Luis Pinto; Antonel, Soledad; Negri, Martin

    2011-01-01

    because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  8. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  9. Morphological and functional changes after benzalkonium chloride treatment of the small intestinal Thiry-Vella loop in rats.

    Science.gov (United States)

    Móricz, K; Gyetvai, B; Bárdos, G

    1998-08-01

    The aim of this work was to study the effects of benzalkonium chloride (BAC) treatment on the small intestine and its functioning in rats surgically prepared with Thiry-Vella intestinal loop. The loops were treated with either BAC, which ablated much of the myenteric plexus and extrinsic innervation, or with physiological saline (SAL). In vivo drinking experiments were performed to examine the effect on fluid intake and behavioral indices of distending the loop with a balloon. Spontaneous motility and its changes induced by acetylcholine (ACh) and histamine (His) were studied on isolated stripes in vitro. Finally, samples from the loops were examined histologically. Though reduction of the cell number was less than expected and no differences of the thickness of the muscular layer between the two groups was observed, BAC treatment altered the pattern of spontaneous activity and also the sensitivity to ACh and His in isolated stripes. In vivo distension of the SAL-treated loops reduced fluid intake and produced signs of aversivity; these effects were absent in the BAC-treated group. Our results show that despite the differences in the degree of ablation from those obtained by others, BAC treatment can be used to study the mechanisms underlying the effects of the enteral stimuli on the behavior.

  10. A Novel 100 kW Power Hardware-in-the-Loop Emulation Test Bench for Permanent Magnet Synchronous Machines with Nonlinear Magnetics

    OpenAIRE

    Schmitt, Alexander; Richter, Jan; Gommeringer, Mario; Wersal, Thomas; Braun, Michael

    2016-01-01

    This paper presents a high dynamic power hardware-inthe-loop (PHIL) emulation test bench to mimic arbitrary permanent magnet synchronous machines with nonlinear magnetics. The proposed PHIL test bench is composed of a high performance real-time simulation system to calculate the machine behaviour and a seven level modular multiphase multilevel converter to emulate the power flow of the virtual machine. The PHIL test bench is parametrized for an automotive synchronous machine and controlled by...

  11. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop

    International Nuclear Information System (INIS)

    Song, K.; Hong, S.; Park, H.

    2012-01-01

    A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.

  12. Peltier heat of a small polaron in a magnetic semiconductor

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1985-01-01

    For the first time the heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, π, is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to π. Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to π. At extremely high temperatures when kT exceeds the intrasite exchange energy, the first effect dominates. Then π is simply augmented by kT ln 2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat

  13. Peltier heat of a small polaron in a magnetic semiconductor

    International Nuclear Information System (INIS)

    Liu, N.L.H.; Emin, D.

    1984-01-01

    The heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, π, is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to π. Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to π. At extremely high temperature when kT exceeds the intrasite exchange energy, the first effect dominates. Then π is simply augmented by kTln2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat

  14. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.

    1997-01-01

    . This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  15. Closed Loop Control of Active Damped Small DC-link Capacitor Based Drive

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig

    2010-01-01

    be achieved either by modifying the machine current reference or by modifying the machine voltage. The correlation between these two methods is shown by using simple analysis and it is verified by experimental results in a three phase induction machine drive. The effect of current control loop bandwidth...

  16. Small clusters with anisotropic antiferromagnetic exchange in a magnetic field

    International Nuclear Information System (INIS)

    Parkinson, J B; Elliott, R J; Timonen, J

    2004-01-01

    We consider small symmetric clusters of magnetic atoms (spins) with anisotropic exchange interaction between the atoms in a magnetic field at zero temperature. The inclusion of the anisotropy leads to a wealth of different phases as a function of the applied magnetic field. These are not phases in the thermodynamic sense with critical properties but rather physical structures with different arrangements of the spins and hence different symmetries. We study the spatial symmetry of these phases, for the classical and quantum cases. Results are presented mainly for three frustrated systems, the triangle, the tetrahedron and the five-atom ring, which have many interesting features. In the classical limit we obtain phase diagrams in which some of the phase changes occur because of energy crossings and others due to energy bifurcations, corresponding to 'first-' and 'second-order' changes. In the quantum case we show how the symmetries of the states are related to the corresponding classical symmetries

  17. Application of magnetic pulse forming to aeronautic small pieces

    Science.gov (United States)

    Sow, C.; Bazin, G.; Daniel, D.; Bon, E.; Priem, D.; Racineux, G.

    2018-05-01

    Stelia Aerospace company is specialized in the forming of small (Lmax 1000 mm) sheets for the aerospace industry. In order to diversify the production facilities of Stelia Aerospace we evaluated the capacity of the magnetic pulse forming to produce small parts. The material used is the aluminum alloy 2024-T4. The sheets used have a thickness of 1 mm, 2 mm and 1.6 mm. Stelia Aerospace manufactures more than 100 different small parts but they are all made up of a limited set of elementary geometries. These elementary geometries include: straight and interrupted straight fallen edges, concave and convex fallen edges, fallen edges holes and joggling. In this paper we present the work we have done to develop forming tools for one of these elementary geometries, the straight fallen edge. Special attention is paid to the geometric and metallurgic quality of parts. In order to evaluate dimensional reproducibility of the process, smalls series of parts were produced.

  18. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  19. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new implementation of small volume resuscitation is closed-loop resuscitation (CLR), which employs microprocessors to titrate just enough fluid to reach a physiologic target . Animal studies suggest less risk of rebleeding in uncontrolled hemorrhage and a reduction in fluid needs with CLR. The first clinical application of CLR was treatment of burn shock and the US Army. Conclusions: Independently sponsored civilian trauma trials and clinical evaluations in operational combat conditions of

  20. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella.

    Science.gov (United States)

    Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg

    2015-08-25

    Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.

  1. Thermoelectric power of small polarons in magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1984-01-01

    The thermoelectric power (Seebeck coefficient) α of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qTα, where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2

  2. The Gravity and Extreme Magnetism Small Explorer (GEMS)

    Science.gov (United States)

    Kallman, T. R.

    2011-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) was selected by NASA for flight in 2014 to make a sensitive search for X-ray polarization from a wide set of source classes, including stellar black holes, Seyfert galaxies and quasars, blazars, rotation and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. Among the primary scientific objectives are determining the effects of the spin of black holes and the geometry of supermassive black hole accretion, determining the configurations of the magnetic fields and the X-ray emission of magnetars, and determining the magnetic structure of the supernova shocks in which cosmic rays are accelerated. GEMS will observe 23 targets during a 16 month prime mission, in observations that will be able to reach predicted levels of polarization. The mission can be extended to provide a guest observer phase. The GEMS instrument has time projection chamber polarimeters with high 2-10 keV efficiency at the focus of thin foil mirrors. The 4.5 m focal length mirrors will be deployed on an extended boom. The spacecraft with the instrument is rotated with a period of about 10 minutes to enable measurement and correction of systematic errors. A small Bragg reflection soft X-ray experiment takes advantage of this rotation to obtain a measurement at 0.5 keV. The design of the GEMS instrument and the mission, the expected performance and the planned science program will be discussed.

  3. Accuracy of small diameter sheathed thermocouples for the core flow test loop

    International Nuclear Information System (INIS)

    Anderson, R.L.; Kollie, T.G.

    1979-04-01

    This report summarizes the research and development on 0.5-mm-diameter, compacted, metal sheathed thermocouples. The objectives of this research effort have been: to identify and analyze the sources of temperature measurement errors in the use of 0.5-mm-diameter sheathed thermocouples to measure the surface temperature of the cladding of fuel-rod simulators in the Core Flow Test Loop (CFTL) at ORNL; to devise methods for reducing or correcting for these temperature measurement errors; to estimate the overall temperature measurement uncertainties; and to recommend modifications in the manufacture, installation, or materials used to minimize temperature measurement uncertainties in the CFTL experiments

  4. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    Science.gov (United States)

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  5. Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results

    Science.gov (United States)

    Franco, Alessandro; Filippeschi, Sauro

    2012-06-01

    A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.

  6. Nondestructive inspection of ductile cast iron by measurement of minor magnetic hysteresis loops

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2010-01-01

    Roč. 659, č. 9 (2010), 355-360 ISSN 0255-5476 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

    Science.gov (United States)

    Šimkanin, Ján; Kyselica, Juraj

    2017-12-01

    Numerical simulations of the geodynamo are becoming more realistic because of advances in computer technology. Here, the geodynamo model is investigated numerically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY dynamo code. These parameters are more realistic than those used in previous numerical studies of the geodynamo. Our model is based on the Boussinesq approximation and the temperature gradient between upper and lower boundaries is a source of convection. This study attempts to answer the question how realistic the geodynamo models are. Numerical results show that our dynamo belongs to the strong-field dynamos. The generated magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows (plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields are separated, which enables hydromagnetic dynamos to maintain the magnetic field at the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in previous geodynamo models. On the other hand, dimensional magnitudes of velocity and magnetic fields and those of the magnetic and viscous dissipation are larger than those expected in the Earth's core due to our parameter range chosen.

  8. submitter A High Precision 3D Magnetic Field Scanner for Small to Medium Size Magnets

    CERN Document Server

    Bergsma, F; Garnier, F; Giudici, P A

    2016-01-01

    A bench to measure the magnetic field of small to-medium-sized magnets with high precision was built. It uses a small-sized head with three orthogonal Hall probes, supported on a long pole at continuous movement during measurement. The head is calibrated in three dimensions by rotation over the full solid angle in a special device. From 0 to 2.5 T, the precision is ±0.2 mT in all components. The spatial range is 1 × 1 × 2 m with precision of ±0.02 mm. The bench and its controls are lightweight and easy to transport. The head can penetrate through small apertures and measure as close as 0.5 mm from the surface of a magnet. The bench can scan complicated grids in Cartesian or cylindrical coordinates, steered by a simple text file on an accompanying PC. The raw data is online converted to magnetic units and stored in a text file.

  9. Investigation, modelling and control of the 1.9 K cooling loop for superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Flemsæter, Bjorn

    2000-01-01

    The temperature of the superconducting magnets for the 27 km LHC particle accelerator under construction at CERN is a control parameter with strict operating constraints imposed by (a) the maximum temperature at which the magnets can operate, (b) the cooling capacity of the cryogenic system, (c) the variability of applied heat loads and (d) the accuracy of the instrumentation. A pilot plant for studying aspects beyond single magnet testing has been constructed. This magnet test string is a 35-m full-scale model if the LHC and consists of four superconducting cryogmagnets operating in a static bath of He II at 1.9 K. An experimental investigation of the properties dynamic characteristics of the 1.9 K cooling loop of the magnet test string has been carried out. A first principle model of the system has been created. A series of experiments designed for system identification purposes have been carried out, and black box models of the system have been created on the basis on the recorded data. A Model Predictive ...

  10. Magnetic properties in MnBi alloy of small crystallites for permanent magnet devices

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K.; Prakash, H. R.; Ram, S., E-mail: jms.sanjeev@gmail.com [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India)

    2016-05-06

    A rare-earth free alloy like MnBi is a potential candidate for developing small magnets and devices. In a commercially viable method, a MnBi alloy was prepared by arc melting Mn and Bi metals in a 1:1 ratio. In terms of the X-ray diffraction a single crystalline MnBi phase is formed of the as prepared alloy. FESEM images delineate thin MnBi layers (25 – 40 nm thickness) of average EDX composition throughout the specimen. A large coercivity 5.501 kOe (6.5 emu/g magnetization) observed in an M-H at 300 K is decreased to 0.171 (9.0 emu/g magnetization) at 100 K in decreasing upon cooling.

  11. The microstructure of a small scale AISI 316 stainless steel pumped sodium loop following operation for 20,000h

    International Nuclear Information System (INIS)

    Charnock, W.; Gwyther, J.; Marshall, P.

    1980-08-01

    A small pumped loop constructed of AISI 316 stainless steel has been operated for 20,000 hrs. with a peak temperature of 635 0 C. Marked decarburisation was observed in the preheater and in the adjacent specimen chamber. No regions of significant carburisation were found. The decarburisation of the heat input areas appears to be a consequence of the large temperature difference between the hot and cold legs. In addition the steel temperatures in the hot regions are such as to allow relatively high solid state mobility of carbon. The absence of significant carburisation in other parts is attributed to the lower temperatures which leads to a gradual reduction in carbon activity over a sink area which is large in relation to that of the source. Additionally, the mobility of carbon is reduced at the lower temperatures found in the cooler regions of the loop. Tentatively applying the results to a fast reactor circuit suggests the occurrence of decarburisation in the high heat input regions ie the fuel clad, with corresponding but more widely distributed, and hence less significant, carburisation in other regions. (author)

  12. Efficacy on chopping with lens loop-pad in the small incision extracapsular cataract surgery with intraocular lens implantation

    Directory of Open Access Journals (Sweden)

    Xiao-Ning Peng

    2014-04-01

    Full Text Available AIM: To study the clinical effects of chopping with lens loop-pad in the small incision extracapsular cataract surgery with intraocular lens implantation.METHODS:A total of 75 cases(80 eyes, in which loop-pad and chop knife were performed to chop nucleus before implanting intraocular lens. Visual acuity, postoperative astigmatism degree, intraoperative and postoperative complications were observed. The post-operative follow-up periods ranged from 3 to 12mo.RESULTS: The visual acuity was 0.3-0.5 in 37 eyes and 0.6 or better in 21 eyes at 1d, while was respectively in 43 eyes and in 26 eyes at 1mo. Compared with preoperative astigmatism(0.85±0.29D, there were significant difference at postoperative 1wk(1.75±0.55D(PP>0.05. Intraoperative posterior capsule rupture occurred in 4 eyes, which implantation was successful in 1 eye and 3 eyes was managed viaciliary sulcus. Two eyes had dermatoglyphic pattern edema in corneal endothelium which recovered after about 3d. Two eyes had local patchy opacities which recovered in 2wk. Two eyes had transient high intraocular pressure.CONCLUSION: The surgery is efficient, low cost, easy process and less complications, it is worth to be popularized.

  13. Small gold nanoparticles presenting linear and looped Cilengitide analogues as radiosensitizers of cells expressing ανβ3 integrin

    Science.gov (United States)

    Travis, Adam R.; Liau, Virginia A.; Agrawal, Amanda C.; Cliffel, David E.

    2017-11-01

    This work uses linear and looped RGDfV sequences attached to the surface of small (1.8 nm in diameter) gold nanoparticles (AuNPs) to enhance the radiosensitizating effects of Cilengitide, a cyclic RGDf ( NMe)V pentapeptide that targets αvβ3 integrin which is overexpressed in certain cancers. Following synthesis and purification, the AuNPs were evaluated in vitro against HUVEC, H460, and MCF7 cells in clonogenic assays using a 137Cs irradiator. Untargeted AuNPs induced no significant dose enhancement factors (DEFs) in any of the cell types when compared to radiation treatment alone, whereas all evaluated AuNPs functionalized with targeting peptides performed at least as well as controls (irradiation after Cilengitide treatment). The observed DEFs also suggest that cyclizing the linear peptides into more spatially constrained, looped structures may facilitate target binding. These greater dose enhancements merit future in vivo studies of drug-AuNP conjugates to assess the ability of the nanostructures to provide an improved therapeutic benefit over treatment with drug candidates and radiation alone. [Figure not available: see fulltext.

  14. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J.; DeRosa, M. L. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Redfern, NSW (Australia)

    2014-03-10

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.

  15. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  16. Formation of Large-scale Coronal Loops Interconnecting Two Active Regions through Gradual Magnetic Reconnection and an Associated Heating Process

    Science.gov (United States)

    Du, Guohui; Chen, Yao; Zhu, Chunming; Liu, Chang; Ge, Lili; Wang, Bing; Li, Chuanyang; Wang, Haimin

    2018-06-01

    Coronal loops interconnecting two active regions (ARs), called interconnecting loops (ILs), are prominent large-scale structures in the solar atmosphere. They carry a significant amount of magnetic flux and therefore are considered to be an important element of the solar dynamo process. Earlier observations showed that eruptions of ILs are an important source of CMEs. It is generally believed that ILs are formed through magnetic reconnection in the high corona (>150″–200″), and several scenarios have been proposed to explain their brightening in soft X-rays (SXRs). However, the detailed IL formation process has not been fully explored, and the associated energy release in the corona still remains unresolved. Here, we report the complete formation process of a set of ILs connecting two nearby ARs, with successive observations by STEREO-A on the far side of the Sun and by SDO and Hinode on the Earth side. We conclude that ILs are formed by gradual reconnection high in the corona, in line with earlier postulations. In addition, we show evidence that ILs brighten in SXRs and EUVs through heating at or close to the reconnection site in the corona (i.e., through the direct heating process of reconnection), a process that has been largely overlooked in earlier studies of ILs.

  17. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  18. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  19. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  20. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload oxygen from plasma hemoglobin as well as facilitate RBC

  1. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhai N

    2016-09-01

    Full Text Available Nailiang Zhai,1 Yongfu Xia,1 Rui Yin,2 Jinping Liu,3 Fuquan Gao1 1Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, 2Department of Respiratory Medicine, People’s Hospital of Binzhou City, 3Department of Pharmacology, Binzhou Medical University, Binzhou, Shandong, People’s Republic of China Abstract: Non-small-cell lung cancer (NSCLC is one of the leading causes of cancer-related death worldwide, and the 5-year survival rate is still low despite advances in diagnosis and therapeutics. A long noncoding RNA (lncRNA HOX antisense intergenic RNA (HOTAIR has been revealed to play important roles in NSCLC carcinogenesis but the detailed mechanisms are still unclear. In the current study, we aimed to investigate the regulation between the lncRNA HOTAIR and p53 in the NSCLC patient samples and cell lines. Our results showed that HOTAIR expression was significantly higher in the cancer tissues than that in the adjacent normal tissue, and was negatively correlated with p53 functionality rather than expression. When p53 was overexpressed in A549 cells, the lncRNA HOTAIR expression was downregulated, and the cell proliferation rate and cell invasion capacity decreased as a consequence. We identified two binding sites of p53 on the promoter region of HOTAIR, where the p53 protein would bind to and suppress the HOTAIR mRNA transcription. Inversely, overexpression of lncRNA HOTAIR inhibited the expression of p53 in A549 cells. Mechanistic studies revealed that HOTAIR modified the promoter of p53 and enhanced histone H3 lysine 27 trimethylation (H3K27me3. These studies identified a specific negative regulation loop of lncRNA HOTAIR and p53 in NSCLC cells, which revealed a new understanding of tumorigenesis in p53 dysfunction NSCLC cells. Keywords: NSCLC, LncRNA HOTAIR, p53, negative loop

  2. Closed-loop model: An optimization of integrated thin-film magnetic devices

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, Amal, E-mail: amale@stanford.edu [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Sato, Noriyuki [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); White, Robert M. [Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Wang, Shan X. [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-06-15

    Highlights: • An analytical model for inductance of thin-film magnetic devices was developed. • Different device topologies and magnetic permeabilities were addressed. • Inductance of various topologies were calculated and compared with simulation. • The model predicts simulated values with excellent accuracy. - Abstract: A generic analytical model has been developed to fully describe the flux closure through magnetic inductors. The model was applied to multiple device topologies including solenoidal single return path and dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimensions. The calculated inductance values from the analytical model were compared with simulated results for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-film magnetic permeabilities (∼10{sup 2} to 10{sup 3}). Furthermore, the model can be used to evaluate behavior in other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and used to produce more efficient device designs in the future.

  3. The phenomenology of a small break LOCA in a complex thermal hydraulic loop

    International Nuclear Information System (INIS)

    Di Marzo, M.; Almenas, K.K.; Hsu, Y.Y.; Wang, Z.

    1988-01-01

    A phenomenological description of the thermal hydraulics events that take place during a simulated Small Break Loss of Coolant Accident (SB-LOCA) is presented. The SB-LOCA transient is described in detail and the various mass and energy transport modes are identified. Similar behavior is observed in other facilities designed for the simulation of this type of accidents. Previous investigations suggest a simple modelling of the phenomena based on fluid mechanic considerations. An extensive experimental program conducted at the experimental facility of the University of Maryland reveals that condensation is a dominant driving force for this type of transients. This finding has significant implications in the modelling of enthalpy transport for some of the flow modes which occur during the transient. In particular it affects the Interruption and Resumption Mode (IRM) during which enthalpy is transported by periodic flow of a two phase mixture. The efforts to predict the flow interruption based on fluid mechanic criteria of phase separation in the hot leg are shown to be misdirected since thermodynamic phenomena taking place in the horizontal portion of the cold legs and in the reactor vessel downcomer are mostly responsible for that transition. For flow resumption to occur the liquid-vapor mixture swelling in the vertical portion of the hot leg determines the occurrence of the liquid spill over the top of the candy cane. (orig.)

  4. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ueda, K. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuneta, S., E-mail: ryouhei.kano@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  5. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong

    2014-11-01

    Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Applications concepts of small regenerative cryocoolers in superconducitng magnet systems

    NARCIS (Netherlands)

    van der Laan, M.T.G.; van der Laan, M.T.G.; Tax, R.B.; ten Kate, Herman H.J.

    1992-01-01

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these

  7. The low-field peak in magnetization loops of uniform and granular superconductors in perpendicular magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Johansen, T. H.; Shantsev, D. V.; Koblischka, M. R.; Galperin, Y. M.; Nálevka, Petr; Jirsa, Miloš

    341-348, - (2000), s. 1443-1444 ISSN 0921-4534. [International Conference on Materials and Mechanism of Superconductivity High Temperature Superconductors /4./. Houston , 20.02.2000-25.02.2000] Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2000

  8. Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Ducharne, B., E-mail: Benjamin.ducharne@insa-lyon.fr; Le, M.Q.; Sebald, G.; Cottinet, P.J.; Guyomar, D.; Hebrard, Y.

    2017-06-15

    Highlights: • Barkhausen noise energy versus excitation field hysteresis cycles MBN{sub energy}(H). • Difference in the dynamics of the induction field B and of the MBN{sub energy}. • Dynamic behavior of MBN{sub energy}(H) cycles is first-order. • Dynamic behavior of B(H) cycles is non-entire order. - Abstract: By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBN{sub energy}(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBN{sub energy} related to the domain wall movements. Indeed, for the MBN{sub energy} hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBN{sub energy}(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBN{sub energy}(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.

  9. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease

    NARCIS (Netherlands)

    Guio, F. De; Jouvent, E.; Biessels, G.J.; Black, S.E.; Brayne, C.; Chen, C.; Cordonnier, C.; Leeuw, F.E. de; Dichgans, M.; Doubal, F.; Duering, M.; Dufouil, C.; Duzel, E.; Fazekas, F.; Hachinski, V.; Ikram, M.A.; Linn, J.; Matthews, P.M.; Mazoyer, B.; Mok, V.; Norrving, B.; O'Brien, J.T.; Pantoni, L.; Ropele, S.; Sachdev, P.; Schmidt, R.; Seshadri, S.; Smith, E.E.; Sposato, L.A.; Stephan, B.; Swartz, R.H.; Tzourio, C.; Buchem, M. van; Lugt, A. van der; Oostenbrugge, R.; Vernooij, M.W.; Viswanathan, A.; Werring, D.; Wollenweber, F.; Wardlaw, J.M.; Chabriat, H.

    2016-01-01

    Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these

  10. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease

    NARCIS (Netherlands)

    De Guio, F. (François); Jouvent, E. (Eric); G.J. Biessels (Geert Jan); S.E. Black (Sandra); C. Brayne (Carol); C. Chen (Christopher); C. Cordonnier (Charlotte); H.F. de Leeuw (Frank); C. Kubisch (Christian); Doubal, F. (Fergus); Duering, M. (Marco); C. Dufouil (Carole); Duzel, E. (Emrah); F. Fazekas (Franz); V. Hachinski (Vladimir); M.K. Ikram (Kamran); J. Linn (Jennifer); P.M. Matthews (P.); B. Mazoyer (Bernard); Mok, V. (Vincent); B. Norrving (Bo); O'Brien, J.T. (John T.); Pantoni, L. (Leonardo); S. Ropele (Stefan); P.S. Sachdev (Perminder); R. Schmidt (Reinhold); S. Seshadri (Sudha); E.E. Smith (Eric); L.A. Sposato (Luciano A); B.C.M. Stephan; Swartz, R.H. (Richard H.); C. Tzourio (Christophe); M.A. van Buchem (Mark); A. van der Lugt (Aad); R.J. van Oostenbrugge (Robert); M.W. Vernooij (Meike); Viswanathan, A. (Anand); D.J. Werring (David); Wollenweber, F. (Frank); J.M. Wardlaw (J.); Chabriat, H. (Hugues)

    2016-01-01

    textabstractBrain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility

  11. Magnetic resonance imaging for precise radiotherapy of small laboratory animals

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Thorsten [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie; Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Jaeckel, Maria [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Schumacher, Udo [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kruell, Andreas [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie

    2017-05-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6 MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging.

  12. Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Vandas, Marek; Odstrčil, Dušan; Watari, S.

    2002-01-01

    Roč. 107, A9 (2002), s. SSH2-1 - SSH2-11 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3012103; GA ČR GA205/99/1712; GA AV ČR IAA3003003; GA AV ČR IBS1003006 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic cloud s * MHD simulations * interplanetary magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002

  13. Peristalsis gap sign at cine magnetic resonance imaging for diagnosing strangulated small bowel obstruction. Feasibility study

    International Nuclear Information System (INIS)

    Takahara, Taro; Kwee, T.C.; Haradome, Hiroki

    2011-01-01

    The aim of this study was to determine the feasibility of cine magnetic resonance imaging (MRI) for diagnosing strangulated small bowel obstruction (SBO). This study included 38 patients with clinically confirmed SBO who had undergone cine MRI. Cine MRI scans were evaluated regarding the presence of the 'peristalsis gap sign' (referring to an akinetic or severely hypokinetic closed loop), indicating strangulation. Computed tomography (CT) was performed in 34 of 38 patients with (n=25) or without (n=9) contrast enhancement. CT images were evaluated using a combination of criteria (presence of hyperattenuation, poor contrast enhancement, mesenteric edema, wall thickening, massive ascites) indicating strangulation. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of cine MRI and CT for the diagnosis of strangulation were calculated and compared using surgical findings and the clinical course as the reference standard. Sensitivity, specificity, PPV, and NPV of cine MRI were 100%, 92.9%, 83.3%, and 100%, respectively; and those of CT (of which 26.5% was performed without contrast enhancement) were 66.7%, 92.0%, 75.0%, and 88.5%, respectively. There was no significant difference in diagnostic accuracy between the two methods (P=0.375). Cine MRI is a feasible and promising technique for diagnosing strangulation. (author)

  14. Nondestructive characterization of recovery and recrystallization in cold rolled low carbon steel by magnetic hysteresis loops

    International Nuclear Information System (INIS)

    Martinez-de-Guerenu, A.; Gurruchaga, K.; Arizti, F.

    2007-01-01

    How structure sensitive parameters derived from hysteresis loops can provide nondestructive information about the evolution of the microstructure of cold rolled low carbon steel as a result of recovery and recrystallization processes during the annealing is shown. The coercive field, remanent induction and hysteresis losses can be used to monitor the decrease in the dislocation density during recovery. These parameters are also influenced by the average grain refinement that takes place during recrystallization, which compensates the variation produced by the annihilation of dislocations during recrystallization. The maximum of the induction and of the relative differential permeability are shown to be very sensitive to the onset and to the monitoring of the recrystallization, respectively. The correlations between coercive field and remanent induction and hysteresis losses can also be used to distinguish between recovery and recrystallization

  15. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  16. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Chen Qingrong; Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.

  17. Numerical Study of a Crossed Loop Coil Array for Parallel Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Hernandez, J.; Solis, S. E.; Rodriguez, A. O.

    2008-01-01

    A coil design has been recently proposed by Temnikov (Instrum Exp Tech. 2005;48;636-637), with higher experimental signal-to-noise ratio than that of the birdcage coil. It is also claimed that it is possible to individually tune it with a single chip capacitor. This coil design shows a great resemble to the gradiometer coil. These results motivated us to numerically simulate a three-coil array for parallel magnetic resonance imaging and in vivo magnetic resonance spectroscopy with multi nuclear capability. The magnetic field was numerical simulated by solving Maxwell's equations with the finite element method. Uniformity profiles were calculated at the midsection for one single coil and showed a good agreement with the experimental data. Then, two more coils were added to form two different coil arrays: coil elements were equally distributed by an angle of a 30 deg. angle. Then, uniformity profiles were calculated again for all cases at the midsection. Despite the strong interaction among all coil elements, very good field uniformity can be achieved. These numerical results indicate that this coil array may be a good choice for magnetic resonance imaging parallel imaging

  18. Loop radiofrequency coils for clinical magnetic resonance imaging at 7 tesla

    NARCIS (Netherlands)

    Kraff, O.

    2011-01-01

    To date, the 7 T magnetic resonance imaging (MRI) scanner remains a pure research system and there is still a long way ahead till full clinical integration. Key challenges are the absence of a body transmit radiofrequency (RF) coil as well as of dedicated RF coils in general, short RF wavelengths of

  19. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    Science.gov (United States)

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  20. A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    tools for accurate and rapid cell sorting and counting. Effective manipulation of beads is a critical factor for the performance of LOC devices. In this paper we propose a planar conducting micro-loop structure to trap, manipulate and transport magnetic

  1. Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Chung, Won Bok

    2005-01-01

    A small-scale Loop Heat Pipe (LHP) with polypropylene wick was fabricated and tested for investigation of its thermal performance. The container and tubing of the system were made of stainless steel and several working fluids were tested including methanol, ethanol, and acetone. The heating area was 35 mm x 35 mm and nine axial grooves were provided in the evaporator to provide vapor passages. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 μm to 25 μm. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 mm. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. Start-up characteristics as well as steady-state performance was analyzed and discussed. The minimum thermal load of 10 W (0.8W/cam 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 deg. C with horizontal position

  2. How the Performance of a Superconducting Magnet is affected by the Connection between a small cooler and the Magnet

    International Nuclear Information System (INIS)

    Green, Michael A.

    2005-01-01

    As low temperature cryocoolers become more frequently used to cool superconducting magnets, it becomes increasingly apparent that the connection between the cooler and the magnet has an effect on the design and performance of the magnet. In general, the use of small coolers can be considered in two different temperature ranges; (1) from 3.8 to 4.8 K for magnet fabricated with LTS conductor and (2) from 18 to 35 K for magnets fabricated using HTS conductor. In general, both temperature ranges call for the use of a two-stage cooler. The best method for connecting a cooler to the magnet depends on a number of factors. The factors include: (1) whether the cooler must be used to cool down the magnet from room temperature, (2) whether the magnet must have one or more reservoirs of liquid cryogen to keep the magnet cold during a loss of cooling, and (3) constraints on the distance from the cooler cold heads and the magnet and its shield. Two methods for connecting low temperature coolers to superconducting magnets have been studied. The first method uses a cold strap to connect the cold heads directly to the loads. This method is commonly used for cryogen-free magnets. The second method uses a thermal siphon and liquid cryogens to make the connection between the load being cooled and the cold head. The two methods of transferring heat from the magnet to the cooler low temperature cold head are compared for the two temperature ranges given above

  3. A Small Stem Loop Structure Of The Ebola Virus Trailer Is Essential For Replication And Interacts With Heat Shock Protein A8

    Science.gov (United States)

    2016-12-02

    Nucleic Acids Research , 2016 1–15 doi: 10.1093/nar/gkw825 A small stem -loop structure of the Ebola virus trailer is essential for replication and...is a single- stranded RNA that is linked to a stem -loop, as found in the region of the replication promoter element of the EBOV genomic leader (18...Kuhn4, Gustavo Palacios3, Sheli R. Radoshitzky3, Stuart F. J. Le Grice1,* and Reed F. Johnson2,* 1RT Biochemistry Section, Basic Research Laboratory

  4. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  5. Potential interference of small neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators.

    Science.gov (United States)

    Wolber, Thomas; Ryf, Salome; Binggeli, Christian; Holzmeister, Johannes; Brunckhorst, Corinna; Luechinger, Roger; Duru, Firat

    2007-01-01

    Magnetic fields may interfere with the function of cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). Neodymium-iron-boron (NdFeB) magnets, which are small in size but produce strong magnetic fields, have become widely available in recent years. Therefore, NdFeB magnets may be associated with an emerging risk of device interference. We conducted a clinical study to evaluate the potential of small NdFeB magnets to interfere with cardiac pacemakers and ICDs. The effect of four NdFeB magnets (two spherical magnets 8 and 10 mm in diameter, a necklace made of 45 spherical magnets, and a magnetic name tag) was tested in forty-one ambulatory patients with a pacemaker and 29 patients with an ICD. The maximum distance at which the magnetic switch of a device was influenced was observed. Magnetic interference was observed in all patients. The maximum distance resulting in device interference was 3 cm. No significant differences were found with respect to device manufacturer and device types. Small NdFeB magnets may cause interference with cardiac pacemakers and ICDs. Patients should be cautioned about the interference risk associated with NdFeB magnets during daily life.

  6. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    Science.gov (United States)

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus

  7. Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system.

    Science.gov (United States)

    Worsøe, Jonas; Fynne, Lotte; Gregersen, Tine; Schlageter, Vincent; Christensen, Lisbet A; Dahlerup, Jens F; Rijkhoff, Nico J M; Laurberg, Søren; Krogh, Klaus

    2011-12-29

    Tracking an ingested magnet by the Magnet Tracking System MTS-1 (Motilis, Lausanne, Switzerland) is an easy and minimally-invasive method to assess gastrointestinal transit. The aim was to test the validity of MTS-1 for assessment of gastric transit time and small intestinal transit time, and to illustrate transit patterns detected by the system. A small magnet was ingested and tracked by an external matrix of 16 magnetic field sensors (4 × 4) giving a position defined by 5 coordinates (position: x, y, z, and angle: θ, φ). Eight healthy subjects were each investigated three times: (1) with a small magnet mounted on a capsule endoscope (PillCam); (2) with the magnet alone and the small intestine in the fasting state; and (3) with the magnet alone and the small intestine in the postprandial state. Experiment (1) showed good agreement and no systematic differences between MTS-1 and capsule endoscopy when assessing gastric transit (median difference 1 min; range: 0-6 min) and small intestinal transit time (median difference 0.5 min; range: 0-52 min). Comparing experiments (1) and (2) there were no systematic differences in gastric transit or small intestinal transit when using the magnet-PillCam unit and the much smaller magnetic pill. In experiments (2) and (3), short bursts of very fast movements lasting less than 5% of the time accounted for more than half the distance covered during the first two hours in the small intestine, irrespective of whether the small intestine was in the fasting or postprandial state. The mean contraction frequency in the small intestine was significantly lower in the fasting state than in the postprandial state (9.90 min-1 vs. 10.53 min-1) (p = 0.03). MTS-1 is reliable for determination of gastric transit and small intestinal transit time. It is possible to distinguish between the mean contraction frequency of small intestine in the fasting state and in the postprandial state.

  8. Magnetic properties of ultra-small goethite nanoparticles

    International Nuclear Information System (INIS)

    Brok, E; Frandsen, C; Madsen, D E; Mørup, S; Jacobsen, H; Birk, J O; Lefmann, K; Bendix, J; Pedersen, K S; Boothroyd, C B; Berhe, A A; Simeoni, G G

    2014-01-01

    Goethite (α-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mössbauer spectroscopy. The ‘ultra-small’ size of these particles (i.e. that the particles consist of one or only a few grains) allows for more direct elucidation of the particles' intrinsic magnetic properties. We find from ac and dc magnetization measurements a significant upturn of the magnetization at very low temperatures most likely due to freezing of spins in canted spin structures. From hysteresis curves we estimate the saturation magnetization from uncompensated magnetic moments to be σ s  = 0.044 A m 2  kg −1 at room temperature. Inelastic neutron scattering measurements show a strong signal from excitations of the uniform mode (q = 0 spin waves) at temperatures of 100–250 K and Mössbauer spectroscopy studies show that the magnetic fluctuations are dominated by ‘classical’ superparamagnetic relaxation at temperatures above ∼170 K. From the temperature dependence of the hyperfine fields and the excitation energy of the uniform mode we estimate a magnetic anisotropy constant of around 1.0 × 10 5  J m −3 . (paper)

  9. The relevance of free fluid between intestinal loops detected by sonography in the clinical assessment of small bowel obstruction in adults

    International Nuclear Information System (INIS)

    Grassi, Roberto; Romano, Stefania; D'Amario, Fenesia; Giorgio Rossi, Antonio; Romano, Luigia; Pinto, Fabio; Di Mizio, Roberto

    2004-01-01

    Introduction: The main role of the radiologist in the management of patients with suspicion of small bowel obstruction is to help triage patients into those that need immediate surgical intervention from those that require medical therapy or delayed surgery. Ultrasound examination is usually considered not helpful in bowel obstruction because of air in the intestinal lumen that interferes the evaluation of the intestinal loops, however recently some Authors attested the increasing important role of sonography in the acute abdominal disease. Aim of our report is to demonstrate the value of free fluid detected by US in differentiating between low and high-grade small bowel obstruction. Materials and methods: The study is based on 742 consecutive patients who presented symptoms of the acute abdomen; all patients had undergone initial serial abdominal plain film and US examinations prior to any medical intervention. We reviewed the imaging findings of 150 cases in whom small bowel obstruction was clinically suspected and confirmed at surgery. We consider the following radiographic and US findings: dilatation of small bowel loops; bowel wall thickness; presence of air-fluid levels; thickness of valvulae conniventes; evidence of peristalsis; presence and echogenicity of extraluminal fluid. We looked at the value of extraluminal peritoneal fluid at US examination in differentiating low and high-grade small bowel obstruction based on the surgical outcome. Results: In 46 patients altered peristaltic activity, thin bowel walls, fluid filled loops with hyperechoic spots in the bowel segment proximal to obstruction were noted at US, whereas radiographic features were: moderate dilatation of small bowel loops, with thin bowel wall and evidence of numerous and subtle valvulae conniventes; presence of air-fluid levels was also noted. In 70 other patients, US examination revealed all the findings described in the precedent cases and also the presence of free extraluminal fluid

  10. The relevance of free fluid between intestinal loops detected by sonography in the clinical assessment of small bowel obstruction in adults

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Roberto; Romano, Stefania E-mail: stefromano@libero.it; D' Amario, Fenesia; Giorgio Rossi, Antonio; Romano, Luigia; Pinto, Fabio; Di Mizio, Roberto

    2004-04-01

    Introduction: The main role of the radiologist in the management of patients with suspicion of small bowel obstruction is to help triage patients into those that need immediate surgical intervention from those that require medical therapy or delayed surgery. Ultrasound examination is usually considered not helpful in bowel obstruction because of air in the intestinal lumen that interferes the evaluation of the intestinal loops, however recently some Authors attested the increasing important role of sonography in the acute abdominal disease. Aim of our report is to demonstrate the value of free fluid detected by US in differentiating between low and high-grade small bowel obstruction. Materials and methods: The study is based on 742 consecutive patients who presented symptoms of the acute abdomen; all patients had undergone initial serial abdominal plain film and US examinations prior to any medical intervention. We reviewed the imaging findings of 150 cases in whom small bowel obstruction was clinically suspected and confirmed at surgery. We consider the following radiographic and US findings: dilatation of small bowel loops; bowel wall thickness; presence of air-fluid levels; thickness of valvulae conniventes; evidence of peristalsis; presence and echogenicity of extraluminal fluid. We looked at the value of extraluminal peritoneal fluid at US examination in differentiating low and high-grade small bowel obstruction based on the surgical outcome. Results: In 46 patients altered peristaltic activity, thin bowel walls, fluid filled loops with hyperechoic spots in the bowel segment proximal to obstruction were noted at US, whereas radiographic features were: moderate dilatation of small bowel loops, with thin bowel wall and evidence of numerous and subtle valvulae conniventes; presence of air-fluid levels was also noted. In 70 other patients, US examination revealed all the findings described in the precedent cases and also the presence of free extraluminal fluid

  11. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit; Verma, Mahendra K.; Samtaney, Ravi

    2015-01-01

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due

  12. Neurotology findings in patients with diagnosis of vascular loop of cranial nerves VIII in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Grocoske, Francisco Luiz Busato

    Full Text Available Introduction: The vascular compression by redundant vessels under the VIII cranial nerves has been studied since the 80's, and many authors proposed correlations between the compression and the otoneurological findings (vertigo, tinnitus, hypoacusis, audiometry and electrophysiological findings. Objective: Analyze and correlate the different signs and otoneurological symptoms, the audiological findings and its incidence over individuals with Vascular Loop (VL diagnosis of VIII cranial nerves by magnetic resonance imaging (MRI. Method: Retrospective study through the analysis of medical records of 47 patients attended in the otoneurology clinic of Clinical Hospital of UFPR. All the patients have MRI exams with compatible pictures of VL of the VIII cranial nerves. Results: The tinnitus was the most frequent symptom, in 83% of the patients, followed by hypoacusis (60% and vertigo (36%. The audiometry presented alterations in 89%, the brainstem evoked auditory potential in 33% and the vecto-electronystagmography in 17% of the patients. Was not found statistically significant relation between the buzz or hypoacusis, and the presence of VL in MRI. Only 36% of patients had complaints of vertigo, the main symptom described in theory of vascular compression of the VIII pair of nerve. As in the audiometry and in brainstem evoked auditory potential was not found a statistically significant relation between the exam and the presence of the VL in the RMI. Conclusion: The results show independence between the findings of the RMI, clinical picture and audiological results (p>0,05 suggesting that there are no exclusive and direct relation between the diagnosis of vascular loop in the MRI and the clinical picture matching.

  13. Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

    2013-09-30

    The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct

  14. Control Loop for a Pulse Generator of a Fast Septum Magnet using DSP and Fuzzy Logic

    CERN Document Server

    Aldaz-Carroll, E; Dieperink, J H; Schröder, G; Vossenberg, Eugène B

    1997-01-01

    A prototype of a fast pulsed eddy current septum magnet for one of thebeam extraction's from the SPS towards LHC is under development. The precision of the magnetic field must be better than ±1.0 10-4 during a flat top of 30 µs. The current pulse is generated by discharging the capacitors of a LC circuit that resonates on the 1st and on the 3rd harmonic of a sine wave with a repetition rate of 15 s. The parameters of the circuit and the voltage on the capacitors must be carefully adjusted to meet the specifications. Drifts during operation must be corrected between two pulses by mechanically adjusting the inductance of the coil in the generator as well as the primary capacitor voltage. This adjustment process is automated by acquiring the current pulse waveform with sufficient time and amplitude resolution, calculating the corrections needed and applying these corrections to the hardware for the next pulse. A very cost-effective and practical solution for this adjustment process is the integration of off-th...

  15. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  16. Design of permanent magnet synchronous motor speed loop controller based on sliding mode control algorithm

    Science.gov (United States)

    Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo

    2018-03-01

    Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.

  17. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  18. Characterization of Plasmadynamics within a Small Magnetic Nozzle

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents an experimental and theoretical research project intended to develop a more refined model of the underlying physics of magnetic nozzles. The...

  19. Magnetic energy storage devices for small scale applications

    International Nuclear Information System (INIS)

    Kumar, B.

    1992-01-01

    This paper covers basic principles of magnetic energy storage, structure requirements and limitations, configurations of inductors, attributes of high-T c superconducting materials including thermal instabilities, a relative comparison with the state-of-the-art high energy density power sources, and refrigeration requirements. Based on these fundamental considerations, the design parameters of a micro superconducting magnetic energy unit for Air Force applications is presented and discussed

  20. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms...... of spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances....

  1. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  2. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast.

    Directory of Open Access Journals (Sweden)

    Nina V Romanova

    2013-10-01

    Full Text Available DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.

  3. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Armature reaction of permanent magnet-excited small dc motors with shell type magnets and possibilities of power increase

    Energy Technology Data Exchange (ETDEWEB)

    Gutt, H J; Tran, Q N

    1983-07-01

    Permanent magnet-excited small dc motors allow an increase of power up to 30% compared with present permanent excited motors. The calculation of immediate irreversible demagnetization of the air-gap situated shell type magnets is necessary for a good motor design. Numerical calculated field line plots show the critical zones of the irreversible demagnetization at high armature reaction and refer how to avoid the flux loss and to increase the motor power.

  5. Improvement of a magnetization method on a small-size superconducting bulk magnet system

    International Nuclear Information System (INIS)

    Yokoyama, K.; Oka, T.; Noto, K.

    2011-01-01

    This paper proposed an effective magnetizing method of high-T c bulk superconductors. The magnetic pass was artificially formed by field-cooling using a permanent magnet. The trapped field was increased by 20-25% as compared with the conventional method. We observed that the channel was formed partially in the trapped field distribution. A pulsed-filed magnetization (PFM) is an important technique for industrial applications of superconducting bulk magnets, and several advanced PFM methods are proposed to enhance the trapped field. In the well-known IMRA method, the channel through the magnetic flux is formed by the flux flow caused by heat generation when applying the strong pulsed-field, and the magnetic flux is made to penetrate into the bulk through the channel in the following pulse application. On the other hand, large applied field leads to large heat generation, and, therefore, the trapped field is decreased greatly. This paper proposes an effective magnetizing method in which the channel composed of magnetic field is artificially formed by field-cooling (FC) using a permanent magnet and the magnetic flux by PFM is induced to the channel. To confirm the validity of this method, the bulk was magnetized by FC using Nd-Fe-B magnets of the rectangular and the ring shapes, and thereafter, a pulsed-field of 6.2 T was applied. As a result, the trapped field of the bulk magnetized by FC using the ring magnet was increased by about 20-25% as compared with that of the conventional PFM, and, moreover, it was observed that the channel was formed partially by measurement of the magnetic field distribution.

  6. Stem-Loop RT-qPCR as an Efficient Tool for the Detection and Quantification of Small RNAs in Giardia lamblia

    Science.gov (United States)

    Marcial-Quino, Jaime; Gómez-Manzo, Saúl; Fierro, Francisco; Vanoye-Carlo, America; Rufino-González, Yadira; Sierra-Palacios, Edgar; Castillo-Villanueva, Adriana; Castillo-Rodríguez, Rosa Angélica; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto; Reyes-Vivas, Horacio

    2016-01-01

    Stem-loop quantitative reverse transcription PCR (RT-qPCR) is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL)-based design to detect—in a rapid, sensitive, specific, and reproducible way—the small nucleolar RNA (snoRNA) GlsR17 and its derived miRNA (miR2) of Giardia lamblia using a stem-loop RT-qPCR approach. Both small RNAs could be isolated from both total RNA and small RNA samples. Identification of the two small RNAs was carried out by sequencing the PCR-amplified small RNA products upon ligation into the pJET1.2/blunt vector. GlsR17 is constitutively expressed during the 72 h cultures of trophozoites, while the mature miR2 is present in 2-fold higher abundance during the first 48 h than at 72 h. Because it has been suggested that miRNAs in G. lamblia have an important role in the regulation of gene expression, the use of the stem-loop RT-qPCR method could be valuable for the study of miRNAs of G. lamblia. This methodology will be a powerful tool for studying gene regulation in G. lamblia, and will help to better understand the features and functions of these regulatory molecules and how they work within the RNA interference (RNAi) pathway in G. lamblia. PMID:27999395

  7. Stem-Loop RT-qPCR as an Efficient Tool for the Detection and Quantification of Small RNAs in Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Jaime Marcial-Quino

    2016-12-01

    Full Text Available Stem-loop quantitative reverse transcription PCR (RT-qPCR is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL-based design to detect—in a rapid, sensitive, specific, and reproducible way—the small nucleolar RNA (snoRNA GlsR17 and its derived miRNA (miR2 of Giardia lamblia using a stem-loop RT-qPCR approach. Both small RNAs could be isolated from both total RNA and small RNA samples. Identification of the two small RNAs was carried out by sequencing the PCR-amplified small RNA products upon ligation into the pJET1.2/blunt vector. GlsR17 is constitutively expressed during the 72 h cultures of trophozoites, while the mature miR2 is present in 2-fold higher abundance during the first 48 h than at 72 h. Because it has been suggested that miRNAs in G. lamblia have an important role in the regulation of gene expression, the use of the stem-loop RT-qPCR method could be valuable for the study of miRNAs of G. lamblia. This methodology will be a powerful tool for studying gene regulation in G. lamblia, and will help to better understand the features and functions of these regulatory molecules and how they work within the RNA interference (RNAi pathway in G. lamblia.

  8. Mass and energy supply of a cool coronal loop near its apex

    Science.gov (United States)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before

  9. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  10. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...

  11. Modeling, design and experimental validation of a small-sized magnetic gear

    NARCIS (Netherlands)

    Zanis, R.; Borisavljevic, A.; Jansen, J.W.; Lomonova, E.A.

    2013-01-01

    A magnetostatic analytical model is created to analyze and design a small-sized magnetic gear for a robotic application. Through a parameter variation study, it is found that the inner rotor magnet height is highly influential to the torque, and based on which, the design is performed. Several

  12. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  13. Quality factor of an electrically small magnetic dipole antenna with magneto-dielectric core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    In this work, we investigate the radiation Q of electrically small magnetic dipole antennas with magneto-dielectric core versus the antenna electrical size, permittivity and permeability of the core. The investigation is based on the exact theory for a spherical magnetic dipole antenna...

  14. Small Bowel Dose Parameters Predicting Grade ≥3 Acute Toxicity in Rectal Cancer Patients Treated With Neoadjuvant Chemoradiation: An Independent Validation Study Comparing Peritoneal Space Versus Small Bowel Loop Contouring Techniques

    International Nuclear Information System (INIS)

    Banerjee, Robyn; Chakraborty, Santam; Nygren, Ian; Sinha, Richie

    2013-01-01

    Purpose: To determine whether volumes based on contours of the peritoneal space can be used instead of individual small bowel loops to predict for grade ≥3 acute small bowel toxicity in patients with rectal cancer treated with neoadjuvant chemoradiation therapy. Methods and Materials: A standardized contouring method was developed for the peritoneal space and retrospectively applied to the radiation treatment plans of 67 patients treated with neoadjuvant chemoradiation therapy for rectal cancer. Dose-volume histogram (DVH) data were extracted and analyzed against patient toxicity. Receiver operating characteristic analysis and logistic regression were carried out for both contouring methods. Results: Grade ≥3 small bowel toxicity occurred in 16% (11/67) of patients in the study. A highly significant dose-volume relationship between small bowel irradiation and acute small bowel toxicity was supported by the use of both small bowel loop and peritoneal space contouring techniques. Receiver operating characteristic analysis demonstrated that, for both contouring methods, the greatest sensitivity for predicting toxicity was associated with the volume receiving between 15 and 25 Gy. Conclusion: DVH analysis of peritoneal space volumes accurately predicts grade ≥3 small bowel toxicity in patients with rectal cancer receiving neoadjuvant chemoradiation therapy, suggesting that the contours of the peritoneal space provide a reasonable surrogate for the contours of individual small bowel loops. The study finds that a small bowel V15 less than 275 cc and a peritoneal space V15 less than 830 cc are associated with a less than 10% risk of grade ≥3 acute toxicity

  15. THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-11-10

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated from the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.

  16. Adoption of nitrogen power conversion system for small scale ultra-long cycle fast reactor eliminating intermediate sodium loop

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2016-01-01

    Highlights: • N 2 power conversion system for both safety and thermal performance aspects. • Sensitivity studies of several controlled parameters on N 2 power conversion system. • The elimination of the intermediate loop increased the cycle thermal efficiency. • The elimination of the intermediate loop expects economic advantages. - Abstract: As one of SFRs, the ultra-long cycle fast reactor with a power rating of 100 MW e (UCFR-100) was introduced for a 60-year operation. As an alternative to the traditional steam Rankine cycle for the power conversion system, gas based Brayton cycle has been considered for UCFR-100. Among Supercritical CO 2 (S-CO 2 ), Helium (He), Nitrogen (N 2 ) as candidates for the power conversion system for UCFR-100, an N 2 power conversion system was chosen considering both safety and thermal performance aspects. The elimination of the intermediate sodium loop could be achieved due to the safety and stable characteristics of nitrogen working fluid. In this paper, sensitivity studies with respect to several controlled parameters on N 2 power conversion system were performed to optimize the system. Furthermore, the elimination of the intermediate loop was evaluated with respect to its impact on the thermodynamic performance and other aspects.

  17. Small interfering RNA targeted to stem-loop II of the 5' untranslated region effectively inhibits expression of six HCV genotypes

    Directory of Open Access Journals (Sweden)

    Dash Srikanta

    2006-11-01

    Full Text Available Abstract Background The antiviral action of interferon alpha targets the 5' untranslated region (UTR used by hepatitis C virus (HCV to translate protein by an internal ribosome entry site (IRES mechanism. Although this sequence is highly conserved among different clinical strains, approximately half of chronically infected hepatitis C patients do not respond to interferon therapy. Therefore, development of small interfering RNA (siRNA targeted to the 5'UTR to inhibit IRES mediated translation may represent an alternative approach that could circumvent the problem of interferon resistance. Results Four different plasmid constructs were prepared for intracellular delivery of siRNAs targeting the stem loop II-III of HCV 5' UTR. The effect of siRNA production on IRES mediated translation was investigated using chimeric clones between the gene for green fluorescence protein (GFP and IRES sequences of six different HCV genotypes. The siRNA targeted to stem loop II effectively mediated degradation of HCV IRES mRNA and inhibited GFP expression in the case of six different HCV genotypes, where as siRNAs targeted to stem loop III did not. Furthermore, intracytoplasmic expression of siRNA into transfected Huh-7 cells efficiently degraded HCV genomic RNA and inhibited core protein expression from infectious full-length infectious clones HCV 1a and HCV 1b strains. Conclusion These in vitro studies suggest that siRNA targeted to stem-loop II is highly effective inhibiting IRES mediated translation of the major genotypes of HCV. Stem-loop II siRNA may be a good target for developing an intracellular immunization strategy based antiviral therapy to inhibit hepatitis C virus strains that are not inhibited by interferon.

  18. Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system

    Directory of Open Access Journals (Sweden)

    WorsØe Jonas

    2011-12-01

    Full Text Available Abstract Background Tracking an ingested magnet by the Magnet Tracking System MTS-1 (Motilis, Lausanne, Switzerland is an easy and minimally-invasive method to assess gastrointestinal transit. The aim was to test the validity of MTS-1 for assessment of gastric transit time and small intestinal transit time, and to illustrate transit patterns detected by the system. Methods A small magnet was ingested and tracked by an external matrix of 16 magnetic field sensors (4 × 4 giving a position defined by 5 coordinates (position: x, y, z, and angle: θ, ϕ. Eight healthy subjects were each investigated three times: (1 with a small magnet mounted on a capsule endoscope (PillCam; (2 with the magnet alone and the small intestine in the fasting state; and (3 with the magnet alone and the small intestine in the postprandial state. Results Experiment (1 showed good agreement and no systematic differences between MTS-1 and capsule endoscopy when assessing gastric transit (median difference 1 min; range: 0-6 min and small intestinal transit time (median difference 0.5 min; range: 0-52 min. Comparing experiments (1 and (2 there were no systematic differences in gastric transit or small intestinal transit when using the magnet-PillCam unit and the much smaller magnetic pill. In experiments (2 and (3, short bursts of very fast movements lasting less than 5% of the time accounted for more than half the distance covered during the first two hours in the small intestine, irrespective of whether the small intestine was in the fasting or postprandial state. The mean contraction frequency in the small intestine was significantly lower in the fasting state than in the postprandial state (9.90 min-1 vs. 10.53 min-1 (p = 0.03. Conclusion MTS-1 is reliable for determination of gastric transit and small intestinal transit time. It is possible to distinguish between the mean contraction frequency of small intestine in the fasting state and in the postprandial state.

  19. Cable testing for Fermilab's high field magnets using small racetrack coils

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb 3 Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable

  20. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  1. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    Science.gov (United States)

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  2. Ac magnetic hysteresis loops of Bi-Sr-Ca-Cu-O 110-K-phase superconductors and the effect of microstructural alteration

    International Nuclear Information System (INIS)

    Kumar, N.H.; Bai, V.S.

    1996-01-01

    The field variations of ac M-H loops are recorded at 77 K and 33 Hz using a lock-in flat-band detection method in sintered and press sintered 110-K-phase samples of the Bi-Sr-Ca-Cu-O system. From the slope of the M vs H m curve the flux profiles and the effective relative permeability (μ cer ) of the samples are determined. Using this value of μ cer the intergrain and intragrain contributions to the magnetization are separated out. The intergranular loops of the sintered sample could be simulated very well using Kim close-quote s model, while for the press-sintered sample the exponential model gives a better fit. Our results show that the loop closure exhibited by the intergranular loop can be simulated to the critical state models without subtracting the wing portion in contrast to the Dersch-Blatter approach. The intragranular loops of sintered samples show quite a good fit to the exponential model after introducing the surface barrier modification. The intergranular critical current density (J ci ) and the apparent lower critical field (H c1g ) of the grains are found to be enhanced due to press sintering. The field variations of the various physical quantities obtained from the loops are analyzed to see the effect of microstructural alterations introduced by the press-sintering method. By doing a fast Fourier transform on the M vs t curve the harmonic components are separated out and their variation with the ac field amplitude is studied. copyright 1996 The American Physical Society

  3. MODELING THE SUN’S SMALL-SCALE GLOBAL PHOTOSPHERIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, K. A. [Division of Computing and Mathematics, Abertay University, Kydd Building, Dundee, Bell Street, DD1 1HG, Scotland (United Kingdom); Mackay, D. H., E-mail: k.meyer@abertay.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland (United Kingdom)

    2016-10-20

    We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2.5 R {sub ⊙}, around 10–100 times less than that determined for typical Helioseismic and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray flux at Earth.

  4. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  5. Multinode analysis of small breaks for B and W's 177-fuel-assembly nuclear plants with raised loop arrangement and internals vent valves

    International Nuclear Information System (INIS)

    Cartin, L.R.; Hill, J.M.; Parks, C.E.

    1976-03-01

    Multinode analyses were conducted for several small breaks in the reactor coolant system of B and W's 177-fuel-assembly nuclear plants with a raised loop arrangement and internals vent valves. The multinode blowdown code CRAFT was used to evaluate the hydrodynamics and transient water inventories of the reactor coolant system. The FOAM code was used to compute a swell level history for the core, and THETAL-B was used to perform transient fuel pin thermal calculations. Curves showing parameters of interest are presented. The results of these analyses are acceptable within the guidelines set forth in the Final Acceptance Criteria

  6. Small-Scale Dayside Magnetic Reconnection Analysis via MMS

    Science.gov (United States)

    Pritchard, K. R.; Burch, J. L.; Fuselier, S. A.; Webster, J.; Genestreti, K.; Torbert, R. B.; Rager, A. C.; Phan, T.; Argall, M. R.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Giles, B. L.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission has the primary objective of understanding the physics of the reconnection electron diffusion region (EDR), where magnetic energy is transformed into particle energy. In this poster, we present data from an EDR encounter that occurred in late December 2016 at approximately 11:00 MLT with a moderate guide field. The spacecraft were in a tetrahedral formation with an average inter-spacecraft distance of approximately 7 kilometers. During this event electron crescent-shaped distributions were observed in the electron stagnation region as is typical for asymmetric reconnection. Based on the observed ion velocity jets, the spacecraft traveled just south of the EDR. Because of the close spacecraft separation, fairly accurate computation of the Hall, electron pressure divergence, and electron inertia components of the reconnection electric field could be made. In the region of the crescent distributions good agreement was observed, with the strongest component being the normal electric field and the most significant sources being electron pressure divergence and the Hall electric field. While the strongest currents were in the out-of-plane direction, the dissipation was strongest in the normal direction because of the larger magnitude of the normal electric field component. These results are discussed in light of recent 3D PIC simulations performed by other groups.

  7. q-Space imaging using small magnetic field gradient

    International Nuclear Information System (INIS)

    Umezawa, Eizou; Yamaguchi, Kojiro; Yoshikawa, Mayo; Ueoku, Sachiko; Tanaka, Eiji

    2006-01-01

    q-space diffusion analysis is a method to obtain the probability density function of the translational displacement of diffusing water molecules. Several quantities can be extracted from the function that indicate a characteristic of the water diffusion in tissue, e.g., the mean displacement of the diffusion, probability for zero displacement, and kurtosis of the function. These quantities are expected to give information about the microstructure of tissues in addition to that obtained from the apparent diffusion coefficient (ADC); however, this method requires high q (i.e., high b) values, which are undesirable in practical applications of the method using clinical magnetic resonance (MR) imaging equipment. We propose a method to obtain certain quantities that indicate a characteristic of the diffusion and that uses low q-value measurements. The quantities we can obtain are the moments of translational displacement, R; the n-th order moment is defined as the average of R n (n: integer). Kurtosis can also be calculated from the second and fourth moments. We tried to map the moments and kurtosis using clinical MR imaging equipment. We also estimated the inherent errors of the moments obtained. Our method requires precision in measuring spin echo signals and setting q values rather than using high q-value measurements. Although our results show that further error reductions are desired, our method is workable using ordinary clinical MR imaging equipment. (author)

  8. Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets

    International Nuclear Information System (INIS)

    Vecchini, C.; Moze, O.; Suzuki, K.; Cadogan, J.M.; Pranzas, K.; Michels, A.; Weissmueller, J.

    2006-01-01

    The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ferromagnets. Such information is not presently available using any other microscopic technique. The basic principles and results of the technique will be presented with regard to a unique and unexpected observation of a dipole field controlled spin disorder in a prototypical soft nanocomposite ferromagnet of the Nanoperm type

  9. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new...... bound is lower than the bounds for spherical magnetic as well as electric dipole antennas composed of impressed electric currents in free space....

  10. Magnetic particles studied with neutron depolarization and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Rosman, R.

    1991-01-01

    Materials containing magnetic single-domain particles, referred to as 'particulate media', have been studied using neutron depolarization (ND) and small-angle neutron scattering (SANS). In a ND experiment the polarization vector of a polarized neutron beam is analyzed after transmission through a magnetic medium. Such an analysis in general yields the correlation length of variations in magnetic induction along the neutron path (denoted 'magnetic correlation length'), mean orientation of these variations and mean magnetic induction. In a SANS experiment, information about nuclear and magnetic inhomogeneities in the medium is derived from the broadening of a generally unpolarized neutron beam due to scattering by these inhomogeneities. Spatial and magnetic microstructure of a variety of particulate media have been studied using ND and/or SANS, by determination of the magnetic or nuclear correlation length in these media in various magnetic states. This thesis deals with the ND theory and its application to particulate media. ND and SANS experiments on a variety of particulate media are discussed. (author). 178 refs., 97 figs., 8 tabs

  11. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    Science.gov (United States)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  12. Current-voltage characteristics of a superconducting slab under a superimposed small AC magnetic field

    International Nuclear Information System (INIS)

    Matsushita, Teruo; Yamafuji, Kaoru; Sakamoto, Nobuyoshi.

    1977-01-01

    In case of applying superconductors to electric machinery or high intensity field magnets for fusion reactors, the superconductors are generally expected to be sensible to small field fluctuation besides DC magnetic field. The behavior of superconductors in DC magnetic field superimposed with small AC magnetic field has been investigated often experimentally, and the result has been obtained that the critical current at which DC flow voltage begins to appear extremely decreased or disappeared. Some theoretical investigations have been carried out on this phenomenon so far, however, their application has been limited to the region where frequency is sufficiently low or which is close to the critical magnetic field. Purpose of this report is to deal with the phenomenon in more unified way by analyzing the behavior of magnetic flux lines in a superconductor under a superimposed small AC field using the criticalstate model including viscous force. In order to solve the fundamental equation in this report, first the solution has been obtained in the quasi-static state neglecting viscous force, then about the cases that current density J is not more than Jc and J is larger than Jc, concerning the deviation from the quasi-static limit by employing successive approximation. Current-voltage characteristics have been determined by utilizing the above results. This method seems to be most promising at present except the case of extremely high frequency. (Wakatsuki, Y.)

  13. Existence of stationary solutions in the coronal loop problem

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, J; Terman, D; Verhulst, F

    1988-01-01

    The study of a hot plasma confined to a magnetic loop in the sun's corona leads to a singularly perturbed nonlinear reaction-diffusion equation with rather unusual side conditions. Monotone solutions of the stationary problem appear as fixed points of an iteration map which is contractive if the perturbation parameter is sufficiently small.

  14. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  15. A case of closed loop small bowel obstruction within a strangulated incisional hernia in association with an acute gastric volvulus.

    Science.gov (United States)

    Kosai, Nik Ritza; Gendeh, H S; Noorharisman, M; Sutton, Paul Anthony; Das, Srijit

    2014-01-01

    Small bowel obstruction is a common clinical problem presenting with abdominal distention, colicky pain, absolute constipation and bilious vomiting. There are numerous causes, most commonly attributed to an incarcerated hernia, adhesions or obstructing mass secondary to malignancy. Here we present an unusual cause of a small bowel obstruction secondary to an incarcerated incisional hernia in association with an acute organoaxial gastric volvulus.

  16. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, G; Slater, J [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  17. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  18. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Science.gov (United States)

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Blind Loop Syndrome

    Science.gov (United States)

    ... or scleroderma involving the small intestine History of radiation therapy to the abdomen Diabetes Diverticulosis of the small intestine Complications A blind loop can cause escalating problems, including: Poor absorption of fats. Bacteria in your small intestine break down the bile ...

  20. Interaction between granulation and small-scale magnetic flux observed by Hinode

    International Nuclear Information System (INIS)

    Zhang Jun; Yang Shuhong; Jin Chunlan

    2009-01-01

    With the polarimetric observations obtained by the Spectro-Polarimeter on board Hinode, we study the relationship between granular development and magnetic field evolution in the quiet Sun. Six typical cases are displayed to exhibit interaction between granules and magnetic elements, and we have obtained the following results. (1) A granule develops centrosymmetrically when no magnetic flux emerges within the granular cell. (2) A granule develops and splits noncentrosymmetrically while flux emerges at an outer part of the granular cell. (3) Magnetic flux emergence in a cluster of mixed polarities is detected at the position of a granule as soon as the granule breaks up. (4) A dipole emerges accompanied by the development of a granule, and the two elements of the dipole are rooted in the adjacent intergranular lanes and face each other across the granule. Advected by the horizontal granular motion, the positive element of the dipole then cancels with the pre-existing negative flux. (5) Flux cancellation also takes place between a positive element, which is advected by granular flow, and its surrounding negative flux. (6) While magnetic flux cancellation takes place in a granular cell, the granule shrinks and then disappears. (7) Horizontal magnetic fields are enhanced at the places where dipoles emerge and where opposite polarities cancel each other, but only the horizontal fields between the dipolar elements point in an orderly way from the positive elements to the negative ones. Our results reveal that granules and small-scale magnetic fluxes influence each other. Granular flow advects magnetic flux, and magnetic flux evolution suppresses granular development. There exist extremely large Doppler blue-shifts at the site of one canceling magnetic element. This phenomenon may be caused by the upward flow produced by magnetic reconnection below the photosphere. (research papers)

  1. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.

    2008-01-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb 3 Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb 3 Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb 3 Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb 3 Al Rutherford cable is compared with that of the Nb 3 Sn Rutherford cable and the advantages of Nb 3 Al Rutherford cable are discussed

  2. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.; /Fermilab /Tsukuba Magnet Lab. /KEK, Tsukuba

    2008-12-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb{sub 3}Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb{sub 3}Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb{sub 3}Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb{sub 3}Al Rutherford cable is compared with that of the Nb{sub 3}Sn Rutherford cable and the advantages of Nb{sub 3}Al Rutherford cable are discussed.

  3. A CASE OF CLOSED LOOP SMALL BOWEL OBSTRUCTION WITHIN A STRANGULATED INCISIONAL HERNIA IN ASSOCIATION WITH AN ACUTE GASTRIC VOLVULUS

    Directory of Open Access Journals (Sweden)

    Nik Ritza Kosai

    2014-01-01

    Full Text Available Small bowel obstruction is a common clinical problem presenting with abdominal distention, colicky pain, absolute constipation and bilious vomiting. There are numerous causes, most commonly attributed to an incarcerated hernia, adhesions or obstructing mass secondary to malignancy. Here we present an unusual cause of a small bowel obstruction secondary to an incarcerated incisional hernia in association with an acute organoaxial gastric volvulus.

  4. Small-angle neutron-scattering studies of the magnetic phase diagram of MnSi

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Hae Seop Shim

    1995-01-01

    The antiferromagnetic order of MnSi has been studied as function of temperature and applied magnetic field using small-angle neutron scattering. The results were analyzed using the three-dimensional resolution function and the scattering cross-section to model the diffraction data. Physical...

  5. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Energy Technology Data Exchange (ETDEWEB)

    Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.

  6. Simulation of small-scale coronal explosives due to magnetic reconnections

    International Nuclear Information System (INIS)

    Fan Quanlin; Feng Xueshang; Xiang Changqing; Zhong Dingkun

    2003-01-01

    The dynamics of small-scale explosive phenomena in the lower corona have been simulated by solving the compressible magnetohydrodynamic equations. Numerical results show that the magnetic reconnections in a long coronal current sheet consist of a series of discrete small reconnection events, coalescence of magnetic islands, and plasmoid ejections, corresponding to the explosive events occurring intermittently and as bursts in a mentioned observational case. The generation of magnetic islands via multiple-X-point reconnection and their coalescence processes, to some extent, are qualitatively similar to the sequence of brightenings in the active region NOAA 8668. The strong ejections are possibly related to the recorded extreme ultraviolet (EUV) emitting structures. Morphological comparison and quantitative check of the plasma parameters support this candidate mechanism, and the idea that explosive events that appear to last long may not be single events, but a succession of explosive events either resolved or unresolved. The temporal energy conversion process is also examined

  7. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2012-01-01

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  8. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-02-20

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  9. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  10. Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller

    International Nuclear Information System (INIS)

    Alizadeh, Mojtaba; Kojori, Shokrollah Shokri

    2015-01-01

    Offering substantial features, PMSG (permanent magnet synchronous generator) based WECS (wind energy conversion system) is definitely one of the most reliable and efficient ways of extracting electrical power from the wind. Like other WECSs, PMSG-based WECS (PMSG WECS) encompasses two main control loops, each equipped with PI (proportional integral) controller, to control speed and currents of the system. This work develops a virtually adaptive PI controller to enhance the performance of both main control loops of a PMSG WECS. A WNN (wavelet neural network) is proposed to be added to each closed control loop in series with PI controller. Due to having a cascade connection, the transfer function of the WNN, which is a pure gain in each time step, is multiplied by PI gains. Therefore, the value of transfer function of the WNN, and consequently, both parameters of PI controller can be changed in each time step by online training of the WNN, resulting in a virtually adaptive PI controller. The performance of the proposed controller in improving efficacy of both current and speed control loops is evaluated by simulation studies and is also compared to that of PI controller, WNNC (wavelet neural network controller), and QNNC (quantum neural network controller). - Highlights: • To propose a virtually adaptive PI controller to be used in a PMSG WECS. • Both parameters of PI controller can be changed in each time step. • The proposed controller can be used as both current or speed controller. • The plant data is not required for offline training of proposed current controller.

  11. Magnetic phase diagram of MnSi near critical temperature studied by neutron small angle scattering

    International Nuclear Information System (INIS)

    Ishikawa, Yoshikazu; Arai, Masatoshi

    1984-01-01

    The magnetic phase diagram of MnSi near the critical temperature T sub(N)=29.5K has been studied by neutron small angle scattering at KENS. It has been found that the anomalous new phase predicted by various methods to exist around at 28 K and 2 kOe is the paramagnetic phase where the magnetic correlations exhibit the same characteristics as those found at 29.5 K and zero magnetic field. This phenomenon, together with the sharp decrease of the magnetic phase boundary at T sub(N) and the substantial increase of the satellite Q vector at this temperature, has been found not to be interpreted by the current theories. (author)

  12. Influence of external resonant magnetic perturbation field on edge plasma of small tokamak HYBTOK-II

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Suzuki, Y.; Ohno, N. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Okamoto, M. [Ishikawa National College of Technology, Kitachujo, Tsubata-cho, Kahoku-gun, Ishikawa 929-0392 (Japan); Kikuchi, Y. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakakibara, S.; Watanabe, K.; Takemura, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2015-08-15

    Radial profile of externally applied resonant magnetic perturbation (RMP) field with mode numbers of m = 6 and n = 2 in a small tokamak device HYBTOK-II have been investigated using a magnetic probe array, which is able to measure the radial profile of magnetic field perturbation induced by applying RMP. Results of RMP penetration into the plasma show that the RMP decreased toward the plasma center, while they were amplified around the resonant surface with a safety factor q = 3 due to the formation of magnetic islands. This suggests that RMP fields for controlling edge plasmas may trigger some kind of MHD instabilities. In addition, simulation results, based on a linearized four-field model, which agrees with the experimental ones, indicates that the penetration and amplification process of RMP strongly depend on a Doppler-shifted frequency between the RMP and plasma rotation.

  13. Gracing incidence small angle neutron scattering of incommensurate magnetic structures in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Birgit; Pfleiderer, Christian; Boeni, Peter [Physik Department, Technische Universitaet Muenchen (Germany); Zhang, Shilei; Hesjedal, Thorsten [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Khaydukov, Yury; Soltwedel, Olaf; Keller, Thomas [Max-Planck-Institut fuer Festkoerperforschung (Germany); Max Planck Society, Outstation at FRM-II (Germany); Muehlbauer, Sebastian [Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany); Chacon, Alfonso [Physik Department, Technische Universitaet Muenchen (Germany); Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The topological stability of skyrmions in bulk samples of MnSi and the observation of spin transfer torque effects at ultra-low current densities have generated great interest in skyrmions in chiral magnets as a new route towards next generation spintronics devices. Yet, the formation of skyrmions in MBE grown thin films of MnSi reported in the literature is highly controversial. We report gracing incidence small angle neutron scattering (GISANS) of the magnetic order in selected thin films of MnSi grown by state of the art MBE techniques. In combination with polarised neutron reflectometry (PNR) and magnetisation measurements of the same samples our data provide direct reciprocal space information of the incommensurate magnetic order, clarifying the nature of magnetic phase diagram.

  14. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    Science.gov (United States)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  15. A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8.

    Science.gov (United States)

    Sztuba-Solinska, Joanna; Diaz, Larissa; Kumar, Mia R; Kolb, Gaëlle; Wiley, Michael R; Jozwick, Lucas; Kuhn, Jens H; Palacios, Gustavo; Radoshitzky, Sheli R; J Le Grice, Stuart F; Johnson, Reed F

    2016-11-16

    Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA-RNA and RNA-protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2'-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3' stem-loop (nucleotides 1868-1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Quantitative analysis of CTEM images of small dislocation loops in Al and stacking fault tetrahedra in Cu generated by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Schaeublin, R.; Almazouzi, A.; Dai, Y.; Osetsky, Yu.N.; Victoria, M.

    2000-01-01

    The visibility of conventional transmission electron microscopy (CTEM) images of small crystalline defects generated by molecular dynamics (MD) simulation is investigated. Faulted interstitial dislocation loops in Al smaller than 2 nm in diameter and stacking fault tetrahedra (SFT) in Cu smaller than 4 nm in side are assessed. A recent approach allowing to simulate the CTEM images of computer generated samples described by their atomic positions is applied to obtain bright field and weak beam images. For the dislocation loop-like cluster it appears that the simulated image is comparable to experimental images. The contrast of the g(3.1g) near weak beam image decreases with decreasing size of the cluster but is still 20% of the background intensity for a 2 interstitial cluster. This indicates a visibility at the limit of the experimental background noise. In addition, the cluster image size, which is here always larger than the real size, saturates at about 1 nm when the cluster real size decreases below 1 nm, which corresponds to a cluster of 8 interstitials. For the SFT in Cu the g(6.1g) weak beam image is comparable to experimental images. It appears that the image size is larger than the real size by 20%. A large loss of the contrast features that allows to identify an SFT is observed on the image of the smallest SFT (21 vacancies)

  17. Self-retaining small-looped catheter for narrow bile ducts in high common bile duct obstruction

    International Nuclear Information System (INIS)

    Guenther, R.W.; Daehnert, W.

    1985-01-01

    A new self-retaining catheter was devised for percutaneous drainage of small bile ducts. The device allows safe external drainage without the risk of catheter dislocation even in high bile duct obstruction. The catheter is also suitable for percutaneous nephrostomy in non-dilated pyelocaliceal system. (orig.)

  18. Small-scale instrumentation for nuclear magnetic resonance of porous media

    International Nuclear Information System (INIS)

    Bluemich, Bernhard; Casanova, Federico; Dabrowski, Martin; Danieli, Ernesto; Haber, Agnes; Van Landeghem, Maxime; Haber-Pohlmeier, Sabina; Olaru, Alexandra; Perlo, Juan; Sucre, Oscar; Evertz, Loribeth

    2011-01-01

    The investigation of fluids confined to porous media is the oldest topic of investigation with small-scale nuclear magnetic resonance (NMR) instruments, as such instruments are mobile and can be moved to the site of the object, such as the borehole of an oil well. While the analysis was originally restricted by the inferior homogeneity of the employed magnets to relaxation measurements, today, portable magnets are available for all types of NMR measurements concerning relaxometry, imaging and spectroscopy in two types of geometries. These geometries refer to closed magnets that surround the sample and open magnets, which are brought close to the object for measurement. The current state of the art of portable, small-scale NMR instruments is reviewed and recent applications of such instruments are featured. These include the porosity analysis and description of diesel particulate filters, the determination of the moisture content in walls from gray concrete, new approaches to analyze the pore space and moisture migration in soil, and the constitutional analysis of the mortar base of ancient wall paintings.

  19. Measurement of magnetic fluctuations at small spatial scales in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.

    1991-08-01

    This thesis is a presentation of the measurements of short-wavelength, high-frequency radial magnetic fluctuations performed on the Tokapole 2 tokamak at the University of Wisconsin-Madison. Theories of electron temperature gradient (η e ) driven turbulence predict the existence of increased magnetic fluctuation power at small spatial scales near the collisionless skin depth c/ω pe and over a wide range of frequencies near and below the electron diamagnetic drift frequency ω* ne . Small magnetic probes of sizes down to 1 m m have been constructed and used to resolve short poloidal and radial wavelength magnetic fluctuations. These probes have been used with larger probes to make comparisons of fluctuation spectra measured in various ranges of wavelength and over the range of frequencies from 10 kHz to 6 MHz in Tokapole 2 plasmas. A calculation of the short-wavelength, high-frequency response of an electrostatically shielded model B r probe has been performed to guide the interpretation of the power comparison measurements. Comparisons of magnetic fluctuation spectra at various positions within the plasma, and for discharges with edge safety factor 1, 2, and 3 are presented. The linear and nonlinear theories and numerical simulations of η e turbulence are reviewed and compared, where possible with the experimental parameters and results

  20. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    Science.gov (United States)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  1. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  2. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    Science.gov (United States)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  3. Static properties of small Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monaco, R.; Aarøe, Morten; Mygind, Jesper

    2008-01-01

    The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase...... profile from which the dependence of the maximum Josephson current on the applied field amplitude is derived. The most common geometrical configurations are considered and, when possible, the theoretical findings are compared with the experimental data. ©2008 American Institute of Physics...

  4. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    International Nuclear Information System (INIS)

    Saito, Kotaro; Ono, Kanta; Ueno, Tetsuro; Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira; Harada, Masashi; Keiderling, Uwe

    2015-01-01

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd 2 Fe 14 B grains

  5. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kotaro, E-mail: kotaro.saito@kek.jp; Ono, Kanta [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, 305-0803 Tsukuba (Japan); Ueno, Tetsuro [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, 1-2-1 Sengen, 305-0047 Tsukuba (Japan); Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira [Toyota Motor Corporation, Toyota, Aichi 471-8571 (Japan); Harada, Masashi [Toyota Central R and D Labs, Inc., Aichi 480-1192 (Japan); Keiderling, Uwe [Helmholtz-Zentrum Berlin für Materialien and Energie, 14109 Berlin (Germany)

    2015-05-07

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd{sub 2}Fe{sub 14}B grains.

  6. Structure of magnetic particles studied by small angle neutron scattering. [Magnetic colloid particles in stable liquid dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cebula, D J; Charles, S W; Popplewell, J

    1981-03-01

    The purpose of this note is to show how the use of small angle neutron scattering (SANS) can provide fundamental information on the structure of magnetic colloid particles in stable liquid dispersion. A more detailed account elaborating the use of the technique to provide fundamental information on interactions will appear later. This contribution contains some principal results on particle structure. The technique of SANS provides a very sensitive means of measuring particle size by measuring the scattered neutron intensity, I(Q), as a function of scattered wave vector, Q.

  7. Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

    Science.gov (United States)

    Kim, Myeong Joon; Park, Kyung Sun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Rok Soon; Cho, Kyungsuk; Choi, Kyu-Cheol; Kim, Jaehun

    2017-12-01

    Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker ( 7.4 nT) than that of MCs ( 10.6 nT). Also, the average duration time and expansion speed of SMFRs are 2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of 10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

  8. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa

    2014-01-15

    The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.

  9. Investigation of coercivity mechanism in hot deformed Nd-Fe-B permanent magnets by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Yano, M.; Manabe, A.; Shoji, T.; Kato, A.; Ono, K.; Harada, M.; Kohlbrecher, J.

    2014-01-01

    The magnetic reversal behaviors of single domain sized Nd-Fe-B permanent magnets, with and without isolation between the Nd 2 Fe 14 B grains, was clarified using small-angle neutron scattering (SANS). The SANS patterns obtained arose from changes in the magnetic domains and were analyzed using the Teubner–Stray model, a phenomenological correlation length model, to quantify the periodicity and morphology of the magnetic domains. The results indicated that the magnetic reversal evolved with the magnetic domains that had similar sized grains. The grain isolation enabled us to realize the reversals of single domains

  10. Diffusion of test particles in stochastic magnetic fields for small Kubo numbers

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed

  11. Experimental investigation of a small-sized betatron with superposed magnetization

    International Nuclear Information System (INIS)

    Kas'yanov, V.A.; Rychkov, M.V.; Filimonov, A.A.; Furman, Eh.G.; Chakhlov, V.L.; Chertov, A.S.; Shtejn, M.M.

    2001-01-01

    The aim of the paper is to study possibilities of small-sized betatrons (SSB) with direct current superposed magnetization (DSM). It is shown that DSM permits to decrease the SSB weight and cost of the electromagnet and capacitor storage and to shape the prolonged beam dump. It is noted that the DSM realization has the most expediency in SSB operating in a short-time mode [ru

  12. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    International Nuclear Information System (INIS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-01-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  13. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan, E-mail: hjcsolar@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-10-20

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  14. Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q-distributed electrons

    Science.gov (United States)

    Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad

    2016-07-01

    The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.

  15. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    International Nuclear Information System (INIS)

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-01-01

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged

  16. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Slater, JD; Wroe, AJ [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  17. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Domínguez, Santiago; Kosovichev, Alexander; Yurchyshyn, Vasyl, E-mail: svargas@bbso.njit.edu [Big Bear Solar Observatory, NJIT, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)

    2014-10-20

    State-of-the-art solar instrumentation is now revealing magnetic activity of the Sun with unprecedented temporal and spatial resolutions. Observations with the 1.6 m aperture New Solar Telescope (NST) of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research topics of high-resolution solar physics. As part of a joint observing program with NASA's Interface Region Imaging Spectrograph (IRIS) mission on 2013 August 7, the NST observed active region NOAA 11,810 in the photospheric TiO 7057 Å band with a resolution of pixel size of 0.''034 and chromospheric He I 10830 Å and Hα 6563 Å wavelengths. Complementary data are provided by the Solar Dynamics Observatory (SDO) and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing granular alignments and interacting with the preexisting ambient field in the upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the He I 10830 Å data (bandpass of 0.05 Å). The IRIS transition region imaging caught ejection of a hot plasma jet associated with the He I surge. The SDO/HMI data used to study the evolution of the magnetic and Doppler velocity fields reveal emerging magnetic loop-like structures. Hinode/Ca II H and IRIS filtergrams detail the connectivities of the newly emerged magnetic field in the lower solar chromosphere. From these data, we find that the orientation of the emerging magnetic field lines from a twisted flux tube formed an angle of ∼45° with the overlying ambient field. Nevertheless, the interaction of emerging magnetic field lines with the pre-existing overlying field generates high-temperature emission regions and boosts the

  18. [Microsurgery assisted by intraoperative magnetic resonance imaging and neuronavigation for small lesions in deep brain].

    Science.gov (United States)

    Song, Zhi-jun; Chen, Xiao-lei; Xu, Bai-nan; Sun, Zheng-hui; Sun, Guo-chen; Zhao, Yan; Wang, Fei; Wang, Yu-bo; Zhou, Ding-biao

    2012-01-03

    To explore the practicability of resecting small lesions in deep brain by intraoperative magnetic resonance imaging (iMRI) and neuronavigator-assisted microsurgery and its clinical efficacies. A total of 42 cases with small lesions in deep brain underwent intraoperative MRI and neuronavigator-assisted microsurgery. The drifting of neuronavigation was corrected by images acquired from intraoperative MR rescanning. All lesions were successfully identified and 40 cases totally removed without mortality. Only 3 cases developed new neurological deficits post-operatively while 2 of them returned to normal neurological functions after a follow-up duration of 3 months to 2 years. The application of intraoperative MRI can effectively correct the drifting of neuronavigation and enhance the accuracy of microsurgical neuronavigation for small lesions in deep brain.

  19. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    International Nuclear Information System (INIS)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Danilovic, S.; Stangalini, M.; Steiner, O.

    2017-01-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s −1 and 31 ± 2 km s −1 , respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.

  20. Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    International Nuclear Information System (INIS)

    Bagheri, Habib; Khanipour, Peyman; Asgari, Sara

    2016-01-01

    drugs with various diamagnetic properties. - Highlights: • A nanomagnetic Fe_3O_4–polybutylene terephthalate is electrospun. • The nanocomposite is used in an on–line μ–solid phase extraction– HPLC set–up. • The extraction under an external magnetic field leads to higher extraction efficiency. • Some anti–inflammatory and loop diuretic drugs are determined in urine sample.

  1. Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Khanipour, Peyman; Asgari, Sara

    2016-08-31

    for the selected drugs with various diamagnetic properties. - Highlights: • A nanomagnetic Fe{sub 3}O{sub 4}–polybutylene terephthalate is electrospun. • The nanocomposite is used in an on–line μ–solid phase extraction– HPLC set–up. • The extraction under an external magnetic field leads to higher extraction efficiency. • Some anti–inflammatory and loop diuretic drugs are determined in urine sample.

  2. Persistent detwinning of EuFe{sub 2}As{sub 2} by small magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Maiwald, Jannis; Stingl, Christian; Bach, Nora; Jeevan, H.S.; Gegenwart, Philipp [Experimentalphysik VI, Universitaet Augsburg (Germany); Zapf, Sina; Jiang, Shuai; Neubauer, David; Loehle, Anja; Clauss, Conrad; Dressel, Martin [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Post, Kirk; Basov, Dimitri [Department of Physics, UC San Diego (United States)

    2015-07-01

    The formation of twin domains in the orthorhombic phase of high-temperature superconductors is impeding the investigation of the in-plane anisotropy of these materials. Recently, we have shown how the brief application of a small magnetic field of ∝ 1 Tesla in the EuFe{sub 2}As{sub 2} iron pnictide leads to a substantial detwinning of the system, which is persistent up to the structural transition at ∝ 190 K even after the magnetic field has been switched off. This offers researchers the opportunity to investigate the detwinned iron arsenide without the application of any external symmetry breaking force, like the pressure of a mechanical clamp, or a magnetic field present during measurement. We will present angular dependent magnetoresistance, magnetostriction, thermal expansion and thermoelectric power measurements on the EuFe{sub 2}As{sub 2} parent compound as well as on various doped variants in order to shed further light on the mechanism behind the field induced detwinning, i.e. the interplay of the involved magnetic moments stemming form the Eu and Fe atoms in these compounds.

  3. Magnetic properties of atmospheric PMx in a small settlement during heating and non-heating season

    Science.gov (United States)

    Petrovsky, E.; Kotlik, B.; Zboril, R.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10, collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. In our contribution we show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM analyses and magnetic data oriented on concentration and grain-size distribution of magnetite/maghemite particles. While concentration of Fe-oxides does not vary that much, significant seasonal differences were observed in composition and grain-size distribution, reflecting different sources of the dust particles.

  4. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study.

    Science.gov (United States)

    Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W

    2016-03-01

    To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  5. Electrically Small Magnetic Dipole Antennas With Quality Factors Approaching the Chu Lower Bound

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav; Yaghjian, Arthur D.

    2010-01-01

    We investigate the quality factor Q for electrically small current distributions and practical antenna designs radiating the TE10 magnetic dipole field. The current distributions and the antenna designs employ electric currents on a spherical surface enclosing a magneto-dielectric material...... numerically. It is found that for a given antenna size and permittivity there is an optimum permeability that ensures the lowest possible Q, and this optimum permeability is inversely proportional to the square of the antenna electrical radius. When the relative permittivity is equal to 1, the optimum...... permeability yields the quality factor Q that constitutes the lower bound for a magnetic dipole antenna with a magneto-dielectric core. Furthermore, the smaller the antenna the closer its quality factor Q can approach the Chu lower bound. Simulated results for the TE10-mode multiarm spherical helix antenna...

  6. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-24

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairly general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r2 in the some of the expressions.

  7. Statistical evolution of quiet-Sun small-scale magnetic features using Sunrise observations

    Science.gov (United States)

    Anusha, L. S.; Solanki, S. K.; Hirzberger, J.; Feller, A.

    2017-02-01

    The evolution of small magnetic features in quiet regions of the Sun provides a unique window for probing solar magneto-convection. Here we analyze small-scale magnetic features in the quiet Sun, using the high resolution, seeing-free observations from the Sunrise balloon borne solar observatory. Our aim is to understand the contribution of different physical processes, such as splitting, merging, emergence and cancellation of magnetic fields to the rearrangement, addition and removal of magnetic flux in the photosphere. We have employed a statistical approach for the analysis and the evolution studies are carried out using a feature-tracking technique. In this paper we provide a detailed description of the feature-tracking algorithm that we have newly developed and we present the results of a statistical study of several physical quantities. The results on the fractions of the flux in the emergence, appearance, splitting, merging, disappearance and cancellation qualitatively agrees with other recent studies. To summarize, the total flux gained in unipolar appearance is an order of magnitude larger than the total flux gained in emergence. On the other hand, the bipolar cancellation contributes nearly an equal amount to the loss of magnetic flux as unipolar disappearance. The total flux lost in cancellation is nearly six to eight times larger than the total flux gained in emergence. One big difference between our study and previous similar studies is that, thanks to the higher spatial resolution of Sunrise, we can track features with fluxes as low as 9 × 1014 Mx. This flux is nearly an order of magnitude lower than the smallest fluxes of the features tracked in the highest resolution previous studies based on Hinode data. The area and flux of the magnetic features follow power-law type distribution, while the lifetimes show either power-law or exponential type distribution depending on the exact definitions used to define various birth and death events. We have

  8. Utilisation of the Magnetic Sensor in a Smartphone for Facile Magnetostatics Experiment: Magnetic Field Due to Electrical Current in Straight and Loop Wires

    Science.gov (United States)

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic…

  9. A small scale remote cooling system for a superconducting cyclotron magnet

    Science.gov (United States)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  10. Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions

    CERN Document Server

    Gazeau, F; Dubois, E; Perzynski, R

    2003-01-01

    We investigate the structure and dynamics of ionic magnetic fluids (MFs), based on ferrite nanoparticles, dispersed at pH approx 7 either in H sub 2 O or in D sub 2 O. Polarized and non-polarized static small angle neutron scattering (SANS) experiments in zero magnetic field allow us to study both the magnetic and the nuclear contributions to the neutron scattering. The magnetic interparticle attraction is probed separately from the global thermodynamic repulsion and compares well to direct magnetic susceptibility measurements. The magnetic interparticle correlation is in these fluid samples independent of the probed spatial scale. In contrast, a spatial dependence of the interparticle correlation is evidenced at large PHI by the nuclear structure factor. A model of magnetic interaction quantitatively explains the under-field anisotropy of the SANS nuclear contribution. In a quasi-elastic neutron spin-echo experiment, we probe the Brownian dynamics of translation of the nanoparticles in the range 1.3 sup<=...

  11. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  12. A method of producing small grain Ru intermediate layers for perpendicular magnetic media

    International Nuclear Information System (INIS)

    Yuan Hua; Qin Yueling; Laughlin, David E.

    2008-01-01

    NiAl + SiO 2 thin films were used as a grain size reducing seedlayer for cobalt alloy granular perpendicular magnetic recording media. The effect of this NiAl + SiO 2 seedlayer on the microstructure and crystalline orientation of Ru intermediate layer has been investigated. By co-sputtering the composite NiAl + SiO 2 seedlayer, the smallest average grain diameter of NiAl was significantly reduced to about 2.5 nm. The grain size of the subsequent Ru intermediate layer was reduced to about 4 nm. X-ray diffraction results indicate an epitaxial orientation relationship of NiAl (110) // Ru (0002) between the two layers. Moreover, significant improvement of this epitaxial relationship was developed, which produced narrow c-axis distribution of the Ru intermediate layer with small grain size. The addition of the NiAl + SiO 2 seedlayer is a very promising approach to reduce the Ru intermediate layer grain size and eventually the magnetic layer grain size for perpendicular magnetic recording media without deterioration of other properties of thin films

  13. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  14. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn (N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ̄N increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed. © 2013 Elsevier B.V.

  15. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    International Nuclear Information System (INIS)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C.

    2006-01-01

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences

  16. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    Energy Technology Data Exchange (ETDEWEB)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C. [Charite - Universitatsmedizin Berlin, Charite Campus Mitte, Berlin (Germany). Dept. of Radiology

    2006-11-15

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences.

  17. Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters: Ab initio study

    International Nuclear Information System (INIS)

    Bezi Javan, Masoud

    2015-01-01

    Highlights: • Electronic and magnetic properties of small Zr n Pd m (n + m ⩽ 5) have been investigated. • Binding energies of the Zr n clusters are significantly higher than Pd n clusters. • Binding energy of the Pd n clusters increase with substituting one or more Zr atom. • HOMO–LUMO gap of the Zr n Pd m clusters increase in comparison with pure states. - Abstract: Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters, Zr n Pd m (n + m ⩽ 5), have been investigated using density functional theory with considering generalized gradient approximation and PBE functional. We have determined the ground state conformations of the bimetallic zirconium–palladium clusters by substitution of Zr and Pd atoms in the optimized lowest energy structures of pure zirconium and palladium clusters. Results reveal that binding energies of the pure Zr n clusters are significantly higher than Pd n clusters with the same number of atoms. Also it is found that binding energy of the Zr n and Pd n clusters increase with growth of the number of consisting atoms in the clusters. Results indicate that, for both Zr n and Pd n clusters the binding energy of planar forms is lower than three-dimensional structures. We have also found that the binding energy of the Pd n clusters increase with substituting one or more Zr atoms in these clusters. We have also studied the HOMO–LUMO energy gap and magnetic moment of the pure and combined Zr and Pd clusters. The energy gap analysis of the pure and combined Pd and Zr clusters show that in generally the HOMO–LUMO gap of the bimetallic Zr n Pd m clusters increase in comparison with their corresponding pure clusters with the same number of atoms. According to the spin polarization DFT calculations all of the Zr n Pd m (n + m ⩽ 5) have net magnetic moments as instance the Zr 2 , Pd 2 and ZrPd clusters show a total magnetic moment value of 2 μ B . Some more discussions around charge population

  18. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  19. SCR-1: Design and construction of a small modular stellarator for magnetic confinement of plasma

    International Nuclear Information System (INIS)

    Barillas, L; Vargas, V I; Alpizar, A; Asenjo, J; Carranza, J M; Cerdas, F; Gutiérrez, R; Monge, J I; Mora, J; Morera, J; Peraza, H; Rojas, C; Rozen, D; Saenz, F; Sánchez, G; Sandoval, M; Trimiño, H; Umaña, J; Villegas, L F; Queral, V

    2014-01-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST 1 , created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25 mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m 3 ), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5 kW, in the first harmonic at 2.45 GHz. The expected electron temperature and density are 15 eV and 10 17 m −3 respectively with an estimated confinement time of 7.30 x 10 −4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  20. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Cameron, R. H.; Danilovic, S. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Stangalini, M. [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (RM) (Italy); Steiner, O., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.

  1. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  2. Reply to Comment on 'Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses'

    OpenAIRE

    Arribas Garde, Enrique; Escobar García, Isabel; Suárez, Carmen P.; Nájera López, Alberto; Beléndez Vázquez, Augusto

    2015-01-01

    This is a reply to the comment by Iqbal and Anwar on our recently published work. First of all, the authors of ‘Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses’ greatly appreciate the comments of Iqbal and Anwar. One of us (AB) is very grateful to the Vicerectorship of Information Technologies of the University of Alicante (Spain) the help of GITE-09006-UA and to the Generalitat Valenciana (Spain),...

  3. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    Science.gov (United States)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  4. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in [Indian Institute of Astrophysics, Bangalore-34 (India)

    2016-06-20

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  5. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    International Nuclear Information System (INIS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P; Najera, Alberto; Beléndez, Augusto

    2015-01-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x –3 , in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error. (paper)

  6. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    Science.gov (United States)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  7. Dynamics of small dust clouds trapped in a magnetized anodic plasma

    International Nuclear Information System (INIS)

    Pilch, Iris; Piel, Alexander; Trottenberg, Thomas; Koepke, Mark E.

    2007-01-01

    Small dust clouds, which are confined in an anodic plasma, are studied with respect to their structure and their response to modulation of the anode bias. The dust cloud is displaced from the center of the discharge by a process similar to the void mechanism in radio-frequency discharges under microgravity. The top layers of the dust cloud are in a crystalline state and the cloud performs a slow rotation about the magnetic field direction. For modulation frequencies below 15 Hz, a sloshing and stretching motion in the confining potential well is found. Spontaneously excited dust density waves are observed when the dust cloud exceeds a minimum size. The waves are characterized by sickle-shaped wave fronts. No standing waves were found. The wave dispersion shows an influence of the boundedness of the system in terms of a frequency cutoff

  8. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    International Nuclear Information System (INIS)

    Shibayama, Takuya; Nakabou, Takashi; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory

    2015-01-01

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability

  9. The Bragg Reflection Polarimeter On the Gravity and Extreme Magnetism Small Explorer Mission

    Science.gov (United States)

    Allured, Ryan; Griffiths, S.; Daly, R.; Prieskorn, Z.; Marlowe, H.; Kaaret, P.; GEMS Team

    2011-09-01

    The strong gravity associated with black holes warps the spacetime outside of the event horizon, and it is predicted that this will leave characteristic signatures on the polarization of X-ray emission originating in the accretion disk. The Gravity and Extreme Magnetism Small Explorer (GEMS) mission will be the first observatory with the capability to make polarization measurements with enough sensitivity to quantitatively test this prediction. Students at the University of Iowa are currently working on the development of the Bragg Reflection Polarimeter (BRP), a soft X-ray polarimeter sensitive at 500 eV, that is the student experiment on GEMS. The BRP will complement the main experiment by making a polarization measurement from accreting black holes below the main energy band (2-10 keV). This measurement will constrain the inclination of the accretion disk and tighten measurements of black hole spin.

  10. Hall effect upon small wavelength kink instabilities near an elliptic magnetic stagnation line

    International Nuclear Information System (INIS)

    Spies, G.O.; Faghihi, M.

    1985-12-01

    To explore the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting unstable small wavelenght kinks near any elliptic magnetic stagnation line, a spectral analysis is performed of the motion of an incompressible plasma about cylindrical Z-pinch equilibria with circular sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. These show that every particular mode becomes stable as the Hall parameter exceeds a critical value. However, this critical value is a decreasing function of the ideal growth rate and has a pole at the origin, implying that there always remains an infinite reservoir of slowly growing instabilities. Correspondingly, for equilibiria with arbitrary current distributions, the stability criterion is unaffected by the Hall term. (author)

  11. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kusano, Kanya [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Miyoshi, Takahiro [Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Vekstein, Grigory [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.

  12. A combination of small bowel imaging methods: conventional enteroclysis with complementary magnetic resonance enteroclysis

    Energy Technology Data Exchange (ETDEWEB)

    Akman, C. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Korman, U. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey)]. E-mail: ugurk9@istanbul.edu.tr; Oguet, G. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Kurugoglu, S. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Urger, E. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Ulus, S. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Esen, G. [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Tasci, I. [Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey)

    2005-07-01

    AIM: The aim of this prospective study was to evaluate the overall findings of conventional enteroclysis (CE) with complementary magnetic resonance enteroclysis (MRE) in small bowel disease. METHODS: The study included 32 patients referred from various clinical departments, with known or suspected small bowel disease and abnormalities on CE. Immediately after CE, true fast imaging with steady-state precession (true FISP), and unenhanced and gadolinium-enhanced T1-weighted fast low-angle shot (FLASH) sequences with fat saturation were obtained. Mucosal, mural and luminal changes of the small bowel were evaluated by each technique. In addition, bowel wall thickening, bowel wall enhancement and perienteric changes were assessed by MRE. The radiological findings obtained were evaluated together as a combination, and the role of MRE in the determination of the activity and complications of the small bowel disease was assessed. Radiological findings were correlated with clinical evaluation and follow-up in all cases, including endoscopy in 14 cases and surgery in 5 cases. RESULTS: MRE provided important supplementary mural and extramural information, including degree of pathological wall thickness, mural enhancement pattern associated with disease activity, perivisceral collection, abscess formation, mesenteric fibrofatty proliferation, lymphadenopathy and increase in perienteric vascularity. Short strictures were not revealed on MRE; however, for patients with a history of abdominal malignancy, MRE helped characterize the level of any obstruction and the extent of the disease. CONCLUSION: We recommend MRE for patients who have findings of advanced inflammatory bowel disease or neoplasm on CE examination. The combination of these two techniques can provide important information on the degree and extent of the disorder.

  13. SU-F-T-211: Evaluation of a Dual Focusing Magnet System for the Treatment of Small Proton Targets

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, TT; McAuley, GA; Heczko, S; Slater, J [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate magnetic focusing for small volume proton targets using a doublet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Monte Carlo computer simulations were performed using the Geant4 toolkit to compare dose depositions of proton beams transported through two focusing magnets or in their absence. Proton beams with energies of 127 MeV and initial diameters of 5, 8 and 10 mm were delivered through two identical focusing magnets similar to those currently in experimental use at Loma Linda University Medical Center. Analogous experiments used optimized configurations based on the simulation results. Dose was measured by a diode detector and Gafchromic EBT3 film and compared to simulation data. Based on results from the experimental data, an additional set of simulations was performed with an initial beam diameter of 18 mm and a two differing length magnets (40mm & 68mm). Results: Experimental data matched well with Monte Carlo simulations. However, under conditions necessary to produce circular beam spots at target depth, magnetically focused beams using two identical 40 mm length magnets did not meet all of our performance criteria of circular beam spots, improved peak to entrance (P/E) dose ratios and dose delivery efficiencies. The simulations using the longer 68 mm 2nd magnet yielded better results with 34% better P/E dose ratio and 20–50% better dose delivery efficiencies when compared to unfocused 10 mm beams. Conclusion: While magnetic focusing using two magnets with identical focusing power did not yield desired results, ongoing Monte Carlo simulations suggest that increasing the length of the 2nd magnet to 68 mm could improve P/E dose ratios and dose efficiencies. Future work includes additional experimental validation of the longer 2nd magnet setup as well as experiments with triplet magnet systems. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  14. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  15. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  16. First-principles calculation of monitoring spin states of small magnetic nanostructures with IR spectrum of CO

    International Nuclear Information System (INIS)

    Li, C; Lefkidis, G; Huebner, W

    2010-01-01

    A fully ab initio controlled ultrafast magnetooptical switching mechanism in small magnetic clusters is achieved through exploiting spin-orbit-coupling enabled Λ processes. The idea is that in the magnetic molecules a fast transition between two almost degenerate states with different spins can be triggered by a laser pulse, which leads to an electron excitation from one of the degenerate states to a highly spin-mixed state and a deexcitation to the state of opposite spin. In this paper a CO molecule is attached to one magnetic center of the clusters, which serves as an experimental marker to map the laser-induced spin manipulation to the IR spectrum of CO. The predicted spin-state-dependent CO frequencies can facilitate experimental monitoring of the processes. We show that spin flip in magnetic atoms can be achieved in structurally optimized magnetic clusters in a subpicosecond regime with linearly polarized light.

  17. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  18. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  19. Application of permanent magnet BaFe12O19 and NdFeB on small scale low speed permanent magnet generator

    International Nuclear Information System (INIS)

    Pudji Irasari; Novrita Idayanti

    2009-01-01

    Designing and manufacturing of low speed permanent magnet generator (PMG) for small scale electric power plant have been conducted. In this paper, the characteristics of generator using permanent magnet of barium ferrite (BaFe 12 O 19 ) and neodymium iron boron (NdFeB) were compared. Surface mounted type is selected as the rotor structure as all flux faces to stator winding and take a role in energy conversion. The experiment result demonstrates that at nominal speed, generator with BaFe 12 O 19 magnet can only generate power of 8.87 W while generator with NdFeB magnet can generate power of 1,988.93 W. (author)

  20. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  1. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles

    International Nuclear Information System (INIS)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M.A.; Haskel, D.; te Velthuis, S.G.E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M.A.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 · 10 -4 was found at the Au L 3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M s , of 0.06 emu/g Au . SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences

  2. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  3. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  4. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  5. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  6. Equilibrium geometries, electronic and magnetic properties of small AunNi- (n = 1-9) clusters

    Science.gov (United States)

    Tang, Cui-Ming; Chen, Xiao-Xu; Yang, Xiang-Dong

    2014-05-01

    Geometrical, electronic and magnetic properties of small AunNi- (n = 1-9) clusters have been investigated based on density functional theory (DFT) at PW91P86 level. An extensive structural search shows that the relative stable structures of AunNi- (n = 1-9) clusters adopt 2D structure for n = 1-5, 7 and 3D structure for n = 6, 8-9. And the substitution of a Ni atom for an Au atom in the Au-n+1 cluster obviously changes the structure of the host cluster. Moreover, an odd-even alternation phenomenon has been found for HOMO-LUMO energy gaps, indicating that the relative stable structures of the AunNi- clusters with odd-numbered gold atoms have a higher relative stability. Finally, the natural population analysis (NPA) and the vertical detachment energies (VDE) are studied, respectively. The theoretical values of VDE are reported for the first time to our best knowledge.

  7. Effects of small magnetic fields on the critical current of thin films

    International Nuclear Information System (INIS)

    Passos, Wagner de Assis Cangussu; Lisboa-Filho, Paulo Noronha; Ortiz, Wilson Aires; Kang, W.N.; Choi, Eun-Mi; Hyeong-Jin, Kim; Lee, Sung-Ik Lee

    2002-01-01

    Full text: Magnetic fields applied perpendicularly to superconducting thin films may produce dendritic patterns, where penetrated and Meissner regions coexist, as observed in Nb, YBaCuO and MgB 2 [1]. A temperature-dependent limiting-field, Hd(T), separates the dendritic mode from a critical-state-like penetration regime. Due to large demagnetizing factors in the perpendicular geometry, small fields may be enough to drive portions of the sample into the mixed state. Lack of symmetry and local defects might then permeate the dendritic mode. Hd(T) is related[2] to the bulk lower critical field, Hc1, which depends on the in-plane current density, J. Not surprisingly, Hd is depressed by J[3]. The dendritic mode can be detected by the AC-susceptibility: penetrated fingers act as intergranular material, and the imaginary component peaks at Tc-inter(J). Films of 0.2-0.4 microns, with millimeter lateral sizes, develop dendrites when submitted to Earth's field[2], what limits the critical current, J c . This contribution studies how J c is affected by field-induced granularity in thin films. 1. C. A. Duran et al., PRB 52 (1995) 75; P. Leiderer et al., PRL. 71 (1993) 2646; T.H. Johansen et al., Supercond. Sci. Technol. 14 (2001) 1. 2. W. A. Ortiz et al., Physica C 361 (2001) 267. 3. A. V. Bobyl et al., cond-mat/0201260, submitted to APL

  8. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; hide

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  9. String breaking with Wilson loops?

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.

  10. TU-H-CAMPUS-TeP1-03: Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Wroe, AJ [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate the use of magnetic focusing for small volume proton radiosurgery targets using a triplet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Fourteen quadrupole magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into k=3 Halbach cylinders with various field gradients (100 to 250 T/m) were designed and manufactured. Triplet combinations of the magnets were placed on a positioning track on our Gantry 1 treatment table. Unmodulated 127 MeV proton beams with initial diameters of 3 to 20 mm were delivered to a water tank using single-stage scattering. Depth and transverse dose distributions were measured using a PTW PR60020 diode detector and EBT3 film, respectively. This data was compared with unfocused passively collimated beams. Monte Carlo simulations were also performed - both for comparison with experimental data and to further investigate the potential of triplet magnetic focusing. Results: Experimental results using 150 T/m gradient magnets and 15 to 20 mm initial diameter beams show peak to entrance dose ratios that are ∼ 43 to 48 % larger compared with spot size matched 8 mm collimated beams (ie, transverse profile full-widths at 90% maximum dose match within 0.5 mm of focused beams). In addition, the focusing beams were ∼ 3 to 4.4 times more efficient per MU in dose to target delivery. Additional results using different magnet combinations will also be presented. Conclusion: Our results suggest that triplet magnetic focusing could reduce entrance dose and beam number while delivering dose to small (∼≤ 10 mm diameter) radiosurgery targets in less time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however other treatment sites can be also envisioned. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  11. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

    International Nuclear Information System (INIS)

    Luong, Hung Truyen; Goo, Nam Seo

    2012-01-01

    A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use. (paper)

  12. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  13. Investigation of magnetic nanoparticle targeting in a simplified model of small vessel aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Mirzababaei, S.N. [Department of Chemical Engineering, Noshirvani Babol University of Technology, Babol (Iran, Islamic Republic of); Gorji, Tahereh B., E-mail: gorji.tahereh@stu.nit.ac.ir [Department of Mechanical Engineering, Noshirvani Babol University of Technology, Babol (Iran, Islamic Republic of); Baou, M.; Gorji-Bandpy, M. [Department of Mechanical Engineering, Noshirvani Babol University of Technology, Babol (Iran, Islamic Republic of); Fatouraee, Nasser [Department of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2017-03-15

    An in simulacra study was conducted to investigate the capture efficiency (CE) of magnetic nanoparticles (MNPs) in aneurysm model, under the effect of a bipolar permanent magnetic system positioned at the vicinity of the model vessel. The bipolar magnetic system with an active space of 9 cm was designed by FEMM software. The MNPs were magnetite nanoparticles synthesized by the hydrothermal method which were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and magnetometer measurements. Ferrofluid velocity, magnetic field strength, and aneurysm volume all proved to be important parameters which affect the capturing of MNPs. Overall, the results of this in simulacra study confirmed the effectiveness of magnetic targeting for possible aneurysm embolization. - Highlights: • An in simulacra investigation of the magnetic targeting in mechanical aneurysm embolization was conducted. • A bipolar permanent magnetic system with an active space of 9 cm was designed by FEMM software. • Magnetic nanofluid was synthetized and applied in an experimental setup to study the effect of different flow, magnetic field and geometry parameters on the capture efficiency of the magnetic particles acting as a dug carrier agent.

  14. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    Science.gov (United States)

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  15. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  16. Algorithm for counting large directed loops

    Energy Technology Data Exchange (ETDEWEB)

    Bianconi, Ginestra [Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Gulbahce, Natali [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545 (United States)

    2008-06-06

    We derive a Belief-Propagation algorithm for counting large loops in a directed network. We evaluate the distribution of the number of small loops in a directed random network with given degree sequence. We apply the algorithm to a few characteristic directed networks of various network sizes and loop structures and compare the algorithm with exhaustive counting results when possible. The algorithm is adequate in estimating loop counts for large directed networks and can be used to compare the loop structure of directed networks and their randomized counterparts.

  17. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    OpenAIRE

    Hwang Bae; Dong Eok Kim; Sung-Uk Ryu; Sung-Jae Yi; Hyun-Sik Park

    2017-01-01

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are s...

  18. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  19. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  20. Magnetic system for small-angle neutron scattering investigation at YUMO instrument of nanomaterials

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kirilov, A.S.; Kutuzov, S.A.; Smirnov, A.A.; Kuklin, A.I.; Kappel, W.; Cios, M.; Cios, A.

    2009-01-01

    SANS measurements using unpolarized neutron beams are able to provide quantitative information on the magnetic microstructure and the magnitude and microstructure of the magnetic anisotropy of nanomagnetic materials. Here we describe a new magnetic system for SANS at YUMO spectrometer. The system includes 2.5 T electromagnet established on a two-axes goniometric table, power supply, cooling system, PC-based control equipment. Main features of magnetic system are: big changeable gap for the samples (up to 130 mm size), computer controlled horizontal and vertical rotation and sufficiently large space for the sample holders. The system has been developed in cooperation with the INCDIE ICPE-CA (Bucharest) and CIPEC SRL (Bucharest). First experimental results of SANS in ferrofluids and magnetic elastomers obtained at YUMO spectrometer equipped with the new magnetic system are presented

  1. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  2. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  3. The Nature of Magnetic State of Small Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Dolinšek

    2011-12-01

    Full Text Available We have investigated the nature of the magnetic state of 4 nm and 7 nm magnetite Fe3O4 nanoparticles and show that they form a collective superspin glass state. Magnetic force on the nanoparticles relevant to the tumor targeting application was determined as well.

  4. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  5. Installation with magnetic suspension of test bodies for measurement of small forces. Verification of equivalence of inertial and gravitational mass

    International Nuclear Information System (INIS)

    Kalebin, S.M.

    1988-01-01

    Torsion installation with magnetic suspension of test bodies for detection of small forces is considered. Installation application for verification of equivalence of inertial and gravitational mass in the case of test body incidence on the Earth (Etvesh experiment) and in the case of their incidene on the Sun (Dicke experiment) is discussed. The total mass of test bodies, produced in the form of cylinders with 3 cm radius, equals 50 kg (one lead body and one copper body); beam radius of test bodies equals 3 cm (the cylinders are tight against one another); ferrite cylinder with 3 cm radius and 10 cm height is used for their suspension in magnetic field. Effect of thermal noise and electromagnetic force disturbances on measurement results is considered. Conducted calculations show that suggested installation enables to improve the accuracy of verifying mentioned equivalence at least by one order and upwards. This suggests that such installation is a matter of interest for experiments on small force detection

  6. Loop-space quantum formulation of free electromagnetism

    International Nuclear Information System (INIS)

    Di Bartolo, C.; Nori, F.; Gambini, R.; Trias, A.

    1983-01-01

    A procedure for direct quantization of free electromagnetism in the loop-space is proposed. Explicit solutions for the loop-dependent vacuum and the Wilson loop-average are given. It is shown that elementary lines of magnetic field appear as extremals in the vacuum state as a result of the regularization procedure

  7. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2010-02-01

    The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested

  8. Loop Quantum Cosmology.

    Science.gov (United States)

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  9. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  10. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  11. Orientation of coronal bright points and small-scale magnetic bipoles

    International Nuclear Information System (INIS)

    MINENKO, E.P.; SHERDANOV, CH.T.; SATTAROV, I.; KARACHIK, N.V.

    2014-01-01

    Using the observations from Extreme-Ultraviolet Imaging Telescope (EIT) on the SOHO board and longitudinal full-disk magnetograms (vector spectromagnetograph - VSM) from the Synoptic Optical Long-Term Investigations of the Sun (SOLIS), we explore the orientation and relationship between the coronal bright points at 195 A o (hereafter CBPs) and magnetic bipoles (only for the central zone of solar disk). The magnetic bipoles are identified as a pair of streams of positive and negative polarities with a shortest distance between them. This paper presents a study of the structure and orientation (angles) of magnetic bipoles to the solar equator and two types of CBPs: 'dim' CBPs in the quiet regions of the Sun and 'bright' CBPs associated with active regions. For these magnetic bipoles associated with 'bright' CBPs, we find that their orientation angles are distributed randomly along the equator. (authors)

  12. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  13. The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    Science.gov (United States)

    Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-11-01

    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.

  14. Magnetic fields are causing small, but significant changes of the radiochromic EBT3 film response to 6 MV photons.

    Science.gov (United States)

    Delfs, Björn; Schoenfeld, Andreas A; Poppinga, Daniela; Kapsch, Ralf-Peter; Jiang, Ping; Harder, Dietrich; Poppe, Björn; Looe, Hui Khee

    2018-01-31

    The optical density (OD) of EBT3 radiochromic films (Ashland Specialty Ingredients, Bridgewater, NJ, USA) exposed to absorbed doses to water up to D  =  20 Gy in magnetic fields of B  =  0.35 and 1.42 T was measured in the three colour channels of an Epson Expression 10000XL flatbed scanner. A 7 cm wide water phantom with fixed film holder was placed between the pole shoes of a constant-current electromagnet with variable field strength and was irradiated by a 6 MV photon beam whose axis was directed at right angles with the field lines. The doses at the film position at water depth 5 cm were measured with a calibrated ionization chamber when the magnet was switched off and were converted to the doses in presence of the magnetic field via the monitor units and by a Monte Carlo-calculated correction accounting for the slight change of the depth dose curves in magnetic fields. In the presence of the 0.35 and 1.42 T fields small negative changes of the OD values at given absorbed doses to water occurred and just significantly exceeded the uncertainty margin given by the stochastic and the uncorrected systematic deviations. This change can be described by a  +2.1% change of the dose values needed to produce a given optical density in the presence of a 1.42 T field. The thereby modified OD versus D function remained unchanged irrespective of whether the original short film side-the preference direction of the monomer crystals of the film-was directed parallel or orthogonal to the magnetic field. The 'orientation effect', the difference between the optical densities measured in the 'portrait' or 'landscape' film positions on the scanner bed caused by the reflection of polarised light in the scanner's mirror system, remained unaltered after EBT3 film exposure in magnetic fields. An independent optical bench investigation of EBT3 films exposed to doses of 10 and 20 Gy at 0.35 and 1.42 T showed that the direction of the electric vector of polarised

  15. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  16. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  17. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  18. Recovery of Small-Sized Blood Vessels in Ischemic Bone under Static Magnetic Field

    Directory of Open Access Journals (Sweden)

    Shenzhi Xu

    2007-01-01

    Full Text Available Effects of static magnetic field (SMF on the vascularization in bone were evaluated using an ischemic bone model, where rat femoral artery was ligated. Magnetized and unmagnetized samarium–cobalt rods were implanted transcortically into the middle diaphysis of the ischemic femurs. Collateral circulation was evaluated by injection of microspheres into the abdominal aorta at the third week after ligation. It was found that the bone implanted with a magnetized rod showed a larger amount of trapped microspheres than that with an unmagnetized rod at the proximal and the distal region (P < 0.05 proximal region. There were no significant differences at the middle and the distal region. This tendency was similar to that of the bone mineral density in the SMF-exposed ischemic bone.

  19. Method for locating a small magnetic object in the human body

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, L.; Williamson, S.J.; Ilmoniemi, R.J.; Weinberg, H.; Boyd, A.D.

    1988-02-29

    A piece of a thin acupuncture needle lodged under the right scapula of a patient could not be found in surgical procedures accompanied by studies of 30 standard x-ray images. To locate it, the authors mapped the magnetic-field component normal to a plane lying above the object, using a superconducting quantum interference device (SQUID). Assuming that the needle could be modeled as a magnetic dipole, the authors were able to infer its lateral position, depth, orientation, and magnetic moment. With this information, directed CT scans, high-resolution x-ray films, and the subsequent surgical removal of the needle proved that it could be located in the body with an accuracy of about three millimeters.

  20. Initial state q q g correlations as a background for the chiral magnetic effect in collision of small systems

    Science.gov (United States)

    Kovner, Alex; Lublinsky, Michael; Skokov, Vladimir

    2017-11-01

    Motivated by understanding the background to chiral magnetic effect in proton-nucleus collisions from first principles, we compute the three particle correlation in the projectile wave function. We extract the correlations between two quarks and one gluon in the framework of the color glass condensate. This is related to the same-charge correlation of the conventional observable for the chiral magnetic effect. We show that there are two different contributions to this correlation function. One contribution is rapidity-independent and as such can be identified with the pedestal; while the other displays rather strong rapidity dependence. The pedestal contribution and the rapidity-dependent contribution at large rapidity separation between the two quarks result in the negative same charge correlations, while at small rapidity separation the second contribution changes sign. We argue that the computed initial state correlations might be partially responsible for the experimentally observed signal in proton-nucleus collisions.

  1. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    Science.gov (United States)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  2. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  3. Measured surface magnetic field attenuation of shielded windows and wire mesh over an electrically small enclosure

    International Nuclear Information System (INIS)

    Hoeft, L.O.; Hofstra, J.S.; Karaskiewicz, R.J.; Wiser, G.

    1984-01-01

    The surface magnetic field attenuation of five types of shielded transparency (window) material was measured over the frequency range 10 kHz to 100 MHz by installing them on an .61 m x .61 m x .2 m enclosure, placing the enclosure on the wall of a TEM cell and measuring the surface and interior magnetic fields using a computer-controlled network analyzer system. The samples included two thicknesses of conductive grids on acrylic, hardware, cloth with 1/8 and 1/4-inch mesh, and a fine mesh laminated optical display window. These measurements are indicative of an enclosure with aperture coupling; namely, they become frequency-independent at high frequencies. Coarse mesh samples (1/8-1/4-inch mesh) were able to provide 50 to 60 dB of magnetic field reduction at tens of MHz, whereas the finer mesh did slightly better. This behavior is consistent with magnetic polarizability theory. Material thickness did not have an appreciable effect for frequencies above a MHz

  4. Magnetic dynamics of small alpha-Fe2O3 and NiO particles

    DEFF Research Database (Denmark)

    Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt

    1999-01-01

    particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to respresent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temprature is interpreted...

  5. Static properties of small Josephson tunnel junctions in an oblique magnetic field

    DEFF Research Database (Denmark)

    Monaco, Roberto; Aarøe, Morten; Mygind, Jesper

    2009-01-01

    We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the barrier plane. We considered annular junctions, as well as rectangular...

  6. Non-foster impedance matching sensitivity of electrically small electric and magnetic spherical dipole antennas

    DEFF Research Database (Denmark)

    Yoon, Ick-Jae; Christensen, S.; Zhurbenko, Vitaliy

    2016-01-01

    The impedance bandwidth (BW) improvement property of a self-resonant folded spherical helix electric dipole and a spherical split ring (SSR) magnetic dipole is compared when a negative reactance element is loaded on the parasitic resonator of the antennas. They have the same electrical size of ka...

  7. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  8. Flow regimes and heat transfer modes identification in ANGRA 2 core, during small break in the primary loop with area of 100 cm2, simulated with RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2015-01-01

    Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm 2 -rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)

  9. Flow regimes and heat transfer modes identification in ANGRA 2 core, during small break in the primary loop with area of 100 cm{sup 2}, simulated with RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: gdgian@ipen.br, E-mail: borges.em@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm{sup 2}-rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)

  10. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  11. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  12. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  13. The measurement of power losses at high magnetic field densities or at small cross-section of test specimen using the averaging

    CERN Document Server

    Gorican, V; Hamler, A; Nakata, T

    2000-01-01

    It is difficult to achieve sufficient accuracy of power loss measurement at high magnetic field densities where the magnetic field strength gets more and more distorted, or in cases where the influence of noise increases (small specimen cross section). The influence of averaging on the accuracy of power loss measurement was studied on the cast amorphous magnetic material Metglas 2605-TCA. The results show that the accuracy of power loss measurements can be improved by using the averaging of data acquisition points.

  14. Visualization of a Small Ventricular Septal Defect at First-pass Contrast-enhanced Cardiac Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Francesco Secchi

    2013-01-01

    Full Text Available Ventricular septal defect (VSD is a congenital heart disease that accounts for up to 40% of all congenital cardiac malformations. VSD is a connection between right and left ventricle, through the ventricular septum. Echocardiography and magnetic resonance imaging (MRI help identify this entity. This case presents a 12-year-old male diagnosed with a small muscular apical VSD of 3 mm in diameter, at echocardiography. Cardiac MRI using first-pass perfusion sequence, combining the right plane of acquisition with a short bolus of contrast material, clearly confirmed the presence of VSD.

  15. Study of the influence of surface anisotropy and lattice structure on the behaviour of a small magnetic cluster

    International Nuclear Information System (INIS)

    Hernandez, Laura; Pinettes, Claire

    2005-01-01

    We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics

  16. Study of the influence of surface anisotropy and lattice structure on the behaviour of a small magnetic cluster

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Laura [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)]. E-mail: Laura.Hernandez@ptm.u-cergy.fr; Pinettes, Claire [Laboratoire de Physique Theorique et Modelisation, CNRS-UMR 8089, Universite de Cergy-Pontoise, 5 mail Gay Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise, Cedex (France)

    2005-08-15

    We have studied by Monte Carlo simulations the thermal behaviour of a small (N=13 particles) cluster described by a Heisenberg model, including nearest-neighbour ferromagnetic interactions and radial surface anisotropy, in an applied magnetic field. We have studied three different lattice structures: hexagonal close packed, face centered cubic and icosahedral. We show that the zero-field thermal behaviour depends not only on the value of the anisotropy constant but also on the lattice structure. The behaviour in an applied field, additionally depends, on the different orientations of the field with respect to the crystal axes. According to these relative orientations, hysteresis cycles show different step-like characteristics.

  17. Magnesium sulfate as an oral contrast medium in magnetic resonance imaging of the small intestine.

    Science.gov (United States)

    Shi, Hao; Liu, Cun; Ding, Hong Yu; Li, Chun Wei

    2012-03-01

    To explore the use of magnesium sulfate (MgSO4) as an oral contrast medium (CM) in MRI of the small intestine. By comparing MgSO4 SNRs at different concentrations, we determined that 2.5% MgSO4 is the ideal concentration for small bowel MRI. Twenty volunteers underwent MRI after drinking 2.5% MgSO4. Thirty-one patients with clinical suspicion of small intestinal pathology underwent both MRI and the air-barium contrast examination. The patient's tolerance, side effects and complications were noted. 2.5% MgSO4 can decrease the absorption of water and fully fill the enteric cavity, thereby increasing the contrast between the intestinal wall and lumen and facilitating radiographic examination of the small bowel. The mean diameter of the small intestine was 19.8±1.21 mm in the 20 volunteers consuming 2.5% MgSO4 and 12.7±0.84 mm in the 20 volunteers given water. There was a significant difference (P0.05) in side effects between MgSO4 and water groups. Small intestinal MRI was successfully performed in all 31 patients, who were also examined by the double contrast barium, which gave almost identical diagnoses to MRI in all cases except for 1 patient with small intestinal hemorrhage. MRI with 2.5% MgSO4 can demonstrate intestinal abnormalities. Therefore, 2.5% MgSO4 solution is an ideal oral CM for small bowel MRI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  19. Magnetic Signature: Small Arms Testing of Multiple Examples of Same Model Weapons

    Science.gov (United States)

    2009-04-01

    inside the wooden building, showing a three-axis fluxgate magnetometer , north-south path lines, and instrumentation system...the FVM-400 Vector Fluxgate Magnetometer by Macintyre Electronics Design Associates, Inc. (MEDA) was used and in other cases two DFM100G2 Digital... Fluxgate Magnetometers made by Billingsley Magnetics were used. The majority of the data obtained was done with the latter. The MEDA has a 1 nT

  20. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  1. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain

    International Nuclear Information System (INIS)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob

    2006-01-01

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  2. THE INSTABILITY AND NON-EXISTENCE OF MULTI-STRANDED LOOPS WHEN DRIVEN BY TRANSVERSE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, N.; Van Doorsselaere, T., E-mail: norbert.magyar@wis.kuleuven.be [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium)

    2016-06-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.

  3. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure

    International Nuclear Information System (INIS)

    Henriksen, Niel M.; Davis, Darrell R.; Cheatham, Thomas E. III

    2012-01-01

    Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility—using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions—by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5γ and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to “update” older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.

  4. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Niel M.; Davis, Darrell R.; Cheatham, Thomas E. III, E-mail: tec3@utah.edu [College of Pharmacy, University of Utah, Department of Medicinal Chemistry (United States)

    2012-08-15

    Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility-using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions-by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5{gamma} and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to 'update' older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.

  5. The rewritable effects of bonded magnet for large starting torque and high efficiency in the small power single-phase written pole motor

    Science.gov (United States)

    Choi, Jae-Hak; Lee, Sung-Ho

    2009-04-01

    This paper presents a single-phase written pole motor using a bonded ring magnet for the small power home application. The motor has an exciter pole structure inside the stator and hybrid characteristics of an induction motor and permanent magnet motor. The design parameters and operating characteristics of the hybrid concept motor are investigated to increase starting torque and efficiency, which is most important for the small power home application. Larger starting torque and higher efficiency than those of the conventional induction motor could be obtained by using the rewritable characteristics of bonded magnet on the starting and running conditions.

  6. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization

    Science.gov (United States)

    Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.

    2018-03-01

    A nodal loop is formed by a band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on first-principles calculations, we predict the realization of such loops in the existing electride material Ca2As . For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

  7. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  8. Modeling and simulation of grid connected permanent magnet generator based small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Arifujjaman, Md.

    2011-07-01

    In order to recover the maximum energy from small scale wind turbine systems many parameters have to be controlled. The aim of this paper is to propose a control strategy for the grid connected PMG-based small wind turbine systems. A mathematical model of small wind turbine systems was developed and the system simulated. Results show demonstrated that the control strategy is highly efficient. Sure enough it reduces the dependence on system variables, diminishes the system complexity, its furling and maximum power point controllers are efficient and it provides a stable operation for multiple wind speeds. This study developed a modeling and control strategy which was proved to be feasible by simulation results.

  9. Mathematical model of a novel small magnetorheological damper by using outer magnetic field

    Directory of Open Access Journals (Sweden)

    Liutian Huang

    2017-03-01

    Full Text Available In order to realize small loading and small damping, a mini Magneto-rheological fluid (MRF damper is suggested by using new method of outer coils, and its physical model is established firstly. It was found that the landing force is only 1.74∼8N, the landing force is the third-order function with the current by polynomial fitting of the experimental data, which shows a force-current model. The results of force-displacement and force-velocity indicate that it has nonlinear hysteretic damping characteristics. Based on the new mini-mode principle and the damping characteristics, an improved nonlinear dynamics model is proposed, and its parameter expressions are obtained by parameter identification and regression fitting. Model curves fit well with experimental curves, and the improved model has fully demonstrated the dynamic characteristics of the mini-MRF damper. It will provide scientific method and physical model for the small MRF damper development.

  10. Image tuning techniques for enhancing the performance of pure permanent magnet undulators with small gap/period ratios

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    The on-axis field of a small-gap undulator constricted out of pure permanent magnet (PM) blocks arranged in an alternating-dipole (i.e., 2 dipoles/period) array can be substantially varied by positioning monolithic permeable plates above and below the undulator jaws. This simple technique, which can be used to control the 1st harmonic energy in conventional synchrotron radiation (SR) or Free Electron Laser (FEL) applications requiring sub-octave tuning, can also be shown to suppress magnetic inhomogeneities that can contribute to the undulator`s on-axis field errors. If a standard 4 block/period Halbach undulator, composed of PM blocks with square cross sections, is rearranged into an alternating-dipole array with the same period, the peak field that can be generated with superimposed image plates can substantially exceed that of the pure-PM Halbach array. This design technique, which can be viewed as intermediate between the {open_quotes}pure-PM{close_quotes} and standard {open_quotes}hybrid/PM{close_quotes} configurations, provides a potentially cost-effective method of enhancing the performance of small-gap, pure-PM insertion devices. In this paper we report on the analysis and recent characterization of pure-PM undulator structures with superimposed image plates, and discuss possible applications to FEL research.

  11. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  12. Small-scale features in the Earth's magnetic field observed by Magsat.

    Science.gov (United States)

    Cain, J.C.; Schmitz, D.R.; Muth, L.

    1984-01-01

    A spherical harmonic expansion to degree and order 29 is derived using a selected magnetically quiet sample of Magsat data. Global maps representing the contribution due to terms of the expansion above n = 13 at 400 km altitude are compared with previously published residual anomaly maps and shown to be similar, even in polar regions. An expansion with such a high degree and order displays all but the sharpest features seen by the satellite and gives a more consistent picture of the high-order field structure at a constant altitude than do component maps derived independently. -Authors

  13. Magnetic fields are causing small, but significant changes of the radiochromic EBT3 film response to 6 MV photons

    Science.gov (United States)

    Delfs, Björn; Schoenfeld, Andreas A.; Poppinga, Daniela; Kapsch, Ralf-Peter; Jiang, Ping; Harder, Dietrich; Poppe, Björn; Khee Looe, Hui

    2018-02-01

    The optical density (OD) of EBT3 radiochromic films (Ashland Specialty Ingredients, Bridgewater, NJ, USA) exposed to absorbed doses to water up to D  =  20 Gy in magnetic fields of B  =  0.35 and 1.42 T was measured in the three colour channels of an Epson Expression 10000XL flatbed scanner. A 7 cm wide water phantom with fixed film holder was placed between the pole shoes of a constant-current electromagnet with variable field strength and was irradiated by a 6 MV photon beam whose axis was directed at right angles with the field lines. The doses at the film position at water depth 5 cm were measured with a calibrated ionization chamber when the magnet was switched off and were converted to the doses in presence of the magnetic field via the monitor units and by a Monte Carlo-calculated correction accounting for the slight change of the depth dose curves in magnetic fields. In the presence of the 0.35 and 1.42 T fields small negative changes of the OD values at given absorbed doses to water occurred and just significantly exceeded the uncertainty margin given by the stochastic and the uncorrected systematic deviations. This change can be described by a  +2.1% change of the dose values needed to produce a given optical density in the presence of a 1.42 T field. The thereby modified OD versus D function remained unchanged irrespective of whether the original short film side—the preference direction of the monomer crystals of the film—was directed parallel or orthogonal to the magnetic field. The ‘orientation effect’, the difference between the optical densities measured in the ‘portrait’ or ‘landscape’ film positions on the scanner bed caused by the reflection of polarised light in the scanner’s mirror system, remained unaltered after EBT3 film exposure in magnetic fields. An independent optical bench investigation of EBT3 films exposed to doses of 10 and 20 Gy at 0.35 and 1.42 T showed that the direction of the electric

  14. Clinical and magnetic resonance observations in cerebral small-vessel disease

    NARCIS (Netherlands)

    Kwa, V.I.H.

    1999-01-01

    The study reported in this thesis tried to address the following questions: 1. Is it possible to detect genetic factors and vascular risk factors that are specifically associated with the development of small- or large-vessel disease? 2. Are the different clinical and MRI manifestations, that are

  15. Prenatal magnetic resonance and ultrasonographic findings in small-bowel obstruction: imaging clues and postnatal outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, Eva I.; Blask, Anna R.; Bulas, Dorothy I. [Children' s National Medical System, Division of Diagnostic Imaging and Radiology, Washington, DC (United States); Badillo, Andrea T. [Children' s National Medical System, Division of General and Thoracic Surgery, Washington, DC (United States)

    2017-04-15

    Prenatal small-bowel obstruction can result from single or multiple atresias, and it can be an isolated abnormality or part of a syndrome. It is sometimes the first manifestation of cystic fibrosis. Accurate prediction of the level of obstruction and length of bowel affected can be difficult, presenting a challenge for counseling families and planning perinatal management. To review the prenatal US and MRI findings of small-bowel obstruction and to assess whether fetal MRI adds information that could improve prenatal counseling and perinatal management. We retrospectively reviewed 12 prenatally diagnosed cases of small-bowel obstruction evaluated by both US and MRI from 2005 to 2015. We analyzed gestational age at evaluation, US and MRI findings, gestational age at delivery and postnatal outcomes. The final diagnoses were jejunal atresia (7), ileal atresia (1), cystic fibrosis (3) and combined jejunal and anal atresia (1). Four of the eight with jejunal atresia were found to have multiple small-bowel atresias. Prenatal perforation was noted in three. We identified a trend of increasing complexity of bowel contents corresponding to progressively distal level of obstruction, as indicated by increasing US echogenicity and high T1 signal on MRI. Seven cases of jejunal atresia and one case of ileal atresia demonstrated small ascending, transverse and descending colon (microcolon) with filling of a normal-diameter rectum. In contrast, all three fetuses with cystic fibrosis and the fetus with jejunal-anal atresia demonstrated microcolon as well as abnormal paucity or absence of rectal meconium. Polyhydramnios was present in nine. Eight were delivered prematurely, of whom seven had polyhydramnios. The fetus with jejunal and anal atresia died in utero. Postnatally, three had short gut syndrome, all resulting from multiple jejunal atresias; these three were among a subset of four fetuses whose bowel diameter measured more than 3 cm. Eight infants had no further

  16. Prenatal magnetic resonance and ultrasonographic findings in small-bowel obstruction: imaging clues and postnatal outcomes

    International Nuclear Information System (INIS)

    Rubio, Eva I.; Blask, Anna R.; Bulas, Dorothy I.; Badillo, Andrea T.

    2017-01-01

    Prenatal small-bowel obstruction can result from single or multiple atresias, and it can be an isolated abnormality or part of a syndrome. It is sometimes the first manifestation of cystic fibrosis. Accurate prediction of the level of obstruction and length of bowel affected can be difficult, presenting a challenge for counseling families and planning perinatal management. To review the prenatal US and MRI findings of small-bowel obstruction and to assess whether fetal MRI adds information that could improve prenatal counseling and perinatal management. We retrospectively reviewed 12 prenatally diagnosed cases of small-bowel obstruction evaluated by both US and MRI from 2005 to 2015. We analyzed gestational age at evaluation, US and MRI findings, gestational age at delivery and postnatal outcomes. The final diagnoses were jejunal atresia (7), ileal atresia (1), cystic fibrosis (3) and combined jejunal and anal atresia (1). Four of the eight with jejunal atresia were found to have multiple small-bowel atresias. Prenatal perforation was noted in three. We identified a trend of increasing complexity of bowel contents corresponding to progressively distal level of obstruction, as indicated by increasing US echogenicity and high T1 signal on MRI. Seven cases of jejunal atresia and one case of ileal atresia demonstrated small ascending, transverse and descending colon (microcolon) with filling of a normal-diameter rectum. In contrast, all three fetuses with cystic fibrosis and the fetus with jejunal-anal atresia demonstrated microcolon as well as abnormal paucity or absence of rectal meconium. Polyhydramnios was present in nine. Eight were delivered prematurely, of whom seven had polyhydramnios. The fetus with jejunal and anal atresia died in utero. Postnatally, three had short gut syndrome, all resulting from multiple jejunal atresias; these three were among a subset of four fetuses whose bowel diameter measured more than 3 cm. Eight infants had no further

  17. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  18. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  19. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  20. High-Resolution Nuclear Magnetic Resonance Determination of Transfer RNA Tertiary Base Pairs in Solution. 2. Species Containing a Large Variable Loop

    NARCIS (Netherlands)

    HURD, RE; ROBILLARD, GT; REID, BR

    1977-01-01

    The number of base pairs in the solution structure of several class III D3VN tRNA species from E. coli has been determined by analyzing the number of low-field (-15 to -11 ppm) proton resonances in their nuclear magnetic resonance spectra at 360 MHz. Contrary to previous reports indicating the

  1. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Science.gov (United States)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  2. The Brownian loop soup

    OpenAIRE

    Lawler, Gregory F.; Werner, Wendelin

    2003-01-01

    We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.

  3. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  4. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  5. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai, E-mail: lihai7772006@126.com [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Liu, Xiaowei [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150001 (China); Dong, Changchun [School of Software, Harbin University of Science and Technology, Harbin, 150001 (China); Zhang, Haifeng [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China)

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  6. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    International Nuclear Information System (INIS)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-01-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  7. Novel Anterior Brainstem Magnetic Resonance Imaging Findings in Non-Small Cell Lung Cancer with Leptomeningeal Carcinomatosis

    Directory of Open Access Journals (Sweden)

    Chun-Yu Cheng

    2017-10-01

    Full Text Available Leptomeningeal carcinomatosis (LC is found in around 4% of patients with non-small cell lung cancer (NSCLC. The most common radiological finding of LC is diffuse leptomeningeal enhancement on contrast-enhanced brain magnetic resonance imaging (MRI. Herein, we report a novel brain MRI finding—non-enhanced, band-like, symmetric restricted diffusion along the anterior surface of the brainstem—of LC in four patients with NSCLC. We also identified three additional cases with similar MRI findings in a literature review. We hypothesized that the restricted diffusion along the anterior brainstem was caused by malignant cells concentrating in the cistern around the brainstem and infiltrating into the circumferential perforating arteries along the anterior brainstem surface, which then resulted in microinfarctions.

  8. Detector tests in a high magnetic field and muon spectrometer triggering studies on a small prototype for an LHC experiment

    CERN Document Server

    Ambrosi, G; Basile, M; Battiston, R; Bergsma, F; Castro, H; Cifarelli, Luisa; Cindolo, F; Contin, A; De Pasquale, S; Gálvez, J; Gentile, S; Giusti, P; Laurent, G; Levi, G; Lin, Q; Maccarrone, G D; Mattern, D; Nania, R; Rivera, F; Schioppa, M; Sharma, A; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The "Large Area Devices" group of the LAA project is working on R&D for muon detection at a future super-collider. New detectors are under development and the design of a muon spectrometer for an LHC experiment is under study. Our present choice is for a compact, high field, air-core toroidal muon spectrometer. Good momentum resolution is achievable in this compact solution, with at least one plane of detection elements inside the high field region. A new detector, the Blade Chamber, making use of blades instead of wires, has been developed for the forward and backward regions of the spectrometer, where polar coordinate readings are desirable.The assembling of a CERN high energy beam line, equipped with high resolution drift chambers and a strong field magnet could give us the opportunity to test our chambers in a high magnetic field and to study the muon trigger capabilities of a spectrometer, like the one proposed, on a small prototype.

  9. A new family of 1D exchange biased heterometal single-molecule magnets: observation of pronounced quantum tunneling steps in the hysteresis loops of quasi-linear {Mn2Ni3} clusters.

    Science.gov (United States)

    Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc

    2011-03-16

    First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.

  10. Electron acceleration and radiation signatures in loop coronal transients

    Science.gov (United States)

    Vlahos, L.; Gergely, T. E.; Papadopoulos, K.

    1982-01-01

    It is proposed that in loop coronal transients an erupting loop moves away from the solar surface, with a velocity exceeding the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. Lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field that exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. The manner in which the accelerated electrons are trapped in the moving loop are discussed, and their radiation signature is estimated. It is suggested that plasma radiation can explain the power observed in stationary and moving type IV bursts.

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  14. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  15. Magnetic resonance imaging in ophthalmic diagnosis. Results of examinations using a small field-of-view surface coil

    International Nuclear Information System (INIS)

    Kato, Yuji; Yoshida, Akitoshi; Kanno, Harumi; Ogasawara, Hironobu; Murakami, Noboru; Cheng, Hong-Ming.

    1997-01-01

    We obtained T 1 -and T 2 -weighted magnetic resonance (MR) images in 3 patients with vitreoretinal disorders using a recently developed surface coil that was inductively coupled and had a small field of view. On both T 1 -and T 2 -weighted images, tractional retinal detachment was clearly detected in the first patient, who had proliferative diabetic retinopathy. T 1 - and T 2 -weighted images of the second patient, who had total retinal detachment with proliferative vitreous retinopathy, revealed a funnel-shaped thickened retina. The third patient had postoperative rhegmatogenous retinal detachment with opacity due to postoperative cataract and intravitreous injection of gas; on this patient's MR images we could clearly differentiate the reattached retina, silicone used for scleral buckling, and intravitreous gas, even though these differentiations were not possible with ophthalmoscopy or B-scan ultrasonography. High resolution MR imaging with our technique can be performed in a short time and regardless of the eye's condition. Our findings strongly indicate that MRI with a small field-of-view surface coil is a useful tool for diagnosing various vitreoretinal disorders and observing pathological changes. (author)

  16. Magnetic behavior of nanocrystalline CoFe2O4

    International Nuclear Information System (INIS)

    Zhang Kai; Holloway, T.; Pradhan, A.K.

    2011-01-01

    Magnetic nanoparticles of CoFe 2 O 4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe 2 O 4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder. - Research highlights: → CoFe 2 O 4 nanoparticles were synthesized by co-precipitation route in a magnetic field. → Smaller nanoparticles present superparamagnetic property above their block temperature. → These nanoparticles show interesting magnetic behavior in the blocking state. → Magnetic behavior is strongly dependent on the annealing temperature.

  17. An engineering approach to the design and construction of a small modular stellarator for magnetic confinement of plasma. SCR-1

    International Nuclear Information System (INIS)

    Barillas, Laura; Vargas, V. Iván; Alpízar, Asdrúval

    2011-01-01

    This paper briefly describes the design and construction of Stellarator of Costa Rica 1 (SCR-1) from an engineering perspective. SCR-1 is a small modular Stellarator for magnetic confinement of plasma developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica (ITCR). The SCR-1 is based on the small Spanish Stellarator UST 1 (Ultra Small Torus 1), created by engineer Vicente Queral. Some of the characteristics of the SCR-1 are the following: it will be a 2-field period modular stellarator with an aspect ratio ≈ 6; low shear configuration with core and edge rotational transform equal to 0.32 and 0.28; it will employ stainless steel torus-shaped vacuum vessel which will hold a plasma with an average radius a ≈ 42.2 mm, a volume of 8 liters (0.008 m 3 ), and major radius R = 238 mm. This plasma will be confined by a magnetic field (B ≈ 90 mT) given by 12 modular coils with 12 turns each, carrying a current of 725 A per turn providing a total toroidal field (TF) current of 8.7 kA-turn per coil. The coils will be supplied by a bank of cell batteries of 120 V. Typical length of the plasma pulse will be between 4 s to 10 s. The plasma heating will be achieved by electron cyclotron radio-frequency (ECH) from two magnetrons providing a total power of 5 kW, at a frequency of 2.45 GHz corresponding to the first harmonic (B 0 = 87.8 mT). The expected electron temperature and density are 15 eV and 7x10 16 m -3 respectively. The initial diagnostics on the SCR-1 will consist of a Langmuir probe with a displacement system, a heterodyne microwave interferometer (frequency of 28 GHz, corresponding to a wavelength of λ = 10.71 mm). The first plasma of the SCR-1 is expected at the beginning of 2012. (author)

  18. MODELING AND STUDY OF HYDROELECTRIC GENERATING SETS OF SMALL HYDRO POWER PLANTS WITH FREQUENCY-CONTROLLED PERMANENT MAGNET SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2016-01-01

    Full Text Available Currently, the hydroelectric generating sets of small HPPs with Pelton turbines employ as their generating units conventional synchronous generators with electromagnetic excitation. To deal with the torque pulsatile behaviour, they generally install a supplementary flywheel on the system shaft that levels the pulsations. The Pelton turbine power output is adjusted by the needle changing water flow in the nozzle, whose advancement modifies the nozzle area and eventually – the flow. They limit the needle full stroke time to 20–40 sec. since quick shutting the nozzle for swift water flow reduction may result in pressure surges. For quick power adjustment so-called deflectors are employed, whose task is retraction of water jets from the Pelton turbine buckets. Thus, the mechanical method of power output regulation requires agreement between the needle stroke inside the turbine nozzles and the deflector. The paper offers employing frequency-controlled synchronous machines with permanent magnets qua generating units for the hydroelectric generating sets of small HPPs with Pelton turbines. The developed computer model reveals that this provides a higher level of adjustability towards rapid-changing loads in the grid. Furthermore, this will replace the power output mechanical control involving the valuable deflector drive and the turbine nozzle needles with electrical revolution rate and power output regulation by a frequency converter located in the generator stator circuit. Via frequency start, the controllable synchronous machine ensures stable operation of the hydroelectric generating set with negligibly small amount of water (energy carrier. Finally, in complete absence of water, the frequency-relay start facilitates shifting the generator operation to the synchronous capacitor mode, which the system operating parameter fluctograms obtained through computer modeling prove. 

  19. Components of electrically small loop antennae: 1

    CSIR Research Space (South Africa)

    Bowles, BA

    1978-11-01

    Full Text Available stream_source_info Austin_1978.pdf.txt stream_content_type text/plain stream_size 5 Content-Encoding ISO-8859-1 stream_name Austin_1978.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  3. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  4. (g-2){sub μ} at four loops in QED

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Steinhauser, Matthias; Wellmann, David [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik

    2017-08-15

    We review the four-loop QED corrections to the anomalous magnetic moment of the muon. The fermionic contributions with closed electron and tau contributions are discussed. Furthermore, we report on a new independent calculation of the universal four-loop contribution and compare with existing results.

  5. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  6. Evidence for two-loop interaction from IRIS and SDO observations of penumbral brightenings

    Science.gov (United States)

    Alissandrakis, C. E.; Koukras, A.; Patsourakos, S.; Nindos, A.

    2017-07-01

    Aims: We investigate small scale energy release events which can provide clues on the heating mechanism of the solar corona. Methods: We analyzed spectral and imaging data from the Interface Region Imaging Spectrograph (IRIS), images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatoty (SDO), and magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO. Results: We report observations of small flaring loops in the penumbra of a large sunspot on July 19, 2013. Our main event consisted of a loop spanning 15'', from the umbral-penumbral boundary to an opposite polarity region outside the penumbra. It lasted approximately 10 min with a two minute impulsive peak and was observed in all AIA/SDO channels, while the IRIS slit was located near its penumbral footpoint. Mass motions with an apparent velocity of 100 km s-1 were detected beyond the brightening, starting in the rise phase of the impulsive peak; these were apparently associated with a higher-lying loop. We interpret these motions in terms of two-loop interaction. IRIS spectra in both the C II and Si iv lines showed very extended wings, up to about 400 km s-1, first in the blue (upflows) and subsequently in the red wing. In addition to the strong lines, emission was detected in the weak lines of Cl I, O I and C I, as well as in the Mg II triplet lines. Absorption features in the profiles of the C II doublet, the Si iv doublet and the Mg II h and k lines indicate the existence of material with a lower source function between the brightening and the observer. We attribute this absorption to the higher loop and this adds further credibility to the two-loop interaction hypothesis. Tilts were detected in the absorption spectra, as well as in the spectra of Cl I, O I, and C I lines, possibly indicating rotational motions from the untwisting of magnetic flux tubes. Conclusions: We conclude that the absorption features in the C II, Si iv and Mg II profiles originate in a higher

  7. On loop extensions and cohomology of loops

    OpenAIRE

    Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales

    2015-01-01

    In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...

  8. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  9. Performances Comparison for a Rotating Shaft Suspended by 4-Axis Radial Active Magnetic Bearings via -Synthesis, Loop-Shaping Design, and Sub(∞with Uncertainties

    Directory of Open Access Journals (Sweden)

    G. Barbaraci

    2011-01-01

    Full Text Available The control systems applied on active magnetic bearing are several. A perfect levitation is characterized by maintaining the operating point condition that is characterized by the center of stator coincident with the geometric center of shaft. The first controller implemented for this purpose is PID controller that is characterized by an algorithm that leads the amplifier to produce control current until the operating point condition is not reached, this is obtained by an integration operator. The effect of an integrator is essential but not necessary for a centered levitation for example in the robust control characterized by a dynamic model depended on plant of system so that it depends on angular speed as LQR controller does. In LQR there is not integrator so there is not a perfectly centered section of shaft with center of stator. On contrary PID controller does not depend on angular speed and it can be easily implemented according some simple rules. Predictive control is another interesting controller characterized by a multiple controller operating in different condition in order to get the minimum of cost function, but also in this case the angular speed is introduce for the same reason discussed before.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  11. A kinematic view of loop closure.

    Science.gov (United States)

    Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A

    2004-03-01

    We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004

  12. Different energy metabolism in two human small cell lung cancer subpopulations examined by 31P magnetic resonance spectroscopy and biochemical analysis in vivo and in vitro

    DEFF Research Database (Denmark)

    Kristjansen, P E; Spang-Thomsen, M; Quistorff, B

    1991-01-01

    Two human small cell lung cancer tumor lines, maintained as solid tumor xenografts on nude mice and as in vitro cell cultures, were studied by in vivo 31P magnetic resonance spectroscopy and by biochemical analysis of extracts of solid tumors and cell cultures. The tumor lines CPH SCCL 54A and CPH...

  13. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, A G; Quistorff, B

    1992-01-01

    Early effects of irradiation were evaluated by non-invasive in vivo 31P-magnetic resonance spectroscopy (31P-MRS) of two small cell lung cancer (SCLC) tumor lines CPH SCCL 54A and 54B, in nude mice. The tumors were originally derived from the same patient and have similar morphology and growth...

  14. Evaluation of Landing Characteristics Achieved by Simulations and Flight Tests on a Small-scaled Model Related to Magnetically Levitated Advanced Take-off and Landing Operations

    NARCIS (Netherlands)

    Rohacs, D.; Voskuijl, M.; Siepenkotter, N.

    2014-01-01

    The goal of this paper is to simulate and measure on a small-scaled model the landing characteristics related to take-off and landing (TOL) operations supported by a magnetic levitation (MAGLEV) system as ground-based power supply. The technical feasibility and the potential benefits of using

  15. Impact of electro-magnetic stabilization, small- scale turbulence and multi-scale interactions on heat transport in JET

    Science.gov (United States)

    Mantica, Paola

    2016-10-01

    Heat transport experiments in JET, based on ICRH heat flux scans and temperature modulation, have confirmed the importance of two transport mechanisms that are often neglected in modeling experimental results, but are crucial to reach agreement between theory and experiment and may be significant in ITER. The first mechanism is the stabilizing effect of the total pressure gradient (including fast ions) on ITG driven ion heat transport. Such stabilization is found in non-linear gyro-kinetic electro-magnetic simulations using GENE and GYRO, and is the explanation for the observed loss of ion stiffness in the core of high NBI-power JET plasmas. The effect was recently observed also in JET plasmas with dominant ICRH heating and small rotation, due to ICRH fast ions, which is promising for ITER. Such mechanism dominates over ExB flow shear in the core and needs to be included in quasi-linear models to increase their ability to capture the relevant physics. The second mechanism is the capability of small- scale ETG instabilities to carry a significant fraction of electron heat. A decrease in Te peaking is observed when decreasing Zeff Te/Ti, which cannot be ascribed to TEMs but is in line with ETGs. Non-linear GENE single-scale simulations of ETGs and ITG/TEMs show that the ITG/TEM electron heat flux is not enough to match experiment. TEM stiffness is also much lower than measured. In the ETG single scale simulations the external flow shear is used to saturate the ETG streamers. Multi-scale simulations are ongoing, in which the ion zonal flows are the main saturating mechanism for ETGs. These costly simulations should provide the final answer on the importance of ETG-driven electron heat flux in JET. with JET contributors [F.Romanelli, Proc.25thIAEA FEC]. Supported by EUROfusion Grant 633053.

  16. Water loop for training

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1983-02-01

    The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt

  17. Magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity

    International Nuclear Information System (INIS)

    Zhang, Chuanyi; Zhang, Weifeng

    2015-01-01

    We theoretically study the magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity. A critical magnetic field is obtained, and the bistability appears if a magnetic field is greater than the critical value. For a positive energy detuning of the pump from the bare exciton polaritons, one bistability loop first emerges, then it divides into two loops, and finally one of them vanishes with the increasing magnetic field. This phenomenon originates from the magnetic-field modulated interactions for opposite spins. In the variational process, there are two important effects: one is a logic gate with a small variation of the excitation laser, and the other is a spin texture like skyrmion and this texture is periodic if the energy detuning varies periodically in real space, which is useful for designing the spin-dependent optoelectronic devices. - Highlights: • We study the bistability induced by a magnetic field in a microcavity. • One bistability loop can divide into two, and then the two loops return to one. • A spin texture like skyrmion and logic gate arise in the variation of bistability loop

  18. Brain metastasis of small cell lung carcinoma. Comparison of Gd-DTPA enhanced magnetic resonance imaging and enhanced computerized tomography

    International Nuclear Information System (INIS)

    Nomoto, Yasushi; Yamaguchi, Yutaka; Miyamoto, Tadaaki.

    1994-01-01

    Small cell carcinoma of the lung (SCLC) frequently metastasizes into the brain, resulting in serious influences upon prognosis. Delayed brain damage caused by prophylactic cranial irradiation (PCI) is also problematic. Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI) was performed to detect early brain metastasis from SCLC, and its usefulness was compared with contrast computerized tomography (CT). Among 25 SCLC patients, brain metastasis was detected in 11 by MRI and in 10 by CT, although six of them were completely asymptomatic. In the 11 patients, 6.3 and 2.4 lesions were respectively detected on average by MRI and CT. The ability of MRI to detect metastatic lesions of ≥15 mm diameter did not differ from that of CT, but became different as lesions became smaller (P<0.002), and MRI had a decided advantage over CT because as many as 30 lesions of ≤5 mm diameter were detected by MRI, whereas such lesions visualized on CT numbered only one (P<0.0001). MRI was incomparably superior to CT (P<0.0004) for subtentorial lesions since 18 lesions were detected on MRI, but only three, measuring ≥25 mm in diameter, were demonstrated on CT. Gd-DTPA enhanced MRI was determined to be extremely useful in the early diagnosis of SCLC brain metastasis. MRI was thought to reduce delayed brain damage caused by PCI if performed according to an adequate schedule. (author)

  19. Macrophage Uptake of Ultra-Small Iron Oxide Particles for Magnetic Resonance Imaging in Experimental Acute Cardiac Transplant Rejection

    International Nuclear Information System (INIS)

    Penno, E.; Johnsson, C.; Johansson, L.; Ahlstroem, H.

    2006-01-01

    Purpose: To discriminate between acutely rejecting and non-rejecting transplanted hearts using a blood pool contrast agent and T2 magnetic resonance imaging (MRI) in a clinical 1.5T scanner. Material and Methods: Allogeneic and syngeneic heterotopic heart transplantations were performed in rats. One allogeneic and one syngeneic group each received either the ultra-small iron oxide particle (USPIO), at two different doses, or no contrast agent at all. MRI was performed on postoperative day 6. Immediately after the MR scanning, contrast agent was injected and a further MRI was done 24 h later. Change in T2 was calculated. Results: No significant difference in change in T2 could be seen between rejecting and non-rejecting grafts in either of the doses, or in the control groups. There was a difference between the allogeneic group that received the higher contrast agent dose and the allogeneic group that did not receive any contrast agent at all. Conclusion: In our rat model, measurements of T2 after myocardial macrophage uptake of AMI-227 in a clinical 1.5T scanner were not useful for the diagnosis of acute rejection

  20. Stability, structure, and evolution of cool loops

    International Nuclear Information System (INIS)

    Cally, P.S.; Robb, T.D.

    1991-01-01

    The criteria for the existence and stability of cool loops are reexamined. It is found that the stability of the loops strongly depends on the form of the heating and radiative loss functions and that if the Ly-alpha peak which appears in most calculations of the radiative loss function is real, cool loops are almost certainly unstable. Removing the hydrogen contribution from the recent loss function Q(T) by Cook et al. (1989) does not produce the much-used result, Q proportional to T-cubed, which is so favorable to cool loop stability. Even using the probably unrealistically favorable loss function Q1 of Cook et al. with the hydrogen contribution removed, the maximum temperature attainable in stable cool loops is a factor of 2-3 too small to account for the excess emission observed in lower transition region lines. Dynamical simulations of cool loop instabilities reveal that the final state of such a model is the hot loop equilibrium. 26 refs

  1. Magnetic Barkhausen noise at different magnetization conditions

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Perevertov, Oleksiy; Neslušan, M.

    2015-01-01

    Roč. 66, č. 7 (2015), s. 10-13 ISSN 1335-3632 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen noise * surface magnetic field * magnetization control * magnetic hysteresis * digital feedback loop Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.407, year: 2015

  2. Investigation of radiofrequency heating for a closed conducting loop formed in a part of the patient's body in 1.5 tesla magnetic resonance (MR) imaging and 3.0 tesla MR imaging. Measurement of temperature by use of human body-equivalent phantom

    International Nuclear Information System (INIS)

    Yamazaki, Masaru; Higashida, Mitsuji; Kudo, Sadahiro; Ideta, Takahiro; Nakazawa, Masami

    2012-01-01

    Thermal injuries have been sometimes reported due to a closed conducting loop formed in a part of the patient's body during magnetic resonance imaging (MRI). In recent years, 3.0 T-MRI scanner has been widely used. However, it is considered that the specific absorption rate (SAR) of 3.0 T-MRI can affect the heat of the loop because its own SAR becomes approximately 4 times as much as that of the 1.5 T-MRI scanner. With this, the change in temperature was measured with human body-equivalent loop phantom in both 1.5 T-MRI and 3.0 T-MRI. In the two scanners, the temperature during 20 min of scanning time was measured with three types of sequences such as field echo (FE), spin echo (SE), and turbo SE (TSE) set up with the same scanning condition. It was found from the result that rise in temperature depended on SAR of the scanning condition irrespective of static magnetic field intensity and any pulse sequences. Furthermore, the increase of SAR and rise in temperature were not only in proportion to each other but also were indicated to have good correlation. However, even low SAR can occasionally induce serious thermal injuries. It was found from result that we had to attempt not to form a closed conducting loop with in a part of the patient's body during MRI. (author)

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  4. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  5. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  6. Observing string breaking with Wilson loops

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    An uncontroversial observation of adjoint string breaking is proposed, while measuring the static potential from Wilson loops only. The overlap of the Wilson loop with the broken-string state is small, but non-vanishing, so that the broken-string groundstate can be seen if the Wilson loop is long enough. We demonstrate this in the context of the (2+1)d SU(2) adjoint static potential, using an improved version of the Luscher-Weisz exponential variance reduction. To complete the picture we perform the more usual multichannel analysis with two basis states, the unbroken-string state and the broken-string state (two so-called gluelumps). As by-products, we obtain the temperature-dependent static potential measured from Polyakov loop correlations, and the fundamental SU(2) static potential with improved accuracy. Comparing the latter with the adjoint potential, we see clear deviations from Casimir scaling.

  7. Electron cyclotron wave acceleration outside a flaring loop

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.

  8. Electron cyclotron wave acceleration outside a flaring loop

    International Nuclear Information System (INIS)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    We propose a model for the secondary acceleration of electrons outside a flaring loop. Our results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. We show that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations

  9. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  10. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  11. A case of child death caused by intestinal volvulus following magnetic toy ingestion.

    Science.gov (United States)

    Olczak, Mieszko; Skrzypek, Ewa

    2015-05-01

    An 8-year boy was admitted to the ER of one of Warsaw's pediatric hospitals with a history of having bloody vomiting the day before. During admission the boy collapsed and lost consciousness. CPR was unsuccessful. On medico-legal autopsy, two foreign objects (small magnetic spheres--0.5 cm in diameter) were found in two different places in the small and large intestines and were notably attracted magnetically one to another. A loop of approximately 1-m length with features of small intestinal hemorrhagic necrosis and small intestinal mechanical obstruction was found. The cause of death was intestinal volvulus and small intestinal mechanical obstruction caused by ingestion of foreign objects (two neodymium magnets). Most likely these small magnetic spheres were part of a popular toy, the safety of which, lately, has been widely discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Perturbation calculations with Wilson loop

    International Nuclear Information System (INIS)

    Peixoto Junior, L.B.

    1984-01-01

    We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt

  13. A high sensitivity SQUID-method for the measurement of magnetic susceptibility of small samples in the temperature range 1.5 K-40 K and application on small palladium particles

    International Nuclear Information System (INIS)

    Tu Nguyen Quang.

    1979-01-01

    In this paper a method is developed for magnetic susceptibility measurements which is superior to the common methods. The method is based on the SQUID-principle (Superconducting Quantum Interference Device) using the tunnel effect of a superconducting point contact and magnetic flux quantization for measuring electric and magnetic quantities. Due to this refined method susceptibility changes of very small palladium particles could be detected in the temperature range 1.5 K-40 K with respect to the bulk. In addition susceptibility differences of particle distributions with different means diameters (81 Angstroem and 65 Angstroem) have been measured for the first time. A quantitative comparison of the measurements with theoretical results shows satisfactory agreement. (orig./WBU) [de

  14. Onset of magnetic interface exchange interactions in epitaxially grown Mn-Co(001)

    NARCIS (Netherlands)

    Kohlhepp, J.T.; Wieldraaijer, H.; Jonge, de W.J.M.

    2007-01-01

    Manganese (Mn) grows in a metastable expanded (c/a > 1) face-centered-tetragonal (fct) phase on thin fct-Co(001) template films. A layer-by-layer growth mode is obsd. for small Mn thicknesses. Antiferromagnetism (AFM) of fct-Mn is evidenced by the observation of shifted magnetization loops

  15. Magnetostriction in glass-coated magnetic microwires

    International Nuclear Information System (INIS)

    Zhukov, A.; Zhukova, V.; Blanco, J.M.; Cobeno, A.F.; Vazquez, M.; Gonzalez, J

    2003-01-01

    The hysteretic magnetic properties of glass coated magnetic microwires depend on the magnetostriction constant: Co-rich microwires with negative magnetostriction constant present an almost non-hysteretic loop with relatively high magnetic anisotropy field up to around 8 kA/m. In contrast, Fe-rich microwires with positive magnetostriction show rectangular hysteresis loops with switching field depending on diameter of the metallic nucleus and the thickness of the glass coating. The softest magnetic properties, such as large magnetic permeability, are observed in nearly zero magnetostrictive alloys. It is then obvious that the experimental determination of the saturation magnetostriction λ s of glass-coated microwires is very important to predict their magnetic behaviour. Different methods for the determination of the saturation magnetostriction λ s of tiny glass coated microwires have been reviewed and compared in this manuscript. Small angle magnetization rotation (SAMR) method and change of the giant magneto-impedance spectrum under applied stress have been employed in nearly zero magnetostrictive in as-prepared and current annealed glass-covered microwires. The conditions of applicability of these methods to the microwires have been analysed, taking into account the domain structure expected for vanishing magnetostriction constant of the metallic nucleus. These different techniques give similar saturation magnetostriction constant values. Heat treatment results in a significant change of λ s

  16. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  17. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  18. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  19. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  20. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  1. Reproducibility of small animal cine and scar cardiac magnetic resonance imaging using a clinical 3.0 tesla system

    International Nuclear Information System (INIS)

    Manka, Robert; Jahnke, Cosima; Hucko, Thomas; Dietrich, Thore; Gebker, Rolf; Schnackenburg, Bernhard; Graf, Kristof; Paetsch, Ingo

    2013-01-01

    To evaluate the inter-study, inter-reader and intra-reader reproducibility of cardiac cine and scar imaging in rats using a clinical 3.0 Tesla magnetic resonance (MR) system. Thirty-three adult rats (Sprague–Dawley) were imaged 24 hours after surgical occlusion of the left anterior descending coronary artery using a 3.0 Tesla clinical MR scanner (Philips Healthcare, Best, The Netherlands) equipped with a dedicated 70 mm solenoid receive-only coil. Left-ventricular (LV) volumes, mass, ejection fraction and amount of myocardial scar tissue were measured. Intra-and inter-observer reproducibility was assessed in all animals. In addition, repeat MR exams were performed in 6 randomly chosen rats within 24 hours to assess inter-study reproducibility. The MR imaging protocol was successfully completed in 32 (97%) animals. Bland-Altman analysis demonstrated high intra-reader reproducibility (mean bias%: LV end-diastolic volume (LVEDV), -1.7%; LV end-systolic volume (LVESV), -2.2%; LV ejection fraction (LVEF), 1.0%; LV mass, -2.7%; and scar mass, -1.2%) and high inter-reader reproducibility (mean bias%: LVEDV, 3.3%; LVESV, 6.2%; LVEF, -4.8%; LV mass, -1.9%; and scar mass, -1.8%). In addition, a high inter-study reproducibility was found (mean bias%: LVEDV, 0.1%; LVESV, -1.8%; LVEF, 1.0%; LV mass, -4.6%; and scar mass, -6.2%). Cardiac MR imaging of rats yielded highly reproducible measurements of cardiac volumes/function and myocardial infarct size on a clinical 3.0 Tesla MR scanner system. Consequently, more widely available high field clinical MR scanners can be employed for small animal imaging of the heart e.g. when aiming at serial assessments during therapeutic intervention studies

  2. Small animal magnetic resonance imaging: an efficient tool to assess liver volume and intrahepatic vascular anatomy.

    Science.gov (United States)

    Melloul, Emmanuel; Raptis, Dimitri A; Boss, Andreas; Pfammater, Thomas; Tschuor, Christoph; Tian, Yinghua; Graf, Rolf; Clavien, Pierre-Alain; Lesurtel, Mickael

    2014-04-01

    To develop a noninvasive technique to assess liver volumetry and intrahepatic portal vein anatomy in a mouse model of liver regeneration. Fifty-two C57BL/6 male mice underwent magnetic resonance imaging (MRI) of the liver using a 4.7 T small animal MRI system after no treatment, 70% partial hepatectomy (PH), or selective portal vein embolization. The protocol consisted of the following sequences: three-dimensional-encoded spoiled gradient-echo sequence (repetition time per echo time 15 per 2.7 ms, flip angle 20°) for volumetry, and two-dimensional-encoded time-of-flight angiography sequence (repetition time per echo time 18 per 6.4 ms, flip angle 80°) for vessel visualization. Liver volume and portal vein segmentation was performed using a dedicated postprocessing software. In animals with portal vein embolization, portography served as reference standard. True liver volume was measured after sacrificing the animals. Measurements were carried out by two independent observers with subsequent analysis by the Cohen κ-test for interobserver agreement. MRI liver volumetry highly correlated with the true liver volume measurement using a conventional method in both the untreated liver and the liver remnant after 70% PH with a high interobserver correlation coefficient of 0.94 (95% confidence interval, 0.80-0.98 for untreated liver [P anatomy was excellent (Cohen κ value = 0.925). This protocol may be used for noninvasive liver volumetry and visualization of portal vein anatomy in mice. It will serve the dynamic study of new strategies to enhance liver regeneration in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Gd-doped GaN studied with element specificity: Very small polarization of Ga, paramagnetism of Gd and the formation of magnetic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ney, A., E-mail: ney@maglomat.d [Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg (Germany); Kammermeier, T.; Ollefs, K.; Ney, V.; Ye, S. [Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg (Germany); Dhar, S. [Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg (Germany); Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Ploog, K.H. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Roever, M.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut and Virtual Institute of Spinelectronics (VISel), Georg August Universitaet Goettingen, D-37077 Goettingen (Germany); Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

    2010-05-15

    Element specific X-ray linear dichroism (XLD), X-ray magnetic circular dichroism (XMCD) at the Ga K- and Ga and Gd L{sub 3}-edges and magnetic resonance measurements have been carried out on Gd:GaN grown by molecular beam epitaxy with different Gd concentrations. XMCD studies at the Ga K-edge reveal only a very weak magnetic polarization, which is too small to account for the colossal moments reported before by SQUID. In the dilute limit we can show by XLD that the majority of the Gd dopant atoms go to substitutional Ga sites. XMCD studies demonstrate that the Gd sublattice behaves paramagnetic which is in contrast to integral SQUID measurements. The absence of ferromagnetic order at room temperature is corroborated by magnetic resonance studies. First signatures of phase separation are visible. At higher Gd concentrations phase separation is found by XLD. In such samples ferromagnetic-like order is consistently found by SQUID, XMCD and magnetic resonance which is characteristic for a blocked superparamagnetic ensemble. In turn, phase separated ferromagnetic Gd/GdN clusters cannot account for magnetic order observed at and above 300 K by SQUID.

  4. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    . Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO{sub 2} Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO{sub 2} loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO{sub 2} cycle.

  5. Diffusion of Wilson loops

    International Nuclear Information System (INIS)

    Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.

    2005-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory

  6. Blind loop syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001146.htm Blind loop syndrome To use the sharing features on ... Clinical Professor of Medicine, The George Washington University School of Medicine, Washington, DC. Also reviewed by David ...

  7. Mashup the OODA Loop

    National Research Council Canada - National Science Library

    Heier, Jeffrey E

    2008-01-01

    ...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...

  8. Automation of secondary loop operation in Indus-2 LCW plant

    International Nuclear Information System (INIS)

    Srinivas, L.; Pandey, R.M.; Yadav, R.P.; Gupta, S.; Gandhi, M.L.; Thakurta, A.C.

    2013-01-01

    Indus-2 Low Conductivity Water (LCW) plant has two loops, primary loop and secondary loop. The primary loop mainly supplies LCW to magnets, power supplies and RF systems at constant flow rate. The secondary loop extracts heat from the primary loop through heat exchangers to maintain the supply water temperature of the primary loop around a set value. The supply water temperature of the primary loop is maintained by operating the pumps and cooling towers in the secondary loop. The desired water flow rate in the secondary loop is met by the manual operation of the required number of the pumps. The automatic operation of the pumps and the cooling towers is proposed to replace the existing inefficient manual operation. It improves the operational reliability and ensures the optimum utilization of the pumps and the cooling towers. An algorithm has been developed using LabView programming to achieve optimized operation of the pumps and the cooling towers by incorporating First-In-First-Out (FIFO) logic. It also takes care of safety interlocks, and generates alarms. The program exchanges input and output signals of the plant using existing SCADA system. In this paper, the development of algorithm, its design and testing are elaborated. In the end, the results obtained thereof are discussed. (author)

  9. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  10. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  11. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  12. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    International Nuclear Information System (INIS)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-01-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction

  13. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  14. Blowout Surge due to Interaction between a Solar Filament and Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Bi, Yi; Hong, Junchao; Chen, Hechao [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Qu, Zhining, E-mail: lhd@ynao.ac.cn [Department of Physics, School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2017-06-20

    We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site of the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.

  15. Biliary-duodenal anastomosis using magnetic compression following massive resection of small intestine due to strangulated ileus after living donor liver transplantation: a case report.

    Science.gov (United States)

    Saito, Ryusuke; Tahara, Hiroyuki; Shimizu, Seiichi; Ohira, Masahiro; Ide, Kentaro; Ishiyama, Kohei; Kobayashi, Tsuyoshi; Ohdan, Hideki

    2017-12-01

    Despite the improvements of surgical techniques and postoperative management of patients with liver transplantation, biliary complications are one of the most common and important adverse events. We present a first case of choledochoduodenostomy using magnetic compression following a massive resection of the small intestine due to strangulated ileus after living donor liver transplantation. The 54-year-old female patient had end-stage liver disease, secondary to liver cirrhosis, due to primary sclerosing cholangitis with ulcerative colitis. Five years earlier, she had received living donor liver transplantation using a left lobe graft, with resection of the extrahepatic bile duct and Roux-en-Y anastomosis. The patient experienced sudden onset of intense abdominal pain. An emergency surgery was performed, and the diagnosis was confirmed as strangulated ileus due to twisting of the mesentery. Resection of the massive small intestine, including choledochojejunostomy, was performed. Only 70 cm of the small intestine remained. She was transferred to our hospital with an external drainage tube from the biliary cavity and jejunostomy. We initiated total parenteral nutrition, and percutaneous transhepatic biliary drainage was established to treat the cholangitis. Computed tomography revealed that the biliary duct was close to the duodenum; hence, we planned magnetic compression anastomosis of the biliary duct and the duodenum. The daughter magnet was placed in the biliary drainage tube, and the parent magnet was positioned in the bulbus duodeni using a fiberscope. Anastomosis between the left hepatic duct and the duodenum was accomplished after 25 days, and the biliary drainage stent was placed over the anastomosis to prevent re-stenosis. Contributions to the successful withdrawal of parenteral nutrition were closure of the ileostomy in the adaptive period, preservation of the ileocecal valve, internal drainage of bile, and side-to-side anastomosis

  16. Internal film cooling of permanent magnet external rotor machine using the example of a small wind power generator; Innenkuehlung permanentmagneterregter Aussenlaeufermaschinen am Beispiel eines Kleinwindenergiegenerators

    Energy Technology Data Exchange (ETDEWEB)

    Miersch, Soeren; Eckart, Martin; Michalke, Norbert [HTW Dresden (Germany)

    2011-07-01

    This article discusses the fluid flow and thermal cooling system design of a permanent magnet small wind power generator in external rotor construction. Analytical calculation attachment pieces and numerical simulations will be served as authoring tool. Calculation and simulation results will be exhibited in comparing with model and prototype measurements. With the help of stationary temperature allocation, the effectiveness of intensive internal film cooling will be shown. (orig.)

  17. Small bowel bacterial overgrowth

    Science.gov (United States)

    ... Surgical procedures that create a loop of small intestine where excess bacteria can grow. An example is a Billroth II type of stomach removal ( gastrectomy ). Some cases of irritable bowel syndrome (IBS).

  18. Safety of cardiac magnetic resonance and contrast angiography for neonates and small infants: a 10-year single-institution experience

    Energy Technology Data Exchange (ETDEWEB)

    Rangamani, Sheela; Li, Ling; Harvey, Lisa; Fletcher, Scott E.; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine/Creighton University School of Medicine, Joint Division of Pediatric Cardiology, Omaha, NE (United States); Varghese, Joby [Children' s Hospital and Medical Center, Division of Pediatric Cardiac Anesthesia, Omaha, NE (United States); Hammel, James M.; Duncan, Kim F. [Children' s Hospital and Medical Center, Division of Cardiothoracic Surgery, Omaha, NE (United States)

    2012-11-15

    With increasing applications of cardiac magnetic resonance (CMR) and magnetic resonance angiography (MRA) for evaluation of congenital heart disease (CHD), safety of this technology in the very young is of particular interest. We report our 10-year experience with CMR in neonates and small infants with particular focus on the safety profile and incidence of adverse events (AEs). We reviewed clinical, anesthesia and nursing records of all children {<=}120 days of age who underwent CMR. We recorded variables including cardiac diagnosis, study duration, anesthesia type and agents, prostaglandin E1 (PGE1) dependence and gadolinium (Gd) use. Serially recorded temperature, systemic saturation (SpO{sub 2}) and cardiac rhythm were analyzed. Primary outcome measure was any AE during or <24 h after the procedure, including minor AEs such as hypothermia (axillary temperature {<=}95 F), desaturation (SpO{sub 2} drop {>=}10% below baseline) and bradycardia (heart rate {<=}100 bpm). Secondary outcome measure was unplanned overnight hospitalization of outpatients. Children (n = 143; 74 boys, 69 girls) had a median age of 6 days (1-117), and 98 were {<=}30 days at the time of CMR. The median weight was 3.4 kg (1.4-6 kg) and body surface area 0.22 m{sup 2} (0.13-0.32 m{sup 2}). There were 118 (83%) inpatients (108 receiving intensive care) and 25 (17%) outpatients. Indications for CMR were assessment of aortic arch (n = 57), complex CHD (n = 41), pulmonary veins (n = 15), vascular ring (n = 8), intracardiac mass (n = 8), pulmonary artery (n = 7), ventricular volume (n = 4), and systemic veins (n = 3). CMR was performed using a 1.5-T scanner and a commercially available coil. CMR utilized general anesthesia (GA) in 86 children, deep sedation (DS) in 50 and comforting methods in seven. MRA was performed in 136 children. Fifty-nine children were PGE1-dependent and 39 had single-ventricle circulation. Among children on PGE1, 43 (73%) had GA and 10 (17%) had DS. Twelve children (9%) had

  19. Safety of cardiac magnetic resonance and contrast angiography for neonates and small infants: a 10-year single-institution experience

    International Nuclear Information System (INIS)

    Rangamani, Sheela; Li, Ling; Harvey, Lisa; Fletcher, Scott E.; Danford, David A.; Kutty, Shelby; Varghese, Joby; Hammel, James M.; Duncan, Kim F.

    2012-01-01

    With increasing applications of cardiac magnetic resonance (CMR) and magnetic resonance angiography (MRA) for evaluation of congenital heart disease (CHD), safety of this technology in the very young is of particular interest. We report our 10-year experience with CMR in neonates and small infants with particular focus on the safety profile and incidence of adverse events (AEs). We reviewed clinical, anesthesia and nursing records of all children ≤120 days of age who underwent CMR. We recorded variables including cardiac diagnosis, study duration, anesthesia type and agents, prostaglandin E1 (PGE1) dependence and gadolinium (Gd) use. Serially recorded temperature, systemic saturation (SpO 2 ) and cardiac rhythm were analyzed. Primary outcome measure was any AE during or 2 drop ≥10% below baseline) and bradycardia (heart rate ≤100 bpm). Secondary outcome measure was unplanned overnight hospitalization of outpatients. Children (n = 143; 74 boys, 69 girls) had a median age of 6 days (1-117), and 98 were ≤30 days at the time of CMR. The median weight was 3.4 kg (1.4-6 kg) and body surface area 0.22 m 2 (0.13-0.32 m 2 ). There were 118 (83%) inpatients (108 receiving intensive care) and 25 (17%) outpatients. Indications for CMR were assessment of aortic arch (n = 57), complex CHD (n = 41), pulmonary veins (n = 15), vascular ring (n = 8), intracardiac mass (n = 8), pulmonary artery (n = 7), ventricular volume (n = 4), and systemic veins (n = 3). CMR was performed using a 1.5-T scanner and a commercially available coil. CMR utilized general anesthesia (GA) in 86 children, deep sedation (DS) in 50 and comforting methods in seven. MRA was performed in 136 children. Fifty-nine children were PGE1-dependent and 39 had single-ventricle circulation. Among children on PGE1, 43 (73%) had GA and 10 (17%) had DS. Twelve children (9%) had adverse events (AEs) - one major and 11 minor. Of those 12, nine children had GA (10%) and three had DS (6%). The single major AE was

  20. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  2. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  4. Theory of magnetic neutron small-angle scattering using the dynamical theory of diffraction instead of the Born approximation. I

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1978-01-01

    Two ways are given for solving the problem of the dependence of the refraction on the direction of magnetization on both sides of the refractive boundary, one applying the Halpern magnetic scattering vector, the other applying the dynamical theory of diffraction. They lead to different results. Experimental investigation of refraction by magnetic boundaries shows no dependence of the angle of deflection on the relative angles of magnetization in adjacent domains. This behaviour is only described correctly by the dynamical theory, which far from Laue reflections leads to a treatment by the Schoedinger equation with a spin-dependent potential dependent on the average continuous homogenous magnetic induction, both for the law of refraction and for the precession of the spin. The results of this treatment are discussed as a consequence of the behaviour of the spin of the neutrons. This gives some insight about how and why, with refraction, the intensities of the direct and deflected beams depend on the magnetization directions in adjacent domains. The dynamical theory also shows that the Halpern magnetic scattering vector applies only with Laue or Bragg reflections and not with transmission far from those reflections. (Auth.)

  5. Mechanism of formation of loop-type prominences

    International Nuclear Information System (INIS)

    Uralov, A.M.; Fedorov, L.V.

    1978-01-01

    Chromospheric gas heated to high temperatures flows out to the corona, filling and carrying up arches of the coronal magnetic field. Under the action of the magnetic tension and of the gravitation, a part of matter contained in the field tubes begins to fall back. The magnetic pressure of the magnetic loop reduced to its original size prevents the vertical fall of gas. At the loop top, braking of gas is most significant, due to field quasi-transversality. Here, in the first place gas compression and cooling by emission of radiation occurs, the already visible matter thereafter flowing away from the condensation point, thus marking the loop contours. A continuous return to the state of equilibrium of new field tubes with matter leads to an apparent ascent of the arch structure into the corona

  6. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    Science.gov (United States)

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  7. Magnetic resonance imaging biomarkers of chronic obstructive pulmonary disease prior to radiation therapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Sheikh, Khadija; Capaldi, Dante P.I.; Hoover, Douglas A.; Palma, David A.; Yaremko, Brian P.; Parraga, Grace

    2015-01-01

    •Three imaging phenotypes of COPD and ventilation heterogeneity.•We examine relationships for non-tumour lobe ventilation voids and clinical tests.•Smoking history and airflow obstruction were diagnostics for imaging phenotypes. Three imaging phenotypes of COPD and ventilation heterogeneity. We examine relationships for non-tumour lobe ventilation voids and clinical tests. Smoking history and airflow obstruction were diagnostics for imaging phenotypes. In this prospectively planned interim-analysis, the prevalence of chronic obstructive lung disease (COPD) phenotypes was determined using magnetic resonance imaging (MRI) and X-ray computed tomography (CT) in non-small-cell-lung-cancer (NSCLC) patients. Stage-III-NSCLC patients provided written informed consent for pulmonary function tests, imaging and the 6-min-walk-test. Ventilation defect percent (VDP) and CT lung density (relative-of-CT-density-histogram <−950, RA 950 ) were measured. Patients were classified into three subgroups based on qualitative and quantitative COPD and tumour-specific imaging phenotypes: (1) tumour-specific ventilation defects (TSD), (2) tumour-specific and other ventilation defects without emphysema (TSD V ), and, (3) tumour-specific and other ventilation defects with emphysema (TSD VE ). Seventeen stage-III NSCLC patients were evaluated (68 ± 7 years, 7 M/10 F, mean FEV 1 = 77% pred ) including seven current and 10 ex-smokers and eight patients with a prior lung disease diagnosis. There was a significant difference for smoking history (p = .02) and FEV 1 /FVC (p = .04) for subgroups classified using quantitative imaging. Patient subgroups classified using qualitative imaging findings were significantly different for emphysema (RA 950 , p < .001). There were significant relationships for whole-lung VDP (p < .05), but not RECIST or tumour-lobe VDP measurements with pulmonary function and exercise measurements. Preliminary analysis for non-tumour burden ventilation abnormalities

  8. Development of soft magnetic materials with special properties

    International Nuclear Information System (INIS)

    Mager, A.

    1979-01-01

    New steps in the development of soft magnetic alloys are based on a better understanding of the magnetizing processes in close connection with the development of magnetic forms and components for different applications. New result on the influence of crystal grains, inclusions, and mechanical stresses on the soft magnetic properties of Ni-Fe-alloys with ca. 50 to 75% Nickel-contents are given. Special soft magnetic alloys were developed and improved for low temperature applications, for small temperature coefficients, for different shapes of hysteresis loops, or for high wear resistance - and moreover forms, components, and basic designs of chokes for RFI suppression, of transformers for electronic power supplies, of transformers for ground-fault interrupters, and for magnetic shielding equipments. (orig.) 891 GSC/orig. 892 AV [de

  9. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  10. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  11. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Huang, Z.; Xia, L.; Li, B.; Madjarska, M. S.

    2015-12-01

    An important class of loops in the solar atmosphere, cool transition region loops, have received little attention mainly due to instrumental limitations. We analyze a cluster of these loops in the on-disk active region NOAA 11934 recorded in a Si IV 1402.8 Å spectral raster and 1400Å slit-jaw (SJ) images taken by the Interface Region Imaging Spectrograph. We divide these loops into three groups and study their dynamics, evolution and interaction.The first group comprises geometrically relatively stable loops, which are finely scaled with 382~626 km cross-sections. Siphon flows in these loops are suggested by the Doppler velocities gradually changing from -10 km/s (blue-shifts) in one end to 20 km/s (red-shifts) in the other. Nonthermal velocities from 15 to 25 km/s were determined. The obtained physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of 1015 Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two active footpoints rooted in mixed-magnetic-polarity regions. Magnetic reconnection in both footpoints is suggested by explosive-event line profiles with enhanced wings up to 200 km/s and magnetic cancellation with a rate of ~1015 Mx/s. In the third group, an interaction between two cool loop systems is observed. Mixed-magnetic polarities are seen in their conjunction area where explosive-event line profiles and magnetic cancellation with a rate of 3×1015 Mx/s are found. This is a clear indication that magnetic reconnection occurs between these two loop systems. Our observations suggest that the cool transition region loops are heated impulsively most likely by sequences of magnetic reconnection events.

  12. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  13. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  14. Observable Signatures of Energy Release in Braided Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pontin, D. I. [University of Dundee, Nethergate, Dundee, DD1 4HN (United Kingdom); Janvier, M. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405, Orsay Cedex (France); Tiwari, S. K.; Winebarger, A. R.; Cirtain, J. W. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Galsgaard, K. [Niels Bohr Institute, Geological Museum Østervoldgade 5-7, DK-1350, Copenhagen K (Denmark)

    2017-03-10

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to the observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.

  15. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  16. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  17. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  18. Investigation of the properties of Co-rich amorphous ferromagnetic microwires by means of small angle magnetization rotation method

    International Nuclear Information System (INIS)

    Gudoshnikov, S.; Churyukanova, M.; Kaloshkin, S.; Zhukov, A.; Zhukova, V.; Usov, N.A.

    2015-01-01

    The amplitude of the second harmonic of the electro-motive force occurring in the receiving pick-up coil when alternating electrical current is flowing through the microwire is measured as a function of applied external magnetic field, at different mechanical tensile stresses. In addition, an analytical expression for the amplitude of the second harmonic of the electro-motive force is derived. Comparing the experimental and theoretical data the saturation magnetization, the magnetostriction constant and the amplitude of the residual quenching stress have been determined for a family of Co-rich glass-coated microwires. - Highlights: • Second harmonic of electro-motive force is measured in amorphous microwire. • Theoretical expression for second harmonic of electro-motive force is derived. • Using these data we determine basic magnetic parameters of Co-rich microwires

  19. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  20. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve th...

  1. Cytokine loops driving senescence

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan

    2008-01-01

    Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008

  2. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  3. Proteins mediating DNA loops effectively block transcription.

    Science.gov (United States)

    Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David

    2017-07-01

    Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  4. Electron acceleration and radiation signatures in loop coronal transients

    International Nuclear Information System (INIS)

    Vlahos, L.; Gergely, T.E.; Papadopoulos, K.

    1982-01-01

    A model for electron aceleration in loop coronal transients is suggested. We propose that in these transients an erupting loop moves away from the solar surface, with a velocity greater than the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. We suggest that lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field which exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. We discuss how the accelerated electrons are trapped in the moving loop and give a rough estimate of their radiation signature. We find that plasma radiation can explain the power observed in stationary and moving type IV bursts. We discuss some of the conditions under which moving or stationary type IV bursts are expected to be associated with loop coronal transients

  5. Magnetic small-angle scattering of subthermal neutrons by internal stress fields in work-hardened nickel single crystals oriented for multiple glide

    International Nuclear Information System (INIS)

    Vorbrugg, W.; Schaerpf, O.

    1975-01-01

    The small-angle scattering of Ni single crystals with (111) and (100) axis orientation is measured by a photographic method in the work-hardened state after tensile deformation. Parameters are the external magnetic field H parallel to the axis (600 2 ]<=8,8), and the elastic stress tausub(el)(0<=tausub(el)<=tausub(pl)) applied to the deformed crystals during the experiments. The scattering is found to be anisotropic and characteristic for the chosen orientation. The quantitative photometric analysis shows that the parameters mentioned above only influence the intensity but not the distribution of the scattered neutrons. The scattering increases with the elastic stress and decreases with the magnetic field. In particular, in the unloaded state there is a linear relation between the scattered intensity and the plastic shear stress. (author)

  6. Magnetic dynamics of small α-Fe2O3 and NiO particles studied by neutron scattering

    DEFF Research Database (Denmark)

    Lefmann, Kim; Bødker, Franz; Hansen, Mikkel Fougt

    1999-01-01

    particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to represent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temperature is interpreted...

  7. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    Science.gov (United States)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  8. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  9. Countermeasure for the magnetic drag force in guideway structure of superconducting magnetic levitation Vehicle system (MAGLEV); Chodendo jiki fujoshiki tetsudo no kozobutsu ni okeru denjiki taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, A [JR Railway Technical Research Inst., Tokyo (Japan)

    1995-02-15

    As for the levitation vehicle system, the vehicle is equipped with superconducting magnets and is levitated about 10cm by the electromagnetic force that works between the push coil and levitation guide coil laid on the ground and it runs 500km an hour. But, the running resistance and energy loss called as magnetic resistance caused by the electromagnet phenomenon that generates between the superconducting magnets and structures (steel products) generate. In this paper, the magnet resistance generated in guideway structure of superconducting magnetic levitation vehicle system and its countermeasures therefor are introduced. The main countermeasures against the magnetic resistance are as follows. The steel products have to be as arranged as separated from the superconducting magnets as far as possible in the permissible design limit. Based on the analysis results the low magnetic steel would be used in an area within 1.5m from the strand of the superconducting magnet. The contact resistance of the joints part of loop-shaped components would be bigger so as to do not cause the loop current. And the big component would be divided into small parts when it is used near to the superconducting magnets. 5 refs., 10 figs.

  10. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Damiano, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehta, Chaitanya [Univ. of Tennessee, Knoxville, TN (United States); Collins, Price [Univ. of Tennessee, Knoxville, TN (United States); Lish, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Cady, Brian [Univ. of Tennessee, Knoxville, TN (United States); Lollar, Victor [Univ. of Tennessee, Knoxville, TN (United States); de Wet, Dane [Univ. of Tennessee, Knoxville, TN (United States); Bayram, Duygu [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  11. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    International Nuclear Information System (INIS)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; De Wet, Dane; Bayram, Duygu

    2015-01-01

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  12. Impact of gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance on the non-invasive diagnosis of small hepatocellular carcinoma: a prospective study.

    Science.gov (United States)

    Granito, A; Galassi, M; Piscaglia, F; Romanini, L; Lucidi, V; Renzulli, M; Borghi, A; Grazioli, L; Golfieri, R; Bolondi, L

    2013-02-01

    Gadoxetic acid (Gd-EOB-DTPA) is a 'hepatocyte-specific' contrast agent for magnetic resonance (MR) in both the vascular and the hepatobiliary phases. To evaluate the contribution of the hepatobiliary phase of Gd-EOB-DTPA MR in the diagnosis of small hepatocellular carcinoma (HCC) in cirrhotic patients under surveillance. Between 2008 and 2011, 48 consecutive small (10-30 mm) liver nodules were detected in 33 patients, who prospectively underwent contrast-enhanced ultrasound (CEUS), Gd-EOB-DTPA-enhanced MR and helical-computed tomography (CT) in a blind study. The diagnosis of HCC was established according to AASLD 2005 criteria. Of the 48 nodules, 38 (79%) were diagnosed as HCC, 24 (63%) of them based on AASLD non-invasive criteria, 11 diagnosed at histology and 3 during follow-up. The typical vascular pattern (arterial hypervascularisation and venous/late washout) was detected in 30 (79%) HCC nodules by MR, in 22 (58%) by CT and in 17 (45%) by CEUS. Hypointensity during the MR hepatobiliary phase was observed in all HCC nodules and in 3 nonmalignant nodules (sensitivity 100%, specificity 70%, positive predictive value 93%, negative predictive value 100%, positive likelihood ratio 3.33, negative likelihood ratio 0). Eight (21%) of the 38 HCC nodules, 7 of which lacked the typical vascular features at any of the imaging modalities, showed washout in the portal/venous phase and hypointensity in the hepatobiliary phase at MRI, while this pattern was not detected in any nonmalignant lesion. Gadoxetic acid magnetic resonance may enhance the sensitivity of the non-invasive diagnosis of small hepatocellular carcinoma nodules in cirrhotic patients under surveillance. Double hypointensity in the portal/venous and hepatobiliary phases could be considered a new magnetic resonance pattern, highly suggestive of hypovascular hepatocellular carcinoma. © 2012 Blackwell Publishing Ltd.

  13. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    Science.gov (United States)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  14. Role of oxygen defects on the magnetic properties of ultra-small Sn1-xFexO2 nanoparticles

    Science.gov (United States)

    Dodge, Kelsey; Chess, Jordan; Eixenberger, Josh; Alanko, Gordon; Hanna, Charles B.; Punnoose, Alex

    2013-05-01

    Although the role of oxygen defects in the magnetism of metal oxide semiconductors has been widely discussed, it is been difficult to directly measure the oxygen defect concentration of samples to verify this. This work demonstrates a direct correlation between the photocatalytic activity of Sn1-xFexO2 nanoparticles and their magnetic properties. For this, a series of ˜2.6 nm sized, well characterized, single-phase Sn1-xFexO2 crystallites with x = 0-0.20 were synthesized using tin acetate, urea, and appropriate amounts of iron acetate. X-ray photoelectron spectroscopy confirmed the concentration and 3+ oxidation state of the doped Fe ions. The maximum magnetic moment/Fe ion, μ, of 1.6 × 10-4 μB observed for the 0.1% Fe doped sample is smaller than the expected spin-only contribution from either high or low spin Fe3+ ions, and μ decreases with increasing Fe concentration. This behavior cannot be explained by the existing models of magnetic exchange. Photocatalytic studies of pure and Fe-doped SnO2 were used to understand the roles of doped Fe3+ ions and of the oxygen vacancies and defects. The photocatalytic rate constant k also showed an increase when SnO2 nanoparticles were doped with low concentrations of Fe3+, reaching a maximum at 0.1% Fe, followed by a rapid decrease of k for further increase in Fe%. Fe doping presumably increases the concentration of oxygen vacancies, and both Fe3+ ions and oxygen vacancies act as electron acceptors to reduce e--h+ recombination and promote transfer of electrons (and/or holes) to the nanoparticle surface, where they participate in redox reactions. This electron transfer from the Fe3+ ions to local defect density of states at the nanoparticle surface could develop a magnetic moment at the surface states and leads to spontaneous ferromagnetic ordering of the surface shell under favorable conditions. However, at higher doping levels, the same Fe3+ ions might act as recombination centers causing a decrease of both k and

  15. Computational stability appraisal of rectangular natural circulation loop: Effect of loop inclination

    International Nuclear Information System (INIS)

    Krishnani, Mayur; Basu, Dipankar N.

    2017-01-01

    Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints

  16. A model for a stable coronal loop

    International Nuclear Information System (INIS)

    Hoven, G.V.; Chiuderi, C.; Giachetti, R.

    1977-01-01

    We present here a new plasma-physics model of a stable active-region arch which corresponds to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium magnetic field must depart from the force-free form valid in the surrounding corona. We take advantage of the data and of the approximate cylindrical symmetry to develop a modified form of the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion physics, and the results show short-wavelength stability in a specific parameter range. Thus we demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and magnetic fields of a characteristic stable coronal loop are described

  17. Mass upflows in 'post'-flare loops

    International Nuclear Information System (INIS)

    Forbes, T.G.; Priest, E.R.

    1983-01-01

    A self-consistent numerical model of a reconnecting magnetic field configuration similar to that occurring during the main-phase of two-ribbon flares is used to estimate the upflow caused by the fast-mode expansion of the magnetic field moving into the reconnection region. Such an expansion creates a field-aligned pressure gradient which accelerates plasma upward from the chromospheric base of magnetic field lines in the region external to the loops. The numerical results imply that the amount of mass sucked up in this way is even smaller than was previously estimated by Kopp and Pneuman who used a kinematic model. Therefore, some indirect mechanism (such as evaporation), which would probably derive its motive power from the thermal energy generated by the reconnection, is required to explain the large mass upflows inferred from observations. (orig.)

  18. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  19. Modelling and Design of a 3 kW Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

    Directory of Open Access Journals (Sweden)

    Acharya Parash

    2016-01-01

    Full Text Available This paper presents the modeling and design of a 3 kW Permanent Magnet Synchronous Generator (PMSG used for a variable speed wind turbine. Initially, the PMSG is modeled in the d-q reference frame. Different optimized parameters of the generator are extracted from the design and used in simulation of the PMSG. The generator output power is matched with the power of the turbine such that the generator is not either over-sized or under-sized.

  20. Wilson loops in minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface