WorldWideScience

Sample records for small interference rna

  1. Small Molecule Modifiers of the microRNA and RNA Interference Pathway

    OpenAIRE

    Deiters, Alexander

    2009-01-01

    Recently, the RNA interference (RNAi) pathway has become the target of small molecule inhibitors and activators. RNAi has been well established as a research tool in the sequence-specific silencing of genes in eukaryotic cells and organisms by using exogenous, small, double-stranded RNA molecules of approximately 20 nucleotides. Moreover, a recently discovered post-transcriptional gene regulatory mechanism employs microRNAs (miRNAs), a class of endogenously expressed small RNA molecules, whic...

  2. Using RNA Interference to Study Protein Function

    OpenAIRE

    Curtis, Carol D.; Nardulli, Ann M.

    2009-01-01

    RNA interference can be extremely useful in determining the function of an endogenously-expressed protein in its normal cellular environment. In this chapter, we describe a method that uses small interfering RNA (siRNA) to knock down mRNA and protein expression in cultured cells so that the effect of a putative regulatory protein on gene expression can be delineated. Methods of assessing the effectiveness of the siRNA procedure using real time quantitative PCR and Western analysis are also in...

  3. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    Science.gov (United States)

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  4. Intervention of radiation‐induced skin fibrosis by RNA interference

    DEFF Research Database (Denmark)

    Nawroth, Isabel

    ‐α (TNFα) production by macrophages might promote RIF. RNA interference (RNAi) is an evolutionary conserved gene‐silencing mechanism capable of degrading mRNA containing a homologous sequence to an exogenously introduced double stranded small interfering RNA (siRNA). These siRNAs can induce RNAi...... and inhibit the expression of target proteins. Therefore, siRNAs are considered as promising therapeutics for treatment of various diseases including genetic and viral diseases, and cancer. In this study, the therapeutic potential of RNA interference was investigated as an intervention strategy for radiation......‐induced skin fibrosis. Chitosan‐based nanoparticles (or polyplexes) formed by self‐assembly with siRNA were applied to overcome extracellular and intracellular barriers and deliver siRNA site‐specific. In this work we show that intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα...

  5. siRNA-mediated RNA interference in precision-cut tissue slices prepared from mouse lung and kidney

    NARCIS (Netherlands)

    Ruigrok, Mitchel J. R.; Maggan, Nalinie; Willaert, Delphine; Frijlink, Henderik W.; Melgert, Barbro N.; Olinga, Peter; Hinrichs, Wouter L. J.

    Small interfering RNA (siRNA)-mediated RNAi interference (RNAi) is a powerful post-transcriptional gene silencing mechanism which can be used to study the function of genes in vitro (cell cultures) and in vivo (animal models). However, there is a translational gap between these models. Hence, there

  6. Neuron-specific RNA interference using lentiviral vectors

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup; Marion, Ingrid van; Hasholt, Lis

    2009-01-01

    BACKGROUND: Viral vectors have been used in several different settings for the delivery of small hairpin (sh) RNAs. However, most vectors have utilized ubiquitously-expressing polymerase (pol) III promoters to drive expression of the hairpin as a result of the strict requirement for precise...... transcriptional initiation and termination. Recently, pol II promoters have been used to construct vectors for RNA interference (RNAi). By embedding the shRNA into a micro RNA-context (miRNA) the endogenous miRNA processing machinery is exploited to achieve the mature synthetic miRNA (smiRNA), thereby expanding...... the possible promoter choices and eventually allowing cell type specific down-regulation of target genes. METHODS: In the present study, we constructed lentiviral vectors expressing smiRNAs under the control of pol II promoters to knockdown gene expression in cell culture and in the brain. RESULTS: We...

  7. RNA interference and Register Machines (extended abstract

    Directory of Open Access Journals (Sweden)

    Masahiro Hamano

    2012-11-01

    Full Text Available RNA interference (RNAi is a mechanism whereby small RNAs (siRNAs directly control gene expression without assistance from proteins. This mechanism consists of interactions between RNAs and small RNAs both of which may be single or double stranded. The target of the mechanism is mRNA to be degraded or aberrated, while the initiator is double stranded RNA (dsRNA to be cleaved into siRNAs. Observing the digital nature of RNAi, we represent RNAi as a Minsky register machine such that (i The two registers hold single and double stranded RNAs respectively, and (ii Machine's instructions are interpreted by interactions of enzyme (Dicer, siRNA (with RISC com- plex and polymerization (RdRp to the appropriate registers. Interpreting RNAi as a computational structure, we can investigate the computational meaning of RNAi, especially its complexity. Initially, the machine is configured as a Chemical Ground Form (CGF, which generates incorrect jumps. To remedy this problem, the system is remodeled as recursive RNAi, in which siRNA targets not only mRNA but also the machine instructional analogues of Dicer and RISC. Finally, probabilistic termination is investigated in the recursive RNAi system.

  8. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells.

    Directory of Open Access Journals (Sweden)

    Jaclyn C Scott

    2010-10-01

    Full Text Available The exogenous RNA interference (RNAi pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (siRNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2 cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts.

  9. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kopechek

    Full Text Available RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14. Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9 or control RNA (n = 8 during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3 confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively. Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  10. Prokaryotic Argonautes - variations on the RNA interference theme

    Science.gov (United States)

    van der Oost, John; Swarts, Daan C.; Jore, Matthijs M.

    2014-01-01

    The discovery of RNA interference (RNAi) has been a major scientific breakthrough. This RNA-guided RNA interference system plays a crucial role in a wide range of regulatory and defense mechanisms in eukaryotes. The key enzyme of the RNAi system is Argonaute (Ago), an endo-ribonuclease that uses a small RNA guide molecule to specifically target a complementary RNA transcript. Two functional classes of eukaryotic Ago have been described: catalytically active Ago that cleaves RNA targets complementary to its guide, and inactive Ago that uses its guide to bind target RNA to down-regulate translation efficiency. A recent comparative genomics study has revealed that Argonaute-like proteins are also encoded by prokaryotic genomes. Interestingly, there is a lot of variation among these prokaryotic Argonaute (pAgo) proteins with respect to domain architecture: some resemble the eukaryotic Ago (long pAgo) containing a complete or disrupted catalytic site, while others are truncated versions (short pAgo) that generally contain an incomplete catalytic site. Prokaryotic Agos with an incomplete catalytic site often co-occur with (predicted) nucleases. Based on this diversity, and on the fact that homologs of other RNAi-related protein components (such as Dicer nucleases) have never been identified in prokaryotes, it has been predicted that variations on the eukaryotic RNAi theme may occur in prokaryotes. PMID:28357239

  11. Pulmonary administration of small interfering RNA : The route to go?

    NARCIS (Netherlands)

    Ruigrok, Mitchel; Frijlink, Henderik W.; Hinrichs, Wouter

    2016-01-01

    Ever since the discovery of RNA interference (RNAi), which is a post-transcriptional gene silencing mechanism, researchers have been studying the therapeutic potential of using small interfering RNA (siRNA) to treat diseases that are characterized by excessive gene expression. Excessive gene

  12. Small regulatory RNAs of the RNA interference (RNAi) pathway as a prophylactic treatment against fish pathogenic viruses

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Hajiabadi, Seyed Amir Hossein Jalali; Kristensen, Lasse Bøgelund Juel

    2011-01-01

    Small RNAs acting in the recently discovered gene regulatory mechanism called RNA interference has a potential as diagnostic signatures of disease and immunological state and when produced synthetically as prophylactic treatment of such diseases. In the RNAi mechanism the cell produces different....... The mechanism can be programmed with several types of small double stranded RNAs - the type of which defines the destiny of the target. One such class of regulatory RNAs called microRNAs are upregulated due to various physiological responses of the cell and they suppress many genes simultaneously believed...... small RNAs which inhibit gene expression through more or less specific interaction with messenger RNAs resulting in repression of translation to protein. In this way cells can turn of genes of specific pathways thereby leading to altered physiological stages of tissues and possibly of whole organisms...

  13. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference

    DEFF Research Database (Denmark)

    Peng, Wenfang; Feng, Mingxia; Feng, Xu

    2015-01-01

    CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids...... carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis....... islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA....

  14. Inhibition of endothelial cell proliferation by targeting Rac1 GTPase with small interference RNA in tumor cells

    International Nuclear Information System (INIS)

    Xue Yan; Bi Feng; Zhang Xueyong; Pan Yanglin; Liu Na; Zheng Yi; Fan Daiming

    2004-01-01

    Hypoxia-induced angiogenesis plays an important role in the malignancy of solid tumors. A number of recent studies including our own have suggested that Rho family small GTPases are involved in this process, and Rac1, a prominent member of the Rho family, may be critical in regulating hypoxia-induced gene activation of several angiogenesis factors and tumor suppressors. To further define Rac1 function in angiogenesis and to explore novel approaches to modulate angiogenesis, we employed the small interference RNA technique to knock down gene expression of Rac1 in gastric cancer cell line AGS that expresses a high level of Rac1. Both the mRNA and protein levels of Rac1 in the AGS cells were decreased dramatically after transfection with a Rac1-specific siRNA vector. When the conditioned medium derived from the Rac1 downregulated AGS cells was applied to the human endothelial cells, it could significantly inhibit the cell proliferation. Further study proved that, VEGF and HIF-1α, two angiogenesis promoting factors, were found to be downregulated whereas p53 and VHL, which are tumor suppressors and angiogenesis inhibitors, were upregulated in the Rac1 siRNA transfected cells. Our results suggest that Rac1 may be involved in angiogenesis by controlling the expression of angiogenesis-related factors and provide a possible strategy for the treatment of tumor angiogenesis by targeting the Rac1 GTPase

  15. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases.

    Science.gov (United States)

    Hernández, Armando R; Peterson, Larryn W; Kool, Eric T

    2012-08-17

    Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.

  16. RNA interference targets arbovirus replication in Culicoides cells.

    Science.gov (United States)

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2013-03-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.

  17. High-Level Accumulation of Exogenous Small RNAs Not Affecting Endogenous Small RNA Biogenesis and Function in Plants

    Institute of Scientific and Technical Information of China (English)

    SHEN Wan-xia; Neil A Smith; ZHOU Chang-yong; WANG Ming-bo

    2014-01-01

    RNA silencing is a fundamental plant defence and gene control mechanism in plants that are directed by 20-24 nucleotide (nt) small interfering RNA (siRNA) and microRNA (miRNA). Infection of plants with viral pathogens or transformation of plants with RNA interference (RNAi) constructs is usually associated with high levels of exogenous siRNAs, but it is unclear if these siRNAs interfere with endogenous small RNA pathways and hence affect plant development. Here we provide evidence that viral satellite RNA (satRNA) infection does not affect siRNA and miRNA biogenesis or plant growth despite the extremely high level of satRNA-derived siRNAs. We generated transgenic Nicotiana benthamiana plants that no longer develop the speciifc yellowing symptoms generally associated with infection by Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat). We then used these plants to show that CMV Y-Sat infection did not cause any visible phenotypic changes in comparison to uninfected plants, despite the presence of high-level Y-Sat siRNAs. Furthermore, we showed that the accumulation of hairpin RNA (hpRNA)-derived siRNAs or miRNAs, and the level of siRNA-directed transgene silencing, are not signiifcantly affected by CMV Y-Sat infection. Taken together, our results suggest that the high levels of exogenous siRNAs associated with viral infection or RNAi-inducing transgenes do not saturate the endogenous RNA silencing machineries and have no signiifcant impact on normal plant development.

  18. RNA virus interference via CRISPR/Cas13a system in plants

    KAUST Repository

    Aman, Rashid

    2017-11-04

    CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants. CRISPR/Cas13a produced interference against green fluorescent protein (GFP) expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. crRNAs targeting the HC-Pro and GFP sequences exhibited better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs. Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses, and for other RNA manipulations in plants.

  19. RNA virus interference via CRISPR/Cas13a system in plants

    KAUST Repository

    Aman, Rashid

    2018-01-04

    CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants.CRISPR/Cas13a produces interference against green fluorescent protein (GFP)-expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HC-Pro and GFP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs.Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.

  20. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Small Interference RNA Targeting TLR4 Gene Effectively Attenuates Pulmonary Inflammation in a Rat Model

    Directory of Open Access Journals (Sweden)

    Feixiang Wu

    2012-01-01

    Full Text Available Objective. The present study was to investigate the feasibility of adenovirus-mediated small interference RNA (siRNA targeting Toll-like receptor 4 (TLR4 gene in ameliorating lipopolysaccharide- (LPS- induced acute lung injury (ALI. Methods. In vitro, alveolar macrophages (AMs were treated with Ad-siTLR4 and Ad-EFGP, respectively, for 12 h, 24 h, and 48 h, and then with LPS (100 ng/mL for 2 h, and the function and expression of TLR4 were evaluated. In vivo, rats received intratracheal injection of 300 μL of normal saline (control group, 300 μL of Ad-EGFP (Ad-EGFP group, or 300 μL of Ad-siTLR4 (Ad-siTLR4 group and then were intravenously treated with LPS (50 mg/kg to induce ALI. Results. Ad-siTLR4 treatment significantly reduced TLR4 expression and production of proinflammatory cytokines following LPS treatment both in vitro and in vivo. Significant alleviation of tissue edema, microvascular protein leakage, and neutrophil infiltration was observed in the AdsiTLR4-treated animals. Conclusion. TLR4 plays a critical role in LPS-induced ALI, and transfection of Ad-siTLR4 can effectively downregulate TLR4 expression in vitro and in vivo, accompanied by alleviation of LPS-induced lung injury. These findings suggest that TLR4 may serve as a potential target in the treatment of ALI and RNA interfering targeting TLR4 expression represents a therapeutic strategy.

  2. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo

    NARCIS (Netherlands)

    Mook, Olaf R.; Baas, Frank; de Wissel, Marit B.; Fluiter, Kees

    2007-01-01

    RNA interference has become widely used as an experimental tool to study gene function. In addition, small interfering RNA (siRNA) may have great potential for the treatment of diseases. Recently, it was shown that siRNA can be used to mediate gene silencing in mouse models. Locally administered

  3. The Role of RNA Interference (RNAi in Arbovirus-Vector Interactions

    Directory of Open Access Journals (Sweden)

    Carol D. Blair

    2015-02-01

    Full Text Available RNA interference (RNAi was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (dsRNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (siRNA, micro (miRNA, and Piwi-interacting (piRNA pathways. The exogenous (exo-siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.

  4. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.

    Science.gov (United States)

    Göertz, G P; Fros, J J; Miesen, P; Vogels, C B F; van der Bent, M L; Geertsema, C; Koenraadt, C J M; van Rij, R P; van Oers, M M; Pijlman, G P

    2016-11-15

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease XRN1/Pacman on conserved RNA structures in the 3' untranslated region (UTR) of the viral genomic RNA. sfRNA production is conserved in insect-specific, mosquito-borne, and tick-borne flaviviruses and flaviviruses with no known vector, suggesting a pivotal role for sfRNA in the flavivirus life cycle. Here, we investigated the function of sfRNA during WNV infection of Culex pipiens mosquitoes and evaluated its role in determining vector competence. An sfRNA1-deficient WNV was generated that displayed growth kinetics similar to those of wild-type WNV in both RNA interference (RNAi)-competent and -compromised mosquito cell lines. Small-RNA deep sequencing of WNV-infected mosquitoes indicated an active small interfering RNA (siRNA)-based antiviral response for both the wild-type and sfRNA1-deficient viruses. Additionally, we provide the first evidence that sfRNA is an RNAi substrate in vivo Two reproducible small-RNA hot spots within the 3' UTR/sfRNA of the wild-type virus mapped to RNA stem-loops SL-III and 3' SL, which stick out of the three-dimensional (3D) sfRNA structure model. Importantly, we demonstrate that sfRNA-deficient WNV displays significantly decreased infection and transmission rates in vivo when administered via the blood meal. Finally, we show that transmission and infection rates are not affected by sfRNA after intrathoracic injection, thereby identifying sfRNA as a key driver to overcome the mosquito midgut infection barrier. This is the first report to describe a key biological function of sfRNA for flavivirus infection of the arthropod vector, providing an explanation for the strict conservation of sfRNA production. Understanding the flavivirus transmission

  5. Role of RNA interference (RNAi) in the moss Physcomitrella patens

    KAUST Repository

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  6. Role of RNA interference (RNAi) in the moss Physcomitrella patens

    KAUST Repository

    Arif, Muhammad Asif

    2013-01-14

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  7. A simple and robust vector-based shRNA expression system used for RNA interference.

    Science.gov (United States)

    Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi

    2013-01-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  8. Radiation enhancement effect of RNA interference for HIF-1α on the transplant tumor

    International Nuclear Information System (INIS)

    Ren Ruimei; Sun Xindong; Zhao Hanxi; Yan Qingxia; Huang Guangwu

    2008-01-01

    Objective: To determine and explore the radiation enhancement of RNA interference for HIF-1α on the transplant tumor using polycationic polyethylenimine (PEI), as a new kind of gene vector. Methods: SPCA-1 nude mouse model was used. 160 nude mice bearing SPCA-1 were randomly divided into 4 treated groups and 1 control groups, each group had 32 mice. The expression of HIF-1α was studied by immunohistochemical method after RNA interference for HIF-1α. The differences of the volume, weight, survival time of the transplant tumor were studied among the simple radiation group, the simple RNA interference for HIF- 1α group and the combination of radiation and RNA interference for HIF-1α. Results: The expression of HIF-1α was decreased after RNA interference for HIF-1α. RNA interference for HIF-1α combined with radiation decreased the volume, weight of the transplant tumor, and prolonged its survival time period significantly than other methods. Conclusions: RNA interference targeting HIF-1α might enhance the radiosensitivity of the transplant tumor using PEI as a new kind of gene vector in vitro. (authors)

  9. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    Science.gov (United States)

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  10. A simple and robust vector-based shRNA expression system used for RNA interference.

    Directory of Open Access Journals (Sweden)

    Xue-jun Wang

    Full Text Available BACKGROUND: RNA interference (RNAi mediated by small interfering RNAs (siRNAs or short hairpin RNAs (shRNAs has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. RESULTS: In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. CONCLUSION: This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  11. RNA interference for performance enhancement and detection in doping control.

    Science.gov (United States)

    Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2011-10-01

    RNA interference represents a comparably new route of regulating and manipulating specific gene expression. Promising results were obtained in experimental therapies aim at the treatment of different kinds of diseases including cancer, diabetes mellitus or Dychenne muscular dystrophy. While studies on down-regulation efficiency are often performed by analyzing the regulated protein, the direct detection of small, interfering RNA molecules and antisense oligonucleotides is of great interest for the investigation of the metabolism and degradation and also for the detection of a putative misuse of these molecules in sports. Myostatin down-regulation was shown to result in increased performance and muscle growth and the regulation of several other proteins could be relevant for performance enhancement. This mini-review summarizes current approaches for the mass spectrometric analysis of siRNA and antisense oligonucleotides from biological matrices and the available data on biodistribution, metabolism, and half-life of relevant substances are discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Emerging strategies for RNA interference (RNAi) applications in insects.

    Science.gov (United States)

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  13. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Parrish, S; Fire, A

    2001-10-01

    RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed.

  14. RNA virus interference via CRISPR/Cas13a system in plants

    KAUST Repository

    Aman, Rashid; Ali, Zahir; Butt, Haroon; Mahas, Ahmed; Aljedaani, Fatimah R.; Khan, Muhammad Zuhaib; Ding, Shouwei; Mahfouz, Magdy M.

    2018-01-01

    -crRNAs into functional crRNAs.Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.

  15. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis.

    Science.gov (United States)

    Mohorianu, Irina; Stocks, Matthew Benedict; Applegate, Christopher Steven; Folkes, Leighton; Moulton, Vincent

    2017-01-01

    RNA silencing (RNA interference, RNAi) is a complex, highly conserved mechanism mediated by short, typically 20-24 nt in length, noncoding RNAs known as small RNAs (sRNAs). They act as guides for the sequence-specific transcriptional and posttranscriptional regulation of target mRNAs and play a key role in the fine-tuning of biological processes such as growth, response to stresses, or defense mechanism.High-throughput sequencing (HTS) technologies are employed to capture the expression levels of sRNA populations. The processing of the resulting big data sets facilitated the computational analysis of the sRNA patterns of variation within biological samples such as time point experiments, tissue series or various treatments. Rapid technological advances enable larger experiments, often with biological replicates leading to a vast amount of raw data. As a result, in this fast-evolving field, the existing methods for sequence characterization and prediction of interaction (regulatory) networks periodically require adapting or in extreme cases, a complete redesign to cope with the data deluge. In addition, the presence of numerous tools focused only on particular steps of HTS analysis hinders the systematic parsing of the results and their interpretation.The UEA small RNA Workbench (v1-4), described in this chapter, provides a user-friendly, modular, interactive analysis in the form of a suite of computational tools designed to process and mine sRNA datasets for interesting characteristics that can be linked back to the observed phenotypes. First, we show how to preprocess the raw sequencing output and prepare it for downstream analysis. Then we review some quality checks that can be used as a first indication of sources of variability between samples. Next we show how the Workbench can provide a comparison of the effects of different normalization approaches on the distributions of expression, enhanced methods for the identification of differentially expressed

  16. RNA interference in designing transgenic crops.

    Science.gov (United States)

    Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2010-01-01

    RNA interference (RNAi) is a sequence specific gene silencing mechanism, triggered by the introduction of dsRNA leading to mRNA degradation. It helps in switching on and off the targeted gene, which might have significant impact in developmental biology. Discovery of RNAi represents one of the most promising and rapidly advancing frontiers in plant functional genomics and in crop improvement by plant metabolic engineering and also plays an important role in reduction of allergenicity by silencing specific plant allergens. In plants the RNAi technology has been employed successfully in improvement of several plant species- by increasing their nutritional value, overall quality and by conferring resistance against pathogens and diseases. The review gives an insight to the perspective use of the technology in designing crops with innovation, to bring improvement to crop productivity and quality.

  17. Inhibition of virus replication by RNA interference

    NARCIS (Netherlands)

    Haasnoot, P. C. Joost; Cupac, Daniel; Berkhout, Ben

    2003-01-01

    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene

  18. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    Science.gov (United States)

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  19. RNA interference: its use as antiviral therapy

    NARCIS (Netherlands)

    Haasnoot, J.; Berkhout, B.

    2006-01-01

    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more

  20. Advances in targeted delivery of small interfering RNA using simple bioconjugates

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Kjems, Jørgen; Sorensen, Kristine Rothaus

    2014-01-01

    with a targeting moiety, in a simple bioconjugate construct. We discuss the use of different types of targeting moieties, as well as the different conjugation strategies employed for preparing these bioconjugate constructs that deliver the siRNA to target cells. We focus especially on the in-built or passive......Introduction: Development of drugs based on RNA interference by small interfering RNA (siRNA) has been progressing slowly due to a number of challenges associated with the in vivo behavior of siRNA. A central problem is controlling siRNA delivery to specific cell types. Here, we review existing...... literature on one type of strategy for solving the issue of cell-specific delivery of siRNA, namely delivering the siRNA as part of simple bioconjugate constructs. Areas covered: This review presents current experience from strategies aimed at targeting siRNA to specific cell types, by associating the siRNA...

  1. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families

    International Nuclear Information System (INIS)

    Carbonell, Alberto; Martinez de Alba, Angel-Emilio; Flores, Ricardo; Gago, Selma

    2008-01-01

    Infection by viroids, non-protein-coding circular RNAs, occurs with the accumulation of 21-24 nt viroid-derived small RNAs (vd-sRNAs) with characteristic properties of small interfering RNAs (siRNAs) associated to RNA silencing. The vd-sRNAs most likely derive from dicer-like (DCL) enzymes acting on viroid-specific dsRNA, the key elicitor of RNA silencing, or on the highly structured genomic RNA. Previously, viral dsRNAs delivered mechanically or agroinoculated have been shown to interfere with virus infection in a sequence-specific manner. Here, we report similar results with members of the two families of nuclear- and chloroplast-replicating viroids. Moreover, homologous vd-sRNAs co-delivered mechanically also interfered with one of the viroids examined. The interference was sequence-specific, temperature-dependent and, in some cases, also dependent on the dose of the co-inoculated dsRNA or vd-sRNAs. The sequence-specific nature of these effects suggests the involvement of the RNA induced silencing complex (RISC), which provides sequence specificity to RNA silencing machinery. Therefore, viroid titer in natural infections might be regulated by the concerted action of DCL and RISC. Viroids could have evolved their secondary structure as a compromise between resistance to DCL and RISC, which act preferentially against RNAs with compact and relaxed secondary structures, respectively. In addition, compartmentation, association with proteins or active replication might also help viroids to elude their host RNA silencing machinery

  2. Role of RNA interference in plant improvement.

    Science.gov (United States)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  3. Role of RNA interference in plant improvement

    Science.gov (United States)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  4. Domain motions of Argonaute, the catalytic engine of RNA interference

    Directory of Open Access Journals (Sweden)

    Wall Michael E

    2007-11-01

    Full Text Available Abstract Background The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field. Results The analysis reveals low-frequency vibrations that facilitate the accommodation of RNA duplexes – an essential step in target recognition. The Pyrococcus furiosus and Aquifex aeolicus Argonaute proteins both exhibit low-frequency torsion and hinge motions; however, differences in the overall architecture of the proteins cause the detailed dynamics to be significantly different. Conclusion Overall, low-frequency vibrations of Argonaute are consistent with mechanisms within the current reaction cycle model for RNA interference.

  5. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  6. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages.

    Directory of Open Access Journals (Sweden)

    Valentina Vongrad

    Full Text Available MiRNAs and other small noncoding RNAs (sncRNAs are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM.The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP, which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs.PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.

  7. From early lessons to new frontiers: the worm as a treasure trove of small RNA biology.

    Science.gov (United States)

    Youngman, Elaine M; Claycomb, Julie M

    2014-01-01

    In the past 20 years, the tiny soil nematode Caenorhabditis elegans has provided critical insights into our understanding of the breadth of small RNA-mediated gene regulatory activities. The first microRNA was identified in C. elegans in 1993, and the understanding that dsRNA was the driving force behind RNA-mediated gene silencing came from experiments performed in C. elegans in 1998. Likewise, early genetic screens in C. elegans for factors involved in RNA interference pointed to conserved mechanisms for small RNA-mediated gene silencing pathways, placing the worm squarely among the founding fathers of a now extensive field of molecular biology. Today, the worm continues to be at the forefront of ground-breaking insight into small RNA-mediated biology. Recent studies have revealed with increasing mechanistic clarity that C. elegans possesses an extensive nuclear small RNA regulatory network that encompasses not only gene silencing but also gene activating roles. Further, a portrait is emerging whereby small RNA pathways play key roles in integrating responses to environmental stimuli and transmitting epigenetic information about such responses from one generation to the next. Here we discuss endogenous small RNA pathways in C. elegans and the insight worm biology has provided into the mechanisms employed by these pathways. We touch on the increasingly spectacular diversity of small RNA biogenesis and function, and discuss the relevance of lessons learned in the worm for human biology.

  8. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Samiee, Shahram; Ataee, Zahra; Tabei, Seyyed Ziyaoddin; Moazzeni, Seyed Mohammad

    2009-01-01

    RNA interference (RNAi) is an exciting mechanism for knocking down any target gene in transcriptional level. It is now clear that small interfering RNA (siRNA), a 19-21nt long dsRNA, can trigger a degradation process (RNAi) that specifically silences the expression of a cognate mRNA. Our findings in this study showed that down regulation of CD40 gene expression in dendritic cells (DCs) by RNAi culminated to immune modulation. Effective delivery of siRNA into DCs would be a reasonable method for the blocking of CD40 gene expression at the cell surface without any effect on other genes and cell cytotoxicity. The effects of siRNA against CD40 mRNA on the function and phenotype of DCs were investigated. The DCs were separated from the mice spleen and then cultured in vitro. By the means of Lipofectamine2000, siRNA was delivered to the cells and the efficacy of transfection was estimated by flow cytometry. By Annexine V and Propidium Iodide staining, we could evaluate the transfected cells viability. Also, the mRNA expression and protein synthesis were assessed by real-time PCR and flow cytometry, respectively. Knocking down the CD40 gene in the DCs caused an increase in IL-4 production, decrease in IL-12 production and allostimulation activity. All together, these effects would stimulate Th2 cytokines production from allogenic T-cells in vitro.

  9. Radiolabeling small RNA with technetium-99m for visualizing cellular delivery and mouse biodistribution

    International Nuclear Information System (INIS)

    Liu Ning; Ding Hongliu; Vanderheyden, Jean-Luc; Zhu Zhihong; Zhang Yumin

    2007-01-01

    To develop a noninvasive direct method for the in vivo tracking of small interfering RNA (siRNA) used in RNA interference, two 18-nucleotide oligoribonucleotides were radiolabeled with technetium-99m ( 99m Tc-RNA). The ability of 99m Tc-RNA to track delivery was tested in cultured cells and living mice. The cellular delivery of 99m Tc-RNAs could be quantified by gamma counting and could be visualized by microautoradiography. Radiolabeled RNAs can be efficiently delivered into cells by reaching up to 3x10 5 molecules of small RNAs per cell. Moreover, RNAs were internalized with homogeneous distribution throughout the cytoplasm and nucleus. In tumor-bearing mice, whole-body images and biodistribution studies showed that 99m Tc-RNAs were delivered to almost all tissues after intravenous injection. The imaging of living animals allowed noninvasive and longitudinal monitoring of the in vivo delivery of these small RNAs. In conclusion, using 99m Tc radiolabeling, the delivery of small RNAs could be measured quantitatively in cultured cells and could be noninvasively visualized in living animals using a gamma camera. The results of this study could open up a new approach for measuring the in vivo delivery of small RNAs that might further facilitate the development of siRNAs as targeted therapies

  10. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo.

    Science.gov (United States)

    Wannenes, Francesca; Ciafré, Silvia Anna; Niola, Francesco; Frajese, Gaetano; Farace, Maria Giulia

    2005-12-01

    RNA interference technology is emerging as a very potent tool to obtain a cellular knockdown of a desired gene. In this work we used vector-based RNA interference to inhibit vascular endothelial growth factor (VEGF) expression in prostate cancer in vitro and in vivo. We demonstrated that transduction with a plasmid carrying a small interfering RNA targeting all isoforms of VEGF, dramatically impairs the expression of this growth factor in the human prostate cancer cell line PC3. As a consequence, PC3 cells loose their ability to induce one of the fundamental steps of angiogenesis, namely the formation of a tube-like network in vitro. Most importantly, our "therapeutic" vector is able to impair tumor growth rate and vascularization in vivo. We show that a single injection of naked plasmid in developing neoplastic mass significantly decreases microvessel density in an androgen-refractory prostate xenograft and is able to sustain a long-term slowing down of tumor growth. In conclusion, our results confirm the basic role of VEGF in the angiogenic development of prostate carcinoma, and suggest that the use of our vector-based RNA interference approach to inhibit angiogenesis could be an effective tool in view of future gene therapy applications for prostate cancer.

  11. Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus.

    Science.gov (United States)

    Le, Dung Tien; Chu, Ha Duc; Sasaya, Takahide

    2015-01-01

    Rice tungro spherical virus (RTSV), also known as Rice waika virus, does not cause visible symptoms in infected rice plants. However, the virus plays a critical role in spreading Rice tungro bacilliform virus (RTBV), which is the major cause of severe symptoms of rice tungro disease. Recent studies showed that RNA interference (RNAi) can be used to develop virus-resistance transgenic rice plants. In this report, we presented simple procedures and protocols needed for the creation of transgenic rice plants capable of producing small interfering RNA specific against RTSV sequences. Notably, our study showed that 60 out of 64 individual hygromycin-resistant lines (putative transgenic lines) obtained through transformation carried transgenes designed for producing hairpin double-stranded RNA. Northern blot analyses revealed the presence of small interfering RNA of 21- to 24-mer in 46 out of 56 confirmed transgenic lines. Taken together, our study indicated that transgenic rice plants carrying an inverted repeat of 500-bp fragments encoding various proteins of RTSV can produce small interfering RNA from the hairpin RNA transcribed from that transgene. In light of recent studies with other viruses, it is possible that some of these transgenic rice lines might be resistant to RTSV.

  12. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Tops, Bastiaan B J; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C; Plasterk, Ronald H A; Ketting, René F

    2005-01-01

    In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of approximately 250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.

  13. RNA interference prevents lipopolysaccharide-induced preprotachykinin gene expression

    International Nuclear Information System (INIS)

    Lai, Y.-L.; Yu, S.C.; Chen, M.-J.

    2003-01-01

    We showed previously that lipopolysaccharide (LPS) induces noncholinergic airway hyperreactivity to capsaicin via an upregulation of tachykinin synthesis. This study was designed to test whether double-stranded preprotachykinin (ds PPT) RNA, RNA interference (RNAi), prevents the LPS-induced alterations. First, cultured primary nodose ganglial cells of newborn Brown-Norway rats were divided into four groups: control; LPS; LPS+RNAi; and LPS+RNAi+liposome. Second, young Brown-Norway rats for the in vivo study were divided into three groups (control; LPS; and LPS+RNAi), and ds PPT RNA was microinjected bilaterally into the nodose ganglia in the LPS+RNAi group. Then, ganglial cells were collected from the culture whereas the nodose ganglia and lungs were sampled from the animals, and PPT mRNA and substance P (SP) levels were analyzed. Also, airway reactivity to capsaicin was performed in vivo. LPS induced significant increases in PPT mRNA and SP levels in vitro and in vivo and an increase in airway reactivity to capsaicin in vivo. However, ds PPT RNA, but not scrambled RNA, prevented all LPS-induced alterations. The effect of ds PPT RNA was not enhanced by liposome in vitro. Therefore, we demonstrated that the local application of RNAi prevents effectively the activation of the noncholinergic system modulating the lungs/airways

  14. The rde-1 gene, RNA interference, and transposon silencing in C. elegans.

    Science.gov (United States)

    Tabara, H; Sarkissian, M; Kelly, W G; Fleenor, J; Grishok, A; Timmons, L; Fire, A; Mello, C C

    1999-10-15

    Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.

  15. Specific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis

    NARCIS (Netherlands)

    Lezzerini, M.; van de Ven, K.; Veerman, M.; Brul, S.; Budovskaya, Y.V.

    2015-01-01

    In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded

  16. Immunoregulation by interference RNA (iRNA – mechanisms, role, perspective

    Directory of Open Access Journals (Sweden)

    Emilia Sikora

    2011-08-01

    Full Text Available The functioning of an organism depends on the precise control mechanisms, constantly adjusted to the actual state. Therefore, there is a need for efficient communication between both adjacent and distant cells, which may be executed by proteins such as hormones, neurotransmitters and cytokines. Recently another means of regulation has emerged – short regulatory RNAs (srRNAs. Although discovered only a couple of years ago, the mechanism of RNA interference has already become a topic of thousands of publications, defining its roles in both physiological and pathological processes, such as cancerogenesis and autoimmunization.RNAs regulating cell function may be coded in its genome (both exons and introns or be introduced from the external environment. In mammals microRNAs (miRNAs cooperate with proteins from the Ago/PIWI family to form effector ribonucleoprotein complexes, and owing to their complementarity to the target mRNA, control genes’ expression at the posttranscriptional level, either through the suppression of mRNA translation or through mRNA degradation.SrRNAs are crucial regulators throughout the development of immune cells, starting from hematopoietic stem cells, up to the effector cells of the adaptive immune response. Moreover, some of the regulatory cells perform their function by releasing miRNAs, which are then transported to the target cells, possibly enclosed in the exosomes.

  17. Production of high-amylose maize lines using RNA interference in ...

    African Journals Online (AJOL)

    amylose maize lines with a low T-DNA copy number, demonstrating that RNAi is an efficient method for the production of high-amylose maize lines. Key words: Maize, high-amylose, RNA interference, starch branching enzyme gene sbe2a.

  18. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism.

    Science.gov (United States)

    Alakonya, Amos; Kumar, Ravi; Koenig, Daniel; Kimura, Seisuke; Townsley, Brad; Runo, Steven; Garces, Helena M; Kang, Julie; Yanez, Andrea; David-Schwartz, Rakefet; Machuka, Jesse; Sinha, Neelima

    2012-07-01

    Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.

  19. The Inter-Cell Interference Dilemma in Dense Outdoor Small Cell Deployment

    DEFF Research Database (Denmark)

    Polignano, Michele; Mogensen, Preben; Fotiadis, Panagiotis

    2014-01-01

    The deployment of low-power small cells is envisaged as the main driver to accommodate the mobile broadband traffic growth in cellular networks. Depending on the spatial distribution of the user traffic, a densification of the small cells may be required in confined areas. However, deploying more...... and more cells in given areas may imply an increase of the inter-cell interference among the small cells. This study aims at investigating if the inter-cell interference among outdoor small cells may represent an impairment to the user experience, and evaluates if and in what conditions the interference...... coordination is worthwhile compared to the universal frequency reuse. Results show that the inter-cell interference depends on the small cell deployment in the urban environment (e.g. streets and squares) and on the network load condition. In case of deployment along urban streets, the inter-cell interference...

  20. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  1. RNA Interference in Insect Vectors for Plant Viruses

    OpenAIRE

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests...

  2. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells.

    Directory of Open Access Journals (Sweden)

    Margus Varjak

    2017-10-01

    Full Text Available RNA interference (RNAi controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA and exogenous short interfering RNA (exo-siRNA pathways, which are characterized by the production of virus-derived small RNAs of 25-29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2; although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.

  3. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response.

    Directory of Open Access Journals (Sweden)

    Doug E Brackney

    2010-10-01

    Full Text Available Mosquitoes rely on RNA interference (RNAi as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV infection in C6/36 (Aedes albopictus cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses. Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae, Sindbis virus (SINV, Togaviridae and La Crosse virus (LACV, Bunyaviridae and total RNA recovered from cell lysates. Small RNA (sRNA libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26-27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand and distribution (position along viral genome of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.

  4. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    Science.gov (United States)

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  5. Short hairpin RNA interference therapy for ischemic heart disease

    Science.gov (United States)

    Huang, Mei; Chan, Denise; Jia, Fangjun; Xie, Xiaoyan; Li, Zongjin; Hoyt, Grant; Robbins, Robert C.; Chen, Xiaoyuan; Giaccia, Amato; Wu, Joseph C.

    2013-01-01

    Background During hypoxia, upregulation of hypoxia inducible factor-1 alpha (HIF-1α) transcriptional factor can activate several downstream angiogenic genes. However, HIF-1α is naturally degraded by prolyl hydroxylase-2 (PHD2) protein. Here we hypothesize that short hairpin RNA (shRNA) interference therapy targeting PHD2 can be used for treatment of myocardial ischemia and this process can be followed noninvasively by molecular imaging. Methods and Results PHD2 was cloned from mouse embryonic stem (ES) cells by comparing the homolog gene in human and rat. The best candidate shRNA sequence for inhibiting PHD2 was inserted into the pSuper vector driven by the H1 promoter, followed by a separate hypoxia response element (HRE)-incorporated promoter driving a firefly luciferase (Fluc) reporter gene. This construct was used to transfect mouse C2C12 myoblast cell line for in vitro confirmation. Compared to the control short hairpin scramble (shScramble) as control, inhibition of PHD2 increased levels of HIF-1α protein and several downstream angiogenic genes by >30% (P<0.01). Afterwards, shRNA targeting PHD2 (shPHD2) plasmid was injected intramyocardially following ligation of left anterior descending (LAD) artery in mice. Animals were randomized into shPHD2 group (n=20) versus shScramble sequence as control (n=20). Bioluminescence imaging detected transgene expression for 4–5 weeks. Echocardiographic study showed the shPHD2 group had improved fractional shortening compared with the shScramble group at week 4 (33.7%±1.9% vs. 28.4%±2.8%; P<0.05). Postmortem analysis showed increased presence of small capillaries and venules in the infarcted zones by CD31 staining. Finally, Western blot anlaysis of explanted hearts also confirm that animals treated with shPHD2 had significantly higher levels of HIF-1α protein. Conclusions This is the first study to image the biological role of shRNA therapy for improving cardiac function. Inhibition of PHD2 by shRNA led to

  6. Switching off small RNA regulation with trap-mRNA

    DEFF Research Database (Denmark)

    Overgaard, Martin; Johansen, Jesper; Møller-Jensen, Jakob

    2009-01-01

    to operate at the level of transcription initiation. By employing a highly sensitive genetic screen we uncovered a novel RNA-based regulatory principle in which induction of a trap-mRNA leads to selective degradation of a small regulatory RNA molecule, thereby abolishing the sRNA-based silencing of its...

  7. RNA interference: ready to silence cancer?

    Science.gov (United States)

    Mocellin, Simone; Costa, Rodolfo; Nitti, Donato

    2006-01-01

    RNA interference (RNAi) is considered the most promising functional genomics tool recently developed. As in other medical fields, this biotechnology might revolutionize the approach to dissecting the biology of cancer, ultimately speeding up the discovery pace of novel targets suitable for molecularly tailored antitumor therapies. In addition, preclinical results suggest that RNAi itself might be used as a therapeutic weapon. With the aim of illustrating not only the potentials but also the current limitations of RNAi as a tool in the fight against cancer, here we summarize the physiology of RNAi, discuss the main technical issues of RNAi-based gene silencing, and review some of the most interesting preclinical results obtained so far with its implementation in the field of oncology.

  8. Aedes aegypti uses RNA interference in defense against Sindbis virus infection.

    Science.gov (United States)

    Campbell, Corey L; Keene, Kimberly M; Brackney, Douglas E; Olson, Ken E; Blair, Carol D; Wilusz, Jeffrey; Foy, Brian D

    2008-03-17

    RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.

  9. Reversal of pathology in CHMP2B-mediated frontotemporal dementia patient cells using RNA interference

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup; Mizielinska, Sarah; Hasholt, Lis

    2012-01-01

    role in the pathogenesis of the disease. METHODS: In the present study, we used lentiviral vectors to efficiently knockdown CHMP2B by delivering microRNA embedded small hairpin RNAs. RESULTS: We show that CHMP2B can be efficiently knocked down in patient fibroblasts using an RNA interference approach......BACKGROUND: Frontotemporal dementia is the second most common form of young-onset dementia after Alzheimer's disease, and several genetic forms of frontotemporal dementia are known. A rare genetic variant is caused by a point mutation in the CHMP2B gene. CHMP2B is a component of the ESCRT......-III complex, which is involved in endosomal trafficking of proteins targeted for degradation in lysosomes. Mutations in CHMP2B result in abnormal endosomal structures in patient fibroblasts and patient brains, probably through a gain-of-function mechanism, suggesting that the endosomal pathway plays a central...

  10. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls.

    Science.gov (United States)

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2013-01-01

    Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Interference-robust Air Interface for 5G Small Cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão

    the existing wireless network infrastructure to the limit. Mobile network operators must invest in network expansion to deal with this problem, but the predicted network requirements show that a new Radio Access Technology (RAT) standard will be fundamental to reach the future target performance. This new 5th...... to the fundamental role of inter-cell interference in this type of networks, the inter-cell interference problem must be addressed since the beginning of the design of the new standard. This Ph.D. thesis deals with the design of an interference-robust air interface for 5G small cell networks. The interference...

  12. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium

  13. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  14. RNA as a small molecule druggable target.

    Science.gov (United States)

    Rizvi, Noreen F; Smith, Graham F

    2017-12-01

    Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. RNA Interference in Moths: Mechanisms, Applications, and Progress

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-10-01

    Full Text Available The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi. Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.

  16. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway.

    Directory of Open Access Journals (Sweden)

    Irma Sánchez-Vargas

    2009-02-01

    Full Text Available A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi, is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA, which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs. These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2 infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.

  17. RNA Interference and its therapeutic applications

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao T

    2011-10-01

    Full Text Available RNAi is a potent method, requiring only a few molecules of dsRNA per cell to silence the expression. Long molecules of double stranded RNA (dsRNA trigger the process. The dsRNA comes from virus and transposon activity in natural RNAi process, while it can be injected in the cells in experimental processes. The strand of the dsRNA that is identical in sequence to a region in target mRNA molecule is called the sense strand, and the other strand which is complimentary is termed the antisense strand. An enzyme complex called DICER thought to be similar to RNAase III then recognizes dsRNA, and cuts it into roughly 22- nucleotide long fragments. These fragments termed siRNAs for “small interfering RNAs” remain in double stranded duplexes with very short 3' overhangs. However, only one of the two strands, known as the guide strand or antisense strand binds the argonaute protein of RNA-induced silencing complex (RISC and target the complementary mRNA resulting gene silencing. The other anti-guide strand or passenger strand is degraded as a RISC substrate during the process of RISC activation. This form of RNAi is termed as post transcriptional gene silencing (PTGS; other forms are also thought to operate at the genomic or transcriptional level in some organisms. In mammals dsRNA longer than 30 base pairs induces a nonspecific antiviral response. This so-called interferon response results in a nonspecific arrest in translation and induction of apoptosis. This cascade induces a global non-specific suppression of translation, which in turn triggers apoptosis. Interestingly, dsRNAs less than 30 nt in length do not activate the antiviral response and specifically switched off genes in human cells without initiating the acute phase response. Thus these siRNAs are suitable for gene target validation and therapeutic applications in many species, including humans. [Vet. World 2011; 4(5.000: 225-229

  18. RNA Interference in Insect Vectors for Plant Viruses

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-12-01

    Full Text Available Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  19. The Piwi pathway: from piRNA methylation to histone methylation

    NARCIS (Netherlands)

    Luteijn, M.J.

    2013-01-01

    Piwi-interacting RNAs (piRNAs) are germ line-specific small RNA molecules that have a function in genome defense and germ cell development. They associate with a specific class of Argonaute proteins, named Piwi, and function through an RNA interference-like mechanism. These small RNA molecules play

  20. Induction of RNA interference in dendritic cells.

    Science.gov (United States)

    Li, Mu; Qian, Hua; Ichim, Thomas E; Ge, Wei-Wen; Popov, Igor A; Rycerz, Katarzyna; Neu, John; White, David; Zhong, Robert; Min, Wei-Ping

    2004-01-01

    Dendritic cells (DC) reside at the center of the immunological universe, possessing the ability both to stimulate and inhibit various types of responses. Tolerogenic/regulatory DC with therapeutic properties can be generated through various means of manipulations in vitro and in vivo. Here we describe several attractive strategies for manipulation of DC using the novel technique of RNA interference (RNAi). Additionally, we overview some of our data regarding yet undescribed characteristics of RNAi in DC such as specific transfection strategies, persistence of gene silencing, and multi-gene silencing. The advantages of using RNAi for DC genetic manipulation gives rise to the promise of generating tailor-made DC that can be used effectively to treat a variety of immunologically mediated diseases.

  1. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  2. Application of small RNA technology for improved control of parasitic helminths.

    Science.gov (United States)

    Britton, Collette; Winter, Alan D; Marks, Neil D; Gu, Henry; McNeilly, Tom N; Gillan, Victoria; Devaney, Eileen

    2015-08-15

    Over the last decade microRNAs (miRNAs) and small interfering RNAs (siRNAs) have emerged as important regulators of post-transcriptional gene expression. miRNAs are short, non-coding RNAs that regulate a variety of processes including cancer, organ development and immune function. This class of small RNAs bind with partial complementarity to their target mRNA sequences, most often in the 3'UTR, to negatively regulate gene expression. In parasitic helminths, miRNAs are being increasingly studied for their potential roles in development and host-parasite interactions. The availability of genome data, combined with small RNA sequencing, has paved the way to profile miRNAs expressed at particular developmental stages for many parasitic helminths. While some miRNAs are conserved across species, others appear to be unique to specific parasites, suggesting important roles in adaptation and survival in the host environment. Some miRNAs are released from parasites, in exosomes or in protein complexes, and the potential effects of these on host immune function are being increasingly studied. In addition, release of miRNAs from schistosome and filarial parasites into host plasma can be exploited for the development of specific and sensitive diagnostic biomarkers of infection. Interfering with miRNA function, as well as silencing key components of the pathways they regulate, will progress our understanding of parasite development and provide a novel approach to therapeutic control. RNA interference (RNAi) by siRNAs has proven to be inconsistent in parasitic nematodes. However, the recent successes reported for schistosome and liver fluke RNAi, encourage further efforts to enhance delivery of RNA and improve in vitro culture systems and assays to monitor phenotypic effects in nematodes. These improvements are important for the establishment of reliable functional genomic platforms for novel drug and vaccine development. In this review we focus on the important roles of mi

  3. Recent advances in developing small molecules targeting RNA.

    Science.gov (United States)

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  4. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  5. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra.

    Directory of Open Access Journals (Sweden)

    Alison L McCormack

    Full Text Available The protein alpha-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal alpha-synuclein burden. Here, feasibility and safety of alpha-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA directed against alpha-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of alpha-synuclein mRNA and protein in the infused (left vs. untreated (right hemisphere and revealed a significant 40-50% suppression of alpha-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in alpha-synuclein. Infusion with alpha-synuclein siRNA, while lowering alpha-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i the number and phenotype of nigral dopaminergic neurons, and (ii the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-alpha-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics.

  6. Potential interference of small neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators.

    Science.gov (United States)

    Wolber, Thomas; Ryf, Salome; Binggeli, Christian; Holzmeister, Johannes; Brunckhorst, Corinna; Luechinger, Roger; Duru, Firat

    2007-01-01

    Magnetic fields may interfere with the function of cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). Neodymium-iron-boron (NdFeB) magnets, which are small in size but produce strong magnetic fields, have become widely available in recent years. Therefore, NdFeB magnets may be associated with an emerging risk of device interference. We conducted a clinical study to evaluate the potential of small NdFeB magnets to interfere with cardiac pacemakers and ICDs. The effect of four NdFeB magnets (two spherical magnets 8 and 10 mm in diameter, a necklace made of 45 spherical magnets, and a magnetic name tag) was tested in forty-one ambulatory patients with a pacemaker and 29 patients with an ICD. The maximum distance at which the magnetic switch of a device was influenced was observed. Magnetic interference was observed in all patients. The maximum distance resulting in device interference was 3 cm. No significant differences were found with respect to device manufacturer and device types. Small NdFeB magnets may cause interference with cardiac pacemakers and ICDs. Patients should be cautioned about the interference risk associated with NdFeB magnets during daily life.

  7. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    Science.gov (United States)

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (Ppathways may lead to new targeted therapies for non-small cell lung cancer.

  8. Characterization of the TRBP domain required for Dicer interaction and function in RNA interference

    Directory of Open Access Journals (Sweden)

    El Far Mohamed

    2009-05-01

    Full Text Available Abstract Background Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC. While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain. Results We show that the TRBP binding site in Dicer is a 165 amino acid (aa region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4, co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. tarbp2-/- cells, which do not express TRBP, do not support RNA interference (RNAi mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function. Conclusion The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.

  9. Strand Analysis, a free online program for the computational identification of the best RNA interference (RNAi targets based on Gibbs free energy

    Directory of Open Access Journals (Sweden)

    Tiago Campos Pereira

    2007-01-01

    Full Text Available The RNA interference (RNAi technique is a recent technology that uses double-stranded RNA molecules to promote potent and specific gene silencing. The application of this technique to molecular biology has increased considerably, from gene function identification to disease treatment. However, not all small interfering RNAs (siRNAs are equally efficient, making target selection an essential procedure. Here we present Strand Analysis (SA, a free online software tool able to identify and classify the best RNAi targets based on Gibbs free energy (deltaG. Furthermore, particular features of the software, such as the free energy landscape and deltaG gradient, may be used to shed light on RNA-induced silencing complex (RISC activity and RNAi mechanisms, which makes the SA software a distinct and innovative tool.

  10. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  11. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    Science.gov (United States)

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  12. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    Science.gov (United States)

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  13. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection.

    Science.gov (United States)

    Barker, Gregory A; Diamond, Scott L

    2008-09-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In confirmation tests with single siRNAs, 18 of the 130 hits showed enhanced lipofection with two or more individual siRNAs in the absence of cytotoxicity. Of these confirmed gene targets, we identified five leading candidates, two of which are isoforms of the regulatory subunit of protein phosphatase 2A (PP2A). The best candidate siRNA targeted the PPP2R2C gene and produced a 65% increase in luminescence from lipofection, with a quantitative PCR-validated knockdown of approximately 76%. Flow cytometric analysis confirmed that the silencing of the PPP2R2C gene resulted in an improvement of 10% in transfection efficiency, thereby demonstrating an increase in the number of transfected cells. These results show that an RNA interference (RNAi) high-throughput screen (HTS) can be applied to nonviral gene transfer. We have also demonstrated that siRNAs can be co-delivered with lipofected DNA to increase the transfection efficiency in vitro.

  14. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    Directory of Open Access Journals (Sweden)

    Howlett Natalie

    2012-05-01

    Full Text Available Abstract Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.

  15. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    Science.gov (United States)

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    Directory of Open Access Journals (Sweden)

    Miele E

    2012-07-01

    Full Text Available Evelina Miele,1,* Gian Paolo Spinelli,2,* Ermanno Miele,3 Enzo Di Fabrizio,3,6 Elisabetta Ferretti,4 Silverio Tomao,2 Alberto Gulino,1,5 1Department of Molecular Medicine, 2Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 3Nanostructures, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, 4Department of Experimental Medicine, Sapienza University of Rome, Rome, 5Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy, 6BIONEM lab, University of Magna Graecia, Campus S. Venuta, Viale Europa 88100 Catanzaro, Italy *These authors contributed equally to this workAbstract: During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi. RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current

  17. Bioreducible poly(amido amine)s for siRNA delivery

    NARCIS (Netherlands)

    van der Aa, L.J.

    2011-01-01

    Successes in RNA interference based therapies are still limited due to the lack of efficient delivery of the mediator, small interfering RNA (siRNA), to the targeted site. The key to success can be the delivery of the siRNA molecules by polymer-based carrier systems, since they can be chemically

  18. Argonaute: The executor of small RNA function.

    Science.gov (United States)

    Azlan, Azali; Dzaki, Najat; Azzam, Ghows

    2016-08-20

    The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  19. RNA interference-based therapeutics: new strategies to fight infectious disease.

    Science.gov (United States)

    López-Fraga, M; Wright, N; Jiménez, A

    2008-12-01

    For many years, there has been an ongoing search for new compounds that can selectively alter gene expression as a new way to treat human disease by addressing targets that are otherwise "undruggable" with traditional pharmaceutical approaches involving small molecules or proteins. RNA interference (RNAi) strategies have raised a lot of attention and several compounds are currently being tested in clinical trials. Viruses are the obvious target for RNAi-therapy, as most are difficult to treat with conventional drugs, they become rapidly resistant to drug treatment and their genes differ substantially from human genes, minimizing side effects. Antisense strategy offers very high target specificity, i.e., any viral sequence could potentially be targeted using the complementary oligonucleotide sequence. Consequently, new antisense-based therapeutics have the potential to lead a revolution in the anti-infective drug development field. Additionally, the relatively short turnaround for efficacy testing of potential RNAi molecules and that any pathogen is theoretically amenable to rapid targeting, make them invaluable tools for treating a wide range of diseases. This review will focus on some of the current efforts to treat infectious disease with RNAi-based therapies and some of the obstacles that have appeared on the road to successful clinical intervention.

  20. GUItars: a GUI tool for analysis of high-throughput RNA interference screening data.

    Directory of Open Access Journals (Sweden)

    Asli N Goktug

    Full Text Available High-throughput RNA interference (RNAi screening has become a widely used approach to elucidating gene functions. However, analysis and annotation of large data sets generated from these screens has been a challenge for researchers without a programming background. Over the years, numerous data analysis methods were produced for plate quality control and hit selection and implemented by a few open-access software packages. Recently, strictly standardized mean difference (SSMD has become a widely used method for RNAi screening analysis mainly due to its better control of false negative and false positive rates and its ability to quantify RNAi effects with a statistical basis. We have developed GUItars to enable researchers without a programming background to use SSMD as both a plate quality and a hit selection metric to analyze large data sets.The software is accompanied by an intuitive graphical user interface for easy and rapid analysis workflow. SSMD analysis methods have been provided to the users along with traditionally-used z-score, normalized percent activity, and t-test methods for hit selection. GUItars is capable of analyzing large-scale data sets from screens with or without replicates. The software is designed to automatically generate and save numerous graphical outputs known to be among the most informative high-throughput data visualization tools capturing plate-wise and screen-wise performances. Graphical outputs are also written in HTML format for easy access, and a comprehensive summary of screening results is written into tab-delimited output files.With GUItars, we demonstrated robust SSMD-based analysis workflow on a 3840-gene small interfering RNA (siRNA library and identified 200 siRNAs that increased and 150 siRNAs that decreased the assay activities with moderate to stronger effects. GUItars enables rapid analysis and illustration of data from large- or small-scale RNAi screens using SSMD and other traditional analysis

  1. Chimira: analysis of small RNA sequencing data and microRNA modifications.

    Science.gov (United States)

    Vitsios, Dimitrios M; Enright, Anton J

    2015-10-15

    Chimira is a web-based system for microRNA (miRNA) analysis from small RNA-Seq data. Sequences are automatically cleaned, trimmed, size selected and mapped directly to miRNA hairpin sequences. This generates count-based miRNA expression data for subsequent statistical analysis. Moreover, it is capable of identifying epi-transcriptomic modifications in the input sequences. Supported modification types include multiple types of 3'-modifications (e.g. uridylation, adenylation), 5'-modifications and also internal modifications or variation (ADAR editing or single nucleotide polymorphisms). Besides cleaning and mapping of input sequences to miRNAs, Chimira provides a simple and intuitive set of tools for the analysis and interpretation of the results (see also Supplementary Material). These allow the visual study of the differential expression between two specific samples or sets of samples, the identification of the most highly expressed miRNAs within sample pairs (or sets of samples) and also the projection of the modification profile for specific miRNAs across all samples. Other tools have already been published in the past for various types of small RNA-Seq analysis, such as UEA workbench, seqBuster, MAGI, OASIS and CAP-miRSeq, CPSS for modifications identification. A comprehensive comparison of Chimira with each of these tools is provided in the Supplementary Material. Chimira outperforms all of these tools in total execution speed and aims to facilitate simple, fast and reliable analysis of small RNA-Seq data allowing also, for the first time, identification of global microRNA modification profiles in a simple intuitive interface. Chimira has been developed as a web application and it is accessible here: http://www.ebi.ac.uk/research/enright/software/chimira. aje@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. RNA interference: learning gene knock-down from cell physiology

    Directory of Open Access Journals (Sweden)

    Provenzano Maurizio

    2004-11-01

    Full Text Available Summary Over the past decade RNA interference (RNAi has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design.

  3. RNA interference: learning gene knock-down from cell physiology

    Science.gov (United States)

    Mocellin, Simone; Provenzano, Maurizio

    2004-01-01

    Over the past decade RNA interference (RNAi) has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design. PMID:15555080

  4. Interference Mitigation and Sum Rate Optimization for MIMO Downlink Small Cells

    Directory of Open Access Journals (Sweden)

    H. H. Kha

    2016-12-01

    Full Text Available This paper addresses interference issues in multiuser multiple-input multiple-output (MIMO downlink heterogeneous networks in which multiple small cells are deployed in macrocell coverage. With the higher priority to access the frequency bands, the macro base station (MBS will exploit eigenmode transmission along with water-filling based power allocation to maximize its data rate. To avoid harmful interference to macro users, we propose structures of the precoders at the small cell BSs (SBSs as cascades of two precoding matrices. In addition, to mitigate intra-tier inference in small cells, the SBSs exploit the user scheduling schemes for their associated users. We investigate two user scheduling schemes using the minimum interference leakage and maximum signal to noise ratio criteria. The sum rate of the selected users can be further improved by power allocation. We develop an iterative algorithm using difference of convex functions (d.c. programming to tackle the mathematical challenges of the nonconvex power allocation problem, Numerical simulation results show that the proposed strategy outperforms the conventional methods in terms of the achievable sum rate.

  5. (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    Effective inhibition of specific gene by adenoassociated virus (AAV)-mediated expression of small interfering RNA. ... To perform functional tests on siRNA, which was expressed by the viral vector, recombinant AAVs, coding for siRNA against exogenous gene, EGFP, and endogenous gene, p53, were established and ...

  6. Conifers have a unique small RNA silencing signature.

    Science.gov (United States)

    Dolgosheina, Elena V; Morin, Ryan D; Aksay, Gozde; Sahinalp, S Cenk; Magrini, Vincent; Mardis, Elaine R; Mattsson, Jim; Unrau, Peter J

    2008-08-01

    Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants approximately 260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes.

  7. Non-Target Effects of Green Fluorescent Protein (GFP-Derived Double-Stranded RNA (dsRNA-GFP Used in Honey Bee RNA Interference (RNAi Assays

    Directory of Open Access Journals (Sweden)

    Francis M. F. Nunes

    2013-01-01

    Full Text Available RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP-derived double-stranded RNA (dsRNA-GFP is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  8. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    Science.gov (United States)

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  9. How the RNA isolation method can affect microRNA microarray results

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Litman, Thomas

    2011-01-01

    RNA microarray analysis on porcine brain tissue. One method is a phenol-guanidine isothiocyanate-based procedure that permits isolation of total RNA. The second method, miRVana™ microRNA isolation, is column based and recovers the small RNA fraction alone. We found that microarray analyses give different results...... that depend on the RNA fraction used, in particular because some microRNAs appear very sensitive to the RNA isolation method. We conclude that precautions need to be taken when comparing microarray studies based on RNA isolated with different methods.......The quality of RNA is crucial in gene expression experiments. RNA degradation interferes in the measurement of gene expression, and in this context, microRNA quantification can lead to an incorrect estimation. In the present study, two different RNA isolation methods were used to perform micro...

  10. TargetRNA: a tool for predicting targets of small RNA action in bacteria

    OpenAIRE

    Tjaden, Brian

    2008-01-01

    Many small RNA (sRNA) genes in bacteria act as posttranscriptional regulators of target messenger RNAs. Here, we present TargetRNA, a web tool for predicting mRNA targets of sRNA action in bacteria. TargetRNA takes as input a genomic sequence that may correspond to an sRNA gene. TargetRNA then uses a dynamic programming algorithm to search each annotated message in a specified genome for mRNAs that evince basepair-binding potential to the input sRNA sequence. Based on the calculated basepair-...

  11. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2012-03-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is a validated therapeutic target in non-small cell lung cancer (NSCLC. However, current single agent receptor targeting does not achieve a maximal therapeutic effect, and some mutations confer resistance to current available agents. In the current study we have examined, in different NSCLC cell lines, the combined effect of RNA interference targeting the EGFR mRNA, and inactivation of EGFR signaling using different receptor tyrosine kinase inhibitors (TKIs or a monoclonal antibody cetuximab. Methods NSCLC cells (cell lines HCC827, H292, H358, H1650, and H1975 were transfected with EGFR siRNA and/or treated with the TKIs gefitinib, erlotinib, and afatinib, and/or with the monoclonal antibody cetuximab. The reduction of EGFR mRNA expression was measured by real-time quantitative RT-PCR. The down-regulation of EGFR protein expression was measured by western blot, and the proliferation, viability, caspase3/7 activity, and apoptotic morphology were monitored by spectrophotometry, fluorimetry, and fluorescence microscopy. The combined effect of EGFR siRNA and different drugs was evaluated using a combination index. Results EGFR-specific siRNA strongly inhibited EGFR protein expression almost equally in all cell lines and inhibited cell growth and induced cell apoptosis in all NSCLC cell lines studied, albeit with a different magnitude. The effects on growth obtained with siRNA was strikingly different from the effects obtained with TKIs. The effects of siRNA probably correlate with the overall oncogenic significance of the receptor, which is only partly inhibited by the TKIs. The cells which showed weak response to TKIs, such as the H1975 cell line containing the T790M resistance mutation, were found to be responsive to siRNA knockdown of EGFR, as were cell lines with downstream TKI resistance mutations. The cell line HCC827, harboring an exon 19 deletion mutation, was more than 10-fold

  12. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy

    Science.gov (United States)

    Choi, Jin-Ha; Hwang, Hai-Jin; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho; Oh, Byung-Keun

    2015-05-01

    Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine.Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au

  13. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules.

    Science.gov (United States)

    Schnettler, Esther; Hemmes, Hans; Huismann, Rik; Goldbach, Rob; Prins, Marcel; Kormelink, Richard

    2010-11-01

    The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing mechanism in plants. Here the biochemical analysis of NSs proteins from different tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results showed that all tospoviral NSs proteins analyzed exhibited affinity to small double-stranded RNA molecules, i.e., small interfering RNAs (siRNAs) and micro-RNA (miRNA)/miRNA* duplexes. Interestingly, the NSs proteins from tomato spotted wilt virus (TSWV), impatiens necrotic spot virus (INSV), and groundnut ringspot virus (GRSV) also showed affinity to long double-stranded RNA (dsRNA), whereas tomato yellow ring virus (TYRV) NSs did not. The TSWV NSs protein was shown to be capable of inhibiting Dicer-mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of green fluorescent protein (GFP)-specific siRNAs during coinfiltration with an inverted-repeat-GFP RNA construct in Nicotiana benthamiana. In vivo interference of TSWV NSs in the miRNA pathway was shown by suppression of an enhanced GFP (eGFP) miRNA sensor construct. The ability to stabilize miRNA/miRNA* by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All together, these data suggest that tospoviruses interfere in the RNA silencing pathway by sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their respective RNA-induced silencing complexes. The observed affinity to long dsRNA for only a subset of the tospoviruses studied is discussed in light of evolutional divergence and their ancestral relation to the animal-infecting members of the Bunyaviridae.

  14. Application of RNA interference methodology to investigate and ...

    Indian Academy of Sciences (India)

    Specific fragments of the sugarcane mosaic virus (SCMV) coat protein gene (cp) were amplified by reverse transcription-polymerase chain reaction and used to construct a marker free small interfering RNA complex expression vector against SCMV. In planta transformation was performed on maize (Zea mays) inbred line ...

  15. Development of a software tool and criteria evaluation for efficient design of small interfering RNA

    International Nuclear Information System (INIS)

    Chaudhary, Aparna; Srivastava, Sonam; Garg, Sanjeev

    2011-01-01

    Research highlights: → The developed tool predicted siRNA constructs with better thermodynamic stability and total score based on positional and other criteria. → Off-target silencing below score 30 were observed for the best siRNA constructs for different genes. → Immunostimulation and cytotoxicity motifs considered and penalized in the developed tool. → Both positional and compositional criteria were observed to be important. -- Abstract: RNA interference can be used as a tool for gene silencing mediated by small interfering RNAs (siRNA). The critical step in effective and specific RNAi processing is the selection of suitable constructs. Major design criteria, i.e., Reynolds's design rules, thermodynamic stability, internal repeats, immunostimulatory motifs were emphasized and implemented in the siRNA design tool. The tool provides thermodynamic stability score, GC content and a total score based on other design criteria in the output. The viability of the tool was established with different datasets. In general, the siRNA constructs produced by the tool had better thermodynamic score and positional properties. Comparable thermodynamic scores and better total scores were observed with the existing tools. Moreover, the results generated had comparable off-target silencing effect. Criteria evaluations with additional criteria were achieved in WEKA.

  16. Dicer and Argonaute Genes Involved in RNA Interference in the Entomopathogenic Fungus Metarhizium robertsii.

    Science.gov (United States)

    Meng, Huimin; Wang, Zhangxun; Wang, Yulong; Zhu, Hong; Huang, Bo

    2017-04-01

    RNA interference (RNAi) is a gene-silencing mechanism that plays an important role in gene regulation in a number of eukaryotic organisms. Two core components, Dicer and Argonaute, are central in the RNAi machinery. However, the physiological roles of Dicer and Argonaute in the entomopathogenic fungus Metarhizium robertsii have remained unclear. Here, the roles of genes encoding Dicer ( M. robertsii dcl1 [ Mrdcl1 ] and Mrdcl2 ) and Argonaute ( Mrago1 and Mrago2 ) proteins in M. robertsii were investigated. The results showed that the Dicer-like protein MrDCL2 and Argonaute protein MrAGO1 are the major components of the RNAi process occurring in M. robertsii The Dicer and Argonaute genes were not involved in the regulation of growth and diverse abiotic stress response in M. robertsii under the tested conditions. Moreover, our results showed that the Dicer and Argonaute gene mutants demonstrated reduced abilities to produce conidia, compared to the wild type (WT) and the gene-rescued mutant. In particular, the conidial yields in the Δ dcl2 and Δ ago1 mutants were reduced by 55.8% and 59.3%, respectively, compared with those from the control strains. Subsequently, for the WT and Δ dcl2 mutant strains, digital gene expression (DGE) profiling analysis of the stage of mycelium growth and conidiogenesis revealed that modest changes occur in development or metabolism processes, which may explain the reduction in conidiation in the Δ dcl2 mutant. In addition, we further applied high-throughput sequencing technology to identify small RNAs (sRNAs) that are differentially expressed in the WT and the Δ dcl2 mutant and found that 4 known microRNA-like small RNAs (milRNAs) and 8 novel milRNAs were Mrdcl2 dependent in M. robertsii IMPORTANCE The identification and characterization of components in RNAi have contributed significantly to our understanding of the mechanism and functions of RNAi in eukaryotes. Here, we found that Dicer and Argonaute genes play an important role

  17. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available Small RNA RNA-seq for microRNAs (miRNAs is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM. Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench, miRge was faster (4 to 32-fold and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.

  18. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    International Nuclear Information System (INIS)

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-01-01

    Highlights: ► We use MEL-A-containing cationic liposomes for siRNA delivery. ► MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. ► Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine™ RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by

  19. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  20. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  1. Re-inspection of small RNA sequence datasets reveals several novel human miRNA genes.

    Directory of Open Access Journals (Sweden)

    Thomas Birkballe Hansen

    Full Text Available BACKGROUND: miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology. METHODOLOGY/PRINCIPAL FINDINGS: Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise. CONCLUSIONS/SIGNIFICANCE: Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing.

  2. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    International Nuclear Information System (INIS)

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC 50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. EGFR pathway components were qualified as

  3. Methods to enable the design of bioactive small molecules targeting RNA.

    Science.gov (United States)

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  4. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

    KAUST Repository

    Zhu, Lizhe

    2016-10-05

    At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.

  5. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.

    Science.gov (United States)

    Giurato, Giorgio; De Filippo, Maria Rosaria; Rinaldi, Antonio; Hashim, Adnan; Nassa, Giovanni; Ravo, Maria; Rizzo, Francesca; Tarallo, Roberta; Weisz, Alessandro

    2013-12-13

    Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once. We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed mi

  6. RNA interference: concept to reality in crop improvement.

    Science.gov (United States)

    Saurabh, Satyajit; Vidyarthi, Ambarish S; Prasad, Dinesh

    2014-03-01

    The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.

  7. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    Directory of Open Access Journals (Sweden)

    Chen Yun-Ru

    2012-09-01

    Full Text Available Abstract Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples.

  8. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  9. Major and minor crRNA annealing sites facilitate low stringency DNA protospacer binding prior to Type I-A CRISPR-Cas interference in Sulfolobus

    DEFF Research Database (Denmark)

    Mousaei, Marzieh; Deng, Ling; She, Qunxin

    2016-01-01

    The stringency of crRNA-protospacer DNA base pair matching required for effective CRISPR-Cas interference is relatively low in crenarchaeal Sulfolobus species in contrast to that required in some bacteria. To understand its biological significance we studied crRNA-protospacer interactions...... in Sulfolobus islandicus REY15A which carries multiple, and functionally diverse, interference complexes. A range of mismatches were introduced into a vector-borne protospacer that was identical to spacer 1 of CRISPR locus 2, with a cognate CCN PAM sequence. Two important crRNA annealing regions were identified...

  10. RNA Interference - Towards RNA becoming a Medicine -42 ...

    Indian Academy of Sciences (India)

    research. A brief history of the development ofRNAi is shown in. Box 2. Mechanism of ... new RNA strand using target RNA as the template and thereby converting it ... thought to excise precursor stRNA from their -70 nt stem loop precursor to ...

  11. Computational prediction of miRNA genes from small RNA sequencing data

    Directory of Open Access Journals (Sweden)

    Wenjing eKang

    2015-01-01

    Full Text Available Next-generation sequencing now for the first time allows researchers to gauge the depth and variation of entire transcriptomes. However, now as rare transcripts can be detected that are present in cells at single copies, more advanced computational tools are needed to accurately annotate and profile them. miRNAs are 22 nucleotide small RNAs (sRNAs that post-transcriptionally reduce the output of protein coding genes. They have established roles in numerous biological processes, including cancers and other diseases. During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes that are discovered are mined from small RNA sequencing (sRNA-seq, which can detect more than a billion RNAs in a single run. However, given that many of the detected RNAs are degradation products from all types of transcripts, the accurate identification of miRNAs remain a non-trivial computational problem. Here we review the tools available to predict animal miRNAs from sRNA sequencing data. We present tools for generalist and specialist use cases, including prediction from massively pooled data or in species without reference genome. We also present wet-lab methods used to validate predicted miRNAs, and approaches to computationally benchmark prediction accuracy. For each tool, we reference validation experiments and benchmarking efforts. Last, we discuss the future of the field.

  12. Alteration of RNA splicing by small molecule inhibitors of the interaction between NHP2L1 and U4

    Science.gov (United States)

    Diouf, Barthelemy; Lin, Wenwei; Goktug, Asli; Grace, Christy R. R.; Waddell, Michael Brett; Bao, Ju; Shao, Youming; Heath, Richard J.; Zheng, Jie J.; Shelat, Anang A.; Relling, Mary V.; Chen, Taosheng; Evans, William E.

    2018-01-01

    Splicing is an important eukaryotic mechanism for expanding the transcriptome and proteome, influencing a number of biological processes. Understanding its regulation and identifying small molecules that modulate this process remains a challenge. We developed an assay based on time-resolved FRET (TR-FRET) to detect the interaction between the protein NHP2L1 and U4 RNA, which are two key components of the spliceosome. We used this assay to identify small molecules that interfere with this interaction in a high-throughput screening (HTS) campaign. Topotecan and other camptothecin derivatives were among the top hits. We confirmed that topotecan disrupts the interaction between NHP2L1 and U4 by binding to U4 and inhibits RNA splicing. Our data reveal new functions of known drugs which could facilitate the development of therapeutic strategies to modify splicing and alter gene function. PMID:28985478

  13. Defective RNA particles derived from Tomato black ring virus genome interfere with the replication of parental virus.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Minicka, Julia; Zarzyńska-Nowak, Aleksandra; Budzyńska, Daria; Elena, Santiago F

    2018-05-02

    Tomato black ring virus (TBRV) is the only member of the Nepovirus genus that is known to form defective RNA particles (D RNAs) during replication. Here, de novo generation of D RNAs was observed during prolonged passages of TBRV isolates originated from Solanum lycopersicum and Lactuca sativa in Chenopodium quinoa plants. D RNAs of about 500 nt derived by a single deletion in the RNA1 molecule and contained a portion of the 5' untranslated region and viral replicase, and almost the entire 3' non-coding region. Short regions of sequence complementarity were found at the 5' and 3' junction borders, which can facilitate formation of the D RNAs. Moreover, in this study we analyzed the effects of D RNAs on TBRV replication and symptoms development of infected plants. C. quinoa, S. lycopersicum, Nicotiana tabacum, and L. sativa were infected with the original TBRV isolates (TBRV-D RNA) and those containing additional D RNA particles (TBRV + D RNA). The viral accumulation in particular hosts was measured up to 28 days post inoculation by RT-qPCR. Statistical analyses revealed that D RNAs interfere with TBRV replication and thus should be referred to as defective interfering particles. The magnitude of the interference effect depends on the interplay between TBRV isolate and host species. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    Science.gov (United States)

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions. Copyright © 2015 Chen et al.

  15. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Wuriyanghan, Hada; Falk, Bryce W.

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  16. DETECTION OF BACTERIAL SMALL TRANSCRIPTS FROM RNA-SEQ DATA: A COMPARATIVE ASSESSMENT.

    Science.gov (United States)

    Peña-Castillo, Lourdes; Grüell, Marc; Mulligan, Martin E; Lang, Andrew S

    2016-01-01

    Small non-coding RNAs (sRNAs) are regulatory RNA molecules that have been identified in a multitude of bacterial species and shown to control numerous cellular processes through various regulatory mechanisms. In the last decade, next generation RNA sequencing (RNA-seq) has been used for the genome-wide detection of bacterial sRNAs. Here we describe sRNA-Detect, a novel approach to identify expressed small transcripts from prokaryotic RNA-seq data. Using RNA-seq data from three bacterial species and two sequencing platforms, we performed a comparative assessment of five computational approaches for the detection of small transcripts. We demonstrate that sRNA-Detect improves upon current standalone computational approaches for identifying novel small transcripts in bacteria.

  17. Peptidomimetics with beta-peptoid resudies as carriers for intracellular delivery of small interfering RNA (siRNA)

    DEFF Research Database (Denmark)

    Foged, Camilla

    cytometry. We conclude that simple complex formation via electrostatic interactions between siRNA and the cationic peptidomimetics is not sufficient for the delivery of siRNA to the RNA interference (RNAi) pathway in the cytoplasm. We are currently testing chemical conjugates of si...... prepared by mixing and characterized with respect to size and surface charge. At ratios of peptide nitrogen to siRNA phosphate (N/P) of 1 and below, particles with narrow size distributions (poly dispersity indexes lower than 0.11) ranging from approximately 100 to 350 nm were formed, and they showed...... a negative zeta potential (-24 to -31 mV). At higher N/P ratios, larger aggregates with zeta potential close to neutral were formed. However, the complexes were not able to silence the expression of enhanced green fluorescent protein (EGFP) in HeLa-cells stably expressing EGFP, which was measured by flow...

  18. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    NARCIS (Netherlands)

    Mierlo, J.T. van; Bronkhorst, A.W.; Overheul, G.J.; Sadanandan, S.A.; Ekstrom, J.O.; Heestermans, M.; Hultmark, D.; Antoniewski, C.; Rij, R.P. van

    2012-01-01

    RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus

  19. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells.

    Science.gov (United States)

    Liu, Xiaoxia; Sun, Guiling; Sun, Xiuju

    2016-01-01

    This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte-macrophage colony-stimulating factor and E-cadherin was significantly increased (Pmatrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular matrix organization signaling pathway.

  20. Endogenous MCM7 microRNA cluster as a novel platform to multiplex small interfering and nucleolar RNAs for combinational HIV-1 gene therapy.

    Science.gov (United States)

    Chung, Janet; Zhang, Jane; Li, Haitang; Ouellet, Dominique L; DiGiusto, David L; Rossi, John J

    2012-11-01

    Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications.

  1. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens).

    Science.gov (United States)

    Chen, Qiuhong; Lu, Lin; Hua, Hongxia; Zhou, Fei; Lu, Liaoxun; Lin, Yongjun

    2012-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stå;l), which belongs to Homopteran, Delphacidae, is one of the most serious and destructive pests of rice. Feeding BPH with homologous dsRNA in vitro can lead to the death of BPH, which gives a valuable clue to the prevention and control of this pest, however, we know little about its small RNA world. Small RNA libraries for three developmental stages of BPH (CX-male adult, CC-female adult, CY-last instar female nymph) had been constructed and sequenced. It revealed a prolific small RNA world of BPH. We obtained a final list of 452 (CX), 430 (CC), and 381 (CY) conserved microRNAs (miRNAs), respectively, as well as a total of 71 new miRNAs in the three libraries. All the miRNAs had their own expression profiles in the three libraries. The phylogenic evolution of the miRNA families in BPH was consistent with other species. The new miRNA sequences demonstrated some base biases. Our study discovered a large number of small RNAs through deep sequencing of three small RNA libraries of BPH. Many animal-conserved miRNA families as well as some novel miRNAs have been detected in our libraries. This is the first achievement to discover the small RNA world of BPH. A lot of new valuable information about BPH small RNAs has been revealed which was helpful for studying insect molecular biology and insect resistant research.

  2. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    Science.gov (United States)

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  3. Primary and secondary structure of U8 small nuclear RNA

    International Nuclear Information System (INIS)

    Reddy, R.; Henning, D.; Busch, H.

    1985-01-01

    U8 small nuclear RNA is a new, capped, 140 nucleotides long RNA species found in Novikoff hepatoma cells. Its sequence is: m3GpppAmUmCGUCAGGA GGUUAAUCCU UACCUGUCCC UCCUUUCGGA GGGCAGAUAG AAAAUGAUGA UUGGAGCUUG CAUGAUCUGC UGAUUAUAGC AUUUCCGUGU AAUCAGGACC UGACAACAUC CUGAUUGCUU CUAUCUGAUUOH. This RNA is present in approximately 25,000 copies/cell, and it is enriched in nucleolar preparations. Like U1, U2, U4/U6, and U5 RNAs, U8 RNA was also present as a ribonucleoprotein associated with the Sm antigen. The rat U8 RNA was highly homologous (greater than 90%) to a recently characterized 5.4 S RNA from mouse cells infected with spleen focus-forming virus. In addition to the U8 RNA, three other U small nuclear RNAs were found in anti-Sm antibody immunoprecipitates from labeled rat and HeLa cells. Each of these contained a m3GpppAm cap structure; their apparent chain lengths were 60, 130, and 65 nucleotides. These U small nuclear RNAs are designated U7, U9, and U10 RNAs, respectively

  4. Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri.

    Science.gov (United States)

    Killiny, Nabil; Kishk, Abdelaziz

    2017-06-01

    RNA interference (RNAi) is a powerful means to study functional genomics in insects. The delivery of dsRNA is a challenging step in the development of RNAi assay. Here, we describe a new delivery method to increase the effectiveness of RNAi in the Asian citrus psyllid Diaphorina citri. Bromophenol blue droplets were topically applied to fifth instar nymphs and adults on the ventral side of the thorax between the three pairs of legs. In addition to video recordings that showed sucking of the bromophenol blue by the stylets, dissected guts turned blue indicating that the uptake was through feeding. Thus, we called the method topical feeding. We targeted the abnormal wing disc gene (awd), also called nucleoside diphosphate kinase (NDPK), as a reporter gene to prove the uptake of dsRNA via this method of delivery. Our results showed that dsRNA-awd caused reduction of awd expression and nymph mortality. Survival and lifespan of adults emerged from treated nymphs and treated adults were affected. Silencing awd caused wing malformation in the adults emerged from treated nymphs. Topical feeding as a delivery of dsRNA is highly efficient for both nymphs and adults. The described method could be used to increase the efficiency of RNAi in D. citri and other sap piercing-sucking hemipterans. © 2017 Wiley Periodicals, Inc.

  5. Experimental Evaluation of Interference Suppression Receivers and Rank Adaptation in 5G Small Cells

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Catania, Davide

    2015-01-01

    Advanced receivers are a key component of the 5th Generation (5G) ultra-dense small cells concept given their capability of efficiently dealing with the ever-increasing problem of inter-cell interference. In this paper, we evaluate the potential of interference suppression receivers in real network...... the Interference Rejection Combining (IRC) and Successive Interference Cancellation (SIC) receivers and different rank adaptation approaches. Each node in our software defined radio (SDR) testbed features a 22 MIMO transceiver built with the USRP N200 hardware by Ettus Research. Our experimental results confirm...

  6. Theranostic Niosomes for Efficient siRNA/microRNA Delivery and Activatable Near-Infrared Fluorescent Tracking of Stem Cells

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Shan, Gao; Song, Ping

    2018-01-01

    RNA interference (RNAi) mediated gene regulation in stem cells offers great potential in regenerative medicine. In this study, we developed a theranostic platform for efficient delivery of small RNAs (siRNA/miRNA) to human mesenchymal stem cells (hMSCs) to promote differentiation, and meanwhile...... OFF/ON activatable fluorescence upon cellular internalization, resulting in efficient NIR labeling and the capability to dynamically monitor stem cells in mice. In addition, iSPN/siRNA achieved simultaneous long-term cell tracking and in vivo gene silencing after implantation in mice. These results...

  7. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    Science.gov (United States)

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45 + cells after single injection. Acute CCl 4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45 + leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl 4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  8. Interspecific RNA Interference of SHOOT MERISTEMLESS-Like Disrupts Cuscuta pentagona Plant Parasitism[C][W][OA

    Science.gov (United States)

    Alakonya, Amos; Kumar, Ravi; Koenig, Daniel; Kimura, Seisuke; Townsley, Brad; Runo, Steven; Garces, Helena M.; Kang, Julie; Yanez, Andrea; David-Schwartz, Rakefet; Machuka, Jesse; Sinha, Neelima

    2012-01-01

    Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA–mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection. PMID:22822208

  9. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  10. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens.

    Directory of Open Access Journals (Sweden)

    Qiuhong Chen

    Full Text Available BACKGROUND: The brown planthopper (BPH, Nilaparvata lugens (Stå;l, which belongs to Homopteran, Delphacidae, is one of the most serious and destructive pests of rice. Feeding BPH with homologous dsRNA in vitro can lead to the death of BPH, which gives a valuable clue to the prevention and control of this pest, however, we know little about its small RNA world. METHODOLOGY/PRINCIPAL FINDINGS: Small RNA libraries for three developmental stages of BPH (CX-male adult, CC-female adult, CY-last instar female nymph had been constructed and sequenced. It revealed a prolific small RNA world of BPH. We obtained a final list of 452 (CX, 430 (CC, and 381 (CY conserved microRNAs (miRNAs, respectively, as well as a total of 71 new miRNAs in the three libraries. All the miRNAs had their own expression profiles in the three libraries. The phylogenic evolution of the miRNA families in BPH was consistent with other species. The new miRNA sequences demonstrated some base biases. CONCLUSION: Our study discovered a large number of small RNAs through deep sequencing of three small RNA libraries of BPH. Many animal-conserved miRNA families as well as some novel miRNAs have been detected in our libraries. This is the first achievement to discover the small RNA world of BPH. A lot of new valuable information about BPH small RNAs has been revealed which was helpful for studying insect molecular biology and insect resistant research.

  11. Establishment and Evaluation of Stable Cell Lines Inhibiting Foot-and-Mouth Disease Virus by RNA Interference

    Directory of Open Access Journals (Sweden)

    Yuan-xing Gu

    2014-01-01

    Full Text Available RNA interference (RNAi has been proved to be a powerful tool for foot-and-mouth disease virus FMDV inhibition in vitro and in vivo. We established five stable baby hamster kidney 21 cell lines (BHK-21 containing five short hairpin RNAs (shRNAs expression plasmids (p3D1shRNA, p3D2shRNA, p3D3shRNA, p3D4shRNA, and p3D5shRNA targeting 3D gene of FMDV. Immunofluorescent assay, virus titration, and real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR were conducted to detect the effect of shRNAs on FMDV replication. After challenged with FMDV of O/CHA/99, two cell lines (p3D1shRNA and p3D4shRNA showed a significant reduction in the synthesis of viral protein and RNA, accompanied by a sharp decrease in viral yield, and the inhibition could last for at least thirty passages. We developed an efficient procedure for the establishment and evaluation of stable cell lines for anti-FMDV research based on RNAi technology, which can be a candidate method for anti-FMDV research.

  12. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation

    International Nuclear Information System (INIS)

    Cho, Seung-Woo; Hartle, Lauren; Son, Sun Mi; Yang, Fan; Goldberg, Michael; Xu, Qiaobing; Langer, Robert; Anderson, Daniel G.

    2008-01-01

    RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-α (TNF-α). siRNA was designed and synthesized targeting tumor necrosis factor-α receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-α expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-α expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia

  13. Managing inter-cell interference with advanced receivers and rank adaptation in 5G small cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Catania, Davide

    2015-01-01

    -cell interference management. In this paper, we evaluate whether it is possible to rely on such advanced receivers as the main tool to deal with the inter-cell interference problem. We present a system-level performance evaluation in three different dense indoor small cell scenarios using a receiver model...... that includes both interference rejection combining (IRC) and successive interference cancellation (SIC) principles, as well as different rank adaptation strategies. Our results confirm that interference suppression receivers with a supportive system design can indeed represent a valid alternative to frequency...

  14. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2017-05-01

    Full Text Available Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  15. Unique small RNA signatures uncovered in the tammar wallaby genome

    Directory of Open Access Journals (Sweden)

    Lindsay James

    2012-10-01

    Full Text Available Abstract Background Small RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. The tammar wallaby, a marsupial mammal, is a powerful comparative model for studying the evolution of regulatory networks. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs. Results Using next generation sequencing, we have characterized the major classes of small RNAs, micro (mi RNAs, piwi interacting (pi RNAs, and the centromere repeat associated short interacting (crasi RNAs in the tammar. We examined each of these small RNA classes with respect to the newly assembled tammar wallaby genome for gene and repeat features, salient features that define their canonical sequences, and the constitution of both highly conserved and species-specific members. Using a combination of miRNA hairpin predictions and co-mapping with miRBase entries, we identified a highly conserved cluster of miRNA genes on the X chromosome in the tammar and a total of 94 other predicted miRNA producing genes. Mapping all miRNAs to the tammar genome and comparing target genes among tammar, mouse and human, we identified 163 conserved target genes. An additional nine genes were identified in tammar that do not have an orthologous miRNA target in human and likely represent novel miRNA-regulated genes in the tammar. A survey of the tammar gonadal piRNAs shows that these small RNAs are enriched in retroelements and carry members from both marsupial and tammar-specific repeat classes. Lastly, this study includes the first in-depth analyses of the newly

  16. Modulation of RNA function by aminoglycoside antibiotics.

    Science.gov (United States)

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-04

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science.

  17. Small RNAs in plants: Recent development and application for crop improvement

    OpenAIRE

    Ayushi eKamthan; Abira eChaudhuri; Mohan eKamthan; Asis eDatta

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RN...

  18. Experimental Evaluation of Interference Rejection Combining for 5G small cells,

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2015-01-01

    The Interference Rejection Combining (IRC) receiver can significantly boost the network throughput in scenarios characterized by dense uncoordinated deployment of small cells, as targeted by future 5th generation (5G) radio access technology. This paper presents an experimental study...

  19. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2003-08-01

    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  20. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  1. Small molecule alteration of RNA sequence in cells and animals.

    Science.gov (United States)

    Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D

    2017-10-18

    RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG) exp . The small molecule, 2H-4-Ru, binds to r(CUG) exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao; (UAB); (UCR)

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  3. Examining the intersection between splicing, nuclear export and small RNA pathways.

    Science.gov (United States)

    Nabih, Amena; Sobotka, Julia A; Wu, Monica Z; Wedeles, Christopher J; Claycomb, Julie M

    2017-11-01

    Nuclear Argonaute/small RNA pathways in a variety of eukaryotic species are generally known to regulate gene expression via chromatin modulation and transcription attenuation in a process known as transcriptional gene silencing (TGS). However, recent data, including genetic screens, phylogenetic profiling, and molecular mechanistic studies, also point to a novel and emerging intersection between the splicing and nuclear export machinery with nuclear Argonaute/small RNA pathways in many organisms. In this review, we summarize the field's current understanding regarding the relationship between splicing, export and small RNA pathways, and consider the biological implications for coordinated regulation of transcripts by these pathways. We also address the importance and available approaches for understanding the RNA regulatory logic generated by the intersection of these particular pathways in the context of synthetic biology. The interactions between various eukaryotic RNA regulatory pathways, particularly splicing, nuclear export and small RNA pathways provide a type of combinatorial code that informs the identity ("self" versus "non-self") and dictates the fate of each transcript in a cell. Although the molecular mechanisms for how splicing and nuclear export impact small RNA pathways are not entirely clear at this early stage, the links between these pathways are widespread across eukaryotic phyla. The link between splicing, nuclear export, and small RNA pathways is emerging and establishes a new frontier for understanding the combinatorial logic of gene regulation across species that could someday be harnessed for therapeutic, biotechnology and agricultural applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available With accumulating public omics data, great efforts have been made to characterize the genetic heterogeneity of breast cancer. However, identifying novel targets and selecting the best from the sizeable lists of candidate targets is still a key challenge for targeted therapy, largely owing to the lack of economical, efficient and systematic discovery and assessment to prioritize potential therapeutic targets. Here, we describe an approach that combines the computational evaluation and objective, multifaceted assessment to systematically identify and prioritize targets for biological validation and therapeutic exploration. We first establish the reference gene expression profiles from breast cancer cell line MCF7 upon genome-wide RNA interference (RNAi of a total of 3689 genes, and the breast cancer query signatures using RNA-seq data generated from tissue samples of clinical breast cancer patients in the Cancer Genome Atlas (TCGA. Based on gene set enrichment analysis, we identified a set of 510 genes that when knocked down could significantly reverse the transcriptome of breast cancer state. We then perform multifaceted assessment to analyze the gene set to prioritize potential targets for gene therapy. We also propose drug repurposing opportunities and identify potentially druggable proteins that have been poorly explored with regard to the discovery of small-molecule modulators. Finally, we obtained a small list of candidate therapeutic targets for four major breast cancer subtypes, i.e., luminal A, luminal B, HER2+ and triple negative breast cancer. This RNAi transcriptome-based approach can be a helpful paradigm for relevant researches to identify and prioritize candidate targets for experimental validation.

  5. RNA Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept

    Science.gov (United States)

    Heath, George; Childs, Darcy; Docker, Margaret F.; McCauley, David W.; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  6. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    Directory of Open Access Journals (Sweden)

    George Heath

    Full Text Available The parasitic sea lamprey (Petromyzon marinus has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  7. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    Science.gov (United States)

    Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  8. A fast, simple method for screening radiation susceptibility genes by RNA interference

    International Nuclear Information System (INIS)

    Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Otsuki, Marika; Miyagishi, Makoto; Taira, Kazunari; Imai, Takashi; Harada, Yoshi-nobu

    2005-01-01

    Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes

  9. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Wang Beibei; Lu Rui; Wang Weicheng; Jin Ying

    2006-01-01

    The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present First application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation

  10. Oasis 2: improved online analysis of small RNA-seq data.

    Science.gov (United States)

    Rahman, Raza-Ur; Gautam, Abhivyakti; Bethune, Jörn; Sattar, Abdul; Fiosins, Maksims; Magruder, Daniel Sumner; Capece, Vincenzo; Shomroni, Orr; Bonn, Stefan

    2018-02-14

    Small RNA molecules play important roles in many biological processes and their dysregulation or dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep sequencing. Here we present Oasis 2, which is a new main release of the Oasis web application for the detection, differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis, Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over 700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using the novel enhanced classification module. Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment. Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is freely available at https://oasis.dzne.de.

  11. Preparation of Small RNA NGS Libraries from Biofluids.

    Science.gov (United States)

    Etheridge, Alton; Wang, Kai; Baxter, David; Galas, David

    2018-01-01

    Next generation sequencing (NGS) is a powerful method for transcriptome analysis. Unlike other gene expression profiling methods, such as microarrays, NGS provides additional information such as splicing variants, sequence polymorphisms, and novel transcripts. For this reason, NGS is well suited for comprehensive profiling of the wide range of extracellular RNAs (exRNAs) in biofluids. ExRNAs are of great interest because of their possible biological role in cell-to-cell communication and for their potential use as biomarkers or for therapeutic purposes. Here, we describe a modified protocol for preparation of small RNA libraries for NGS analysis. This protocol has been optimized for use with low-input exRNA-containing samples, such as plasma or serum, and has modifications designed to reduce the sequence-specific bias typically encountered with commercial small RNA library construction kits.

  12. piRNA analysis framework from small RNA-Seq data by a novel cluster prediction tool - PILFER.

    Science.gov (United States)

    Ray, Rishav; Pandey, Priyanka

    2017-12-19

    With the increasing number of studies focusing on PIWI-interacting RNA (piRNAs), it is now pertinent to develop efficient tools dedicated towards piRNA analysis. We have developed a novel cluster prediction tool called PILFER (PIrna cLuster FindER), which can accurately predict piRNA clusters from small RNA sequencing data. PILFER is an open source, easy to use tool, and can be executed even on a personal computer with minimum resources. It uses a sliding-window mechanism by integrating the expression of the reads along with the spatial information to predict the piRNA clusters. We have additionally defined a piRNA analysis pipeline incorporating PILFER to detect and annotate piRNAs and their clusters from raw small RNA sequencing data and implemented it on publicly available data from healthy germline and somatic tissues. We compared PILFER with other existing piRNA cluster prediction tools and found it to be statistically more accurate and superior in many aspects such as the robustness of PILFER clusters is higher and memory efficiency is more. Overall, PILFER provides a fast and accurate solution to piRNA cluster prediction. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Small interference RNA-mediated knockdown of sperm associated antigen 9 having structural homology with c-Jun N-terminal kinase-interacting protein

    International Nuclear Information System (INIS)

    Rana, Ritu; Jagadish, Nirmala; Garg, Manoj; Mishra, Deepshikha; Dahiya, Neetu; Chaurasiya, Dipak; Suri, Anil

    2006-01-01

    Recently, we reported a novel testis-specific sperm associated antigen 9 (SPAG9) protein, a new member of the JNK-interacting protein family, having a functional role in sperm-egg fusion [N. Jagadish, R. Rana, R. Selvi, D. Mishra, M. Garg, S. Yadav, J.C. Herr, K. Okumura, A. Hasegawa, K. Koyama, A. Suri, Biochem. J. 389 (2005) 73-82]. NCBI Blast searches revealed SPAG9 nucleotide sequence similarities with ESTs of various cancerous tissues. In the present study, we compared the efficiency of two independent SPAG9 specific small interfering RNA (siRNA) constructs, BS/U6/spag9 and BS/U6/spag9-I, to ablate the SPAG9 expression in mammalian cells. A positive correlation between the ratio of target gene versus siRNA and the suppression of SPAG9 expression was observed. Further, the cotransfection of BS/U6/spag9 with pcDNA-SPAG9 and pFlag-CMV2-JNK-3 resulted in specific suppression of SPAG9 without affecting JNK-3 expression. The present investigation will eventually extend the application of SPAG9 siRNA in in vivo targeting experiments that aim to define the SPAG9 functional genomics in tumor and reproductive biology

  14. Seeing the forest for the trees: annotating small RNA producing genes in plants.

    Science.gov (United States)

    Coruh, Ceyda; Shahid, Saima; Axtell, Michael J

    2014-04-01

    A key goal in genomics is the complete annotation of the expressed regions of the genome. In plants, substantial portions of the genome make regulatory small RNAs produced by Dicer-Like (DCL) proteins and utilized by Argonaute (AGO) proteins. These include miRNAs and various types of endogenous siRNAs. Small RNA-seq, enabled by cheap and fast DNA sequencing, has produced an enormous volume of data on plant miRNA and siRNA expression in recent years. In this review, we discuss recent progress in using small RNA-seq data to produce stable and reliable annotations of miRNA and siRNA genes in plants. In addition, we highlight key goals for the future of small RNA gene annotation in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas.

    Science.gov (United States)

    Payton, Laura; Perrigault, Mickael; Bourdineaud, Jean-Paul; Marcel, Anjara; Massabuau, Jean-Charles; Tran, Damien

    2017-08-01

    RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.

  16. mRNA decay proteins are targeted to poly(A+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Itzel López-Rosas

    Full Text Available In higher eukaryotes, mRNA degradation and RNA-based gene silencing occur in cytoplasmic foci referred to as processing bodies (P-bodies. In protozoan parasites, the presence of P-bodies and their putative role in mRNA decay have yet to be comprehensively addressed. Identification of P-bodies might provide information on how mRNA degradation machineries evolved in lower eukaryotes. Here, we used immunofluorescence and confocal microscopy assays to investigate the cellular localization of mRNA degradation proteins in the human intestinal parasite Entamoeba histolytica and found evidence of the existence of P-bodies. Two mRNA decay factors, namely the EhXRN2 exoribonuclease and the EhDCP2 decapping enzyme, were localized in cytoplasmic foci in a pattern resembling P-body organization. Given that amoebic foci appear to be smaller and less rounded than those described in higher eukaryotes, we have named them "P-body-like structures". These foci contain additional mRNA degradation factors, including the EhCAF1 deadenylase and the EhAGO2-2 protein involved in RNA interference. Biochemical analysis revealed that EhCAF1 co-immunoprecipitated with EhXRN2 but not with EhDCP2 or EhAGO2-2, thus linking deadenylation to 5'-to-3' mRNA decay. The number of EhCAF1-containing foci significantly decreased after inhibition of transcription and translation with actinomycin D and cycloheximide, respectively. Furthermore, results of RNA-FISH assays showed that (i EhCAF1 colocalized with poly(A(+ RNA and (ii during silencing of the Ehpc4 gene by RNA interference, EhAGO2-2 colocalized with small interfering RNAs in cytoplasmic foci. Our observation of decapping, deadenylation and RNA interference proteins within P-body-like foci suggests that these structures have been conserved after originating in the early evolution of eukaryotic lineages. To the best of our knowledge, this is the first study to report on the localization of mRNA decay proteins within P

  17. Conifers have a unique small RNA silencing signature

    OpenAIRE

    Dolgosheina, Elena V.; Morin, Ryan D.; Aksay, Gozde; Sahinalp, S. Cenk; Magrini, Vincent; Mardis, Elaine R.; Mattsson, Jim; Unrau, Peter J.

    2008-01-01

    Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an u...

  18. Synchrotron radiation interferences between small dipoles at LEP

    International Nuclear Information System (INIS)

    Bovet, C.; Burns, A.; Meot, F.; Placidi, M.; Rossa, E.; Vries, J. de

    1997-06-01

    Synchrotron Radiation interferences between small dipoles in the very low (visible) frequency range have been studied at the LEP diagnostic mini-wiggler. Their understanding allowed a substantial brightness gain by adequate layout modifications. The phenomenon is described analytically in terms of time coherence effects. This serves as a basis for further detailed numerical simulations of the experiment by means of stepwise ray-tracing, and allows precise interpretation of the spectral, polarization and intensity measurements collected at LEP. It also provides guidelines for SR diagnostic at injection energy in LHC

  19. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data.

    Science.gov (United States)

    Tsuji, Junko; Weng, Zhiping

    2016-01-01

    With the rapid accumulation of publicly available small RNA sequencing datasets, third-party meta-analysis across many datasets is becoming increasingly powerful. Although removing the 3´ adapter is an essential step for small RNA sequencing analysis, the adapter sequence information is not always available in the metadata. The information can be also erroneous even when it is available. In this study, we developed DNApi, a lightweight Python software package that predicts the 3´ adapter sequence de novo and provides the user with cleansed small RNA sequences ready for down stream analysis. Tested on 539 publicly available small RNA libraries accompanied with 3´ adapter sequences in their metadata, DNApi shows near-perfect accuracy (98.5%) with fast runtime (~2.85 seconds per library) and efficient memory usage (~43 MB on average). In addition to 3´ adapter prediction, it is also important to classify whether the input small RNA libraries were already processed, i.e. the 3´ adapters were removed. DNApi perfectly judged that given another batch of datasets, 192 publicly available processed libraries were "ready-to-map" small RNA sequence. DNApi is compatible with Python 2 and 3, and is available at https://github.com/jnktsj/DNApi. The 731 small RNA libraries used for DNApi evaluation were from human tissues and were carefully and manually collected. This study also provides readers with the curated datasets that can be integrated into their studies.

  20. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels

    Directory of Open Access Journals (Sweden)

    Andrew S French

    2015-07-01

    Full Text Available Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1 was 100-1000 times more abundant than the other opsins (pGO2 and pUVO, while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR. Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi was achieved by injecting long (596-708 bp double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude seven days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction.

  1. Assessing Specific Oligonucleotides and Small Molecule Antibiotics for the Ability to Inhibit the CRD-BP-CD44 RNA Interaction

    Science.gov (United States)

    Thomsen, Dana; Lee, Chow H.

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399

  2. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    NARCIS (Netherlands)

    van Haaften, Gijs; Vastenhouw, Nadine L; Nollen, Ellen A A; Plasterk, Ronald H A; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect

  3. The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism

    Science.gov (United States)

    Bækkedal, Cecilie; Haugen, Peik

    2015-01-01

    The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding. PMID:26327359

  4. The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism.

    Science.gov (United States)

    Bækkedal, Cecilie; Haugen, Peik

    2015-01-01

    The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding.

  5. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  6. Alterations in messenger RNA and small nuclear RNA metabolism resulting from fluorouracil incorporation

    International Nuclear Information System (INIS)

    Armstrong, R.D.; Cadman, E.C.

    1985-01-01

    Studies were completed to examine the effect of 5-fluorouracil (FUra) incorporation on messenger RNA (mRNA) and small molecular weight nuclear RNA (SnRNA) metabolism. Studies of mRNA were completed using cDNA-mRNA hybridization methods to specifically examine dihydrofolate reductase (DHFR) mRNA. C 3 -L5178Y murine leukemia cells which are gene-amplified for DHFR, were exposed to FUra for 6, 12 or 24 hr, and the nuclear and cytoplasmic levels of DHFR-mRNA determined by hybridization with 32 P-DHFR-cDNA. FUra produced a dose-dependent increase in nuclear DHFR-mRNA levels, while total cytoplasmic DHFR-mRNA levels appeared to be unchanged. To examine only mRNA synthesized during FUra exposure, cells were also treated concurrently with [ 3 H] cytidine, and the [ 3 H]mRNA-cDNA hybrids measured following S 1 -nuclease treatment. FUra produced a concentration-dependent increase in nascent nuclear DHFR-mRNA levels, and a decrease in nascent cytoplasmic DHFR-mRNAs levels. These results suggest that FUra produces either an inhibition of mRNA processing, or an inhibition of nuclear-cytoplasmic transport. Preliminary experiments to examine ATP-dependent mRNA transport were completed with isolated nuclei from cells treated with FUra for 1 or 24 hr and then pulse-labeled for 1 hr with [ 3 H] cytidine. The results demonstrate a FUra-concentration and time-dependent inhibition of ATP-mediated mRNA efflux

  7. RNA interference: a promising technique for the improvement of traditional crops.

    Science.gov (United States)

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    RNA interference (RNAi) is a homology-dependent gene-silencing technology that involves double-stranded RNA directed against a target gene. This technique has emerged as powerful tool in understanding the functions of a number of genes in recent years. For the improvement in the nutritional status of the plants and reduction in the level of antinutrients, the conventional breeding methods were not completely successful in achieving the tissue-specific regulation of some genes. RNAi has shown successful results in a number of plant species for nutritional improvement, change in morphology and alteration in metabolite synthesis. This technology has been applied mostly in genetic engineering of important crop plants, and till date there are no reports of its application for the improvement of traditional/underutilized crops. In this study, we discuss current knowledge of RNAi function and concept and strategies for the improvement of traditional crops. Practical application. Although RNAi has been extensively used for the improvement of popular crops, no attention has been given for the use of this technology for the improvement of underutilized crops. This study describes the importance of use of this technology for the improvement of underutilized crops.

  8. RNA Interference: A Promising Tool in the Control of Important Vector Born Diseases Zika, Dengue Fever, and Malaria

    Directory of Open Access Journals (Sweden)

    Jalil Nejati

    2017-05-01

    Full Text Available Background and Objectives: RNA interference is a process, in which a molecule of double-stranded RNA prevents the expression of a particular gene and leads to its silencing. Application of this technology in the control of disease-carrying insects is rising in agriculture and medical sciences. Also, its application in control of insect-borne diseases could be considered as a new, important, and effective approach. In this article, it was attempted to study the mechanisms of RNA interference, routs of its delivery to insects, as well as its application in genetic control of disease vector insects. Methods: In this study, 71 indexed articles in databases, such as Pubmed, SID, Scopus, Science direct, and Google scholar, were used. Results: dsRNA could be delivered to insect body through three routes of oral, injection, and Impregnation. The mechanism of dsRNA entrance into the cells has considerable effect on the success and applicability of this technique. Identification of host-parasite relationship in the insect body is one of the important applications of RNAi in medical entomology. Conclusion: Although, there is a considerable number of researches on RNAi in the agricultural pests field, studies on insect vectors of human diseases have been mostly in-vivo. However, application of RNAi is suggested as a new, safe and applicable approach, alone or along with other methods. Certainly, further researches in this field can pave the way for enforcement measures in the control of disease vectors, especially Zika, dengue fever, and malaria in the not so distant future.

  9. Interference-Robust Air Interface for 5G Ultra-dense Small Cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    An ultra-dense deployment of small cells is foreseen as the solution to cope with the exponential increase of the data rate demand targeted by the 5th Generation (5G) radio access technology. In this article, we propose an interference-robust air interface built upon the usage of advanced receivers...

  10. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  11. CPSS: a computational platform for the analysis of small RNA deep sequencing data.

    Science.gov (United States)

    Zhang, Yuanwei; Xu, Bo; Yang, Yifan; Ban, Rongjun; Zhang, Huan; Jiang, Xiaohua; Cooke, Howard J; Xue, Yu; Shi, Qinghua

    2012-07-15

    Next generation sequencing (NGS) techniques have been widely used to document the small ribonucleic acids (RNAs) implicated in a variety of biological, physiological and pathological processes. An integrated computational tool is needed for handling and analysing the enormous datasets from small RNA deep sequencing approach. Herein, we present a novel web server, CPSS (a computational platform for the analysis of small RNA deep sequencing data), designed to completely annotate and functionally analyse microRNAs (miRNAs) from NGS data on one platform with a single data submission. Small RNA NGS data can be submitted to this server with analysis results being returned in two parts: (i) annotation analysis, which provides the most comprehensive analysis for small RNA transcriptome, including length distribution and genome mapping of sequencing reads, small RNA quantification, prediction of novel miRNAs, identification of differentially expressed miRNAs, piwi-interacting RNAs and other non-coding small RNAs between paired samples and detection of miRNA editing and modifications and (ii) functional analysis, including prediction of miRNA targeted genes by multiple tools, enrichment of gene ontology terms, signalling pathway involvement and protein-protein interaction analysis for the predicted genes. CPSS, a ready-to-use web server that integrates most functions of currently available bioinformatics tools, provides all the information wanted by the majority of users from small RNA deep sequencing datasets. CPSS is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/db/cpss/index.html or http://mcg.ustc.edu.cn/sdap1/cpss/index.html.

  12. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  13. MicroRNAs in Amoebozoa: deep sequencing of the small RNA population in the social amoeba Dictyostelium discoideum reveals developmentally regulated microRNAs.

    Science.gov (United States)

    Avesson, Lotta; Reimegård, Johan; Wagner, E Gerhart H; Söderbom, Fredrik

    2012-10-01

    The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.

  14. sRNAnalyzer-a flexible and customizable small RNA sequencing data analysis pipeline.

    Science.gov (United States)

    Wu, Xiaogang; Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J; Wang, Kai

    2017-12-01

    Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline-sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. sRNAnalyzer—a flexible and customizable small RNA sequencing data analysis pipeline

    Science.gov (United States)

    Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J.

    2017-01-01

    Abstract Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline—sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. PMID:29069500

  16. Competing to destroy: a fight between two RNA-degradation systems

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    The Argonaute-1 (Ago1) protein bound to small interfering RNAs (siRNAs) directs heterochromatin formation in fission yeast. A high-throughput sequencing approach reveals that the composition of the Ago1-bound siRNA population is sensitive to the noncanonical poly(A) polymerase Cid14, indicating t...... that the RNA-interference and Cid14-TRAMP RNA-degradation pathways compete for substrates in fission yeast.......The Argonaute-1 (Ago1) protein bound to small interfering RNAs (siRNAs) directs heterochromatin formation in fission yeast. A high-throughput sequencing approach reveals that the composition of the Ago1-bound siRNA population is sensitive to the noncanonical poly(A) polymerase Cid14, indicating...

  17. RNA interference-based resistance against a legume mastrevirus

    Directory of Open Access Journals (Sweden)

    Mansoor Shahid

    2011-11-01

    Full Text Available Abstract Background RNA interference (RNAi is a homology-dependant gene silencing mechanism and has been widely used to engineer resistance in plants against RNA viruses. However, its usefulness in delivering resistance against plant DNA viruses belonging to family Geminiviridae is still being debated. Although the RNAi approach has been shown, using a transient assay, to be useful in countering monocotyledonous plant-infecting geminiviruses of the genus Mastrevirus, it has yet to be investigated as a means of delivering resistance to dicot-infecting mastreviruses. Chickpea chlorotic dwarf Pakistan virus (CpCDPKV is a legume-infecting mastrevirus that affects chickpea and other leguminous crops in Pakistan. Results Here a hairpin (hpRNAi construct containing sequences encompassing part of replication-associated protein gene, intergenic region and part of the movement protein gene of CpCDPKV under the control of the Cauliflower mosaic virus 35S promoter has been produced and stably transformed into Nicotiana benthamiana. Plants harboring the hairpin construct were challenged with CpCDPKV. All non-transgenic N. benthamiana plants developed symptoms of CpCDPKV infection within two weeks post-inoculation. In contrast, none of the inoculated transgenic plants showed symptoms of infection and no viral DNA could be detected by Southern hybridization. A real-time quantitative PCR analysis identified very low-level accumulation of viral DNA in the inoculated transgenic plants. Conclusions The results presented show that the RNAi-based resistance strategy is useful in protecting plants from a dicot-infecting mastrevirus. The very low levels of virus detected in plant tissue of transgenic plants distal to the inoculation site suggest that virus movement and/or viral replication was impaired leading to plants that showed no discernible signs of virus infection.

  18. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    Directory of Open Access Journals (Sweden)

    Malgorzata Sierant

    2011-01-01

    Full Text Available RNA interference (RNAi technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G alleles of human Presenilin1 gene (PSEN1. This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide.

  19. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    Science.gov (United States)

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ultra-small and broadband polarization splitters based on double-slit interference

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chengwei; Li, Hongyun [State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang; Chen, Jianjun, E-mail: jjchern@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-03-07

    An ultra-small and broadband polarization splitter is numerically and experimentally demonstrated based on the double-slit interference in a polymer-film-coated double-slit structure. The hybrid slab waveguide (air-polymer-Au) supports both the transverse-magnetic and transverse-electric modes. The incident beam from the back side can excite these two guided modes of orthogonally polarized states in the hybrid structure. By exploiting the difference slit widths and the large mode birefringence, these two guided modes propagate to the opposite directions along the front metal surface. Moreover, the short interference length broadens the operation bandwidth. Experimentally, a polarization splitter with a lateral dimension of only about 1.6 μm and an operation bandwidth of 50 nm is realized. By designing the double-slit structure in a hybrid strip waveguide, the device dimension can be significant downscaled to about 0.3 × 1.3 μm{sup 2}. Such an ultra-small and broadband polarization splitter may find important applications in the integrated photonic circuits.

  1. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-04-01

    Full Text Available Xiaoxia Liu, Guiling Sun, Xiuju Sun Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China Abstract: This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP gene on renal cell cancer (RCC cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte–macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05. The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial

  2. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G 0 /G 1 -phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D 3 and p21 Waf1 , which stabilizes cyclin D/cdk4 complex for G 1 -S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  3. Performance improvement of switched-based interference mitigation for channel assignment in over-loaded small-cell networks

    KAUST Repository

    Gaaloul, Fakhreddine

    2013-05-01

    This paper proposes adequate methods to improve the interference mitigation capability of a recently investigated switched-based interference reduction scheme for single downlink channel assignment in over-loaded small-cell networks. The model assumes that the available orthogonal channels for small cells are distributed among access points in close vicinity, where each access point knows its allocated channels a priori. Each cell has a single antenna, employs the open access strategy, and can reuse its allocated channels simultaneously, while scheduling concurrent service requests. Moreover, the access points can not coordinate their transmissions, and can receive limited feedback from active users. The paper presents low-complexity schemes to identify a suitable channel to serve the scheduled user by maintaining the interference power level within a tolerable range. They attempt to either complement the switched-based scheme by minimum interference channel selection or adopt different interference thresholds on available channels, while reducing the channel examination load. The optimal thresholds for interference mitigation at the desired receive station are quantified for various performance criteria. The performance and processing load of the proposed schemes are obtained analytically, and then compared to those of the single-threshold scheme via numerical and simulation results. © 2002-2012 IEEE.

  4. Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer.

    Science.gov (United States)

    Koduru, Srinivas V; Tiwari, Amit K; Hazard, Sprague W; Mahajan, Milind; Ravnic, Dino J

    2017-01-01

    Background: Improved healthcare and recent breakthroughs in technology have substantially reduced cancer mortality rates worldwide. Recent advancements in next-generation sequencing (NGS) have allowed genomic analysis of the human transcriptome. Now, using NGS we can further look into small non-coding regions of RNAs (sncRNAs) such as microRNAs (miRNAs), Piwi-interacting-RNAs (piRNAs), long non-coding RNAs (lncRNAs), and small nuclear/nucleolar RNAs (sn/snoRNAs) among others. Recent studies looking at sncRNAs indicate their role in important biological processes such as cancer progression and predict their role as biomarkers for disease diagnosis, prognosis, and therapy. Results: In the present study, we data mined publically available small RNA sequencing data from colorectal tissue samples of eight matched patients (benign, tumor, and metastasis) and remapped the data for various small RNA annotations. We identified aberrant expression of 13 miRNAs in tumor and metastasis specimens [tumor vs benign group (19 miRNAs) and metastasis vs benign group (38 miRNAs)] of which five were upregulated, and eight were downregulated, during disease progression. Pathway analysis of aberrantly expressed miRNAs showed that the majority of miRNAs involved in colon cancer were also involved in other cancers. Analysis of piRNAs revealed six to be over-expressed in the tumor vs benign cohort and 24 in the metastasis vs benign group. Only two piRNAs were shared between the two cohorts. Examining other types of small RNAs [sn/snoRNAs, mt_rRNA, miscRNA, nonsense mediated decay (NMD), and rRNAs] identified 15 sncRNAs in the tumor vs benign group and 104 in the metastasis vs benign group, with only four others being commonly expressed. Conclusion: In summary, our comprehensive analysis on publicly available small RNA-seq data identified multiple differentially expressed sncRNAs during colorectal cancer progression at different stages compared to normal colon tissue. We speculate that

  5. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets.

    Science.gov (United States)

    Watson, Mick; Schnettler, Esther; Kohl, Alain

    2013-08-01

    RNA interference (RNAi) is known to play an important part in defence against viruses in a range of species. Second-generation sequencing technologies allow us to assay these systems and the small RNAs that play a key role with unprecedented depth. However, scientists need access to tools that can condense, analyse and display the resulting data. Here, we present viRome, a package for R that takes aligned sequence data and produces a range of essential plots and reports. viRome is released under the BSD license as a package for R available for both Windows and Linux http://virome.sf.net. Additional information and a tutorial is available on the ARK-Genomics website: http://www.ark-genomics.org/bioinformatics/virome. mick.watson@roslin.ed.ac.uk.

  6. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    International Nuclear Information System (INIS)

    Anesti, Anna-Maria; Simpson, Guy R; Price, Toby; Pandha, Hardev S; Coffin, Robert S

    2010-01-01

    Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEX GM-CSF , we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials

  7. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  8. [Expression of Jagged1 mRNA in human epithelial ovarian carcinoma tissues and effect of RNA interference of Jagged1 on growth of xenograft in nude mice].

    Science.gov (United States)

    Liu, G Y; Gao, Z H; Li, L; Song, T T; Sheng, X G

    2016-06-25

    To investigate the expression of Jagged1 in human epithelial ovarian carcinoma tissues and the effect of Jagged1 on growth of xenograft in nude mice. (1) Forty-eight cases of ovarian cancer and 30 cases of patients with benign epithelial ovarian tumor in the Henan Province Xinxiang Central Hospital during Feb. 2011 to Mar. 2014 were enrolled in this study. The mRNA expression of Jagged1, Notch1 and the downstream target genes Hes1, Hey1 were analyzed by using realtime PCR method. (2) The ovarian cancer xenograft models in nude mice were constructed by injecting SKOV3 cells in axillary subcutaneouswere. The nude mice were randomly divided into Jagged1 interference group, blank plasmid group and control group. Each group had 10 mice. They were transfected with pcDNA3.1(+)-siRNA-Jagged1, blank plasmid pDC3.1 and phosphate buffer, respectively. The tumor volumes and tumor masses were measured 14 days after transfection and the inhibition rate was calculated. The relative mRNA expression of Jagged1, Notch1, Hes1 and Hey1 in xenograft tissues after transfection in each group was detected by using realtime PCR technique and the relative protein expression of Jagged1, Notch1, Hes1 and Hey1 in xenograft tissues was detected by utilizing western blot method. (1) The relative mRNA expression of Jagged1, Notch1, Hes1 and Hey1 in ovarian cancer tissues were higher than benign ovarian tumor tissues, the differences were statistically significant (Ptissues of nude micein Jagged1 interference group were lower than that in the other two groups, the differences were statistically significant (Ptissues of nude mice among the three groups (P>0.05). Jagged1 is highly expressed in epithelial ovarian carcinoma. Jagged1 gene interference in xenograft tumor can inhibit ovarian cancer cell growth and improve tumor suppressor rate, which probably play roles by inhibiting Notch1 signaling pathway.

  9. Towards annotating the plant epigenome: the Arabidopsis thaliana small RNA locus map.

    Science.gov (United States)

    Hardcastle, Thomas J; Müller, Sebastian Y; Baulcombe, David C

    2018-04-20

    Based on 98 public and internal small RNA high throughput sequencing libraries, we mapped small RNAs to the genome of the model organism Arabidopsis thaliana and defined loci based on their expression using an empirical Bayesian approach. The resulting loci were subsequently classified based on their genetic and epigenetic context as well as their expression properties. We present the results of this classification, which broadly conforms to previously reported divisions between transcriptional and post-transcriptional gene silencing small RNAs, and to PolIV and PolV dependencies. However, we are able to demonstrate the existence of further subdivisions in the small RNA population of functional significance. Moreover, we present a framework for similar analyses of small RNA populations in all species.

  10. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Liang, H. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China); Cao, W. [Department of Obstetrics, Qingdao Central Hospital, Qingdao (China); Xu, R.; Ju, X.L. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China)

    2014-05-23

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  11. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  12. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  13. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs.

    Directory of Open Access Journals (Sweden)

    Baoyan Bai

    Full Text Available Small non-coding RNAs represent RNA species that are not translated to proteins, but which have diverse and broad functional activities in physiological and pathophysiological states. The knowledge of these small RNAs is rapidly expanding in part through the use of massive parallel (deep sequencing efforts. We present here the first deep sequencing of small RNomes in subcellular compartments with particular emphasis on small RNAs (sRNA associated with the nucleolus. The vast majority of the cellular, cytoplasmic and nuclear sRNAs were identified as miRNAs. In contrast, the nucleolar sRNAs had a unique size distribution consisting of 19-20 and 25 nt RNAs, which were predominantly composed of small snoRNA-derived box C/D RNAs (termed as sdRNA. Sequences from 47 sdRNAs were identified, which mapped to both 5' and 3' ends of the snoRNAs, and retained conserved box C or D motifs. SdRNA reads mapping to SNORD44 comprised 74% of all nucleolar sdRNAs, and were confirmed by Northern blotting as comprising both 20 and 25 nt RNAs. A novel 120 nt SNORD44 form was also identified. The expression of the SNORD44 sdRNA and 120 nt form was independent of Dicer/Drosha-mediated processing pathways but was dependent on the box C/D snoRNP proteins/sno-ribonucleoproteins fibrillarin and NOP58. The 120 nt SNORD44-derived RNA bound to fibrillarin suggesting that C/D sno-ribonucleoproteins are involved in regulating the stability or processing of SNORD44. This study reveals sRNA cell-compartment specific expression and the distinctive unique composition of the nucleolar sRNAs.

  14. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex.

    Science.gov (United States)

    Ham, Byung-Kook; Li, Gang; Jia, Weitao; Leary, Julie A; Lucas, William J

    2014-11-01

    In plants, the vascular system, specifically the phloem, functions in delivery of small RNA (sRNA) to exert epigenetic control over developmental and defense-related processes. Although the importance of systemic sRNA delivery has been established, information is currently lacking concerning the nature of the protein machinery involved in this process. Here, we show that a PHLOEM SMALL-RNA BINDING PROTEIN 1 (PSRP1) serves as the basis for formation of an sRNA ribonucleoprotein complex (sRNPC) that delivers sRNA (primarily 24 nt) to sink organs. Assembly of this complex is facilitated through PSRP1 phosphorylation by a phloem-localized protein kinase, PSRPK1. During long-distance transport, PSRP1-sRNPC is stable against phloem phosphatase activity. Within target tissues, phosphatase activity results in disassembly of PSRP1-sRNPC, a process that is probably required for unloading cargo sRNA into surrounding cells. These findings provide an insight into the mechanism involved in delivery of sRNA associated with systemic gene silencing in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?

    Directory of Open Access Journals (Sweden)

    Unnikrishnan Unniyampurath

    2016-02-01

    Full Text Available The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR and the CRISPR-associated protein 9 (Cas9 (CRISPR/Cas9 system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term.

  16. The origin and effect of small RNA signaling in plants

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien eParent

    2012-08-01

    Full Text Available Given their sessile condition, land plants need to integrate environmental cues rapidly and send signal throughout the organism to modify their metabolism accordingly. Small RNA (sRNA molecules are among the messengers that plant cells use to carry such signals. These molecules originate from fold-back stem-loops transcribed from endogenous loci or from perfect double-stranded RNA produced through the action of RNA-dependent RNA polymerases. Once produced, sRNAs associate with Argonaute and other proteins to form the RNA-induced silencing complex (RISC that executes silencing of complementary RNA molecules. Depending on the nature of the RNA target and the Argonaute protein involved, RISC triggers either DNA methylation and chromatin modification (leading to transcriptional gene silencing, TGS or RNA cleavage or translational inhibition (leading to post-transcriptional gene silencing, PTGS. In some cases, sRNAs move to neighboring cells and/or to the vascular tissues for long-distance trafficking. Many genes are involved in the biogenesis of sRNAs and recent studies have shown that both their origin and their protein partners have great influence on their activity and range. Here we summarize the work done to uncover the mode of action of the different classes of small RNA with special emphasis on their movement and how plants can take advantage of their mobility. We also review the various genetic requirements needed for production, movement and perception of the silencing signal.

  17. smallWig: parallel compression of RNA-seq WIG files.

    Science.gov (United States)

    Wang, Zhiying; Weissman, Tsachy; Milenkovic, Olgica

    2016-01-15

    We developed a new lossless compression method for WIG data, named smallWig, offering the best known compression rates for RNA-seq data and featuring random access functionalities that enable visualization, summary statistics analysis and fast queries from the compressed files. Our approach results in order of magnitude improvements compared with bigWig and ensures compression rates only a fraction of those produced by cWig. The key features of the smallWig algorithm are statistical data analysis and a combination of source coding methods that ensure high flexibility and make the algorithm suitable for different applications. Furthermore, for general-purpose file compression, the compression rate of smallWig approaches the empirical entropy of the tested WIG data. For compression with random query features, smallWig uses a simple block-based compression scheme that introduces only a minor overhead in the compression rate. For archival or storage space-sensitive applications, the method relies on context mixing techniques that lead to further improvements of the compression rate. Implementations of smallWig can be executed in parallel on different sets of chromosomes using multiple processors, thereby enabling desirable scaling for future transcriptome Big Data platforms. The development of next-generation sequencing technologies has led to a dramatic decrease in the cost of DNA/RNA sequencing and expression profiling. RNA-seq has emerged as an important and inexpensive technology that provides information about whole transcriptomes of various species and organisms, as well as different organs and cellular communities. The vast volume of data generated by RNA-seq experiments has significantly increased data storage costs and communication bandwidth requirements. Current compression tools for RNA-seq data such as bigWig and cWig either use general-purpose compressors (gzip) or suboptimal compression schemes that leave significant room for improvement. To substantiate

  18. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  19. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  20. RNA Interference Based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    Science.gov (United States)

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) could offer potential for insect pest management. Insects feeding exclusively on plant sap depend on osmotic pressure...

  1. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

    Science.gov (United States)

    Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A

    2014-05-06

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

  2. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA.

    Science.gov (United States)

    Parker, Greg S; Eckert, Debra M; Bass, Brenda L

    2006-05-01

    In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.

  3. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance.

    Science.gov (United States)

    Lev, Itamar; Seroussi, Uri; Gingold, Hila; Bril, Roberta; Anava, Sarit; Rechavi, Oded

    2017-04-24

    In C. elegans, alterations to chromatin produce transgenerational effects, such as inherited increase in lifespan and gradual loss of fertility. Inheritance of histone modifications can be induced by double-stranded RNA-derived heritable small RNAs. Here, we show that the mortal germline phenotype, which is typical of met-2 mutants, defective in H3K9 methylation, depends on HRDE-1, an argonaute that carries small RNAs across generations, and is accompanied by accumulated transgenerational misexpression of heritable small RNAs. We discovered that MET-2 inhibits small RNA inheritance, and, as a consequence, induction of RNAi in met-2 mutants leads to permanent RNAi responses that do not terminate even after more than 30 generations. We found that potentiation of heritable RNAi in met-2 animals results from global hyperactivation of the small RNA inheritance machinery. Thus, changes in histone modifications can give rise to drastic transgenerational epigenetic effects, by controlling the overall potency of small RNA inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. RNA interference of carboxyesterases causes nymph mortality in the Asian citrus psyllid, Diaphorina citri.

    Science.gov (United States)

    Kishk, Abdelaziz; Anber, Helmy A I; AbdEl-Raof, Tsamoh K; El-Sherbeni, AbdEl-Hakeem D; Hamed, Sobhy; Gowda, Siddarame; Killiny, Nabil

    2017-03-01

    Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important pest of citrus. In addition, D. citri is the vector of Huanglongbing, a destructive disease in citrus, also known as citrus greening disease caused by Candidatus Liberibacter asiaticus. Huanglongbing causes huge losses for citrus industries. Insecticide application for D. citri is the major strategy to prevent disease spread. The heavy use of insecticides causes development of insecticide resistance. We used RNA interference (RNAi) to silence genes implicated in pesticide resistance in order to increase the susceptibility. The activity of dsRNA to reduce the expression of carboxyesterases including esterases FE4 (EstFE4) and acetylcholinesterases (AChe) in D. citri was investigated. The dsRNA was applied topically to the fourth and fifth instars of nymphs. We targeted several EstFE4 and AChe genes using dsRNA against a consensus sequence for each of them. Five concentrations (25, 50, 75, 100, 125 ng/μl) from both dsRNAs were used. The treatments with the dsRNA caused concentration dependent nymph mortality. The highest gene expression levels of both AChe and EstFE4 were found in the fourth and fifth nymphal instars. Gene expression analysis showed that AChe genes were downregulated in emerged adults from dsRNA-AChe-treated nymphs compared to controls. However, EstFE4 genes were not affected. In the same manner, treatment with dsRNA-EstFE4 reduced expression level of EstFE4 genes in emerged adults from treated nymphs, but did not affect the expression of AChe genes. In the era of environmentally friendly control strategies, RNAi is a new promising venue to reduce pesticide applications. © 2017 Wiley Periodicals, Inc.

  5. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.

    Science.gov (United States)

    Iwasaki, Shintaro; Kobayashi, Maki; Yoda, Mayuko; Sakaguchi, Yuriko; Katsuma, Susumu; Suzuki, Tsutomu; Tomari, Yukihide

    2010-07-30

    Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Exploiting CRISPR/Cas: Interference Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    André Plagens

    2013-07-01

    Full Text Available The discovery of biological concepts can often provide a framework for the development of novel molecular tools, which can help us to further understand and manipulate life. One recent example is the elucidation of the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas that protects bacteria and archaea against viruses or conjugative plasmids. The immunity is based on small RNA molecules that are incorporated into versatile multi-domain proteins or protein complexes and specifically target viral nucleic acids via base complementarity. CRISPR/Cas interference machines are utilized to develop novel genome editing tools for different organisms. Here, we will review the latest progress in the elucidation and application of prokaryotic CRISPR/Cas systems and discuss possible future approaches to exploit the potential of these interference machineries.

  7. Exploiting CRISPR/Cas: Interference Mechanisms and Applications

    Science.gov (United States)

    Richter, Hagen; Randau, Lennart; Plagens, André

    2013-01-01

    The discovery of biological concepts can often provide a framework for the development of novel molecular tools, which can help us to further understand and manipulate life. One recent example is the elucidation of the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) that protects bacteria and archaea against viruses or conjugative plasmids. The immunity is based on small RNA molecules that are incorporated into versatile multi-domain proteins or protein complexes and specifically target viral nucleic acids via base complementarity. CRISPR/Cas interference machines are utilized to develop novel genome editing tools for different organisms. Here, we will review the latest progress in the elucidation and application of prokaryotic CRISPR/Cas systems and discuss possible future approaches to exploit the potential of these interference machineries. PMID:23857052

  8. Evaluation of metaphylactic RNA interference to prevent equine herpesvirus type 1 infection in experimental herpesvirus myeloencephalopathy in horses.

    Science.gov (United States)

    Perkins, Gillian A; Van de Walle, Gerlinde R; Pusterla, Nicola; Erb, Hollis N; Osterrieder, Nikolaus

    2013-02-01

    To evaluate metaphylactic RNA interference to prevent equine herpesvirus type 1 (EHV-1) infection in experimental herpesvirus myeloencephalopathy in horses and to determine whether horses infected with a neuropathogenic strain of the virus that develop equine herpesvirus myeloencephalopathy (EHM) have differences in viremia. 13 seronegative horses. EHV-1 strain Ab4 was administered intranasally on day 0, and small interfering RNAs (siRNAs [EHV-1 specific siRNAs {n = 7} or an irrelevant siRNA {6}]) were administered intranasally 24 hours before and 12, 24, 36, and 48 hours after infection. Physical and neurologic examinations, nasal swab specimens, and blood samples were collected for virus isolation and quantitative PCR assay. Data from the study were combined with data from a previous study of 14 horses. No significant difference was detected in clinical variables, viremia, or detection of EHV-1 in nasal swab specimens of horses treated with the EHV-1 targeted siRNAs (sigB3-siOri2) versus controls. No significant differences in viremia were detected between horses that developed EHM and those that did not. Administration of siRNAs targeted against EHV-1 around the time of EHV-1 infection was not protective with this experimental design. Horses infected with the neuropathogenic EHV-1 strain Ab4 that developed EHM did not have a more pronounced viremia.

  9. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background RNA interference (RNAi is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid

  10. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs

    NARCIS (Netherlands)

    de Jonge, J; Holtrop, M; Wilschut, J; Huckriede, A

    Application of RNA interference for in vivo evaluation of gene function or for therapeutic interventions has been hampered by a lack of suitable delivery methods for small interfering RNA ( siRNA). Here, we present reconstituted viral envelopes (virosomes) derived from influenza virus as suitable

  11. Responses of mRNA expression of PepT1 in small intestine to ...

    African Journals Online (AJOL)

    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was ...

  12. Hybridization-based reconstruction of small non-coding RNA transcripts from deep sequencing data.

    Science.gov (United States)

    Ragan, Chikako; Mowry, Bryan J; Bauer, Denis C

    2012-09-01

    Recent advances in RNA sequencing technology (RNA-Seq) enables comprehensive profiling of RNAs by producing millions of short sequence reads from size-fractionated RNA libraries. Although conventional tools for detecting and distinguishing non-coding RNAs (ncRNAs) from reference-genome data can be applied to sequence data, ncRNA detection can be improved by harnessing the full information content provided by this new technology. Here we present NorahDesk, the first unbiased and universally applicable method for small ncRNAs detection from RNA-Seq data. NorahDesk utilizes the coverage-distribution of small RNA sequence data as well as thermodynamic assessments of secondary structure to reliably predict and annotate ncRNA classes. Using publicly available mouse sequence data from brain, skeletal muscle, testis and ovary, we evaluated our method with an emphasis on the performance for microRNAs (miRNAs) and piwi-interacting small RNA (piRNA). We compared our method with Dario and mirDeep2 and found that NorahDesk produces longer transcripts with higher read coverage. This feature makes it the first method particularly suitable for the prediction of both known and novel piRNAs.

  13. Small RNA expression and strain specificity in the rat

    Directory of Open Access Journals (Sweden)

    de Bruijn Ewart

    2010-04-01

    Full Text Available Abstract Background Digital gene expression (DGE profiling has become an established tool to study RNA expression. Here, we provide an in-depth analysis of small RNA DGE profiles from two different rat strains (BN-Lx and SHR from six different rat tissues (spleen, liver, brain, testis, heart, kidney. We describe the expression patterns of known and novel micro (miRNAs and piwi-interacting (piRNAs. Results We confirmed the expression of 588 known miRNAs (54 in antisense orientation and identified 56 miRNAs homologous to known human or mouse miRNAs, as well as 45 new rat miRNAs. Furthermore, we confirmed specific A to I editing in brain for mir-376a/b/c and identified mir-377 as a novel editing target. In accordance with earlier findings, we observed a highly tissue-specific expression pattern for all tissues analyzed. The brain was found to express the highest number of tissue-specific miRNAs, followed by testis. Notably, our experiments also revealed robust strain-specific differential miRNA expression in the liver that is caused by genetic variation between the strains. Finally, we identified two types of germline-specific piRNAs in testis, mapping either to transposons or in strand-specific clusters. Conclusions Taken together, the small RNA compendium described here advances the annotation of small RNAs in the rat genome. Strain and tissue-specific expression patterns furthermore provide a strong basis for studying the role of small RNAs in regulatory networks as well as biological process like physiology and neurobiology that are extensively studied in this model system.

  14. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  15. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    Science.gov (United States)

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs.

    Directory of Open Access Journals (Sweden)

    Noah Fahlgren

    Full Text Available In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.

  17. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs.

    Science.gov (United States)

    Fahlgren, Noah; Bollmann, Stephanie R; Kasschau, Kristin D; Cuperus, Josh T; Press, Caroline M; Sullivan, Christopher M; Chapman, Elisabeth J; Hoyer, J Steen; Gilbert, Kerrigan B; Grünwald, Niklaus J; Carrington, James C

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.

  18. Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs

    Science.gov (United States)

    Fahlgren, Noah; Bollmann, Stephanie R.; Kasschau, Kristin D.; Cuperus, Josh T.; Press, Caroline M.; Sullivan, Christopher M.; Chapman, Elisabeth J.; Hoyer, J. Steen; Gilbert, Kerrigan B.; Grünwald, Niklaus J.; Carrington, James C.

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work. PMID:24204767

  19. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry.

    Directory of Open Access Journals (Sweden)

    Cherilyn A Elwell

    2008-03-01

    Full Text Available The strain designated Chlamydia trachomatis serovar L2 that was used for experiments in this paper is Chlamydia muridarum, a species closely related to C. trachomatis (and formerly termed the Mouse Pneumonitis strain of C. trachomatis. This conclusion was verified by deep sequencing and by PCR using species-specific primers. All data presented in the results section that refer to C. trachomatis should be interpreted as referring to C. muridarum. Since C. muridarum TARP lacks the consensus tyrosine repeats present in C. trachomatis TARP, we cannot make any conclusions about the role of TARP phosphorylation and C. muridarum entry. However, the conclusion that C. trachomatis L2 TARP is a target of Abl kinase is still valid as these experiments were performed with C. trachomatis L2 TARP [corrected]. To elucidate the mechanisms involved in early events in Chlamydia trachomatis infection, we conducted a large scale unbiased RNA interference screen in Drosophila melanogaster S2 cells. This allowed identification of candidate host factors in a simple non-redundant, genetically tractable system. From a library of 7,216 double stranded RNAs (dsRNA, we identified approximately 226 host genes, including two tyrosine kinases, Abelson (Abl kinase and PDGF- and VEGF-receptor related (Pvr, a homolog of the Platelet-derived growth factor receptor (PDGFR. We further examined the role of these two kinases in C. trachomatis binding and internalization into mammalian cells. Both kinases are phosphorylated upon infection and recruited to the site of bacterial attachment, but their roles in the infectious process are distinct. We provide evidence that PDGFRbeta may function as a receptor, as inhibition of PDGFRbeta by RNA interference or by PDGFRbeta neutralizing antibodies significantly reduces bacterial binding, whereas depletion of Abl kinase has no effect on binding. Bacterial internalization can occur through activation of PDGFRbeta or through independent

  20. PsOr1, a potential target for RNA interference-based pest management.

    Science.gov (United States)

    Zhao, Y Y; Liu, F; Yang, G; You, M S

    2011-02-01

    Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.

  1. Slicer-independent mechanism drives small-RNA strand separation during human RISC assembly.

    Science.gov (United States)

    Park, June Hyun; Shin, Chanseok

    2015-10-30

    Small RNA silencing is mediated by the effector RNA-induced silencing complex (RISC) that consists of an Argonaute protein (AGOs 1-4 in humans). A fundamental step during RISC assembly involves the separation of two strands of a small RNA duplex, whereby only the guide strand is retained to form the mature RISC, a process not well understood. Despite the widely accepted view that 'slicer-dependent unwinding' via passenger-strand cleavage is a prerequisite for the assembly of a highly complementary siRNA into the AGO2-RISC, here we show by careful re-examination that 'slicer-independent unwinding' plays a more significant role in human RISC maturation than previously appreciated, not only for a miRNA duplex, but, unexpectedly, for a highly complementary siRNA as well. We discovered that 'slicer-dependency' for the unwinding was affected primarily by certain parameters such as temperature and Mg(2+). We further validate these observations in non-slicer AGOs (1, 3 and 4) that can be programmed with siRNAs at the physiological temperature of humans, suggesting that slicer-independent mechanism is likely a common feature of human AGOs. Our results now clearly explain why both miRNA and siRNA are found in all four human AGOs, which is in striking contrast to the strict small-RNA sorting system in Drosophila. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Improved Interference-Free Channel Allocation in Coordinated Multiuser Multi-Antenna Open-Access Small Cells

    KAUST Repository

    Radaydeh, Redha; Zafar, Ammar; Al-Qahtani, Fawaz; Alouini, Mohamed-Slim

    2016-01-01

    This paper investigates low-complexity joint interference avoidance and desired link improvement for single channel allocation in multiuser multi-antenna access points (APs) for open-access small cells. It is considered that an active user is equipped with an atenna array that can be used to suppress interference sources but not to provide spatial diversity. On the other hand, the operation of APs can be coordinated to meet design requirements, and each of which can unconditionally utilize assigned physical channels. Moreover, each AP is equipped with uncorrelated antennas that can be reused simultaneously to serve many active users. The analysis provides new approaches to exploit physical channels, transmit antennas, and APs to mitigate interference, while providing the best possible link gain to an active user through the most suitable interference-free channel. The event of concurrent service requests placed by active users on a specific interference-free channel is discussed for either interference avoidance through identifying unshared channels or desired link improvement via multiuser scheduling. The applicability of the approaches to balance downlink loads is explained, and practical scenarios due to imperfect identification of interference-free channels and/or scheduled user are thoroughly investigated. The developed results are applicable for any statistical and geometric models of the allocated channel to an active user as well as channel conditions of interference users. They can be used to study various performance measures. Numerical and simulation results are presented to explain some outcomes of this work.

  3. Improved Interference-Free Channel Allocation in Coordinated Multiuser Multi-Antenna Open-Access Small Cells

    KAUST Repository

    Radaydeh, Redha

    2016-02-16

    This paper investigates low-complexity joint interference avoidance and desired link improvement for single channel allocation in multiuser multi-antenna access points (APs) for open-access small cells. It is considered that an active user is equipped with an atenna array that can be used to suppress interference sources but not to provide spatial diversity. On the other hand, the operation of APs can be coordinated to meet design requirements, and each of which can unconditionally utilize assigned physical channels. Moreover, each AP is equipped with uncorrelated antennas that can be reused simultaneously to serve many active users. The analysis provides new approaches to exploit physical channels, transmit antennas, and APs to mitigate interference, while providing the best possible link gain to an active user through the most suitable interference-free channel. The event of concurrent service requests placed by active users on a specific interference-free channel is discussed for either interference avoidance through identifying unshared channels or desired link improvement via multiuser scheduling. The applicability of the approaches to balance downlink loads is explained, and practical scenarios due to imperfect identification of interference-free channels and/or scheduled user are thoroughly investigated. The developed results are applicable for any statistical and geometric models of the allocated channel to an active user as well as channel conditions of interference users. They can be used to study various performance measures. Numerical and simulation results are presented to explain some outcomes of this work.

  4. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  5. The small RNA complement of adult Schistosoma haematobium.

    Directory of Open Access Journals (Sweden)

    Andreas J Stroehlein

    2018-05-01

    Full Text Available Blood flukes of the genus Schistosoma cause schistosomiasis-a neglected tropical disease (NTD that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium-the causative agent of urogenital schistosomiasis of humans.MicroRNAs (miRNAs and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses.In total, 89 transcribed miRNAs were identified in S. haematobium-a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64 exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21, biogenesis of other RNAs (n = 3 or ribozyme functions (n = 16, whereas most others (n = 3798 were novel ('orphans' with unknown functions.This study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk.

  6. The small RNA complement of adult Schistosoma haematobium.

    Science.gov (United States)

    Stroehlein, Andreas J; Young, Neil D; Korhonen, Pasi K; Hall, Ross S; Jex, Aaron R; Webster, Bonnie L; Rollinson, David; Brindley, Paul J; Gasser, Robin B

    2018-05-01

    Blood flukes of the genus Schistosoma cause schistosomiasis-a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium-the causative agent of urogenital schistosomiasis of humans. MicroRNAs (miRNAs) and other sncRNAs of male and female adults of S. haematobium and small RNA transcription levels were explored by deep sequencing, genome mapping and detailed bioinformatic analyses. In total, 89 transcribed miRNAs were identified in S. haematobium-a similar complement to those reported for the congeners S. mansoni and S. japonicum. Of these miRNAs, 34 were novel, with no homologs in other schistosomes. Most miRNAs (n = 64) exhibited sex-biased transcription, suggestive of roles in sexual differentiation, pairing of adult worms and reproductive processes. Of the sncRNAs that were not miRNAs, some related to the spliceosome (n = 21), biogenesis of other RNAs (n = 3) or ribozyme functions (n = 16), whereas most others (n = 3798) were novel ('orphans') with unknown functions. This study provides the first genome-wide sncRNA resource for S. haematobium, extending earlier studies of schistosomes. The present work should facilitate the future curation and experimental validation of sncRNA functions in schistosomes to enhance our understanding of post-transcriptional gene regulation and of the roles that sncRNAs play in schistosome reproduction, development and parasite-host cross-talk.

  7. RNA targeting by small molecules: Binding of protoberberine ...

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Studies on RNA targeting by small molecules to specifically control certain cellular functions is an .... form secondary structures such as stem-loop, hairpin, etc. ..... paired third strand of the triplex without affecting the stability.

  8. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    Science.gov (United States)

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. The 2’-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Zamudio, J. R.; Mittra, B.; Foldynová-Trantírková, Silvie; Zeiner, G. M.; Lukeš, Julius; Bujnicki, J. M.; Sturm, N. R.; Campbell, D. A.

    2007-01-01

    Roč. 27, č. 17 (2007), s. 6084-6092 ISSN 0270-7306 R&D Projects: GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : methylation * Trypanosoma brucei * methyltransferase * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.420, year: 2007

  10. RNA isolation for transcriptomics of human and mouse small skin biopsies

    Directory of Open Access Journals (Sweden)

    Breit Timo M

    2011-10-01

    Full Text Available Abstract Background Isolation of RNA from skin biopsies presents a challenge, due to the tough nature of skin tissue and a high presence of RNases. As we lacked the dedicated equipment, i.e. homogenizer or bead-beater, needed for the available RNA from skin isolation methods, we adapted and tested our zebrafish single-embryo RNA-isolation protocol for RNA isolation from skin punch biopsies. Findings We tested our new RNA-isolation protocol in two experiments: a large-scale study with 97 human skin samples, and a small study with 16 mouse skin samples. Human skin was sampled with 4.0 mm biopsy punches and for the mouse skin different punch diameter sizes were tested; 1.0, 1.5, 2.0, and 2.5 mm. The average RNA yield in human samples was 1.5 μg with an average RNA quality RIN value of 8.1. For the mouse biopsies, the average RNA yield was 2.4 μg with an average RIN value of 7.5. For 96% of the human biopsies and 100% of the mouse biopsies we obtained enough high-quality RNA. The RNA samples were successfully tested in a transcriptomics analysis using the Affymetrix and Roche NimbleGen platforms. Conclusions Using our new RNA-isolation protocol, we were able to consistently isolate high-quality RNA, which is apt for further transcriptomics analysis. Furthermore, this method is already useable on biopsy material obtained with a punch diameter as small as 1.5 mm.

  11. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; Ambegia, Ellen; Choi, Catherine; Yaworski, Ed; Palmer, Lorne; McClintock, Kevin; MacLachlan, Ian

    2008-10-01

    Activation of innate immunity has direct effects in modulating viral replication, tumor growth, angiogenesis, and inflammatory and other immunological processes. It is now established that unmodified siRNA can activate this innate immune response and therefore there is real potential for siRNA to elicit nonspecific therapeutic effects in a wide range of disease models. Here we demonstrate that in a murine model of influenza infection, the antiviral activity of siRNA is due primarily to immune stimulation elicited by the active siRNA duplexes and is not the result of therapeutic RNA interference (RNAi) as previously reported. We show that the misinterpretation stems from the use of a particular control green fluorescent protein (GFP) siRNA that we identify as having unusually low immunostimulatory activity compared with the active anti-influenza siRNA. Curiously, this GFP siRNA has served as a negative control for a surprising number of groups reporting therapeutic effects of siRNA. The inert immunologic profile of the GFP sequence was unique among a broad panel of published siRNAs, all of which could elicit significant interferon induction from primary immune cells. This panel included eight active siRNAs against viral, angiogenic, and oncologic targets, the reported therapeutic efficacy of which was based on comparison with the nonimmunostimulatory GFP siRNA. These results emphasize the need for researchers to anticipate, monitor, and adequately control for siRNA-mediated immune stimulation and calls into question the interpretation of numerous published reports of therapeutic RNAi in vivo. The use of chemically modified siRNA with minimal immunostimulatory capacity will help to delineate more accurately the mechanism of action underlying such studies.

  12. iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data.

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-Hee; Bellingham, Shayne A; Lonie, Andrew; Hill, Andrew F

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.

  13. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Molecular Biology and Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-11-04

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high ({approx}97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  14. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Science.gov (United States)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  15. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    International Nuclear Information System (INIS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K

    2011-01-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (∼97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  16. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi.

    Science.gov (United States)

    Takata, Nozomu; Sakakura, Eriko; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.

  17. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  18. From early lessons to new frontiers: The worm as a treasure trove of small RNA biology

    Directory of Open Access Journals (Sweden)

    Elaine M. Youngman

    2014-11-01

    Full Text Available In the past twenty years, the tiny soil nematode C. elegans has provided critical insights into our understanding of the breadth of small RNA-mediated gene regulatory activities. The first microRNA was identified in C. elegans in 1993, and the understanding that dsRNA was the driving force behind RNA-mediated gene silencing came from experiments performed in C. elegans in 1998. Likewise, early genetic screens in C. elegans for factors involved in RNAi pointed to conserved mechanisms for small RNA-mediated gene silencing pathways, placing the worm squarely among the founding fathers of a now extensive field of molecular biology. Today, the worm continues to be at the forefront of ground-breaking insight into small RNA-mediated biology. Recent studies have revealed with increasing mechanistic clarity that C. elegans possesses an extensive nuclear small RNA regulatory network that encompasses not only gene silencing but also gene activating roles. Further, a portrait is emerging whereby small RNA pathways play key roles in integrating responses to environmental stimuli and transmitting epigenetic information about such responses from one generation to the next. Here we discuss endogenous small RNA pathways in C. elegans and the insight worm biology has provided into the mechanisms employed by these pathways. We touch on the increasingly spectacular diversity of small RNA biogenesis and function, and discuss the relevance of lessons learned in the worm for human biology.

  19. The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases.

    Science.gov (United States)

    Yang, Haixiu; Shang, Desi; Xu, Yanjun; Zhang, Chunlong; Feng, Li; Sun, Zeguo; Shi, Xinrui; Zhang, Yunpeng; Han, Junwei; Su, Fei; Li, Chunquan; Li, Xia

    2017-07-27

    Well characterized the connections among diseases, long non-coding RNAs (lncRNAs) and drugs are important for elucidating the key roles of lncRNAs in biological mechanisms in various biological states. In this study, we constructed a database called LNCmap (LncRNA Connectivity Map), available at http://www.bio-bigdata.com/LNCmap/ , to establish the correlations among diseases, physiological processes, and the action of small molecule therapeutics by attempting to describe all biological states in terms of lncRNA signatures. By reannotating the microarray data from the Connectivity Map database, the LNCmap obtained 237 lncRNA signatures of 5916 instances corresponding to 1262 small molecular drugs. We provided a user-friendly interface for the convenient browsing, retrieval and download of the database, including detailed information and the associations of drugs and corresponding affected lncRNAs. Additionally, we developed two enrichment analysis methods for users to identify candidate drugs for a particular disease by inputting the corresponding lncRNA expression profiles or an associated lncRNA list and then comparing them to the lncRNA signatures in our database. Overall, LNCmap could significantly improve our understanding of the biological roles of lncRNAs and provide a unique resource to reveal the connections among drugs, lncRNAs and diseases.

  20. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence

    NARCIS (Netherlands)

    Semenova, E.V.; Jore, M.M.; Westra, E.R.; Oost, van der J.; Brouns, S.J.J.

    2011-01-01

    Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas

  1. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  2. RNA interference in plant parasitic nematodes

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... grower preference or by government restrictions to limit the environmental ... risks associated with chemical control and (c) the pro- vision of ... certain model organisms. The first ... reproductive system (Lilley et al., 2005b), sperm (Urwin .... interference of dual oxidase in the plant nematode Meloidogyne.

  3. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  4. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa.

    Science.gov (United States)

    Morin, Ryan D; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H Alexander; Magrini, Vincent; Mardis, Elaine R; Sahinalp, S Cenk; Unrau, Peter J

    2008-04-01

    The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, approximately 21- and approximately 24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/.

  5. Small RNA sequencing reveals metastasis-related microRNAs in lung adenocarcinoma

    DEFF Research Database (Denmark)

    Daugaard, Iben; Venø, Morten T.; Yan, Yan

    2017-01-01

    The majority of lung cancer deaths are caused by metastatic disease. MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression and miRNA dysregulation can contribute to metastatic progression. Here, small RNA sequencing was used to profile the miRNA and piwi-interacting RNA (piRNA......) transcriptomes in relation to lung cancer metastasis. RNA-seq was performed using RNA extracted from formalin-fixed paraffin embedded (FFPE) lung adenocarcinomas (LAC) and brain metastases from 8 patients, and LACs from 8 patients without detectable metastatic disease. Impact on miRNA and piRNA transcriptomes...... was subtle with 9 miRNAs and 8 piRNAs demonstrating differential expression between metastasizing and non-metastasizing LACs. For piRNAs, decreased expression of piR-57125 was the most significantly associated with distant metastasis. Validation by RT-qPCR in a LAC cohort comprising 52 patients confirmed...

  6. Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Møller-Jensen, Jakob; Kallipolitis, Birgitte H.

    2010-01-01

    Small non-coding RNAs (sRNA) have emerged as important elements of gene regulatory circuits. In enterobacteria such as Escherichia coli and Salmonella many of these sRNAs interact with the Hfq protein, an RNA chaperone similar to mammalian Sm-like proteins and act in the post...... that adaptation to anaerobic growth involves the action of a small regulatory RNA....... of at least one sRNA regulator. Here, we extend this view by the identification and characterization of a highly conserved, anaerobically induced small sRNA in E. coli, whose expression is strictly dependent on the anaerobic transcriptional fumarate and nitrate reductase regulator (FNR). The sRNA, named Fnr...

  7. Performance of Overlaid MIMO Cellular Networks with TAS/MRC under Hybrid-Access Small Cells and Poisson Field Interference

    KAUST Repository

    AbdelNabi, Amr A.

    2018-02-12

    This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.

  8. Performance of Overlaid MIMO Cellular Networks with TAS/MRC under Hybrid-Access Small Cells and Poisson Field Interference

    KAUST Repository

    AbdelNabi, Amr A.; Al-Qahtani, Fawaz S.; Radaydeh, Redha Mahmoud Mesleh; Shaqfeh, Mohammad; Manna, Raed F.

    2018-01-01

    This paper presents new approaches to characterize the achieved performance of hybrid control-access small cells in the context of two-tier multi-input multi-output (MIMO) cellular networks with random interference distributions. The hybrid scheme at small cells (such as femtocells) allows for sharing radio resources between the two network tiers according to the densities of small cells and their associated users, as well as the observed interference power levels in the two network tiers. The analysis considers MIMO transceivers at all nodes, for which antenna arrays can be utilized to implement transmit antenna selection (TAS) and receive maximal ratio combining (MRC) under MIMO point-to-point channels. Moreover, it tar-gets network-level models of interference sources inside each tier and between the two tiers, which are assumed to follow Poisson field processes. To fully capture the occasions for Poisson field distribution on MIMO spatial domain. Two practical scenarios of interference sources are addressed including highly-correlated or uncorrelated transmit antenna arrays of the serving macrocell base station. The analysis presents new analytical approaches that can characterize the downlink outage probability performance in any tier. Furthermore, the outage performance in high signal-to-noise (SNR) regime is also obtained, which can be useful to deduce diversity and/or coding gains.

  9. Flavivirus RNAi suppression: decoding non-coding RNA.

    Science.gov (United States)

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Methods for small RNA preparation for digital gene expression profiling by next-generation sequencing

    NARCIS (Netherlands)

    Linsen, S.E.V.; Cuppen, E.

    2012-01-01

    Digital gene expression (DGE) profiling techniques are playing an eminent role in the detection, localization, and differential expression quantification of many small RNA species, including microRNAs (1-3). Procedures in small RNA library preparation techniques typically include adapter ligation by

  11. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC.

    Science.gov (United States)

    Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt

    2017-07-27

    In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. iSRAP – a one-touch research tool for rapid profiling of small RNA-seq data

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-hee; Bellingham, Shayne A.; Lonie, Andrew; Hill, Andrew F.

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes. PMID:26561006

  13. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  14. Ribonucleoprotein organization of eukaryotic RNA. XXXII. U2 small nuclear RNA precursors and their accurate 3' processing in vitro as ribonucleoprotein particles.

    Science.gov (United States)

    Wieben, E D; Nenninger, J M; Pederson, T

    1985-05-05

    Biosynthetic precursors of U2 small nuclear RNA have been identified in cultured human cells by hybrid-selection of pulse-labeled RNA with cloned U2 DNA. These precursor molecules are one to approximately 16 nucleotides longer than mature U2 RNA and contain 2,2,7-trimethylguanosine "caps". The U2 RNA precursors are associated with proteins that react with a monoclonal antibody for antigens characteristic of small nuclear ribonucleoprotein particles. Like previously described precursors of U1 and U4 small nuclear RNAs, the pre-U2 RNAs are recovered in cytoplasmic fractions, although it is not known if this is their location in vivo. The precursors are processed to mature-size U2 RNA when cytoplasmic extracts are incubated in vitro at 37 degrees C. Mg2+ is required but ATP is not. The ribonucleoprotein structure of the pre-U2 RNA is maintained during the processing reaction in vitro, as are the 2,2,7-trimethylguanosine caps. The ribonucleoprotein organization is of major importance, as exogenous, protein-free U2 RNA precursors are degraded rapidly in the in vitro system. Two lines of evidence indicate that the conversion of U2 precursors to mature-size U2 RNA involves a 3' processing reaction. First, the reaction is unaffected by a large excess of mature U2 small nuclear RNP, whose 5' trimethylguanosine caps would be expected to compete for a 5' processing activity. Second, when pre-U2 RNA precursors are first stoichiometrically decorated with an antibody specific for 2,2,7-trimethylguanosine, the extent of subsequent processing in vitro is unaffected. These results provide the first demonstration of a eukaryotic RNA processing reaction in vitro occurring within a ribonucleoprotein particle.

  15. Global effects of the CSR-1 RNA interference pathway on transcriptional landscape

    Science.gov (United States)

    Cecere, Germano; Hoersch, Sebastian; O’Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-01-01

    Argonaute proteins and their small RNA co-factors short interfering RNAs (siRNAs) are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) antisense to germline transcripts and associates with chromatin in a siRNA-dependent manner. However, its role in gene expression regulation remains controversial. Here, we used a genome-wide profiling of nascent RNA transcripts to demonstrate that the CSR-1 RNAi pathway promotes sense-oriented Pol II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. Based on these findings, we propose that the CSR-1 pathway has a role in maintaining the directionality of active transcription thereby propagating the distinction between transcriptionally active and silent genomic regions. PMID:24681887

  16. Final report for ER65039, The Role of Small RNA in Biomass Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Matthew E. [Univ. of Illinois, Urbana, IL (United States)

    2015-03-12

    Our objective in this project was to discover the role of sRNA in regulating both biomass biosynthesis and perenniality in the Andropogoneae feedstock grasses. Our central hypothesis was that there is a time-and space specific sRNA network playing a crucial role in regulating processes associated with cell wall biosynthesis, flowering time control, overwintering/juvenility, and nutrient sequestration in the feedstock grasses. To address this, we performed a large scale biological project consisting of the growth of material, generation of Illumina libraries, sequencing and analysis for small RNA, mRNA and Degradome / cmRNA. Our subsidiary objectives included analysis of the biology of small RNAs and the cell wall composition of Miscanthus. These objectives have all been completed, one publication is in print, one is submitted and several more are in progress.

  17. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    Science.gov (United States)

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  18. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  19. Using small RNA (sRNA) deep sequencing to understand global virus distribution in plants

    Science.gov (United States)

    Small RNAs (sRNAs), a class of regulatory RNAs, have been used to serve as the specificity determinants of suppressing gene expression in plants and animals. Next generation sequencing (NGS) uncovered the sRNA landscape in most organisms including their associated microbes. In the current study, w...

  20. Small interfering RNA delivery through positively charged polymer nanoparticles

    International Nuclear Information System (INIS)

    Dragoni, Luca; Cesana, Alberto; Moscatelli, Davide; Ferrari, Raffaele; Morbidelli, Massimo; Lupi, Monica; Falcetta, Francesca; Ubezio, Paolo; D’Incalci, Maurizio

    2016-01-01

    Small interfering RNA (siRNA) is receiving increasing attention with regard to the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight (MW) polyanion, siRNA is not able to cross a cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility of fine tuning the NPs’ characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and delivering undamaged siRNA into a cancer cell cytoplasm has been shown. This latter process occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer’s MW. Finally, the ability of NPs to carry siRNA inside the cells in order to inhibit their target gene has been demonstrated using green flourescent protein positive cells. (paper)

  1. Modeling the structure of RNA molecules with small-angle X-ray scattering data.

    Directory of Open Access Journals (Sweden)

    Michal Jan Gajda

    Full Text Available We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA structures, along with a small multimetric benchmark of the proposed method.

  2. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice

    Science.gov (United States)

    Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua

    2015-01-01

    Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients. PMID:26482836

  3. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.

    Science.gov (United States)

    Hatoum-Aslan, Asma; Maniv, Inbal; Marraffini, Luciano A

    2011-12-27

    Precise RNA processing is fundamental to all small RNA-mediated interference pathways. In prokaryotes, clustered, regularly interspaced, short palindromic repeats (CRISPR) loci encode small CRISPR RNAs (crRNAs) that protect against invasive genetic elements by antisense targeting. CRISPR loci are transcribed as a long precursor that is cleaved within repeat sequences by CRISPR-associated (Cas) proteins. In many organisms, this primary processing generates crRNA intermediates that are subject to additional nucleolytic trimming to render mature crRNAs of specific lengths. The molecular mechanisms underlying this maturation event remain poorly understood. Here, we defined the genetic requirements for crRNA primary processing and maturation in Staphylococcus epidermidis. We show that changes in the position of the primary processing site result in extended or diminished maturation to generate mature crRNAs of constant length. These results indicate that crRNA maturation occurs by a ruler mechanism anchored at the primary processing site. We also show that maturation is mediated by specific cas genes distinct from those genes involved in primary processing, showing that this event is directed by CRISPR/Cas loci.

  4. Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages.

    Directory of Open Access Journals (Sweden)

    Peter Sarkies

    2015-02-01

    Full Text Available Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs. Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements.

  5. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot.

    Directory of Open Access Journals (Sweden)

    Jae-Su Moon

    Full Text Available The hepatitis C virus (HCV internal ribosome entry site (IRES that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts 277-343. Based on their antiviral activity, we mapped a druggable region (nts 313-343 where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5' or 3' direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens.

  6. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus Phytophthora

    Directory of Open Access Journals (Sweden)

    Stephanie eBollmann

    2016-03-01

    Full Text Available Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL, and RNA-dependent RNA polymerase (RDR through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.

  7. Stable RNA interference of ErbB-2 gene synergistic with epirubicin suppresses breast cancer growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Hu Xiaoqu; Su Fengxi; Qin Li; Jia Weijuan; Gong Chang; Yu Fengyan; Guo Jujiang; Song Erwei

    2006-01-01

    Overexpression of human epidermal growth factor receptor-2 (Her2, ErbB-2) contributes to the progression and metastasis of breast cancer, implying that Her2 gene is a suitable target of RNA interference (RNAi) for breast cancer therapy. Here, we employed plasmid-mediated expression of 2 different Her2-shRNAs (pU6-Her2shRNAs) efficiently silenced the target gene expression on Her2 expressing SKBR-3 breast cancer cells in both mRNA and protein levels. Consequently, pU6-Her2shRNA increased apoptosis and reduced proliferation of SKBR-3 cells assayed by TUNEL and MTT, respectively. In vivo, intra-tumor injection of pU6-Her2shRNA inhibited the growth of SKBR-3 tumors inoculated subcutaneously in nude mice. Furthermore, pU6-Her2shRNA synergized the tumor suppression effect of epirubicin to SKBR-3 cells in vitro and implanted subcutaneously in nude mice. Therefore, we concluded that stable silencing of Her2 gene expression with plasmid expressing shRNA may hold great promise as a novel therapy for Her2 expressing breast cancers alone or in combination with anthracycline chemotherapy

  8. [Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].

    Science.gov (United States)

    Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing

    2010-10-01

    This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.

  9. StarScan: a web server for scanning small RNA targets from degradome sequencing data.

    Science.gov (United States)

    Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2015-07-01

    Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Yulong Guo

    Full Text Available Although artificial microRNA (amiRNA technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1, based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of ami

  11. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida).

    Science.gov (United States)

    Guo, Yulong; Han, Yao; Ma, Jing; Wang, Huiping; Sang, Xianchun; Li, Mingyang

    2014-01-01

    Although artificial microRNA (amiRNA) technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1), based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of amiRNAs in gene

  12. Role of Small RNAs in Trypanosomatid Infections

    Science.gov (United States)

    Linhares-Lacerda, Leandra; Morrot, Alexandre

    2016-01-01

    Trypanosomatid parasites survive and replicate in the host by using mechanisms that aim to establish a successful infection and ensure parasite survival. Evidence points to microRNAs as new players in the host-parasite interplay. MicroRNAs are small non-coding RNAs that control proteins levels via post-transcriptional gene down-regulation, either within the cells where they were produced or in other cells via intercellular transfer. These microRNAs can be modulated in host cells during infection and are among the growing group of small regulatory RNAs, for which many classes have been described, including the transfer RNA-derived small RNAs. Parasites can either manipulate microRNAs to evade host-driven damage and/or transfer small RNAs to host cells. In this mini-review, we present evidence for the involvement of small RNAs, such as microRNAs, in trypanosomatid infections which lack RNA interference. We highlight both microRNA profile alterations in host cells during those infections and the horizontal transfer of small RNAs and proteins from parasites to the host by membrane-derived extracellular vesicles in a cell communication mechanism. PMID:27065454

  13. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    Science.gov (United States)

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.

  14. Identification of Bacterial Small RNAs by RNA Sequencing

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Molin, Søren

    2014-01-01

    sequencing (RNA-seq) is described that involves the preparation and analysis of three different sequencing libraries. As a signifi cant number of unique sRNAs are identifi ed in each library, the libraries can be used either alone or in combination to increase the number of sRNAs identifi ed. The approach......Small regulatory RNAs (sRNAs) in bacteria are known to modulate gene expression and control a variety of processes including metabolic reactions, stress responses, and pathogenesis in response to environmental signals. A method to identify bacterial sRNAs on a genome-wide scale based on RNA...... may be applied to identify sRNAs in any bacterium under different growth and stress conditions....

  15. Engineered disease resistance in cotton using RNA-interference to knock down cotton leaf curl kokhran virus-Burewala and cotton leaf curl Multan betasatellite

    Science.gov (United States)

    Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...

  16. Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara

    evolved numerous mechanisms to controlgene expression in response to specific environmental signals. In addition to two-component systems, small regulatory RNAs (sRNAs) have emerged as major regulators of gene expression. The majority of sRNAs bind to mRNA and regulate their expression. They often have...... multiple targets and are incorporated into large regulatory networks and the RNA chaper one Hfq in many cases facilitates interactions between sRNAs and their targets. Some sRNAs also act by binding to protein targets and sequestering their function. In this PhD thesis we investigated the transcriptional....... Detailed insights into the mechanisms through which P. putida responds to different stress conditions and increased understanding of bacterial adaptation in natural and industrial settings were gained. Additionally, we identified genome-wide transcription start sites, andmany regulatory RNA elements...

  17. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  18. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  19. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    Science.gov (United States)

    Xiong, Li-Ping; Ma, Yu-Qiang; Tang, Lei-Han

    2010-09-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology.

  20. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    International Nuclear Information System (INIS)

    Li-Ping, Xiong; Yu-Qiang, Ma; Lei-Han, Tang

    2010-01-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology

  1. Sequence-specific inhibition of Dicer measured with a force-based microarray for RNA ligands.

    Science.gov (United States)

    Limmer, Katja; Aschenbrenner, Daniela; Gaub, Hermann E

    2013-04-01

    Malfunction of protein translation causes many severe diseases, and suitable correction strategies may become the basis of effective therapies. One major regulatory element of protein translation is the nuclease Dicer that cuts double-stranded RNA independently of the sequence into pieces of 19-22 base pairs starting the RNA interference pathway and activating miRNAs. Inhibiting Dicer is not desirable owing to its multifunctional influence on the cell's gene regulation. Blocking specific RNA sequences by small-molecule binding, however, is a promising approach to affect the cell's condition in a controlled manner. A label-free assay for the screening of site-specific interference of small molecules with Dicer activity is thus needed. We used the Molecular Force Assay (MFA), recently developed in our lab, to measure the activity of Dicer. As a model system, we used an RNA sequence that forms an aptamer-binding site for paromomycin, a 615-dalton aminoglycoside. We show that Dicer activity is modulated as a function of concentration and incubation time: the addition of paromomycin leads to a decrease of Dicer activity according to the amount of ligand. The measured dissociation constant of paromomycin to its aptamer was found to agree well with literature values. The parallel format of the MFA allows a large-scale search and analysis for ligands for any RNA sequence.

  2. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system provides a usable tool for HCC-specific RNAi

  3. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo

    DEFF Research Database (Denmark)

    Laursen, Maria B; Pakula, Malgorzata M; Gao, Shan

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addres...... in a xenograft model of human pancreas cancer. Hereby UNA constitutes an important type of chemical modification for future siRNA designs....

  4. SCRAM: a pipeline for fast index-free small RNA read alignment and visualization.

    Science.gov (United States)

    Fletcher, Stephen J; Boden, Mikael; Mitter, Neena; Carroll, Bernard J

    2018-03-15

    Small RNAs play key roles in gene regulation, defense against viral pathogens and maintenance of genome stability, though many aspects of their biogenesis and function remain to be elucidated. SCRAM (Small Complementary RNA Mapper) is a novel, simple-to-use short read aligner and visualization suite that enhances exploration of small RNA datasets. The SCRAM pipeline is implemented in Go and Python, and is freely available under MIT license. Source code, multiplatform binaries and a Docker image can be accessed via https://sfletc.github.io/scram/. s.fletcher@uq.edu.au. Supplementary data are available at Bioinformatics online.

  5. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma.

    Science.gov (United States)

    Xie, Yuran; Merkel, Olivia M

    2015-10-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues have limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases, and costimulatory factors that have been reported as targets of siRNA-mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages, and dendritic cells, which could potentially be applied in asthma therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. psRNATarget: a plant small RNA target analysis server (2017 release).

    Science.gov (United States)

    Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick Xuechun

    2018-04-30

    Plant regulatory small RNAs (sRNAs), which include most microRNAs (miRNAs) and a subset of small interfering RNAs (siRNAs), such as the phased siRNAs (phasiRNAs), play important roles in regulating gene expression. Although generated from genetically distinct biogenesis pathways, these regulatory sRNAs share the same mechanisms for post-translational gene silencing and translational inhibition. psRNATarget was developed to identify plant sRNA targets by (i) analyzing complementary matching between the sRNA sequence and target mRNA sequence using a predefined scoring schema and (ii) by evaluating target site accessibility. This update enhances its analytical performance by developing a new scoring schema that is capable of discovering miRNA-mRNA interactions at higher 'recall rates' without significantly increasing total prediction output. The scoring procedure is customizable for the users to search both canonical and non-canonical targets. This update also enables transmitting and analyzing 'big' data empowered by (a) the implementation of multi-threading chunked file uploading, which can be paused and resumed, using HTML5 APIs and (b) the allocation of significantly more computing nodes to its back-end Linux cluster. The updated psRNATarget server has clear, compelling and user-friendly interfaces that enhance user experiences and present data clearly and concisely. The psRNATarget is freely available at http://plantgrn.noble.org/psRNATarget/.

  7. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling.

    Science.gov (United States)

    Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V

    2016-01-01

    Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.

  8. Preparation of highly multiplexed small RNA sequencing libraries.

    Science.gov (United States)

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  9. Identification of the miRNA-mRNA regulatory network of small cell osteosarcoma based on RNA-seq.

    Science.gov (United States)

    Xie, Lin; Liao, Yedan; Shen, Lida; Hu, Fengdi; Yu, Sunlin; Zhou, Yonghong; Zhang, Ya; Yang, Yihao; Li, Dongqi; Ren, Minyan; Yuan, Zhongqin; Yang, Zuozhang

    2017-06-27

    Small cell osteosarcoma (SCO) is a rare subtype of osteosarcoma characterized by highly aggressive progression and a poor prognosis. The miRNA and mRNA expression profiles of peripheral blood mononuclear cells (PBMCs) were obtained in 3 patients with SCO and 10 healthy individuals using high-throughput RNA-sequencing. We identified 37 dysregulated miRNAs and 1636 dysregulated mRNAs in patients with SCO compared to the healthy controls. Specifically, the 37 dysregulated miRNAs consisted of 27 up-regulated miRNAs and 10 down-regulated miRNAs; the 1636 dysregulated mRNAs consisted of 555 up-regulated mRNAs and 1081 down-regulated mRNAs. The target-genes of miRNAs were predicted, and 1334 negative correlations between miRNAs and mRNAs were used to construct an miRNA-mRNA regulatory network. Dysregulated genes were significantly enriched in pathways related to cancer, mTOR signaling and cell cycle signaling. Specifically, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p were significantly dysregulated miRNAs and exhibited a high degree of connectivity with target genes. Overall, the expression of dysregulated genes in tumor tissues and peripheral blood samples of patients with SCO measured by quantitative real-time polymerase chain reaction corroborated with our bioinformatics analyses based on the expression profiles of PBMCs from patients with SCO. Thus, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p may be involved in SCO tumorigenesis.

  10. RNA Interference Screen to Identify Pathways That Enhance or Reduce Nonviral Gene Transfer During Lipofection

    OpenAIRE

    Barker, Gregory A; Diamond, Scott L

    2008-01-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In con...

  11. Emerging RNA-based drugs: siRNAs, microRNAs and derivates.

    Science.gov (United States)

    Pereira, Tiago Campos; Lopes-Cendes, Iscia

    2012-09-01

    An emerging new category of therapeutic agents based on ribonucleic acid has emerged and shown very promising in vitro, animal and pre-clinical results, known as small interfering RNAs (siRNAs), microRNAs mimics (miRNA mimics) and their derivates. siRNAs are small RNA molecules that promote potent and specific silencing of mutant, exogenous or aberrant genes through a mechanism known as RNA interference. These agents have called special attention to medicine since they have been used to experimentally treat a series of neurological conditions with distinct etiologies such as prion, viral, bacterial, fungal, genetic disorders and others. siRNAs have also been tested in other scenarios such as: control of anxiety, alcohol consumption, drug-receptor blockage and inhibition of pain signaling. Although in a much earlier stage, miRNAs mimics, anti-miRs and small activating RNAs (saRNAs) also promise novel therapeutic approaches to control gene expression. In this review we intend to introduce clinicians and medical researchers to the most recent advances in the world of siRNA- and miRNA-mediated gene control, its history, applications in cells, animals and humans, delivery methods (an yet unsolved hurdle), current status and possible applications in future clinical practice.

  12. siRNA for Influenza Therapy

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2010-07-01

    Full Text Available Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA, has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  13. siRNA for Influenza Therapy.

    Science.gov (United States)

    Barik, Sailen

    2010-07-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  14. Structural insights into RNA processing by the human RISC-loading complex.

    Science.gov (United States)

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  15. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.

    Directory of Open Access Journals (Sweden)

    Andrea D McCue

    2012-02-01

    Full Text Available The epigenetic activity of transposable elements (TEs can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs. Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs

  16. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    Science.gov (United States)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  17. A survey of small RNA population during FR-induced apical hook opening

    Directory of Open Access Journals (Sweden)

    Ying eLi

    2014-04-01

    Full Text Available Photomorphogenesis is a mechanism employed by plants to regulate their architecture and developmental program in response to light conditions. As they emerge into light for the first time, dark-grown seedlings employ a rapid and finely-controlled photomorphogenic signaling network. Small RNAs have increasingly been revealed to play an important role in regulating multiple aspects of plant development, by modulating the stability of mRNAs. The rapid alteration of the mRNA transcriptome is a known hallmark of the de-etiolation response, thus we investigated the small RNA transcriptome during this process in specific seedling tissues. Here we describe a survey of the small RNA expression profile in four tissues of etiolated soybean seedlings, the cotyledons, hypocotyl and the convex and concave sides of the apical hook. We also investigate how this profile responds to a one-hour far-red light treatment. Our data suggests that miRNAs show a different global profile between these tissues and treatments, suggesting a possible role for tissue- and treatment-specific expression in the differential morphology of the seedling on de-etiolation. Further evidence for the role of miRNA in light-regulated development is given by the de-etiolation responses of a hypomorphic ago1 mutant, which displays reduced and delayed photomorphogenic responses in apical hook and cotyledon angle to far-red light.

  18. Small angle scattering study of the structure and organization of RNA and protein in Brome Mosaic Virus (BMV)

    Science.gov (United States)

    Das, Narayan C.; Warren, Garfield T.; Cheng, Si; Kao, C. Cheng; Ni, Peng; Dragnea, Bogdan; Sokol, Paul E.

    2012-02-01

    Brome mosaic virus (BMV) is a small icosahedral of the alpha virus-like superfamily of RNA with a segmented positive-strand RNA genome and a mean diameter ˜ 268å that offers high levels of RNA synthesis and virus production in plants. BMV also tightly regulates the packaging of its four RNAs (RNA1 through RNA4) into three separate particles; RNA1 and RNA2 are encapsidated separately while one copy each of RNA3 and RNA4 are normally packaged together. Small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) were applied to study the size, shape and protein-RNA organization of BMV. D2O/H2O mixture was used to enhance contrast in SANS measurement. The radial distribution of BMV from the Fourier transform of scattering spectrum gives a clear indication of RNA packing, and distribution and their structure in the BMV. The result reveals that the virus is about 266 å in diameter and is composed of RNA inside the virion coated with a protein shell.

  19. Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates.

    Science.gov (United States)

    Flores-Jasso, C Fabián; Salomon, William E; Zamore, Phillip D

    2013-02-01

    Small interfering RNAs (siRNAs) direct Argonaute proteins, the core components of the RNA-induced silencing complex (RISC), to cleave complementary target RNAs. Here, we describe a method to purify active RISC containing a single, unique small RNA guide sequence. We begin by capturing RISC using a complementary 2'-O-methyl oligonucleotide tethered to beads. Unlike other methods that capture RISC but do not allow its recovery, our strategy purifies active, soluble RISC in good yield. The method takes advantage of the finding that RISC partially paired to a target through its siRNA guide dissociates more than 300 times faster than a fully paired siRNA in RISC. We use this strategy to purify fly Ago1- and Ago2-RISC, as well as mouse AGO2-RISC. The method can discriminate among RISCs programmed with different guide strands, making it possible to deplete and recover specific RISC populations. Endogenous microRNA:Argonaute complexes can also be purified from cell lysates. Our method scales readily and takes less than a day to complete.

  20. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Directory of Open Access Journals (Sweden)

    Zongli eHu

    2015-01-01

    Full Text Available Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi technology to partially silence three different genes (FOW2, FRP1 and OPR in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  1. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    Science.gov (United States)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  2. Small Interfering RNA Specific for N-Methyl-D-Aspartate Receptor 2B Offers Neuroprotection to Dopamine Neurons through Activation of MAP Kinase

    Directory of Open Access Journals (Sweden)

    Olivia T.W. Ng

    2012-02-01

    Full Text Available In the present study, N-methyl-D-aspartate receptor 2B (NR2B-specific siRNA was applied in parkinsonian models. Our previous results showed that reduction in expression of N-methyl-D-aspartate receptor 1 (NR1, the key subunit of N-methyl-D-aspartate receptors, by antisense oligos amelio-rated the motor symptoms in the 6-hydroxydopamine (6-OHDA-lesioned rat, an animal model of Parkinson's disease (PD [Lai et al.: Neurochem Int 2004;45:11-22]. To further the investigation on the efficacy of gene silencing, small interference RNA (siRNA specific for the NR2B subunit was designed and administered in the striatum of 6-OHDA-lesioned rats. The present results show that administration of NR2B-specific siRNA decreased the number of apomorphine-induced rotations in the lesioned rats and that there was a significant reduction in NR2B proteins levels after NR2B-specific siRNA administration. Furthermore, attenuation of the loss of dopaminergic neurons was found in both the striatal and substantia nigra regions of the 6-OHDA-lesioned rats that had been continuously infused with siRNA for 7 days. In addition, a significant upregulation of p-p44/42 MAPK (ERK1/2; Thr202/Tyr204 and p-CREB (Ser133 in striatal neurons was found. These results suggest that application of the gene silencing targeting NR2B could be a potential treatment of PD, and they also revealed the possibility of NR2B-specific siRNA being involved in the prosurvival pathway.

  3. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.

    Directory of Open Access Journals (Sweden)

    Louise Ford

    Full Text Available Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1 and cathepsin Z (Ce-cpz-1 has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting.RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages.Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.

  4. Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown

    Science.gov (United States)

    Moore, Chris B.; Guthrie, Elizabeth H.; Huang, Max Tze-Han; Taxman, Debra J.

    2013-01-01

    Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery. PMID:20387148

  5. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jixian Zhai

    2008-04-01

    Full Text Available Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC, a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42 were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.

  6. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Joern Toedling

    Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.

  7. A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Doessing, Holger B.; Long, Katherine S.

    2018-01-01

    -SELEX, a selection strategy that uses an RNA library to yield ligand-responsive RNA aptamers targeting small organic molecules in solution. To demonstrate the power of this method we selected several aptamers with specificity towards either the natural sweetener rebaudioside A or the food-coloring agent carminic...

  8. Characterization of RNA interference in rat PC12 cells

    DEFF Research Database (Denmark)

    Thonberg, Håkan; Schéele, Camilla C; Dahlgren, Cecilia

    2004-01-01

    strand of the siRNA guides a multi-protein complex, RNA-induced silencing complex (RISC), to cleave target mRNA. Although the exact function and composition of RISC is still unclear, it has been shown to include several proteins of the Argonaute protein family. Here we report of a robust system...... of the rat Golgi-ER protein 95 kDa (GERp95), an Argonaute family protein, by siRNA methodology. After GERp95-ablation, sequential knockdown of NPY by siRNA was shown to be impaired. Thus, we report that the GERp95 protein is functionally required for RNAi targeting NPY in rat PC12 cells....

  9. Oasis: online analysis of small RNA deep sequencing data.

    Science.gov (United States)

    Capece, Vincenzo; Garcia Vizcaino, Julio C; Vidal, Ramon; Rahman, Raza-Ur; Pena Centeno, Tonatiuh; Shomroni, Orr; Suberviola, Irantzu; Fischer, Andre; Bonn, Stefan

    2015-07-01

    Oasis is a web application that allows for the fast and flexible online analysis of small-RNA-seq (sRNA-seq) data. It was designed for the end user in the lab, providing an easy-to-use web frontend including video tutorials, demo data and best practice step-by-step guidelines on how to analyze sRNA-seq data. Oasis' exclusive selling points are a differential expression module that allows for the multivariate analysis of samples, a classification module for robust biomarker detection and an advanced programming interface that supports the batch submission of jobs. Both modules include the analysis of novel miRNAs, miRNA targets and functional analyses including GO and pathway enrichment. Oasis generates downloadable interactive web reports for easy visualization, exploration and analysis of data on a local system. Finally, Oasis' modular workflow enables for the rapid (re-) analysis of data. Oasis is implemented in Python, R, Java, PHP, C++ and JavaScript. It is freely available at http://oasis.dzne.de. stefan.bonn@dzne.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  10. [Inhibitory effect of RNA interference targeting GFI-1 on the proliferation of atypical chronic myelogenous leukemia NT1 cells].

    Science.gov (United States)

    Yang, X; Liu, H; Lin, Z H; Qian, J; Xu, X R

    2016-08-01

    To investigate the inhibitory effects of RNA interference targeting GFI-1 on growth and proliferation of atypical chronic myelogenous leukemia (aCML) NT1 cells. NT1 cells were transfected with PBS and liposome complex (vehicle group), scrambled siRNA and liposome complex (negative control, NC group), and GFI-1 siRNA and liposome complex (GFI-1 siRNA group), respectively. Real-time quantitative RT-PCR (qRT-PCR) and Western blot were performed to examine the expression levels of GFI-1 mRNA and protein, respectively. The proliferation abilities of NT1 cells of the three groups were evaluated by MTT assay. The cell cycle in cells of the three groups was analyzed by flow cytometry. Moreover, nude mouse xenograft model was used to detect the tumor formation ability in the three group cells. Quantitative real-time PCR data showed that the expression level of GFI-1 mRNA in GFI-1 siRNA group was significantly lower than those of NC group and vehicle group [(0.367±0.017) vs. (0.918±0.006) and (1.010±0.005), respectively, (PNT1 cells in the GFI-1 siRNA group (0.667±0.059) was significantly lower than those of the NC group (1.096±0.049) and vehicle group (1.193±0.064, P=0.023). Flow cytometry data showed that sub-G1 and G0/G1 phase proportions of the GFI-1 siRNA group were significantly higher than those of the NC and vehicle groups [sub-G1: (8.2±2.5)% vs. (1.9±1.3)% and (2.0±3.6)%, respectively, (PNT1 cells, which may provide a new therapeutic target for atypical chronic myelogenous leukemia.

  11. Small RNA Deep Sequencing and the Effects of microRNA408 on Root Gravitropic Bending in Arabidopsis

    Science.gov (United States)

    Li, Huasheng; Lu, Jinying; Sun, Qiao; Chen, Yu; He, Dacheng; Liu, Min

    2015-11-01

    MicroRNA (miRNA) is a non-coding small RNA composed of 20 to 24 nucleotides that influences plant root development. This study analyzed the miRNA expression in Arabidopsis root tip cells using Illumina sequencing and real-time PCR before (sample 0) and 15 min after (sample 15) a 3-D clinostat rotational treatment was administered. After stimulation was performed, the expression levels of seven miRNA genes, including Arabidopsis miR160, miR161, miR394, miR402, miR403, miR408, and miR823, were significantly upregulated. Illumina sequencing results also revealed two novel miRNAsthat have not been previously reported, The target genes of these miRNAs included pentatricopeptide repeat-containing protein and diadenosine tetraphosphate hydrolase. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicate that miR408 could play a role in root gravitropic response.

  12. Retention and loss of RNA interference pathways in trypanosomatid protozoans.

    Directory of Open Access Journals (Sweden)

    Lon-Fye Lye

    2010-10-01

    Full Text Available RNA interference (RNAi pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance, and/or alterations in parasite virulence.

  13. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  14. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  15. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2017-09-08

    RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.

  16. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Livia Donaire

    Full Text Available Small RNAs (sRNAs of 20 to 25 nucleotides (nt in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.. sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.

  17. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea.

    Science.gov (United States)

    Srivastava, Sangeeta; Zheng, Yun; Kudapa, Himabindu; Jagadeeswaran, Guru; Hivrale, Vandana; Varshney, Rajeev K; Sunkar, Ramanjulu

    2015-06-01

    Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    Science.gov (United States)

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  19. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells.

  20. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value

    OpenAIRE

    BOLDRINI, LAURA; GIORDANO, MIRELLA; ALÌ, GRETA; MELFI, FRANCA; ROMANO, GAETANO; LUCCHI, MARCO; FONTANINI, GABRIELLA

    2014-01-01

    The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigat...

  1. Low-Complexity Interference-Free Downlink Channel Assignment with Improved Performance in Coordinated Small Cells

    KAUST Repository

    Radaydeh, Redha M.

    2015-05-01

    This paper proposes a low-complexity interference-free channel assignment scheme with improved desired downlink performance in coordinated multi-antenna small-coverage access points (APs) that employ the open-access control strategy. The adopted system treats the case when each user can be granted an access to one of the available channels at a time. Moreover, each receive terminal can suppress a limited number of resolvable interfering sources via its highly-correlated receive array. On the other hand, the operation of the deployed APs can be coordinated to serve active users, and the availability of multiple physical channels and the use of uncorrelated transmit antennas at each AP are exploited to improve the performance of supported users. The analysis provides new approaches to use the transmit antenna array at each AP, the multiple physical channels, the receive antenna array at each user in order to identify interference-free channels per each user, and then to select a downlink channel that provides the best possible improved performance. The event of concurrent interference-free channel identification by different users is also treated to further improve the desired link associated with the scheduled user. The analysis considers the practical scenario of imperfect identification of interference-free channel by an active user and/or the imperfectness in scheduling concurrent users requests on the same channel. The developed formulations can be used to study any performance metric and they are applicable for any statistical and geometric channel models. © 2015 IEEE.

  2. A proteomic study of TAR-RNA binding protein (TRBP-associated factors

    Directory of Open Access Journals (Sweden)

    Chi Ya-Hui

    2011-02-01

    Full Text Available Abstract Background The human TAR RNA-binding protein, TRBP, was first identified and cloned based on its high affinity binding to the small hairpin trans-activation responsive (TAR RNA of HIV-1. TRBP has more recently been found to be a constituent of the RNA-induced silencing complex (RISC serving as a Dicer co-factor in the processing of the ~70 nucleotide pre-microRNAs(miRNAs to 21-25 nucleotide mature miRNAs. Findings Using co-immunoprecipitation and protein-identification by mass spectrometry, we characterized intracellular proteins that complex with TRBP. These interacting proteins include those that have been described to act in protein synthesis, RNA modifications and processing, DNA transcription, and cell proliferation. Conclusions Our findings provide a proteome of factors that may cooperate with TRBP in activities such as miRNA processing and in RNA interference by the RISC complex.

  3. Mycoplasma non-coding RNA: identification of small RNAs and targets

    Directory of Open Access Journals (Sweden)

    Franciele Maboni Siqueira

    2016-10-01

    Full Text Available Abstract Background Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. Results A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. Conclusion This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms.

  4. The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved nucleotide analog interference probing (trNAIP).

    Science.gov (United States)

    Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc

    2014-08-01

    Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer

    OpenAIRE

    Minxia Liu; Kecheng Zhou; Yi Cao

    2016-01-01

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfectio...

  6. CRISPR/Cas13 as a Tool for RNA Interference

    KAUST Repository

    Ali, Zahir

    2018-03-28

    Almost all biological processes involve RNA, making it crucial to develop tools for manipulation of the transcriptome. The bacterial CRISPR/Cas13 system was recently rewired to facilitate RNA manipulation in eukaryotes, including plants. We discuss here the opportunities and limitations of using CRISPR/Cas13 in plants for various types of RNA manipulation.

  7. Interference statistics and capacity analysis for uplink transmission in two-tier small cell networks: A geometric probability approach

    KAUST Repository

    Tabassum, Hina; Dawy, Zaher; Hossain, Ekram; Alouini, Mohamed-Slim

    2014-01-01

    This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework

  8. Diversity of antisense and other non-coding RNAs in Archaea revealed by comparative small RNA sequencing in four Pyrobaculum species

    Directory of Open Access Journals (Sweden)

    David L Bernick

    2012-07-01

    Full Text Available A great diversity of small, non-coding RNA molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs in archaea is limited. We employed RNA-seq to identify novel small RNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense small RNAs encoded opposite to key regulatory (ferric uptake regulator, metabolic (triose-phosphate isomerase, and core transcriptional apparatus genes (transcription factor B. We also found a large increase in the number of conserved C/D box small RNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these small RNAs indicates they are relatively recent, stable adaptations.

  9. In vivo efficacy and off-target effects of locked nucleic acid (LNA) and unlocked nucleic acid (UNA) modified siRNA and small internally segmented interfering RNA (sisiRNA) in mice bearing human tumor xenografts

    NARCIS (Netherlands)

    Mook, O. R. F.; Vreijling, Jeroen; Wengel, Suzy L.; Wengel, Jesper; Zhou, Chuanzheng; Chattopadhyaya, Jyoti; Baas, Frank; Fluiter, Kees

    2010-01-01

    The clinical use of small interfering RNA (siRNA) is hampered by poor uptake by tissues and instability in circulation. In addition, off-target effects pose a significant additional problem for therapeutic use of siRNA. Chemical modifications of siRNA have been reported to increase stability and

  10. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Garrett, Roger Antony; Shah, Shiraz Ali

    2013-01-01

    Recent studies on CRISPR-based adaptive immune systems have revealed extensive structural and functional diversity of the interference complexes which often coexist intracellularly. The archaeon Sulfolobus islandicus REY15A encodes three interference modules, one of type IA and two of type IIIB...... targeting. A rationale is provided for the intracellular coexistence of the different interference systems in S.¿islandicus REY15A which cooperate functionally by sharing a single Cas6 protein for crRNA processing and utilize crRNA products from identical CRISPR spacers....

  11. A systems biology approach for miRNA-mRNA expression patterns analysis in non-small cell lung cancer.

    Science.gov (United States)

    Najafi, Ali; Tavallaei, Mahmood; Hosseini, Sayed Mostafa

    2016-01-01

    Non-small cell lung cancers (NSCLCs) is a prevalent and heterogeneous subtype of lung cancer accounting for 85 percent of patients. MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, incorporate into regulation of gene expression post-transcriptionally. Therefore, deregulation of miRNAs' expression has provided further layers of complexity to the molecular etiology and pathogenesis of different diseases and malignancies. Although, until now considerable number of studies has been carried out to illuminate this complexity in NSCLC, they have remained less effective in their goal due to lack of a holistic and integrative systems biology approach which considers all natural elaborations of miRNAs' function. It is able to reliably nominate most affected signaling pathways and therapeutic target genes by deregulated miRNAs during a particular pathological condition. Herein, we utilized a holistic systems biology approach, based on appropriate re-analyses of microarray datasets followed by reliable data filtering, to analyze integrative and combinatorial deregulated miRNA-mRNA interaction network in NSCLC, aiming to ascertain miRNA-dysregulated signaling pathway and potential therapeutic miRNAs and mRNAs which represent a lion' share during various aspects of NSCLC's pathogenesis. Our systems biology approach introduced and nominated 1) important deregulated miRNAs in NSCLCs compared with normal tissue 2) significant and confident deregulated mRNAs which were anti-correlatively targeted by deregulated miRNA in NSCLCs and 3) dysregulated signaling pathways in association with deregulated miRNA-mRNAs interactions in NSCLCs. These results introduce possible mechanism of function of deregulated miRNAs and mRNAs in NSCLC that could be used as potential therapeutic targets.

  12. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  13. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    Science.gov (United States)

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules. © 2017 Wiley Periodicals, Inc.

  14. sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine.

    Science.gov (United States)

    Gómez-Martín, Cristina; Lebrón, Ricardo; Rueda, Antonio; Oliver, José L; Hackenberg, Michael

    2017-01-01

    High-throughput sequencing (HTS) data for small RNAs (noncoding RNA molecules that are 20-250 nucleotides in length) can now be routinely generated by minimally equipped wet laboratories; however, the bottleneck in HTS-based research has shifted now to the analysis of such huge amount of data. One of the reasons is that many analysis types require a Linux environment but computers, system administrators, and bioinformaticians suppose additional costs that often cannot be afforded by small to mid-sized groups or laboratories. Web servers are an alternative that can be used if the data is not subjected to privacy issues (what very often is an important issue with medical data). However, in any case they are less flexible than stand-alone programs limiting the number of workflows and analysis types that can be carried out.We show in this protocol how virtual machines can be used to overcome those problems and limitations. sRNAtoolboxVM is a virtual machine that can be executed on all common operating systems through virtualization programs like VirtualBox or VMware, providing the user with a high number of preinstalled programs like sRNAbench for small RNA analysis without the need to maintain additional servers and/or operating systems.

  15. RNA interference in Lepidoptera

    DEFF Research Database (Denmark)

    Terenius, Ole; Papanicolaou, Alexie; Garbutt, Jennie S.

    2011-01-01

    in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our...... experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi...... is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success...

  16. Modeling bias and variation in the stochastic processes of small RNA sequencing.

    Science.gov (United States)

    Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

    2017-06-20

    The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    Science.gov (United States)

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  18. Immunotherapy of hepatocellular carcinoma with small double-stranded RNA

    International Nuclear Information System (INIS)

    Kabilova, Tatyana O; Chernolovskaya, Elena L; Kovtonyuk, Larisa V; Zonov, Evgeniy V; Ryabchikova, Elena I; Popova, Nelly A; Nikolin, Valeriy P; Kaledin, Vasiliy I; Zenkova, Marina A; Vlassov, Valentin V

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with limited therapeutic options. Since HCC has been shown to be immunogenic, immunotherapy is considered a promising therapeutic approach. Small interfering RNAs (siRNAs), depending on their structure and sequence, can trigger the innate immune system, which can potentially enhance the adaptive anticancer immune response in the tumor-bearing subjects. Immunostimulatory properties of nucleic acids can be applied to develop adjuvants for HCC treatment. The transplantable HCC G-29 tumor in male CBA/LacSto (CBA) mice was used to study the effects of immunostimulatory RNA on tumor growth. Tumor size, metastases area in different organs of mice and mouse survival rate were analyzed. Furthermore the mouse serum IFN-α levels were measured using ELISA. In the present study, we found that a 19-bp RNA duplex (ImmunoStimulattory RNA or isRNA) with 3-nt overhangs at the 3′-ends of specific sequence displays immunostimulatory, antitumor, and antimetastatic activities in mice bearing HCC G-29. Our results demonstrate that isRNA strongly increases the level of interferon-α (IFN-α) by up to 25-fold relative to the level in mice injected with Lipofectamine alone (Mock), and to a lesser extent increases the level of proinflammatory cytokine interleukin-6 (IL-6) (by up to 5.5-fold relative to the Mock level), in mice blood serum. We showed that isRNA reliably (P < 0.05) inhibits primary tumor growth in mice compared to the mock group. Furthermore, injections of isRNA significantly enhanced necrotic processes in the center of the primary tumor, and decreased by twofold the width of the undifferentiated peripheral zone and the number of mitotic cells in this zone. The results showed that isRNA efficiently reduces the area of metastases in the liver, kidneys, and heart of CBA/LacSto mice with HCC. The obtained results clearly demonstrate immunostimulatory and antimetastatic properties of the isRNAs in

  19. Small RNA pathways and diversity in model legumes: lessons from genomics.

    Directory of Open Access Journals (Sweden)

    Pilar eBustos-Sanmamed

    2013-07-01

    Full Text Available Small non coding RNAs (smRNA participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA and short-interfering RNAs (siRNA are generated from long double stranded RNA (dsRNA that are cleaved into 20- to 24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL. One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in Medicago truncatula, Glycine max and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179 and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes could not yet be detected in M. truncatula available genomic and expressed sequence databases. In addition, an important gene diversification was observed in the three legumes. Functional significance of these variant isoforms may reflect peculiarities of smRNA biogenesis in

  20. Interference statistics and capacity analysis for uplink transmission in two-tier small cell networks: A geometric probability approach

    KAUST Repository

    Tabassum, Hina

    2014-07-01

    This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework exploits the distance distributions from geometric probability theory to characterize the uplink interference while considering a traditional grid-model set-up for macrocells along with the randomly deployed femtocells. The derived expressions capture the impact of path-loss, composite shadowing and fading, uniform and non-uniform traffic loads, spatial distribution of femtocells, and partial and full spectral reuse among femtocells. Considering dedicated spectrum access, first, we derive the statistics of co-tier interference incurred at both femtocell and macrocell base stations (BSs) from a single interferer by approximating generalized- K composite fading distribution with the tractable Gamma distribution. We then derive the distribution of the number of interferers considering partial spectral reuse and moment generating function (MGF) of the cumulative interference for both partial and full spectral reuse scenarios. Next, we derive the statistics of the cross-tier interference at both femtocell and macrocell BSs considering shared spectrum access. Finally, we utilize the derived expressions to analyze the capacity in both dedicated and shared spectrum access scenarios. The derived expressions are validated by the Monte Carlo simulations. Numerical results are generated to assess the feasibility of shared and dedicated spectrum access in femtocells under varying traffic load and spectral reuse scenarios. © 2014 IEEE.

  1. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  2. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  3. The Research Progress of SiRNA Targeting Notch1 on Tumor Cells: A Mini Review of the State of the Art

    Directory of Open Access Journals (Sweden)

    Lanfen Huo

    2016-09-01

    Full Text Available Notch signaling is a highly conserved signaling pathway, playing an important role in a variety of cell differentiation, development and regulation. Notch signaling includes Notch1-4; Notch1 gene encodes Notch1 signaling that can shorten cell cycle, enhance cell proliferation, inhibit cell differentiation, and promote apoptosis. Mutation and overexpression of the Notch1 gene may induce tumorigenesis, which plays an important role in the development of tumors across a variety of signaling pathways. Currently, using RNA interference technology (RNAi synthesizing small interference RNA (siRNA targeting Notch1 gene(siNotch1)has become a hot topic, and clinical application of gene silencing has also obtained a certain therapeutic effect. In this paper, the application of Notch1 gene silencing in tumor progress was reviewed.

  4. Iterative Soft Decision Interference Cancellation for DS-CDMA Employing the Distribution of Interference

    Directory of Open Access Journals (Sweden)

    Gerstacker WolfgangH

    2010-01-01

    Full Text Available A well-known receiver strategy for direct-sequence code-division multiple-access (DS-CDMA transmission is iterative soft decision interference cancellation. For calculation of soft estimates used for cancellation, the distribution of residual interference is commonly assumed to be Gaussian. In this paper, we analyze matched filter-based iterative soft decision interference cancellation (MF ISDIC when utilizing an approximation of the actual probability density function (pdf of residual interference. In addition, a hybrid scheme is proposed, which reduces computational complexity by considering the strongest residual interferers according to their pdf while the Gaussian assumption is applied to the weak residual interferers. It turns out that the bit error ratio decreases already noticeably when only a small number of residual interferers is regarded according to their pdf. For the considered DS-CDMA transmission the bit error ratio decreases by 80% for high signal-to-noise ratios when modeling all residual interferers but the strongest three to be Gaussian distributed.

  5. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  6. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer

    DEFF Research Database (Denmark)

    Martens-Uzunova, E S; Jalava, S E; Dits, N F

    2011-01-01

    Prostate cancer (PCa) is the most frequent male malignancy and the second most common cause of cancer-related death in Western countries. Current clinical and pathological methods are limited in the prediction of postoperative outcome. It is becoming increasingly evident that small non-coding RNA...... signatures of 102 fresh-frozen patient samples during PCa progression by miRNA microarrays. Both platforms were cross-validated by quantitative reverse transcriptase-PCR. Besides the altered expression of several miRNAs, our deep sequencing analyses revealed strong differential expression of small nucleolar...... RNAs (snoRNAs) and transfer RNAs (tRNAs). From microarray analysis, we derived a miRNA diagnostic classifier that accurately distinguishes normal from cancer samples. Furthermore, we were able to construct a PCa prognostic predictor that independently forecasts postoperative outcome. Importantly...

  7. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  8. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma.

    Directory of Open Access Journals (Sweden)

    Elaine M Morazzani

    2012-01-01

    Full Text Available The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs. However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication.

  9. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects.

    Science.gov (United States)

    Mongelli, Vanesa; Saleh, Maria-Carla

    2016-09-29

    Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.

  10. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong (Yale); (Cornell); (Tsinghua)

    2012-10-10

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

  11. CRISPR/Cas13 as a Tool for RNA Interference

    KAUST Repository

    Ali, Zahir; Mahas, Ahmed; Mahfouz, Magdy M.

    2018-01-01

    Almost all biological processes involve RNA, making it crucial to develop tools for manipulation of the transcriptome. The bacterial CRISPR/Cas13 system was recently rewired to facilitate RNA manipulation in eukaryotes, including plants. We discuss

  12. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference

    International Nuclear Information System (INIS)

    Wan Hong; South, Andrew P.; Hart, Ian R.

    2007-01-01

    The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G 1 -to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression

  13. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella.

    Science.gov (United States)

    Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg

    2015-08-25

    Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.

  14. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  15. siRNA Treatment: “A Sword-in-the-Stone” for Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Jerome Badaut

    2013-09-01

    Full Text Available Ever since the discovery of small interfering ribonucleic acid (siRNA a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.

  16. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer.

    Science.gov (United States)

    Zhou, Chunxia; Ye, Lincai; Jiang, Chuan; Bai, Jie; Chi, Yongbin; Zhang, Haibo

    2015-12-01

    Despite the fact that great advances have been made in the management of non-small cell lung cancer (NSCLC), the prognosis of advanced NSCLC remains very poor. HOX transcript antisense intergenic RNA (HOTAIR) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in the progression of a variety of carcinomas and acts as a negative prognostic biomarker. Yet, little is known about the effect of HOTAIR in the hypoxic microenvironment of NSCLC. The expression and promoter activity of HOTAIR were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the hypoxia-inducible factor-1α (HIF-1α) binding site to hypoxia-responsive elements (HREs) in the HOTAIR promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of HIF-1α to the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay (CHIP) and electrophoretic mobility shift assay (EMSA). The effect of HIF-1α suppression by small interference RNA or YC-1 on HOTAIR expression was also determined. In the present study, we demonstrated that HOTAIR was upregulated by hypoxia in NSCLC cells. HOTAIR is a direct target of HIF-1α through interaction with putative HREs in the upstream region of HOTAIR in NSCLC cells. Furthermore, HIF-1α knockdown or inhibition could prevent HOTAIR upregulation under hypoxic conditions. Under hypoxic conditions, HOTAIR enhanced cancer cell proliferation, migration, and invasion. These data suggested that suppression of HOTAIR upon hypoxia of NSCLC could be a novel therapeutic strategy.

  17. Small RNA sequencing reveals a comprehensive miRNA signature of BRCA1-associated high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Brouwer, Jan; Kluiver, Joost; de Almeida, Rodrigo C.; Modderman, Rutger; Terpstra, Martijn; Kok, Klaas; Withoff, Sebo; Hollema, Harry; Reitsma, Welmoed; de Bock, Geertruida H.; Mourits, Marian J. E.; van den Berg, Anke

    2016-01-01

    AimsBRCA1 mutation carriers are at increased risk of developing high-grade serous ovarian cancer (HGSOC), a malignancy that originates from fallopian tube epithelium. We aimed to identify differentially expressed known and novel miRNAs in BRCA1-associated HGSOC. Methods Small RNA sequencing was

  18. Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Pang, Shi-Feng; Li, Xiao-Kun; Zhang, Qiang; Yang, Fang; Xu, Peilin

    2009-01-01

    Recently our laboratory reported evidence showing that hNUDC acts as an additional cytokine for thrombopoietin receptor (Mpl). Previously known as the human homolog of a fungal nuclear migration protein, hNUDC plays a critical role in megakaryocyte differentiation and maturation. Here we sought to further clarify the hNUDC-Mpl ligand-receptor relationship by utilizing interference RNA (RNAi) to knockdown Mpl expression in a megakaryocyte cell line. We created U6 promoter driven constructs to express short hairpin RNAs (shRNA) with affinity for different sites on Mpl mRNA. By including Mpl-EGFP fusion protein in these constructs, we were able to effectively screen the shRNA that was most efficient in inhibiting Mpl mRNA expression. This shRNA was subsequently transferred into a lentivirus vector and transduced into Dami cells, a cell line which constitutively expresses endogenous Mpl. This lentiviral vector was also designed to simultaneously express EGFP to monitor transfection efficiency. Our results show that lentivirus can be used to effectively deliver shRNAs into Dami cells and cause specific inhibition of Mpl protein expression after transduction. Furthermore, we show the functional effects of shRNA-mediated Mpl silencing by demonstrating reduced hNUDC stimulated megakaryocyte proliferation and differentiation. Thus, the use of a RNAi knockdown strategy has allowed us to pinpoint the connection of hNUDC with Mpl in the regulation of megakaryocyte maturation.

  19. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    Science.gov (United States)

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  20. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1.

    Science.gov (United States)

    Csorba, Tibor; Lózsa, Rita; Hutvágner, György; Burgyán, József

    2010-05-01

    RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double-stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein-protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA-induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre-programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high-molecular-weight complex, suggesting the existence of a multi-protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA-RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co-expressed AGO1 in both the presence and absence of P0.

  1. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Science.gov (United States)

    Valli, Adrian; Busnadiego, Idoia; Maliogka, Varvara; Ferrero, Diego; Castón, José R; Rodríguez, José Francisco; García, Juan Antonio

    2012-01-01

    RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  2. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes.

    Science.gov (United States)

    Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2009-11-01

    Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.

  3. Small RNA-Mediated Epigenetic Myostatin Silencing

    Directory of Open Access Journals (Sweden)

    Thomas C Roberts

    2012-01-01

    Full Text Available Myostatin (Mstn is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.

  4. Observation of small sub-pulses out of the delayed-interference signal-wavelength converter

    DEFF Research Database (Denmark)

    Sakaguchi, J.; Nielsen, Mads Lønstrup; Ohira, T.

    2005-01-01

    The generation of small sub-pulses in the delayed-interference signal-wavelength converter (DISC), which has been studied for use in future 160-Gb/s optical time division multiplexing-wavelength division multiplexing (OTDM-WDM) communication systems, was recently predicted as a potential problem....... In this work, we have experimentally verified the generation of such pulses and its mechanism. In the experiments we used 3.8-ps-long 1.56-mu m input pulses with repetition frequencies from 12.5 to 25.0 GHz and a cross-correlation monitoring system with a time resolution of approximately 2 ps....

  5. Small RNAs in plants: Recent development and application for crop improvement

    Directory of Open Access Journals (Sweden)

    Ayushi eKamthan

    2015-04-01

    Full Text Available The phenomenon of RNA interference (RNAi which involves sequence specific gene regulation by small non-coding RNAs i.e small interfering RNA (siRNA and micro RNA (miRNA has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits & vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects and abiotic stresses (drought, salinity, cold etc.. Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. Micro RNAs are key regulators of important plant processes like growth, development and response to various stresses. In spite of similarity in size (20-24nt, miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. Micro RNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA based transgenics are much safer for consumption than those over expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of small RNAs and its application for crop improvement.

  6. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  7. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.

    Science.gov (United States)

    Parker, Greg S; Maity, Tuhin Subhra; Bass, Brenda L

    2008-12-26

    Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.

  8. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.

    Science.gov (United States)

    Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B

    2018-05-22

    RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.

  9. RNA interference: Applications and advances in insect toxicology and insect pest management.

    Science.gov (United States)

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Inhibition of osteoclastogenesis by RNA interference targeting RANK

    Directory of Open Access Journals (Sweden)

    Ma Ruofan

    2012-08-01

    Full Text Available Abstract Background Osteoclasts and osteoblasts regulate bone resorption and formation to allow bone remodeling and homeostasis. The balance between bone resorption and formation is disturbed by abnormal recruitment of osteoclasts. Osteoclast differentiation is dependent on the receptor activator of nuclear factor NF-kappa B (RANK ligand (RANKL as well as the macrophage colony-stimulating factor (M-CSF. The RANKL/RANK system and RANK signaling induce osteoclast formation mediated by various cytokines. The RANK/RANKL pathway has been primarily implicated in metabolic, degenerative and neoplastic bone disorders or osteolysis. The central role of RANK/RANKL interaction in osteoclastogenesis makes RANK an attractive target for potential therapies in treatment of osteolysis. The purpose of this study was to assess the effect of inhibition of RANK expression in mouse bone marrow macrophages on osteoclast differentiation and bone resorption. Methods Three pairs of short hairpin RNAs (shRNA targeting RANK were designed and synthesized. The optimal shRNA was selected among three pairs of shRNAs by RANK expression analyzed by Western blot and Real-time PCR. We investigated suppression of osteoclastogenesis of mouse bone marrow macrophages (BMMs using the optimal shRNA by targeting RANK. Results Among the three shRANKs examined, shRANK-3 significantly suppressed [88.3%] the RANK expression (p Conclusions These findings suggest that retrovirus-mediated shRNA targeting RANK inhibits osteoclast differentiation and osteolysis. It may appear an attractive target for preventing osteolysis in humans with a potential clinical application.

  11. Surveillance of siRNA integrity by FRET imaging

    Science.gov (United States)

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  12. RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates.

    Science.gov (United States)

    Liu, Min; Zhu, Zhan-Tao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-04-25

    Understanding the metabolic mechanism of sterols to produce valuable steroid intermediates in mycobacterium by a noncoding small RNA (sRNA) view is still limited. In the work, RNA-seq was implemented to investigate the noncoding transcriptome of Mycobacterium neoaurum (Mn) in the transformation process of sterols to valuable steroid intermediates, including 9α-hydroxy-4-androstene-3,17-dione (9OHAD), 1,4-androstadiene-3,17-dione (ADD), and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (1,4-BNA). A total of 263 sRNA candidates were predicted from the intergenic regions in Mn. Differential expression of sRNA candidates was explored in the wide type Mn with vs without sterol addition, and the steroid intermediate producing Mn strains vs wide type Mn with sterol addition, respectively. Generally, sRNA candidates were differentially expressed in various strains, but there were still some shared candidates with outstandingly upregulated or downregulated expression in these steroid producing strains. Accordingly, four regulatory networks were constructed to reveal the direct and/or indirect interactions between sRNA candidates and their target genes in four groups, including wide type Mn with vs without sterol addition, 9OHAD, ADD, and BNA producing strains vs wide type Mn with sterol addition, respectively. Based on these constructed networks, several highly focused sRNA candidates were discovered to be prevalent in the networks, which showed comprehensive regulatory roles in various cellular processes, including lipid transport and metabolism, amino acid transport and metabolism, signal transduction, cell envelope biosynthesis and ATP synthesis. To explore the functional role of sRNA candidates in Mn cells, we manipulated the overexpression of candidates 131 and 138 in strain Mn-9OHAD, which led to enhanced production of 9OHAD from 1.5- to 2.3-fold during 6 d' fermentation and a slight effect on growth rate. This study revealed the complex and important regulatory

  13. Selective small-molecule inhibition of an RNA structural element

    Energy Technology Data Exchange (ETDEWEB)

    Howe, John A.; Wang, Hao; Fischmann, Thierry O.; Balibar, Carl J.; Xiao, Li; Galgoci, Andrew M.; Malinverni, Juliana C.; Mayhood, Todd; Villafania, Artjohn; Nahvi, Ali; Murgolo, Nicholas; Barbieri, Christopher M.; Mann, Paul A.; Carr, Donna; Xia, Ellen; Zuck, Paul; Riley, Dan; Painter, Ronald E.; Walker, Scott S.; Sherborne, Brad; de Jesus, Reynalda; Pan, Weidong; Plotkin, Michael A.; Wu, Jin; Rindgen, Diane; Cummings, John; Garlisi, Charles G.; Zhang, Rumin; Sheth, Payal R.; Gill, Charles J.; Tang, Haifeng; Roemer , Terry (Merck)

    2015-09-30

    Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.

  14. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection.

    Science.gov (United States)

    Qiao, Yongli; Shi, Jinxia; Zhai, Yi; Hou, Yingnan; Ma, Wenbo

    2015-05-05

    A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.

  15. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications

    Directory of Open Access Journals (Sweden)

    Meng Cai

    2017-01-01

    Full Text Available MicroRNAs are small, noncoding RNA molecules that regulate target gene expression in the posttranscriptional level. Unlike siRNA, microRNAs are “fine-tuners” rather than “switches” in the regulation of gene expression; thus they play key roles in maintaining tissue homeostasis. The aberrant microRNA expression is implicated in the disease process. To date, numerous studies have demonstrated the regulatory roles of microRNAs in various pathophysiological conditions. In contrast, the study of microRNA in pregnancy and its associated complications, such as preeclampsia (PE, fetal growth restriction (FGR, and preterm labor, is a young field. Over the last decade, the knowledge of pregnancy-related microRNAs has increased and the molecular mechanisms by which microRNAs regulate pregnancy or its associated complications are emerging. In this review, we focus on the recent advances in the research of pregnancy-related microRNAs, especially their function in pregnancy-associated complications and the potential clinical applications. Here microRNAs that associate with pregnancy are classified as placenta-specific, placenta-associated, placenta-derived circulating, and uterine microRNA according to their localization and origin. MicroRNAs offer a great potential for developing diagnostic and therapeutic targets in pregnancy-related disorders.

  16. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.

    Science.gov (United States)

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli

    2017-02-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.

  17. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  18. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins?

    Science.gov (United States)

    Nakanishi, Kotaro

    2016-09-01

    RNA silencing is a eukaryote-specific phenomenon in which microRNAs and small interfering RNAs degrade messenger RNAs containing a complementary sequence. To this end, these small RNAs need to be loaded onto an Argonaute protein (AGO protein) to form the effector complex referred to as RNA-induced silencing complex (RISC). RISC assembly undergoes multiple and sequential steps with the aid of Hsc70/Hsp90 chaperone machinery. The molecular mechanisms for this assembly process remain unclear, despite their significance for the development of gene silencing techniques and RNA interference-based therapeutics. This review dissects the currently available structures of AGO proteins and proposes models and hypotheses for RISC assembly, covering the conformation of unloaded AGO proteins, the chaperone-assisted duplex loading, and the slicer-dependent and slicer-independent duplex separation. The differences in the properties of RISC between prokaryotes and eukaryotes will also be clarified. WIREs RNA 2016, 7:637-660. doi: 10.1002/wrna.1356 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.

  19. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Adrian Valli

    Full Text Available RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  20. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  1. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    Science.gov (United States)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-01-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline. PMID:25904136

  2. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Minxia Liu

    2016-09-01

    Full Text Available MicroRNAs (miRNAs have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  3. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Liu, Minxia; Zhou, Kecheng; Cao, Yi

    2016-09-26

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  4. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    important physiological role of regulatory RNA molecules in Gram-negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP-sRNA network by showing that the expression of the outer membrane protein YbfM is silenced by a conserved sRNA......In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one......, designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on-rate of duplex...

  5. Inhibition of CD147 expression by RNA interference reduces proliferation, invasion and increases chemosensitivity in cancer stem cell-like HT-29 cells.

    Science.gov (United States)

    Chen, Jie; Pan, Yuqin; He, Bangshun; Ying, Houqun; Wang, Feng; Sun, Huiling; Deng, Qiwen; Liu, Xian; Lin, Kang; Peng, Hongxin; Cho, William C; Wang, Shukui

    2015-10-01

    The association between CD147 and cancer stem cells (CSCs) provides a new angle for cancer treatments. The aim of this study was to investigate the biological roles of CD147 in colorectal CSCs. The Oct4-green fluorescent protein (GFP) vector was used to isolate CSCs and pYr-mir30-shRNA was used to generate short hairpin RNA (shRNA) specifically for CD147. After RNA interference (RNAi), CD147 was evaluated by reverse transcription‑quantitative PCR and western blot analysis, and its biological functions were assessed by MTT and invasion assays. The results showed that the differentiation of isolated CSC-like HT-29 cells was blocked and these cells were highly positive for CD44 and CD147. RNAi-mediated CD147 silencing reduced the expression of CD147 at both mRNA and protein levels. Moreover, the activities of proliferation and invasion were decreased obviously in CSCs. Knockdown of CD147 increased the chemosensitivity of CSC-like cells to gemcitabine, cisplatin, docetaxel at 0.1, 1 and 10 µM respectively, however, there was no significant difference among the three groups to paclitaxel at 10 µM. In conclusion, these results suggest that CD147 plays an important role in colorectal CSCs and might be regarded as a novel CSC-specific targeted strategy against colorectal cancer.

  6. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    Science.gov (United States)

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  7. Interferência por RNA: uma nova alternativa para terapia nas doenças reumáticas RNA interference: a new alternative for rheumatic diseases therapy

    Directory of Open Access Journals (Sweden)

    Natália Regine de França

    2010-12-01

    Full Text Available A interferência por RNA (RNAi é um mecanismo de silenciamento gênico pós-transcricional conservado durante a evolução. Esse mecanismo, recentemente descrito, é mediado por pequenos RNAs de fita dupla (dsRNAs capazes de reconhecer especificamente uma sequência de mRNA-alvo e mediar sua clivagem ou repressão traducional. O emprego da RNAi como uma ferramenta de terapia gênica tem sido muito estudado, especialmente em infecções virais, câncer, desordens genéticas herdadas, doenças cardiovasculares e mesmo em doenças reumáticas. Aliados aos dados do genoma humano, os conhecimentos do silenciamento gênico mediado por RNAi podem permitir a determinação funcional de praticamente qualquer gene expresso em uma célula e sua implicação para o funcionamento e homeostase celular. Vários estudos terapêuticos in vitro e in vivo em modelos de doenças autoimunes vêm sendo realizados com resultados encorajadores. As vias de quebra de tolerância e inflamação são alvos potenciais para terapia com RNAi em doenças inflamatórias e autoimunes. Nesta revisão vamos recordar os princípios básicos da RNAi e discutir os aspectos que levaram ao desenvolvimento de propostas terapêuticas baseadas em RNAi, começando pelos estudos in vitro de desenvolvimento de ferramentas e identificação de alvos, chegando até os estudos pré-clínicos de disponibilização da droga in vivo, e testes em células humanas e modelos animais de doenças autoimunes. Por fim, vamos revisar os últimos avanços da experiência clínica da terapia com RNAiRNA interference (RNAi is a post-transcriptional gene silencing mechanism preserved during evolution. This mechanism, recently described, is mediated by small double-stranded RNAs (dsRNAs that can specifically recognize a target mRNA sequence and mediate its cleavage or translational repression. The use of RNAi as a tool for gene therapy has been extensively studied, especially in viral infections, cancer

  8. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, Joseph Albert [Univ. of California, Berkeley, CA (United States)

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 121±s are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  9. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    Science.gov (United States)

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. Copyright © 2016

  10. Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus

    Directory of Open Access Journals (Sweden)

    Chu Justin

    2010-02-01

    Full Text Available Abstract Background Dengue virus (DENV is the causative agent of Dengue fever and the life-threatening Dengue Haemorrhagic fever or Dengue shock syndrome. In the absence of anti-viral agents or vaccine, there is an urgent need to develop an effective anti-viral strategy against this medically important viral pathogen. The initial interplay between DENV and the host cells may represent one of the potential anti-viral targeting sites. Currently the involvements of human membrane trafficking host genes or factors that mediate the infectious cellular entry of dengue virus are not well defined. Results In this study, we have used a targeted small interfering RNA (siRNA library to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics and endosome trafficking that are important and essential for DENV infection. The infectious entry of DENV into Huh7 cells was shown to be potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. Furthermore, DENV infection was shown to be sensitive to the disruption of human genes in regulating the early to late endosomal trafficking as well as the endosomal acidic pH. The importance and involvement of both actin and microtubule dynamics in mediating the infectious entry of DENV was also revealed in this study. Conclusions Together, the findings from this study have provided a detail profiling of the human membrane trafficking cellular genes and the mechanistic insight into the interplay of these host genes with DENV to initiate an infection, hence broadening our understanding on the entry pathway of this medically important viral pathogen. These data may also provide a new potential avenue for development of anti

  11. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin

    2016-07-08

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.

  12. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  13. Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans.

    Science.gov (United States)

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey; Lu, Rui

    2013-10-01

    Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.

  14. RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells

    International Nuclear Information System (INIS)

    Beck, Markus; Strand, Michael R.

    2003-01-01

    The family Polydnaviridae consists of ds-DNA viruses that are symbiotically associated with certain parasitoid wasps. PDVs are transmitted vertically but also are injected by wasps into hosts where they cause several physiological alterations including immunosuppression. The PDV genes responsible for mediating immunosuppression and other host alterations remain poorly characterized in large measure because viral mutants cannot be produced to study gene function. Here we report the use of RNA interference (RNAi) to specifically silence the glc1.8 and egf1.0 genes from Microplitis demolitor bracovirus (MdBV) in High Five cells derived from the lepidopteran Trichoplusia ni. Dose-response studies indicated that MdBV infects High Five cells and blocks the ability of these cells to adhere to culture plates. This response was very similar to what occurs in two classes of hemocytes, granular cells, and plasmatocytes, after infection by MdBV. Screening of monoclonal antibody (mAb) markers that distinguish different classes of lepidopteran hemocytes indicated that High Five cells cross-react with three mAbs that recognize granular cells from T. ni. Double-stranded RNA (dsRNA) complementary to glc1.8 specifically silenced glc1.8 expression and rescued the adhesive phenotype of High Five cells. Reciprocally, dsRNA complementary to egf1.0 silenced egf1.0 expression but had no effect on adhesion. The simplicity and potency of RNAi could be extremely useful for analysis of other PDV genes

  15. Impact of Subolesin and Cystatin Knockdown by RNA Interference in Adult Female Haemaphysalis longicornis (Acari: Ixodidae on Blood Engorgement and Reproduction

    Directory of Open Access Journals (Sweden)

    Md. Khalesur Rahman

    2018-04-01

    Full Text Available Currently, multi-antigenic vaccine use is the method of choice for the strategic control of ticks. Therefore, determining the efficacy of combined antigens is a promising avenue of research in the development of anti-tick vaccines. The antigen responsible for blood intake and reproduction has proven suitable as a vaccine antigen. It has been shown to silence Haemaphysalis longicornis salivary cystatin (HlSC-1 and subolesin by RNA interference. Adult unfed female ticks were injected with double-stranded RNA of (A subolesin, (B cystatin, (C subolesin plus cystatin, and (D injection buffer, then fed alongside normal unfed males up to spontaneous drop-down. The percentage of knockdowns was determined by real-time polymerase chain reaction. Sixty-three percent and 53% knockdown rates were observed in subolesin and cystatin double-stranded RNA-injected ticks respectively, while 32 and 26% knockdown rates of subolesin and cystatin transcript were observed in subolesin plus cystatin double-stranded RNA-injected ticks. Subolesin and/or cystatin knockdown causes a significant (p < 0.05 reduction in tick engorgement, egg mass weight, and egg conversion ratio. Most importantly, combined silencing did not act synergistically, but caused a similarly significant (p < 0.05 reduction in tick engorgement, egg mass weight, and egg conversion ratio. Therefore, the elucidation of multiple antigens may be helpful in the future of vaccines.

  16. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA.

    Science.gov (United States)

    Ursic-Bedoya, Raul; Mire, Chad E; Robbins, Marjorie; Geisbert, Joan B; Judge, Adam; MacLachlan, Ian; Geisbert, Thomas W

    2014-02-15

    Marburg virus (MARV) infection causes severe morbidity and mortality in humans and nonhuman primates. Currently, there are no licensed therapeutics available for treating MARV infection. Here, we present the in vitro development and in vivo evaluation of lipid-encapsulated small interfering RNA (siRNA) as a potential therapeutic for the treatment of MARV infection. The activity of anti-MARV siRNAs was assessed using dual luciferase reporter assays followed by in vitro testing against live virus. Lead candidates were tested in lethal guinea pig models of 3 different MARV strains (Angola, Ci67, Ravn). Treatment resulted in 60%-100% survival of guinea pigs infected with MARV. Although treatment with siRNA targeting other MARV messenger RNA (mRNA) had a beneficial effect, targeting the MARV NP mRNA resulted in the highest survival rates. NP-718m siRNA in lipid nanoparticles provided 100% protection against MARV strains Angola and Ci67, and 60% against Ravn. A cocktail containing NP-718m and NP-143m provided 100% protection against MARV Ravn. These data show protective efficacy against the most pathogenic Angola strain of MARV. Further development of the lipid nanoparticle technology has the potential to yield effective treatments for MARV infection.

  17. Small RNAs in plants: recent development and application for crop improvement.

    Science.gov (United States)

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.

  18. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    Science.gov (United States)

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  19. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi.

    Science.gov (United States)

    Zhang, Xiaoyu; Gamarra, Jaime; Castro, Steven; Carrasco, Estela; Hernandez, Aaron; Mock, Thomas; Hadaegh, Ahmad R; Read, Betsy A

    2016-01-01

    Small RNAs (smRNAs) control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi). Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18-24 nt and 71-252 nt, respectively), genome copy number (3-1,459), and the number of genes targeted (2-107). Stem-loop real time reverse transcriptase (RT) PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways.

  20. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhang

    Full Text Available Small RNAs (smRNAs control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi. Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18-24 nt and 71-252 nt, respectively, genome copy number (3-1,459, and the number of genes targeted (2-107. Stem-loop real time reverse transcriptase (RT PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways.

  1. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  2. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    2008-07-01

    Full Text Available The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite-host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC. We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP, and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth

  3. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  4. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway.

    Science.gov (United States)

    Yang, X-C; Wang, X; Luo, L; Dong, D-H; Yu, Q-C; Wang, X-S; Zhao, K

    2013-06-01

    S100A4 is a well established marker and mediator of metastatic disease, but the exact mechanisms responsible for the metastasis promoting effects are less well defined. We tested a hypothesis that the S100A4 gene plays a role in the proliferation and invasiveness of human renal cancer cells (RCC) and may be associated with its metastatic spread. The small interference RNA vector pcDNA3.1-S100A4 siRNA was transfected in to the human renal cancer cell lines ACHN, Ketr-3, OS-RC-2, CaKi-2 and HTB-47, then treated with ABT-737 or BB94. Cell apoptosis and cell viability was detected by flow cytometry and MTT assay. Matrigel was used for cell motility and invasion assay. MMP-2, bcl-2 and S100A4 was detected by RT-PCR and western blot assay. NF-kB subunit p65 activity was detected by confocal microscopy assay. We then determine the effect S100A4 sliencing on tumor growth, lung metastasis development in vivo. Immunohistochemistry was used to detected the expression of S100A4, bcl-2, MMP-2, p65 and CD31. S100A4 silencing in ACHN cells by RNA interference significantly inhibited NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and cellular migration, proliferation, and promoted apoptosis. Furthermore, re-expression of S100A4 in S100A4-siRNA-transfected ACHN cells by transient S100A4 cDNA transfection restored the NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and their high migratory and cellular proliferative ability. An inhibitor ABT-737 (the Bcl-2 antagonist targets Bcl-2) against Bcl-2 suppressed cellular proliferation and promoted apoptosis induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. A inhibitor BB94 against MMPs to neutralize MMP-2 protein suppressed cellular invasion and migration induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. In the prevention model, S100A4 silencing inhibited primary tumor growth by (tumor weight) (76 ± 8%) and (tumor volum) (78 ± 4%) respectively and promoted apoptosis and the formation

  5. Negative-strand RNA viruses: the plant-infecting counterparts.

    Science.gov (United States)

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Mpn1, Mutated in Poikiloderma with Neutropenia Protein 1, Is a Conserved 3′-to-5′ RNA Exonuclease Processing U6 Small Nuclear RNA

    Directory of Open Access Journals (Sweden)

    Vadim Shchepachev

    2012-10-01

    Full Text Available Clericuzio-type poikiloderma with neutropenia (PN is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3′ end polyuridine tails that are longer than those in normal cells and lack a terminal 2′,3′ cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3′-to-5′ RNA exonuclease that removes uridines from U6 3′ ends, generating terminal 2′,3′ cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3′ end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.

  7. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Science.gov (United States)

    Pompey, Justine M; Foda, Bardees; Singh, Upinder

    2015-01-01

    Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  8. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Directory of Open Access Journals (Sweden)

    Justine M Pompey

    Full Text Available Dicer enzymes process double-stranded RNA (dsRNA into small RNAs that target gene silencing through the RNA interference (RNAi pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  9. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    Science.gov (United States)

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  10. iSmaRT: a toolkit for a comprehensive analysis of small RNA-Seq data.

    Science.gov (United States)

    Panero, Riccardo; Rinaldi, Antonio; Memoli, Domenico; Nassa, Giovanni; Ravo, Maria; Rizzo, Francesca; Tarallo, Roberta; Milanesi, Luciano; Weisz, Alessandro; Giurato, Giorgio

    2017-03-15

    The interest in investigating the biological roles of small non-coding RNAs (sncRNAs) is increasing, due to the pleiotropic effects of these molecules exert in many biological contexts. While several methods and tools are available to study microRNAs (miRNAs), only few focus on novel classes of sncRNAs, in particular PIWI-interacting RNAs (piRNAs). To overcome these limitations, we implemented iSmaRT ( i ntegrative Sm all R NA T ool-kit), an automated pipeline to analyze smallRNA-Seq data. iSmaRT is a collection of bioinformatics tools and own algorithms, interconnected through a Graphical User Interface (GUI). In addition to performing comprehensive analyses on miRNAs, it implements specific computational modules to analyze piRNAs, predicting novel ones and identifying their RNA targets. A smallRNA-Seq dataset generated from brain samples of Huntington's Disease patients was used here to illustrate iSmaRT performances, demonstrating how the pipeline can provide, in a rapid and user friendly way, a comprehensive analysis of different classes of sncRNAs. iSmaRT is freely available on the web at ftp://labmedmolge-1.unisa.it (User: iSmart - Password: password). aweisz@unisa.it or ggiurato@unisa.it. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-02-19

    Development of precision therapeutics is of immense interest, particularly as applied to the treatment of cancer. By analyzing the preferred cellular RNA targets of small molecules, we discovered that 5"-azido neomycin B binds the Drosha processing site in the microRNA (miR)-525 precursor. MiR-525 confers invasive properties to hepatocellular carcinoma (HCC) cells. Although HCC is one of the most common cancers, treatment options are limited, making the disease often fatal. Herein, we find that addition of 5"-azido neomycin B and its FDA-approved precursor, neomycin B, to an HCC cell line selectively inhibits production of the mature miRNA, boosts a downstream protein, and inhibits invasion. Interestingly, neomycin B is a second-line agent for hepatic encephalopathy (HE) and bacterial infections due to cirrhosis. Our results provocatively suggest that neomycin B, or second-generation derivatives, may be dual functioning molecules to treat both HE and HCC. Collectively, these studies show that rational design approaches can be tailored to disease-associated RNAs to afford potential lead therapeutics.

  12. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Astrid D. Haase

    2016-01-01

    Full Text Available Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1 the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2 a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.

  13. Application of RNA interference in treating human diseases

    Indian Academy of Sciences (India)

    ference than either strand individually. After injection into ... antisense strand to messenger RNAs (mRNAs) that bear ... processing of longer dsRNA and stem loop precursors (Nov- ... RNAi has several applications in biomedical research,.

  14. RNA interference of acetylcholinesterase in the Asian citrus psyllid, Diaphorina citri, increases its susceptibility to carbamate and organophosphate insecticides.

    Science.gov (United States)

    Kishk, Abdelaziz; Hijaz, Faraj; Anber, Helmy A I; AbdEl-Raof, Tsamoh K; El-Sherbeni, AbdEl-Hakeem D; Hamed, Sobhy; Killiny, Nabil

    2017-11-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Lividae) transmits the Candidatus Liberibacter asiaticus, which causes citrus greening disease or Huanglongbing, (HLB). To date, there is no efficient cure for HLB disease and the control of D. citri using insecticides became the most important tools for the management of HLB. However, the extensive use of insecticides could increase D. citri resistance to these insecticides. The objective of this study was to investigate the effect of RNA interference of acetylcholinesterase (AChE) on the mortality and susceptibility of D. citri to the four major insecticides used in Florida. In this study, we used a consensus sequence derived from the two AChE genes and cholinesterase 2-like (ChE-2-like) gene to target all of the three genes. Treatment with dsRNA-AChE increased the mortality percentages of both nymphs and adults of D. citri. The mortality percentage increased with the increase in the concentration of applied dsRNA-AChE, and the highest mortality (> 60%) was observed at the highest applied concentration (125ng/μl). Treatments of nymphs or adults with dsRNA-AChE down-regulated the expression of the three targeted genes of D. citri. Silencing of AChE and ChE in D. citri nymphs increased the susceptibility of emerged adults to chlorpyrifos and carbaryl, which act as AChE inhibitors. However, treatment with dsRNA-AChE did not increase the susceptibility of emerged adults to imidacloprid, which acts as an agonist of nicotinic acetylcholine receptors. In the same manner, treatment of adults with dsRNA-AChE increased their susceptibility to chlorpyrifos and carbaryl, but did not affect their susceptibility to imidacloprid. The ANOVA did not show any significant increase in susceptibility of D. citri adults to fenpropathrin after treatment with dsRNA-AChE, either as nymphs or as adults. However, simple linear regression showed that treatment with dsRNA-AChE increased D. citri susceptibility to fenpropathrin

  15. Hopf Bifurcation Analysis of a Gene Regulatory Network Mediated by Small Noncoding RNA with Time Delays and Diffusion

    Science.gov (United States)

    Li, Chengxian; Liu, Haihong; Zhang, Tonghua; Yan, Fang

    2017-12-01

    In this paper, a gene regulatory network mediated by small noncoding RNA involving two time delays and diffusion under the Neumann boundary conditions is studied. Choosing the sum of delays as the bifurcation parameter, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated by analyzing the corresponding characteristic equation. It is shown that the sum of delays can induce Hopf bifurcation and the diffusion incorporated into the system can effect the amplitude of periodic solutions. Furthermore, the spatially homogeneous periodic solution always exists and the spatially inhomogeneous periodic solution will arise when the diffusion coefficients of protein and mRNA are suitably small. Particularly, the small RNA diffusion coefficient is more robust and its effect on model is much less than protein and mRNA. Finally, the explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, numerical simulations are carried out to illustrate our theoretical analysis.

  16. Functional specialization of the small interfering RNA pathway in response to virus infection.

    Directory of Open Access Journals (Sweden)

    Joao Trindade Marques

    Full Text Available In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA is processed into small interfering RNAs (siRNAs by Dicer-2 (Dcr-2 in association with a dsRNA-binding protein (dsRBP cofactor called Loquacious (Loqs-PD. siRNAs are then loaded onto Argonaute-2 (Ago2 by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response.

  17. Insight into small RNA abundance and expression in high- and low-temperature stress response using deep sequencing in Arabidopsis.

    Science.gov (United States)

    Baev, Vesselin; Milev, Ivan; Naydenov, Mladen; Vachev, Tihomir; Apostolova, Elena; Mehterov, Nikolay; Gozmanva, Mariyana; Minkov, Georgi; Sablok, Gaurav; Yahubyan, Galina

    2014-11-01

    Small RNA profiling and assessing its dependence on changing environmental factors have expanded our understanding of the transcriptional and post-transcriptional regulation of plant stress responses. Insufficient data have been documented earlier to depict the profiling of small RNA classes in temperature-associated stress which has a wide implication for climate change biology. In the present study, we report a comparative assessment of the genome-wide profiling of small RNAs in Arabidopsis thaliana using two conditional responses, induced by high- and low-temperature. Genome-wide profiling of small RNAs revealed an abundance of 21 nt small RNAs at low temperature, while high temperature showed an abundance of 21 nt and 24 nt small RNAs. The two temperature treatments altered the expression of a specific subset of mature miRNAs and displayed differential expression of a number of miRNA isoforms (isomiRs). Comparative analysis demonstrated that a large number of protein-coding genes can give rise to differentially expressed small RNAs following temperature shifts. Low temperature caused accumulation of small RNAs, corresponding to the sense strand of a number of cold-responsive genes. In contrast, high temperature stimulated the production of small RNAs of both polarities from genes encoding functionally diverse proteins. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Transcriptome analysis in cotton boll weevil (Anthonomus grandis and RNA interference in insect pests.

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Pereira Firmino

    Full Text Available Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  19. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    Science.gov (United States)

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  20. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Kathryn L. [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Gerlach, Cory V. [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA (United States); Craciun, Florin L.; Ramachandran, Krithika [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bijol, Vanesa [Department of Pathology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Kissick, Haydn T. [Department of Surgery, Urology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (United States); Vaidya, Vishal S., E-mail: vvaidya@bwh.harvard.edu [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA (United States)

    2016-12-01

    Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibrotic injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed in mice

  1. Arabidopsis RNASE THREE LIKE2 Modulates the Expression of Protein-Coding Genes via 24-Nucleotide Small Interfering RNA-Directed DNA Methylation.

    Science.gov (United States)

    Elvira-Matelot, Emilie; Hachet, Mélanie; Shamandi, Nahid; Comella, Pascale; Sáez-Vásquez, Julio; Zytnicki, Matthias; Vaucheret, Hervé

    2016-02-01

    RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression. © 2016 American Society of Plant Biologists. All rights reserved.

  2. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    Science.gov (United States)

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  3. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    Science.gov (United States)

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American

  5. Calcium-microRNA Complexes Functionalized Nanotubular Implant Surface for Highly Efficient Transfection and Enhanced Osteogenesis of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Song, Wen; Yang, Chuanxu; Svend Le, Dang Quang

    2018-01-01

    Controlling mesenchymal stem cells (MSCs) differentiation by RNA interference (RNAi) is a promising approach for next-generation regenerative medicine. However, efficient delivery of RNAi therapeutics is still a limiting factor. In this study, we have developed a simple, biocompatible and highly...... effective delivery method of small RNA therapeutics into hMSCs from an implant surface by calcium ions. First, we demonstrated that simple Ca/siGFP nanocomplexes were able to efficiently silence GFP in GFP-expressing hMSCs with adequate Ca2+ concentration (>5 mM). In addition, a single transfection could...

  6. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jin Ye

    2009-04-01

    Full Text Available Abstract Background The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA. Results In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS. Conclusion GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.

  7. Elucidating the Small Regulatory RNA Repertoire of the Sea Anemone Anemonia viridis Based on Whole Genome and Small RNA Sequencing.

    Science.gov (United States)

    Urbarova, Ilona; Patel, Hardip; Forêt, Sylvain; Karlsen, Bård Ove; Jørgensen, Tor Erik; Hall-Spencer, Jason M; Johansen, Steinar D

    2018-02-01

    Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping-pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. SDN‐Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra‐Dense Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2018-04-01

    Full Text Available Ultra‐dense small cell networks (UD‐SCNs have been identified as a promising scheme for next‐generation wireless networks capable of meeting the ever‐increasing demand for higher transmission rates and better quality of service. However, UD‐SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software‐defined networking (SDN‐based hierarchical agglomerative clustering (SDN‐HAC framework, which leverages SDN to centrally control all sub‐channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non‐cooperative scenarios, respectively.

  9. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Directory of Open Access Journals (Sweden)

    Jiangyu Wu

    2013-01-01

    Full Text Available RNA interference (RNAi was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc. of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.

  10. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Science.gov (United States)

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  11. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study.

    Science.gov (United States)

    Geisbert, Thomas W; Lee, Amy C H; Robbins, Marjorie; Geisbert, Joan B; Honko, Anna N; Sood, Vandana; Johnson, Joshua C; de Jong, Susan; Tavakoli, Iran; Judge, Adam; Hensley, Lisa E; Maclachlan, Ian

    2010-05-29

    We previously showed that small interfering RNAs (siRNAs) targeting the Zaire Ebola virus (ZEBOV) RNA polymerase L protein formulated in stable nucleic acid-lipid particles (SNALPs) completely protected guineapigs when administered shortly after a lethal ZEBOV challenge. Although rodent models of ZEBOV infection are useful for screening prospective countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models. We therefore assessed the efficacy of modified non-immunostimulatory siRNAs in a uniformly lethal non-human primate model of ZEBOV haemorrhagic fever. A combination of modified siRNAs targeting the ZEBOV L polymerase (EK-1 mod), viral protein (VP) 24 (VP24-1160 mod), and VP35 (VP35-855 mod) were formulated in SNALPs. A group of macaques (n=3) was given these pooled anti-ZEBOV siRNAs (2 mg/kg per dose, bolus intravenous infusion) after 30 min, and on days 1, 3, and 5 after challenge with ZEBOV. A second group of macaques (n=4) was given the pooled anti-ZEBOV siRNAs after 30 min, and on days 1, 2, 3, 4, 5, and 6 after challenge with ZEBOV. Two (66%) of three rhesus monkeys given four postexposure treatments of the pooled anti-ZEBOV siRNAs were protected from lethal ZEBOV infection, whereas all macaques given seven postexposure treatments were protected. The treatment regimen in the second study was well tolerated with minor changes in liver enzymes that might have been related to viral infection. This complete postexposure protection against ZEBOV in non-human primates provides a model for the treatment of ZEBOV-induced haemorrhagic fever. These data show the potential of RNA interference as an effective postexposure treatment strategy for people infected with Ebola virus, and suggest that this strategy might also be useful for treatment of other emerging viral infections. Defense Threat Reduction Agency. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California

    Directory of Open Access Journals (Sweden)

    Nikos Gurfield

    2017-04-01

    Full Text Available The Pacific coast tick, Dermacentor occidentalis Marx, is found throughout California and can harbor agents that cause human diseases such as anaplasmosis, ehrlichiosis, tularemia, Rocky Mountain spotted fever and rickettsiosis 364D. Previous studies have demonstrated that nonpathogenic endosymbiotic bacteria can interfere with Rickettsia co-infections in other tick species. We hypothesized that within D. occidentalis ticks, interference may exist between different nonpathogenic endosymbiotic or nonendosymbiotic bacteria and Spotted Fever group Rickettsia (SFGR. Using PCR amplification and sequencing of the rompA gene and intergenic region we identified a cohort of SFGR-infected and non-infected D. occidentalis ticks collected from San Diego County. We then amplified a partial segment of the 16S rRNA gene and used next-generation sequencing to elucidate the microbiomes and levels of co-infection in the ticks. The SFGR R. philipii str. 364D and R. rhipicephali were detected in 2.3% and 8.2% of the ticks, respectively, via rompA sequencing. Interestingly, next generation sequencing revealed an inverse relationship between the number of Francisella-like endosymbiont (FLE 16S rRNA sequences and Rickettsia 16S rRNA sequences within individual ticks that is consistent with partial interference between FLE and SFGR infecting ticks. After excluding the Rickettsia and FLE endosymbionts from the analysis, there was a small but significant difference in microbial community diversity and a pattern of geographic isolation by distance between collection locales. In addition, male ticks had a greater diversity of bacteria than female ticks and ticks that weren’t infected with SFGR had similar microbiomes to canine skin microbiomes. Although experimental studies are required for confirmation, our findings are consistent with the hypothesis that FLEs and, to a lesser extent, other bacteria, interfere with the ability of D. occidentalis to be infected with

  13. Towards Antiviral shRNAs Based on the AgoshRNA Design.

    Directory of Open Access Journals (Sweden)

    Ying Poi Liu

    Full Text Available RNA interference (RNAi can be induced by intracellular expression of a short hairpin RNA (shRNA. Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA. Dicer is also involved in microRNA (miRNA processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2 protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.

  14. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System.

    Science.gov (United States)

    Zhang, Yuefeng; Yang, Bin; Liu, Yajie; Qin, Wenjie; Li, Chao; Wang, Lantian; Zheng, Wen; Wu, Yulian

    2016-05-01

    RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).

  15. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  16. Disease Control in Animals Using Molecular Technology by Inactivation of ASO, RNAi and ss-siRNA Genes

    Directory of Open Access Journals (Sweden)

    Muhamad Ali

    2014-03-01

    Full Text Available Globalization causes high mobility of human and livestock, hence increase the transmission of infectious diseases, including avian influenza, severe acute respiratory syndrome (SARS, and swine influenza. Therefore, prevention of those diseases is required. Vaccines are effective to prevent infectious diseases; however, their development takes a long time and they cannot provide immediate protection in pandemic cases. This paper describes several gene silencing technologies including antisense oligonucleotide (ASO, RNA interference (RNAi and single strand-small interfering RNA (ss-siRNA for controlling diseases. The primary mechanism of these technologies is inhibition of gene expression, typically by causing the destruction of specific RNA molecule of the pathogen. The use of gene silencing technologies is expected to give new alternative that is more effective in eradication of infectious diseases in animals before threaten human being.

  17. Small Molecule Binding, Docking, and Characterization of the Interaction between Pth1 and Peptidyl-tRNA

    Directory of Open Access Journals (Sweden)

    Mary C. Hames

    2013-11-01

    Full Text Available Bacterial Pth1 is essential for viability. Pth1 cleaves the ester bond between the peptide and nucleotide of peptidyl-tRNA generated from aborted translation, expression of mini-genes, and short ORFs. We have determined the shape of the Pth1:peptidyl-tRNA complex using small angle neutron scattering. Binding of piperonylpiperazine, a small molecule constituent of a combinatorial synthetic library common to most compounds with inhibitory activity, was mapped to Pth1 via NMR spectroscopy. We also report computational docking results, modeling piperonylpiperazine binding based on chemical shift perturbation mapping. Overall these studies promote Pth1 as a novel antibiotic target, contribute to understanding how Pth1 interacts with its substrate, advance the current model for cleavage, and demonstrate feasibility of small molecule inhibition.

  18. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus

    Science.gov (United States)

    Qiu, Xiu-Wen; Wu, Xiao-Qin; Huang, Lin; Ye, Jian-Ren

    2016-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD. PMID:26797602

  19. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

    DEFF Research Database (Denmark)

    Hedman, Hanna K; Kirpekar, Finn; Elmroth, Sofi K C

    2011-01-01

    expression, and the other one focused on the function of endogenous miRNAs. In both cases, the active molecule consists of a ∼20-nucleotide-long RNA duplex. In the siRNA case, improved systemic stability is of central interest for its further development toward clinical applications. With respect to mi......RNA processing and function, understanding its influence on mRNA targeting and the silencing ability of individual miRNAs, e.g., under pathological conditions, remains a scientific challenge. In the present study, a model system is presented where the influence of the two clinically used anticancer drugs......, cisplatin and oxaliplatin, on siRNA's silencing capacity has been evaluated. More specifically, siRNAs targeting the 3' UTR region of Wnt-5a mRNA (NM_003352) were constructed, and the biologically active antisense RNA strand was pre-platinated. Platinum adducts were detected and characterized...

  20. Stem-Loop RT-qPCR as an Efficient Tool for the Detection and Quantification of Small RNAs in Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Jaime Marcial-Quino

    2016-12-01

    Full Text Available Stem-loop quantitative reverse transcription PCR (RT-qPCR is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL-based design to detect—in a rapid, sensitive, specific, and reproducible way—the small nucleolar RNA (snoRNA GlsR17 and its derived miRNA (miR2 of Giardia lamblia using a stem-loop RT-qPCR approach. Both small RNAs could be isolated from both total RNA and small RNA samples. Identification of the two small RNAs was carried out by sequencing the PCR-amplified small RNA products upon ligation into the pJET1.2/blunt vector. GlsR17 is constitutively expressed during the 72 h cultures of trophozoites, while the mature miR2 is present in 2-fold higher abundance during the first 48 h than at 72 h. Because it has been suggested that miRNAs in G. lamblia have an important role in the regulation of gene expression, the use of the stem-loop RT-qPCR method could be valuable for the study of miRNAs of G. lamblia. This methodology will be a powerful tool for studying gene regulation in G. lamblia, and will help to better understand the features and functions of these regulatory molecules and how they work within the RNA interference (RNAi pathway in G. lamblia.

  1. Stem-Loop RT-qPCR as an Efficient Tool for the Detection and Quantification of Small RNAs in Giardia lamblia

    Science.gov (United States)

    Marcial-Quino, Jaime; Gómez-Manzo, Saúl; Fierro, Francisco; Vanoye-Carlo, America; Rufino-González, Yadira; Sierra-Palacios, Edgar; Castillo-Villanueva, Adriana; Castillo-Rodríguez, Rosa Angélica; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto; Reyes-Vivas, Horacio

    2016-01-01

    Stem-loop quantitative reverse transcription PCR (RT-qPCR) is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL)-based design to detect—in a rapid, sensitive, specific, and reproducible way—the small nucleolar RNA (snoRNA) GlsR17 and its derived miRNA (miR2) of Giardia lamblia using a stem-loop RT-qPCR approach. Both small RNAs could be isolated from both total RNA and small RNA samples. Identification of the two small RNAs was carried out by sequencing the PCR-amplified small RNA products upon ligation into the pJET1.2/blunt vector. GlsR17 is constitutively expressed during the 72 h cultures of trophozoites, while the mature miR2 is present in 2-fold higher abundance during the first 48 h than at 72 h. Because it has been suggested that miRNAs in G. lamblia have an important role in the regulation of gene expression, the use of the stem-loop RT-qPCR method could be valuable for the study of miRNAs of G. lamblia. This methodology will be a powerful tool for studying gene regulation in G. lamblia, and will help to better understand the features and functions of these regulatory molecules and how they work within the RNA interference (RNAi) pathway in G. lamblia. PMID:27999395

  2. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    OpenAIRE

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by...

  3. Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Malík, Radek; Sedláček, Radislav; Svoboda, Petr

    2010-01-01

    Roč. 9, č. 8 (2010), s. 1-10 ISSN 1477-5751 R&D Projects: GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : transgenic RNAi * shRNA * oocyte Subject RIV: EB - Genetics ; Molecular Biology http://www.jnrbm.com/content/9/1/8

  4. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection.

    Science.gov (United States)

    Fleming, Damarius S; Miller, Laura C

    2018-04-01

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs have emerged as having an important role in the immune system in humans. The study uses transcriptomic read counts to profile the type and quantity of both well and lesser characterized sncRNAs, such as microRNAs and small nucleolar RNAs to identify and quantify the classes of sncRNA expressed in whole blood between healthy and highly pathogenic PRRSV-infected pigs. Our results returned evidence on nine classes of sncRNA, four of which were consistently statistically significantly different based on Fisher's Exact Test, that can be detected and possibly interrogated for their effect on host dysregulation during PRRSV infections. Published by Elsevier Inc.

  5. The potential of circulating extracellular small RNAs (smexRNA) in veterinary diagnostics-Identifying biomarker signatures by multivariate data analysis.

    Science.gov (United States)

    Melanie, Spornraft; Benedikt, Kirchner; Pfaffl, Michael W; Irmgard, Riedmaier

    2015-09-01

    Worldwide growth and performance-enhancing substances are used in cattle husbandry to increase productivity. In certain countries however e.g., in the EU, these practices are forbidden to prevent the consumers from potential health risks of substance residues in food. To maximize economic profit, 'black sheep' among farmers might circumvent the detection methods used in routine controls, which highlights the need for an innovative and reliable detection method. Transcriptomics is a promising new approach in the discovery of veterinary medicine biomarkers and also a missing puzzle piece, as up to date, metabolomics and proteomics are paramount. Due to increased stability and easy sampling, circulating extracellular small RNAs (smexRNAs) in bovine plasma were small RNA-sequenced and their potential to serve as biomarker candidates was evaluated using multivariate data analysis tools. After running the data evaluation pipeline, the proportion of miRNAs (microRNAs) and piRNAs (PIWI-interacting small non-coding RNAs) on the total sequenced reads was calculated. Additionally, top 10 signatures were compared which revealed that the readcount data sets were highly affected by the most abundant miRNA and piRNA profiles. To evaluate the discriminative power of multivariate data analyses to identify animals after veterinary drug application on the basis of smexRNAs, OPLS-DA was performed. In summary, the quality of miRNA models using all mapped reads for both treatment groups (animals treated with steroid hormones or the β-agonist clenbuterol) is predominant to those generated with combined data sets or piRNAs alone. Using multivariate projection methodologies like OPLS-DA have proven the best potential to generate discriminative miRNA models, supported by small RNA-Seq data. Based on the presented comparative OPLS-DA, miRNAs are the favorable smexRNA biomarker candidates in the research field of veterinary drug abuse.

  6. Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Malík, Radek; Sedláček, Radislav; Svoboda, Petr

    2010-01-01

    Roč. 9, č. 8 (2010), s. 1-10 ISSN 1477-5751 R&D Project s: GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : transgenic RNAi * shRNA * oocyte Subject RIV: EB - Genetics ; Molecular Biology http://www.jnrbm.com/content/9/1/8

  7. Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation.

    Science.gov (United States)

    Chichinadze, Konstantin; Tkemaladze, Jaba; Lazarashvili, Ann

    2012-01-01

    In 2006, a group of scientists studying centrosomes of Spisula solidissima mollusc oocytes under the leadership of Alliegro (Alliegro, M.C.; Alliegro, M.A.; Palazzo, R.E. Centrosome-associated RNA in surf clam oocytes. Proc. Natl. Acad. Sci. USA 2006, 103(24), 9034-9038) reliably demonstrated the existence of specific RNA in centrosome, called centrosomal RNA (cnRNA). In their first article, five different RNAs (cnRNAs 11, 102, 113, 170, and 184) were described. During the process of full sequencing of the first transcript (cnRNA 11), it was discovered that the transcript contained a conserved structure-a reverse transcriptase domain located together with the most important centrosomal protein, γ-tubulin. In an article published in 2005, we made assumptions about several possible mechanisms for determining the most important functions of centrosomal structures and referred to one of them as a "RNA-dependent mechanism." This idea about participation of hypothetic centrosomal small interference RNA and/or microRNA in the process was made one year prior to the discovery of cnRNA by Alliegro's group. The discovery of specific RNA in a centrosome is indirect evidence of a centrosomal hypothesis of cellular ageing and differentiation. The presence of a reverse transcriptase domain in this type of RNA, together with its uniqueness and specificity, makes the centrosome a place of information storage and reproduction.

  8. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  9. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Science.gov (United States)

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  10. DICER-ARGONAUTE2 complex in continuous fluorogenic assays of RNA interference enzymes.

    Directory of Open Access Journals (Sweden)

    Mark A Bernard

    Full Text Available Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC have been hindered by lack of methods for continuous monitoring of enzymatic activity. "Quencherless" fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS and hypoxia-inducible factor 1-α subunit (HIF1A. Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (Km=74 nM with substrate inhibition kinetics (Ki=105 nM, demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER bound in the active site of DICER may undergo direct transfer (as AGO2 substrate to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29, suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a

  11. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.

    Science.gov (United States)

    Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja

    2017-09-25

    Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.

  12. Associations of mRNA:microRNA for the shared downstream molecules of EGFR and alternative tyrosine kinase receptors in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2016-10-01

    Full Text Available Lung cancer is the top cancer killer worldwide with high mortality rate. Majority belong to non-small cell lung cancers (NSCLCs. The epidermal growth factor receptor (EGFR has been broadly explored as a drug target for therapy. However, the drug responses are not durable due to the acquired resistance. MicroRNAs (miRNAs are small noncoding and endogenous molecules that can inhibit mRNA translation initiation and degrade mRNAs. We wonder if some downstream molecules shared by EGFR and the other tyrosine kinase receptors (TKRs further transduce the signals alternatively, and some miRNAs play the key roles in affecting the expression of these downstream molecules. In this study, we investigated the mRNA:miRNA associations for the direct EGFR downstream molecules in the EGFR signaling pathway shared with the other TKRs, including c-MET (hepatocyte growth factor receptor, Ron (a protein tyrosine kinase related to c-MET, PDGFR (platelet-derived growth factor receptor, and IGF-1R (insulin-like growth factor receptor-1. The multiple linear regression and support vector regression (SVR models were used to discover the statistically significant and the best weighted miRNAs regulating the mRNAs of these downstream molecules. These two models revealed the similar mRNA:miRNA associations. It was found that the miRNAs significantly affecting the mRNA expressions in the multiple regression model were also those with the largest weights in the SVR model. To conclude, we effectively identified a list of meaningful mRNA:miRNA associations: phospholipase C, gamma 1 (PLCG1 with miR-34a, phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2 with miR-30a-5p, growth factor receptor-bound protein 2 (GRB2 with miR-27a, and Janus kinase 1 (JAK1 with miR-302b and miR-520e. These associations could make great contributions to explore new mechanism in NSCLCs. These candidate miRNAs may be regarded as the potential drug targets for treating NSCLCs with acquired drug

  13. Guardian small RNAs and sex determination.

    Science.gov (United States)

    Katsuma, Susumu; Kawamoto, Munetaka; Kiuchi, Takashi

    2014-01-01

    The W chromosome of the silkworm Bombyx mori has been known to determine femaleness for more than 80 years. However, the feminizing gene has not been molecularly identified, because the B. mori W chromosome is almost fully occupied by a large number of transposable elements. The W chromosome-derived feminizing factor of B. mori was recently shown to be a female-specific PIWI-interacting RNA (piRNA). piRNAs are small RNAs that potentially repress invading "non-self" elements (e.g., transposons and virus-like elements) by associating with PIWI proteins. Our results revealed that female-specific piRNA precursors, which we named Fem, are transcribed from the sex-determining region of the W chromosome at the early embryonic stage and are processed into a single mature piRNA (Fem piRNA). Fem piRNA forms a complex with Siwi (silkworm Piwi), which cleaves a protein-coding mRNA transcribed from the Z chromosome. RNA interference of this Z-linked gene, which we named Masc, revealed that this gene encodes a protein required for masculinization and dosage compensation. Fem and Masc both participate in the ping-pong cycle of the piRNA amplification loop by associating with the 2 B. mori PIWI proteins Siwi and BmAgo3 (silkworm Ago3), respectively, indicating that the piRNA-mediated interaction between the 2 sex chromosomes is the primary signal for the B. mori sex determination cascade. Fem is a non-transposable repetitive sequence on the W chromosome, whereas Masc is a single-copy protein-coding gene. It is of great interest how the piRNA system recognizes "self "Masc mRNA as "non-self" RNA.

  14. Finding for a Needle in a Haystack: Trips of Small RNAs from in silico to in vitro

    International Nuclear Information System (INIS)

    Bermudez Santana, Clara Isabel

    2011-01-01

    Efforts to study the transcriptome have led quantitative and qualitative analyses of all the functional RNA molecules products of transcription. Most of the studies have been focused on the fraction of coding RNAs and have been broadly published. However, the comprehension of the fraction associated to non-coding RNAs that are not translated into proteins but instead, shows a critical role for RNAs in cellular function, it is nowadays one field of Genetics that has in turn led to the transformation of technologies in both experimental and computational research. The characterization of small RNAs associated to the RNA interference pathway (whereby RNA can regulate gene expression) corresponds to one example in which frontiers of knowledge have been expanded not only to increase our comprehension of expression regulation, but also to allow interdisciplinary work among experimentalists and theoreticians. As follow it is presented an example based on small RNA biology to link next generation sequencing technologies and computational research.

  15. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota.

    Science.gov (United States)

    Lee, Soon-Jae; Kong, Mengxuan; Harrison, Paul; Hijri, Mohamed

    2018-01-01

    Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society

  16. Small RNA fragments in complex culture media cause alterations in protein profiles of three species of bacteria.

    Science.gov (United States)

    Pavankumar, Asalapuram R; Ayyappasamy, Sudalaiyadum Perumal; Sankaran, Krishnan

    2012-03-01

    Efforts to delineate the basis for variations in protein profiles of different membrane fractions from various bacterial pathogens led to the finding that even the same medium [e.g., Luria Bertani (LB) broth] purchased from different commercial sources generates remarkably dissimilar protein profiles despite similar growth characteristics. Given the pervasive roles small RNAs play in regulating gene expression, we inquired if these source-specific differences due to media arise from disparities in the presence of small RNAs. Indeed, LB media components from two different commercial suppliers contained varying, yet significant, amounts of 10-80 bp small RNAs. Removal of small RNA from LB using RNaseA during media preparation resulted in significant changes in bacterial protein expression profiles. Our studies underscore the fact that seemingly identical growth media can lead to dramatic alterations in protein expression patterns, highlighting the importance of utilizing media free of small RNA during bacteriological studies. Finally, these results raise the intriguing possibility that similar pools of small RNAs in the environment can influence bacterial adaptation.

  17. Small Rna Regulatory Networks In Pseudomonas Putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara; Long, Katherine

    2015-01-01

    chemicals and has a potential to be used as an efficient cell factory for various products. P. putida KT2240 is a genome-sequenced strain and a well characterized pseudomonad. Our major aim is to identify small RNA molecules (sRNAs) and their regulatory networks. A previous study has identified 37 sRNAs...... in this strain, while in other pseudomonads many more sRNAs have been found so far.P. putida KT2440 has been grown in different conditions which are likely to be encountered in industrial fermentations with the aim of using sRNAs for generation of improved cell factories. For that, cells have been grown in LB......Pseudomonas putida is a ubiquitous Gram-negative soil bacterium with a versatile metabolism and ability to degrade various toxic compounds. It has a high tolerance to different future biobased building blocks and various other stringent conditions. It is used in industry to produce some important...

  18. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach.

    Science.gov (United States)

    Thanki, Kaushik; Zeng, Xianghui; Justesen, Sarah; Tejlmann, Sarah; Falkenberg, Emily; Van Driessche, Elize; Mørck Nielsen, Hanne; Franzyk, Henrik; Foged, Camilla

    2017-11-01

    Safety and efficacy of therapeutics based on RNA interference, e.g., small interfering RNA (siRNA), are dependent on the optimal engineering of the delivery technology, which is used for intracellular delivery of siRNA to the cytosol of target cells. We investigated the hypothesis that commonly used and poorly tolerated cationic lipids might be replaced with more efficacious and safe lipidoids as the lipid component of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) for achieving more efficient gene silencing at lower and safer doses. However, formulation design of such a complex formulation is highly challenging due to a strong interplay between several contributing factors. Hence, critical formulation variables, i.e. the lipidoid content and siRNA:lipidoid ratio, were initially identified, followed by a systematic quality-by-design approach to define the optimal operating space (OOS), eventually resulting in the identification of a robust, highly efficacious and safe formulation. A 17-run design of experiment with an I-optimal approach was performed to systematically assess the effect of selected variables on critical quality attributes (CQAs), i.e. physicochemical properties (hydrodynamic size, zeta potential, siRNA encapsulation/loading) and the biological performance (in vitro gene silencing and cell viability). Model fitting of the obtained data to construct predictive models revealed non-linear relationships for all CQAs, which can be readily overlooked in one-factor-at-a-time optimization approaches. The response surface methodology further enabled the identification of an OOS that met the desired quality target product profile. The optimized lipidoid-modified LPNs revealed more than 50-fold higher in vitro gene silencing at well-tolerated doses and approx. a twofold increase in siRNA loading as compared to reference LPNs modified with the commonly used cationic lipid dioleyltrimethylammonium propane (DOTAP). Thus, lipidoid-modified LPNs show highly

  19. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.

    Directory of Open Access Journals (Sweden)

    Guodong Rao

    Full Text Available Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'. De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs and 36 different expressed miRNAs (DEMs. Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.

  20. Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5′ Transfer RNA Halves in Seminal Fluid and Prostatic Tissues

    Directory of Open Access Journals (Sweden)

    Joseph M Dhahbi

    2018-02-01

    Full Text Available Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5′ tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5′ tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5′ tRNA halves in carcinogenesis.

  1. Iterative Equalization and Interference Alignment for Multiuser MIMO HetNets with Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Daniel Castanheira

    2015-01-01

    Full Text Available In this paper we consider a scenario, where several small-cells work under the same coverage area and spectrum of a macrocell. The signals stemming from the small-cell (macrocell users if not carefully dealt with will generate harmful interference into the macrocell (small-cell. To tackle this problem interference alignment and iterative equalization techniques are considered. By using IA all interference generated by the small-cell (macrocell users is aligned along a low dimensional subspace, at the macrocell (small-cells. This reduces considerably the amount of resources allocated, to enable the coexistence of the two systems. However, perfect IA requires the availability of error-free channel state information (CSI at the transmitters. Due to CSI errors one can have substantial performance degradation due to imperfect alignments. Since in this work the IA precoders are based on imperfect CSI, an efficient iterative space-frequency equalization is designed at the receiver side to cope with the residual aligned interference. The results demonstrate that iterative equalization is robust to imperfect CSI and removes efficiently the interference generated by the poorly aligned interference. Close to matched filter bound performance is achieved, with a very few number of iterations.

  2. Analysis of small RNA production patterns among the two potato spindle tuber viroid variants in tomato plants

    Directory of Open Access Journals (Sweden)

    Charith Raj Adkar-Purushothama

    2015-12-01

    Full Text Available In order to analyze the production of small RNA (sRNA by viroids upon infecting the plants, the tomato plants (Solanum lycopersicum cultivar Rutgers were inoculated with the variants of Potato spindle tuber viroid (PSTVd. After 21-days of postinoculation, total RNA was extracted and subjected for deep-sequencing using Illumina HiSeq platform. The primers were trimmed and only 21- to 24-nt long sRNAs were filtered after quality check of the raw data. The filtered sRNA population was then mapped against both the genomic (+ and antigenomic (− strands of the respective PSTVd variants using standard pattern-matching algorithm. The profiling of viroid derived sRNA (vd-sRNA revealed that the viroids are susceptible to host RNA silencing mechanism. High-throughput sequence data linked to this project have been deposited in the Gene Expression Omnibus (GEO database under accession number GSE69225.

  3. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    Science.gov (United States)

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  4. Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees.

    Science.gov (United States)

    Su, Xiu; Fu, Shuai; Qian, Yajuan; Zhang, Liqin; Xu, Yi; Zhou, Xueping

    2016-05-26

    A novel potyvirus was discovered in pecan (Carya illinoensis) showing leaf mosaic symptom through the use of deep sequencing of small RNAs. The complete genome of this virus was determined to comprise of 9,310 nucleotides (nt), and shared 24.0% to 58.9% nucleotide similarities with that of other Potyviridae viruses. The genome was deduced to encode a single open reading frame (polyprotein) on the plus strand. Phylogenetic analysis based on the whole genome sequence and coat protein amino acid sequence showed that this virus is most closely related to Lettuce mosaic virus. Using electron microscopy, the typical Potyvirus filamentous particles were identified in infected pecan leaves with mosaic symptoms. Our results clearly show that this virus is a new member of the genus Potyvirus in the family Potyviridae. The virus is tentatively named Pecan mosaic-associated virus (PMaV). Additionally, profiling of the PMaV-derived small RNA (PMaV-sRNA) showed that the most abundant PMaV-sRNAs were 21-nt in length. There are several hotspots for small RNA production along the PMaV genome; two 21-nt PMaV-sRNAs starting at 811 nt and 610 nt of the minus-strand genome were highly repeated.

  5. Electron quantum interferences and universal conductance fluctuations

    International Nuclear Information System (INIS)

    Benoit, A.; Pichard, J.L.

    1988-05-01

    Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr

  6. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1

    Science.gov (United States)

    Zhou, Jiehua; Lazar, Daniel; Li, Haitang; Xia, Xin; Satheesan, Sangeetha; Charlins, Paige; O'Mealy, Denis; Akkina, Ramesh; Saayman, Sheena; Weinberg, Marc S.; Rossi, John J.; Morris, Kevin V.

    2018-01-01

    Gene-based therapies represent a promising therapeutic paradigm for the treatment of HIV-1, as they have the potential to maintain sustained viral inhibition with reduced treatment interventions. Such an option may represent a long-term treatment alternative to highly active antiretroviral therapy. Methods: We previously described a therapeutic approach, referred to as transcriptional gene silencing (TGS), whereby small noncoding RNAs directly inhibit the transcriptional activity of HIV-1 by targeting sites within the viral promoter, specifically the 5' long terminal repeat (LTR). TGS differs from traditional RNA interference (RNAi) in that it is characterized by concomitant silent-state epigenetic marks on histones and DNA. To deliver TGS-inducing RNAs, we developed functional RNA conjugates based on the previously reported dual function of the gp120 (A-1) aptamer conjugated to 27-mer Dicer-substrate anti-HIV-1 siRNA (dsiRNA), LTR-362. Results: We demonstrate here that high levels of processed guide RNAs localize to the nucleus in infected T lymphoblastoid CEM cell line and primary human CD4+ T-cells. Treatment of the aptamer-siRNA conjugates induced TGS with an ~10-fold suppression of viral p24 levels as measured at day 12 post infection. To explore the silencing efficacy of aptamer-siRNA conjugates in vivo, HIV-1-infected humanized NOD/SCID/IL2 rγnull mice (hu-NSG) were treated with the aptamer-siRNA conjugates. Systemic delivery of the A-1-stick-LTR-362 27-mer siRNA conjugates suppressed HIV-1 infection and protected CD4+ T cell levels in viremia hu-NSG mice. Principle conclusions: Collectively these data suggest that the gp120 aptamer-dsiRNA conjugate design is suitable for systemic delivery of small RNAs that can be used to suppress HIV-1. PMID:29556342

  7. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  8. Cognitive interference management in heterogeneous networks

    CERN Document Server

    Marabissi, Dania

    2015-01-01

    This brief investigates the role of interference management in Heterogeneous Networks (Het Nets), focusing on cognitive approaches and the use of beamforming. Key concepts of Het Nets are introduced and different deployment strategies are examined, such as sharing the same frequency band of the macro cells or using new high frequency bands. Particular attention is devoted to co-channel deployment and to the problem of interference management, addressing various strategies that can be adopted to handle the interference between the cells. In addition, the brief explores cognitive small cells which are able to avoid or limit interference by using suitable beamforming and resource allocation schemes. The suggested solutions are supported by numerical results in terms of performance evaluations and comparisons.

  9. Transduction of hematopoietic stem cells to stimulate RNA interference against feline infectious peritonitis.

    Science.gov (United States)

    Anis, Eman A; Dhar, Madhu; Legendre, Alfred M; Wilkes, Rebecca P

    2017-06-01

    Objectives The goals of the study were: (1) to develop and evaluate non-replicating lentivirus vectors coding for feline coronavirus (FCoV)-specific micro (mi)RNA as a potential antiviral therapy for feline infectious peritonitis (FIP); (2) to assess the feasibility of transducing hematopoietic stem cells (HSCs) with ex vivo introduction of the miRNA-expressing lentivirus vector; and (3) to assess the ability of the expressed miRNA to inhibit FCoV replication in HSCs in vitro. Methods HSCs were obtained from feline bone marrow and replicated in vitro. Three lentiviruses were constructed, each expressing a different anti-FCoV miRNA. HSCs were stably transduced with the miRNA-expressing lentivirus vector that produced the most effective viral inhibition in a feline cell line. The effectiveness of the transduction and the expression of anti-FCoV miRNA were tested by infecting the HSCs with two different strains of FCoV. The inhibition of coronavirus replication was determined by relative quantification of the inhibition of intracellular viral genomic RNA synthesis using real-time, reverse-transcription PCR. The assessment of virus replication inhibition was determined via titration of extracellular virus using the TCID 50 assay. Results Inhibition of FCoV was most significant in feline cells expressing miRNA-L2 that targeted the viral leader sequence, 48 h postinfection. miRNA-L2 expression in stably transduced HSCs resulted in 90% and 92% reductions in FIPV WSU 79-1146 genomic RNA synthesis and extracellular virus production, respectively, as well as 74% and 80% reduction in FECV WSU 79-1683 genomic RNA synthesis and extracellular virus production, respectively, as compared with an infected negative control sample producing non-targeting miRNA. Conclusions and relevance These preliminary results show that genetic modification of HSCs for constitutive production of anti-coronavirus miRNA will reduce FCoV replication.

  10. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.

  11. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema.

    Science.gov (United States)

    Kai, Yoshiro; Tomoda, Koichi; Yoneyama, Hiroyuki; Yoshikawa, Masanori; Kimura, Hiroshi

    2015-12-09

    Chondroitin sulfate proteoglycans are an important mediators in inflammation and leukocyte trafficking. However, their roles in pulmonary emphysema have not been explored. In a murine model of elastase-induced pulmonary emphysema, we found increased carbohydrate sulfotransferase 3 (CHST3), a specific enzyme that synthesizes chondroitin 6-sulfate proteoglycan (C6SPG). To elucidate the role of C6SPG, we investigated the effect of small interfering RNA (siRNA) targeting CHST3 that inhibits C6SPG-synthesis on the pathogenesis of pulmonary emphysema. Mice were intraperitoneally injected with CHST3 siRNA or negative control siRNA on day0 and 7 after intratracheal instillation of elastase. Histology, respiratory function, glycosaminoglycans (GAGs) content, bronchoalveolar lavage (BAL), elastin staining and gene expressions of tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 mRNA were evaluated on day7 and/or day21. CHST3 mRNA increased at day 7 and decreased thereafter in lung. CHST3 siRNA successfully inhibited the expression of CHST3 mRNA throughout the study and this was associated with significant reduction of GAGs and C6SPG. Airway destruction and respiratory function were improved by the treatment with CHST3 siRNA. CHST3 siRNA reduced the number of macrophages both in BAL and lung parenchyma and also suppressed the increased expressions of TNF-α and MMP-9 mRNA. Futhermore, CHST3 siRNA improved the reduction of the elastin in the alveolar walls. CHST3 siRNA diminishes accumulation of excessive macrophages and the mediators, leading to accelerate the functional recovery from airway damage by repair of the elastin network associated with pulmonary emphysema.

  12. MicroRNA-dependent regulation of transcription in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Sonia Molina-Pinelo

    Full Text Available Squamous cell lung cancer (SCC and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC, and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA and mRNA profiling (Whole Genome 44 K array G112A, Agilent was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708 and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1 were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

  13. Mouse nucleolin binds to 4.5S RNAH, a small noncoding RNA

    International Nuclear Information System (INIS)

    Hirose, Yutaka; Harada, Fumio

    2008-01-01

    4.5S RNAH is a rodent-specific small noncoding RNA that exhibits extensive homology to the B1 short interspersed element. Although 4.5S RNAH is known to associate with cellular poly(A)-terminated RNAs and retroviral genomic RNAs, its function remains unclear. In this study, we analyzed 4.5S RNAH-binding proteins in mouse nuclear extracts using gel mobility shift and RNA-protein UV cross-linking assays. We found that at least nine distinct polypeptides (p170, p110, p93, p70, p48, p40, p34, p20, and p16.5) specifically interacted with 4.5S RNAHin vitro. Using anti-La antibody, p48 was identified as mouse La protein. To identify the other 4.5S RNAH-binding proteins, we performed expression cloning from a mouse cDNA library and obtained cDNA clones derived from nucleolin mRNA. We identified p110 as nucleolin using nucleolin-specific antibodies. UV cross-linking analysis using various deletion mutants of nucleolin indicated that the third of four tandem RNA recognition motifs is a major determinant for 4.5S RNAH recognition. Immunoprecipitation of nucleolin from the subcellular fractions of mouse cell extracts revealed that a portion of the endogenous 4.5S RNAH was associated with nucleolin and that this complex was located in both the nucleoplasm and nucleolus

  14. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    Science.gov (United States)

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  15. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  16. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Science.gov (United States)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  17. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    Science.gov (United States)

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  18. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    Full Text Available MicroRNAs (miRNAs and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs are two distinct subfamilies of small RNAs (sRNAs that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs are processed from longer RNA precursors by DICER-LIKE proteins (DCLs. Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs and 108 novel lineage-specific miRNAs (ls-miRNAs. Along with miRNAs, 2,033 miRNA variants (isomiRNAs were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers

  19. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Goertzen, Leslie R; Singh, Shree R; Locy, Robert D

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a second

  20. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.

    Science.gov (United States)

    Chen, Qiansi; Li, Meng; Zhang, Zhongchun; Tie, Weiwei; Chen, Xia; Jin, Lifeng; Zhai, Niu; Zheng, Qingxia; Zhang, Jianfeng; Wang, Ran; Xu, Guoyun; Zhang, Hui; Liu, Pingping; Zhou, Huina

    2017-01-10

    Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed mi