WorldWideScience

Sample records for small hydropower station

  1. Small Hydropower - The comeback of small hydropower stations

    Niederhaeusern, A.

    2008-01-01

    This issue of the 'Erneuerbare Energien' (renewable energies) magazine published by the Swiss Solar Energy Society takes a look at small hydropower projects in Switzerland. In a number of interviews and articles, various topics concerning small hydropower are dealt with. First of all, an interview with Bruno Guggisberg, previously responsible for small hydro at the Swiss Federal Office of Energy, examines the potential of small hydro and the various political, technical and economic influences on such projects. Further articles provide an overview of the various types of small hydro schemes, including power generation using height differences in drinking-water and wastewater installations. As far as the components of small hydro schemes are concerned, various types of turbines and further system components that are needed are examined. A further article takes a look at the small hydro market and the market players involved. Ecological aspects and research activities are discussed in further articles. In a second interview with Martin Boelli, presently responsible for small hydropower at the Swiss Federal Office of Energy, the unused potential for the use of hydropower in Switzerland is discussed. Examples of small-scale hydro schemes are examined and the support offered by the Small Hydropower Program is discussed. Finally the question is asked, if the small hydro market in Switzerland is overheated as a result of promotion schemes such as cost-covering remuneration for electricity from renewable energy sources.

  2. Small hydropower station in Lavin - Preliminary study

    Merz, F.

    2008-05-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study regarding a proposed small hydropower installation on the alpine river Lavinuoz in Lavin, Switzerland. The geographical situation with mountains and glaciers in the catchment area of the proposed hydropower installation is discussed as are the appropriate water catchment installations. Possible dangers caused by avalanches and rock fall are examined. The power to be produced - 5,500,000 kWh/y - by the turbine which is nominally rated at 1350 kW is discussed, as are estimates of production costs. Figures on the investments required and the economic feasibility of the project are discussed, as are environmental factors that are to be taken into account.

  3. Small hydropower station in Schluein, Switzerland

    Merz, F.; Thoeny, F.

    2007-04-01

    This preliminary study elaborated for the Swiss Federal Office of Energy (SFOE) describes a project concerning the building of a small-scale hydropower installation in Schluein in the Grisons, Switzerland. The requirements placed on the water intake point in this mountainous region are discussed. The installation includes a 1230 metre long pressurised conduit and uses a multi-jet Pelton turbine to provide 720 kW of electrical power, the hydraulic head amounting to 140 m. The paper discusses the amounts of water available over the year, production costs and the economic feasibility of the project. The power production is estimated to 3,150,000 kWh/y. Environmental aspects are examined and details still to be defined are briefly mentioned.

  4. The 'Pontareuse' small hydropower station in Boudry, Switzerland

    Hausmann, M.

    2007-05-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) describes work done in 2007 on the preliminary project for a small hydropower project to be realised in Boudry, Switzerland. The goal of this project is to take advantage of the hydro power of the river Areuse using an existing artificial weir which has been built and renovated as part of several river corrections in the past. Three variants for the construction of the proposed hydropower installation with a maximum projected power rating of 391 kilowatts are presented in detail. Options for the realisation of a fish pass to enable fish to pass the weir are also discussed. Figures are presented on the financial viability of the project which, although low, could however become interesting when the expected tariff changes in connection with the new Swiss legislation on electrical energy supply are considered

  5. Small hydropower station in Lavin - Preliminary study; Kleinwasserkraftwerk Lavin - Vorstudie

    Merz, F.

    2008-05-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study regarding a proposed small hydropower installation on the alpine river Lavinuoz in Lavin, Switzerland. The geographical situation with mountains and glaciers in the catchment area of the proposed hydropower installation is discussed as are the appropriate water catchment installations. Possible dangers caused by avalanches and rock fall are examined. The power to be produced - 5,500,000 kWh/y - by the turbine which is nominally rated at 1350 kW is discussed, as are estimates of production costs. Figures on the investments required and the economic feasibility of the project are discussed, as are environmental factors that are to be taken into account.

  6. The 'Lehn' small hydro-power station; KWKW Lehn Vorprojekt - Schlussbericht

    Ruff, H.; Widmer, P.

    2009-02-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at the refurbishment of a small hydro-power station in the UNESCO biosphere region in the Entlebuch, Switzerland. The five grounds for the refurbishment are examined - repair of the water intake, flood protection, regulation of residual water, reduction of floating debris and sand and optimisation of the system by using automatic control. Figures on the cost of the refurbishment and electricity production are presented and discussed, as is the economic viability of the project. The existing installations are described and the hydrology of the stream is discussed, as are legal requirements and technical basics. Variants for the refurbishment are examined and operational aspects are looked at. A comprehensive appendix provides details on the proposal in graphical and tabular form.

  7. Small hydropower station Duennern Olten, Switzerland; Kleinwasserkraftwerk Munzingerareal, Duennern Olten. Vorprojekt

    Eichenberger, P.

    2007-07-15

    This illustrated technical report for the Swiss Federal Office of Energy (SFOE) describes work done on the preliminary project for a small hydropower project to be realised in Olten, Switzerland. The goal of this project is to build a new hydropower installation on the Duennern stream in which the approximately 10 metres difference in height is to be used to generate around 1.6 GWh of power annually using a 345 kW turbine. The present situation is described as far as the existing channelled stream, water quantities and concessions, land ownership etc. are concerned. Four variants for the realisation of the new hydropower installation are presented and discussed. The report recommends a single variant that should be further studied and lists details of the project, including plans and cost estimates.

  8. The Grossmatt hydro-power station

    Hintermann, M.

    2006-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the project for a small hydropower station on the Birs river in north-western Switzerland. The report reviews the history of the project, in which a new 385 kW-hydro-power station at the site of an earlier installation is foreseen. Details are presented on the investigations made and on the co-ordination with the owners of the hydro-power station situated up-river, the local power utility and the local authorities. Also, the requirements placed on the project by the fishing authorities are quoted and the solution foreseen is described. Also discussed are the requirements placed on the project by legislation on environmental impact and flood protection. Figures on electrical energy production and building costs are presented

  9. World Small Hydropower Development Report

    Liu, Heng; Esser, Lara [ICSGP (China); Masera, Diego [UNIDO, Vienna (Austria)

    2013-07-01

    Currently, small hydropower plants with a capacity of 10 MW, exist in 148 countries or territories worldwide. Four other countries have been identified with resource potential. This report aims to identify the development status and resource potential of small hydro in various countries, territories and regions throughout the world. Working with experts at the ground level to compile and share existing information, experiences and challenges, one comprehensive report was created. Decision-makers, stakeholders and potential investors clearly need this comprehensive information to more effectively promote small hydropower as a renewable and rural energy source for sustainable development and to overcome the existing development barriers. The findings of this report show that small hydropower potential globally is approximated at almost 173 GW. The figure is arrived by totaling data from a wide range of sources with potential compromise of data integrity to varying degrees. For example, research data on economically feasible potential were more readily available in developed countries than those in the least developed or developing countries. More than half of the world's known hydropower potential is located in Asia, around one third can be found in Europe and the Americas. It is possible in the future that more small hydropower potential might be identified both on the African and American continents. The installed small hydropower capacity (up to 10 MW) is estimated to be 75 GW in 2011/2012. The report provides detailed data for each country/region, including recommendations on the national, regional and international level.

  10. World Small Hydropower Development Report

    Liu, Heng; Esser, Lara (ICSGP (China)); Masera, Diego (UNIDO, Vienna (Austria))

    2013-07-01

    Currently, small hydropower plants with a capacity of 10 MW, exist in 148 countries or territories worldwide. Four other countries have been identified with resource potential. This report aims to identify the development status and resource potential of small hydro in various countries, territories and regions throughout the world. Working with experts at the ground level to compile and share existing information, experiences and challenges, one comprehensive report was created. Decision-makers, stakeholders and potential investors clearly need this comprehensive information to more effectively promote small hydropower as a renewable and rural energy source for sustainable development and to overcome the existing development barriers. The findings of this report show that small hydropower potential globally is approximated at almost 173 GW. The figure is arrived by totaling data from a wide range of sources with potential compromise of data integrity to varying degrees. For example, research data on economically feasible potential were more readily available in developed countries than those in the least developed or developing countries. More than half of the world's known hydropower potential is located in Asia, around one third can be found in Europe and the Americas. It is possible in the future that more small hydropower potential might be identified both on the African and American continents. The installed small hydropower capacity (up to 10 MW) is estimated to be 75 GW in 2011/2012. The report provides detailed data for each country/region, including recommendations on the national, regional and international level.

  11. Hydrologic investigations on construction and operation of small-scale hydropower stations in the southern Black Forest; Gewaesseroekologische Untersuchungen zum Bau und Betrieb einer Kleinwasserkraftanlage im Suedschwarzwald

    Kerle, F.; Giesecke, J. [Stuttgart Univ. (Germany). Inst. fuer Wasserbau

    2003-07-01

    How far do ecologically optimized small hydropower systems (diversion type) still alter a river ecosystem? How can negative impacts be mitigated and compensated? To get more insight into these strategic important questions, a long-term case study (10 years) at the river Elz, Black Forest, has been implemented in 1999. The pre- and post-project analysis of the new 320-kW hydropower station (Wasserkraft Volk AG) uses methods of hydromorphological and biological monitoring in combination with ecological modeling (CASIMIR). After two years of hydropower operation, preliminary results show that the ecological sustainability of the directly affected river stretch (2 km) is still in good order. It can be shown that especially small fish species and earlier fish life stages profit from the water withdrawal while the habitat of adult brown trout is reduced even so an extraordinary environmental flow is released in the river bed. Restoration of riparian cover structures and foru new fishpasses help to compensate this unavoidable loss. Even if it is yet to early to audit all negative and positive aspects, the hydropower plant under investigation is an excellent example how a fair compromise between nature conservation, renewable energy supply and economics can be achieved. (orig.)

  12. Environmental certification for small hydropower plants

    Truffer, B.; Meier, W.; Vollenweider, S.; Seiler, B.; Dettli, R.

    2001-01-01

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail

  13. Small Hydropower in the United States

    Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Kurt [Telluride Energy, Telluride, CO (United States)

    2015-09-01

    Small hydropower, defined in this report as hydropower with a generating capacity of up to 10 MW typically built using existing dams, pipelines, and canals has substantial opportunity for growth. Existing small hydropower comprises about 75% of the current US hydropower fleet in terms of number of plants. The economic feasibility of developing new small hydropower projects has substantially improved recently, making small hydropower the type of new hydropower development most likely to occur. In 2013, Congress unanimously approved changes to simplify federal permitting requirements for small hydropower, lowering costs and reducing the amount of time required to receive federal approvals. In 2014, Congress funded a new federal incentive payment program for hydropower, currently worth approximately 1.5 cents/kWh. Federal and state grant and loan programs for small hydropower are becoming available. Pending changes in federal climate policy could benefit all renewable energy sources, including small hydropower. Notwithstanding remaining barriers, development of new small hydropower is expected to accelerate in response to recent policy changes.

  14. Resonance sensitivity of hydropower and pumping stations

    Popescu, M.; Halanay, A.

    1984-09-01

    Comparative analysis of resonance diagrams for several hydropower and pumping stations with surge tanks and air chambers shows large differences in the maximum resonance pressures. A strategy is advocated which consists of hydraulic resonance computations coupled with practical surveillance measures during the operation of resonance sensitive hydraulic systems. A fundamental hydraulic scheme is considered consisting of a reservoir, a pressure tunnel, a surge tank, a penstock and a turbine combined into a hydropower station. It is suggested that for each hydraulic surge system it is necessary to carry out special resonance analyses following the normal procedure to obtain the resonance sensitivity. For hydraulic systems which are resonance sensitive, mechanical electronic equipment should be used to measure non-stationary pressures of the water in the conduit as a way of continuous surveillance during functioning. 6 references, 6 figures.

  15. World Small Hydropower Development Report 2013 - Zimbabwe

    Jonker Klunne, W

    2013-01-01

    Full Text Available in 2006. With the current economic and political situation in Zimbabwe improving, the drive by the Government to encourage independent power producers, the prospects for the development of small hydropower are promising....

  16. Hidroenergia 2010: International congress on small hydropower. Conference report

    NONE

    2010-07-01

    introduced and its target of improving water resource management was discussed. An assessment of the potential for small hydropower in Switzerland was presented. Further topics discussed included challenges faced in environmental management in Norway, the use of telemetric data for flood management in Thailand, the refurbishment of a small hydro scheme in western Switzerland, the realisation of the Alpbach small hydropower plant station in Kandersteg, Switzerland, the refurbishment of the Rivaz Mill small hydro installation in the vineyards along the Lake of Geneva, Switzerland and the development of a new turbine for very low heads and with low environmental impact. On the second day of the congress, four sessions and a workshop were held. The first set of parallel sessions covered multi-purpose hydro schemes such as the Chievo project on the Adige river in Italy, experience gained at the Boshava scheme in Macedonia and the development of a new tubular propeller. In the second, parallel set of presentations, technical innovations and engineering solutions were looked at. The use of computational fluid design (CFD) in the design of a diagonal turbine, the Ashlu Creek energy dissipation system in British Columbia, the planning of the two Asiganga tandem installations in the Himalayas and performance tests of hydraulic units in low-head small hydropower installations in Poland were discussed. In the second set of parallel sessions the following topics were discussed: The dynamic effects of small hydropower plants and experience gained with the design of small power plants. Finally, the ASEAN Hycom competence centre in Indonesia was presented. In the parallel session, the following topics were discussed: The Hydrobot remote survey of national hydropower resources, the 'Swissrivers' tool for the prediction of mini-hydropower production in Switzerland, increasing energy-efficiency by the use of artificial intelligence, the optimisation of a hydropower project using a

  17. Loss of European silver eel passing a hydropower station

    Pedersen, Michael Ingemann; Jepsen, Niels; Aarestrup, Kim

    2012-01-01

    The aim of this study was to assess escapement success of silver eels, Anguilla anguilla (L.), in a lowland river while passing a reservoir and a hydropower station. It was hypothesized that passage success would be lowest at the hydropower station and that survival and migration speed would...... that within the study period, only 23% of the tagged eels reached the tidal limit, mainly due to difficulties in passing the hydropower dam. With such high loss-rates, the escapement goals set in the management plan cannot be achieved...

  18. The 'Pontareuse' small hydropower station in Boudry, Switzerland; Avant-projet. Petite centrale hydroelectrique de Boudry 'Pontareuse'

    Hausmann, M.

    2007-05-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) describes work done in 2007 on the preliminary project for a small hydropower project to be realised in Boudry, Switzerland. The goal of this project is to take advantage of the hydro power of the river Areuse using an existing artificial weir which has been built and renovated as part of several river corrections in the past. Three variants for the construction of the proposed hydropower installation with a maximum projected power rating of 391 kilowatts are presented in detail. Options for the realisation of a fish pass to enable fish to pass the weir are also discussed. Figures are presented on the financial viability of the project which, although low, could however become interesting when the expected tariff changes in connection with the new Swiss legislation on electrical energy supply are considered.

  19. 75 FR 65012 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    2010-10-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD09-9-000] Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar October 13, 2010. The Federal Energy Regulatory Commission will host a Small/Low- Impact Hydropower Webinar on November 10, 2010, from...

  20. 76 FR 81929 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    2011-12-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD09-9-000] Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar The Federal Energy Regulatory Commission will host a Small/Low- Impact Hydropower Webinar on January 25, 2012, from 12:00 noon to 1:30 p.m...

  1. 76 FR 30937 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    2011-05-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD09-9-000] Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar The Federal Energy Regulatory Commission (FERC) will host a Small/ Low-Impact Hydropower Webinar on June 22, 2011, from 12 noon to 1 p.m...

  2. Environmental certification for small hydropower plants; Umweltzertifizierung Kleinwasserkraftwerke

    Truffer, B.; Meier, W.; Vollenweider, S. [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz (EAWAG), Kastanienbaum (Switzerland); Seiler, B.; Dettli, R. [Econcept AG, Zuerich (Switzerland)

    2001-07-01

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail.

  3. [Impacts of large hydropower station on benthic algal communities].

    Jia, Xing-Huan; Jiang, Wan-Xiang; Li, Feng-Qing; Tang, Tao; Duan, Shu-Gui; Cai, Qing-Hua

    2009-07-01

    To investigate the impacts of large hydropower station in Gufu River on benthic algae, monthly samplings were conducted from September 2004 to June 2007 at the site GF04 which was impacted by the hydropower station, with the site GL03 in Gaolan River as reference. During sampling period, no significant differences were observed in the main physicochemical variables between GF04 and GL03, but the hydrodynamics differed significantly. GL03 was basically at a status of slow flow; while GF04, owing to the discharging from the reservoir, was at a riffle status during more than 60% of the sampling period. Such a difference in hydrodynamics induced significant differences in the community similarity of benthic algae and the relative abundance of unattached diatoms, erect diatoms, and stalked diatoms between GF04 and GL03, which could better reflect the impacts of irregular draw-off by large hydropower station on river eco-system.

  4. Dynamic evolution characteristics of a fractional order hydropower station system

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  5. Optimization of Mangala Hydropower Station, Pakistan, using Optimization Techniques

    Zaman Muhammad

    2017-01-01

    Full Text Available Hydropower generation is one of the key element in the economy of a country. The present study focusses on the optimal electricity generation from the Mangla reservoir in Pakistan. A mathematical model has been developed for the Mangla hydropower station and particle swarm and genetic algorithm optimization techniques were applied at this model for optimal electricity generation. Results revealed that electricity production increases with the application of optimization techniques at the proposed mathematical model. Genetic Algorithm can produce maximum electricity than Particle swarm optimization but the time of execution of particle swarm optimization is much lesser than the Genetic algorithm. Mangla hydropower station can produce up to 59*109 kWh electricity by using the flows optimally than 47*108 kWh production from traditional methods.

  6. Assessment of small hydropower potential by software. Case study

    Moldoveanu Alexandru

    2017-01-01

    Full Text Available The rivers hydropower potential is considered one of the oldest renewable energy source used in the electricity production process. A method to investigate the possibility to construct a micro hydropower system on a small river is presented. The analysis and the hydropower assessment were done by using Vapidro-Aste software. Results point out that micro-hydro units can be implemented in remote locations or hybrid renewable energy systems, while the environmental flow is guaranteed.

  7. Preliminary study on the 'Haegler-Muehle' small hydropower station in Lausen - Revitalisation of a historic power station; Vorstudie Kleinwasserkraftwerk Haegler-Muehle, Lausen. Revitalisierung des historischen Kraftwerkes

    Wohlfender, M.; Bretscher, A.; Gutzwiller, S.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the revitalisation of a 62 kW power station on the river Ergolz in Lausen in north-western Switzerland. The waters of this river have been used here for driving turbines since 1898. The report describes the proposed reactivation of the existing turbine, built in 1948, that has now been out of service for several years. Various enhancements including measures to cope with flooding and to reduce noise are described. The particular problems of reactivating this hydropower plant, whose turbine house is a listed building, and of operation next to the adjacent old mill - also listed and now converted to apartments - are examined. Also, the possible construction of a fish pass as a prerequisite for green-power certification of the plant is discussed.

  8. Water turbine technology for small power stations

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  9. Hydropower

    Fenhann, Jørgen Villy; Kofoed, Jens Peter

    2010-01-01

    This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power.......This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power....

  10. Deutsche Bahn. Small hydropower station Bad Abbach directly feeds electrical power into the overhead wire system; Deutsche Bahn. Kleinwasserkraftwerk Bad Abbach speist elektrische Energie unmittelbar in die Oberleitung

    Hamerak, Kurt

    2009-07-01

    Even if the installed electrical power of the hydraulic power plant Bad Abbach (Federal Republic of Germany) of Deutsche Bahn AG with only 4,500 kVA is quite modest, a significant planning effort was necessary due to numerous boundary conditions. The construction of this unusual hydraulic power plant signified a very demanding and interesting technical challenge for all concerned. The already existing damming of the river Danube required very little interventions in the environment. Thus the hydraulic power plant satisfied all the requirements also in environmental regard. Due to the cooperation of a Kaplan turbine shaft with a single-phase AC generator for supplying power to the Deutsche Bahn AG and due to the direct supply of electrical energy into the overhead wire system of the railroad, the new hydropower plant Bad Abbach is unique. With Deutsche Bahn AG as a consumer of energy from hydropower plants inter alia on the river Danube a partnership between the Rhein Main Donau AG (Munich, Federal Republic of Germany) and E.ON Wasserkraft GmbH (Landshut, Federal Republic of Germany) was continued in the field of renewable energies.

  11. World Small Hydropower Development Report 2013 - Mozambique

    Jonker Klunne, W

    2013-01-01

    Full Text Available as 3 trillion cubic feet. Natural gas is exported to South Africa via a pipeline. The current electricity generation in Mozambique is dominated by hydropower which supplies 95 per cent of the electricity demand followed by 5 per cent supplied via...

  12. Hydropower harvesting from a small scale reciprocating system

    Malla, Ramesh B.; Shrestha, Binu; Bagtzoglou, Amvrossios; Drasdis, Jonathon [Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Road, Storrs, CT 06269-2037 (United States); Johnson, Paul [eGen LLC, 1084 Shennecossett Road, Groton, CT 06340 (United States)

    2011-05-15

    Conventional hydropower systems that can take advantage of low head movement of water require substantial flow rates. However, these systems cannot harvest hydro energy from small sources of water with low head and low discharge, such as streams and creeks. The reciprocating hydropower system discussed in this paper can harvest power from such low flow discharge and low head sources. This paper presents a detailed proof-of-concept study of the hydropower model, including the underlining theoretical principles. Laboratory test results demonstrating the dependence of the lift force in the reciprocating small scale hydropower model as a function of flow velocity, size and rotational speed of the cylinder and comparison of the results with a previous study are also included. Two methods of power harvesting from the output displacement obtained from the hydropower system are discussed. The first employs electromagnetic induction principles and the other is based on a linear inertial generator using a conventional second order spring mass damper system. Finally, results from a finite element analysis of the hydropower system are presented and facilitate future design of the structural aspects of the housing for the reciprocating cylinder. (author)

  13. Trempel hydropower station - renewal and extension of the existing plant

    Binder, F.M.; Burri, J.

    2003-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the refurbishment and/or extension of a 450 kW hydropower plant near Krummenau, Switzerland. Three possible variants are presented, one involving the renewal of the installation and two variants for enhancing production to provide 1 MW and 2.25 MW of power respectively. Details on the hydrology of the location are given and the equipment of the existing two-turbine power station is described. Residual water questions are discussed and the civil works envisaged are described. The report also presents data on the economics of the project and assesses the effects on the environment, landscape and ground water it would bring with it

  14. Hydropower

    Jonker Klunne, W

    2012-10-01

    Full Text Available Hydropower is currently the most common source of renewable energy, accounting for more than 3,400 terawatts, or about 16 percent of global electricity production, in 2010. As hydropower uses a fuel—water from the hydrologic cycle...

  15. State Models to Incentivize and Streamline Small Hydropower Development

    Curtis, Taylor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, Kurt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    In 2016, the hydropower fleet in the United States produced more than 6 percent (approximately 265,829 gigawatt-hours [GWh]) of the total net electricity generation. The median-size hydroelectric facility in the United States is 1.6 MW and 75 percent of total facilities have a nameplate capacity of 10 MW or less. Moreover, the U.S. Department of Energy's Hydropower Vision study identified approximately 79 GW hydroelectric potential beyond what is already developed. Much of the potential identified is at low-impact new stream-reaches, existing conduits, and non-powered dams with a median project size of 10 MW or less. To optimize the potential and value of small hydropower development, state governments are crafting policies that provide financial assistance and expedite state and federal review processes for small hydroelectric projects. This report analyzes state-led initiatives and programs that incentivize and streamline small hydroelectric development.

  16. Small Hydropower Development in Rwanda: Trends, Opportunities and Challenges

    Geoffrey, Gasore; Zimmerle, Daniel; Ntagwirumugara, Etienne

    2018-04-01

    The Rift Valley region of Sub-Saharan Africa represents a promising area for the development of small (facilities constructed after 2007 are connected to off-grid systems. The study provides an overview of the economic incentives for developing small hydropower systems in Rwanda and the potential contribution of that development to Rwanda’s electrification goals.

  17. A feasibility and implementation model of small-scale hydropower ...

    Large numbers of households and communities will not be connected to the national electricity grid for the foreseeable future due to high cost of transmission and distribution systems to remote communities and the relatively low electricity demand within rural communities. Small-scale hydropower used to play a very ...

  18. Small HydroPower (SHP) development in Nigeria: Issues ...

    Nigeria as of today generates less than 4000MW of electricity but has the capability of increasing her generation through small hydropower (SHP) considering unharnessed potentials in the country. In other to increase the percentage contribution of hydroelectricity to the total energy mix and to extend electricity to rural and ...

  19. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station

    Zhang, Long; Yang, Qiang; Liu, Yaoru

    2016-01-01

    The time-dependent behavior of the left bank abutment slope at Jinping I hydropower station has a major influence on the normal operation and long-term safety of the hydropower station. To solve this problem, a geomechanical model containing various faults and weak structural planes is established, and numerical simulation is conducted under normal water load condition using FLAC3D, incorporating creep model proposed based on thermodynamics with internal state variables theory. The creep defo...

  20. Establishment and evaluation of operation function model for cascade hydropower station

    Chang-ming Ji; Ting Zhou; Hai-tao Huang

    2010-01-01

    Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hy...

  1. Small hydropower in Southern Africa – an overview of five countries in the region

    Jonker Klunne, Wim

    2013-01-01

    This paper looks at the status of small hydropower in Lesotho, Mozambique, South Africa, Swaziland and Zimbabwe. For each country, an overview will be given of the electricity sector and the role of hydropower, the potential for small hydropower and the expected future of this technology. Small

  2. Long-term scheduling of large cascade hydropower stations in Jinsha River, China

    Wang, Chao; Zhou, Jianzhong; Lu, Peng; Yuan, Liu

    2015-01-01

    Highlights: • Proposing a Gaussian group selection strategy to overcome premature convergence. • Multi-population ant are developed to enhance the search ability. • Proposing a circulatory solution correction to handle constraints. • Numerical and real hydropower system simulation are used to verify its performance. • Compensation analysis has been done to large hydropower stations in Jinsha River. - Abstract: The Jinsha River is the third longest river in the world. It consists of four large hydropower stations with total installed capacity 42,960 MW lying on the upper stretches of the Yangtze River, which is the longest river in the word. Due to the great potential of large cascade hydropower stations on power generation, long-term scheduling of large cascade hydropower stations (LSLCHS) plays an important role in electrical power system. As more and more concentrations focused on the optimal operation of large cascade hydropower stations, the LSLCHS has been taken into a multi-dimensional, non-convex and non-linear optimization problem due to its complicated hydraulic connection relationships and varieties of complex constraints with considering its power generation, shipping and ecological characteristics. In order to solve this problem, a multi-population ant colony optimization for continuous domain (MACO R ) is proposed in this paper. A Gaussian group selection strategy is applied to overcome premature convergence and ants with different characteristics are employed to enhance search ability, and circulatory solution correction strategy is presented to handle outflow, water level and output constraints. Furthermore, the efficiency and stability of MACO R are verified by its more desirable results in comparison to other latest works in numerical simulation, and it can be a viable alternative for solving those complicated optimal problems. With the applications in hydropower operation, LSLCHS can obtain more power generation benefit than other

  3. Hydropower in Estonia

    Raesaar, Peeter

    1997-01-01

    Long life practice has proved that small hydropower is not a beaten track in the global energy field. Before the Second World War small hydropower was rather well developed in Estonia as well. Being neglected during the years of Soviet occupation, it is rather important to help it to regain its position in the Estonian energy system once again. Our hydropower potential is not big, but it has got a good established position as an energy saving measure. By now we have some good examples of restored hydropower stations on commercial basis to be optimistic about the future

  4. The trend of small hydropower development in China

    Zhou, Sheng; Zhang, Xiliang; Liu, Jinghe

    2009-01-01

    The paper makes an analysis of the status quo and existing issues of small hydropower (SHP) in China and based on the logistic growth curve model forecasts the installed capacity of SHP and cost of newly built SHP in the future. It also explores the opportunity of the clean development mechanism (CDM) in SHP projects and puts forward suggestions and recommendations on enhancing the SHP market competitiveness. (author)

  5. Small hydropower plants in the region of Mariovo (Macedonia)

    Panovski, Sotir; Anastasov, Ljupcho

    2003-01-01

    In this paper the results of an initial Pre-feasibility study within the framework of the PHARE Programme for Cross Border Cooperation between Republic of Macedonia and Republic of Greece. In this study we have looked at the existing research originating from three sources. The Strategies for Economic Development of Republic of Macedonia, the Development Plans of the Electric Power Company of Macedonia as well as the existing technical documentation and studies on a level of idea projects for specific location for small hydropower plants in Mariovo region. Furthermore, analysis and evaluation of this documentation is included. Research done in this region has produced evidence of numerous potential locations for small hydropower plants (total of 46) generating power between 58 kW and 4900 kW, discharging between 0,082 m 3 /s and 30 m 3 /s with a head between 6 m and 208 m for which we have detailed data. Furthermore, in the paper we pay attention to the enormous and so far unrealised hydro energetic power which could be utilised by constructing small hydropower plants in Republic of Macedonia. specifically in the Mariovo region. (Original)

  6. Small hydropower and rural electrification in China

    Li Ying [Ministry of Water Resources, Beijing (China). Dept. of Hydropower and Rural Electrification

    1995-07-01

    This document presents the status of the using small hydroelectric power plants (SHP) and rural electrification in China. The document approaches the general profile, role of small hydroelectric power plants in rural electrification and energy supply, background and factors back-sopping the fast development of SHP, concentrating on resources, SHP combined with water conservancy projects, policies and strategies, development of appropriate technology, timely development of SHP equipment manufacturing, economic justification of SHP development, and future prospects.

  7. Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid

    Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu

    2018-03-01

    The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.

  8. ESTIMATING HYDROPOWER POTENTIAL OF SMALL RIVERS OF REPUBLIC OF MOLDOVA USING GIS

    T. CASTRAVEŢ

    2018-06-01

    Full Text Available Estimating hydropower potential of small rivers of Republic of Moldova using GIS, The increasing demand for energy, especially from renewable and sustainable sources, spurs the development of small hydropower plants and encourages investment in new survey studies (Larentis et al., 2010. Preliminary hydropower survey studies usually carry huge uncertainties about the technical, economic and environmental feasibility of the undeveloped potential. This paper presents a methodology for hydropower potential sites assessment. The sequence of procedures to identify hydropower sites is based on remote sensing data and streamflow and rainfall data and was automated within GIS environment.

  9. Study on Excavation of Particular Part of Underground Cavern for Hydropower Station

    Yang, Yang; Zhang, Feng; Shang, Qin; Zheng, Huakang

    2018-01-01

    In the present study, regarding four particular parts of underground cavern for hydropower station, i.e., crown, high sidewall, the intersection between high sidewall and tunnel and tailrace tunnel, by summarizing the previous construction experience, we have proposed the excavation approach based on “middle first and edge later, soft first and hard later”, “layered construction by excavating the thin layer first and supporting as the layer advances”, “tunnel first and wall later, small tunnels into large ones” and “excavating tunnels supported by separation piers”. In addition, the proposed excavation approach has been analyzed and verified with finite element numerical simulation. The result has indicated that the proposed special approach is reasonable and effective to reduce the turbulence on surrounding rocks, lower the influence of unloading during excavating and enhance the local and global stability of caverns and surrounding rocks.

  10. Small Hydropower Research and Development Technology Project

    Blackmore, Mo [Near Space Systems, Inc.

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  11. Small hydropower in Southern Africa: an overview of five countries in the region

    Jonker Klunne, W

    2013-08-01

    Full Text Available dif- ferent sources, but is incomplete and inconsistent. This lack of information severely hampers the abili- ty to learn from past experiences and creates a bar- rier to the uptake of the technology (Gaul et al., 2010). 14 Journal of Energy... of lack of infor- mation by providing an overview of the status of small hydropower in five southern African countries. Defining small hydropower No internationally agreed definitions exist for the different sizes of hydropower. A generic distinction...

  12. Water, energy and agricultural landuse trends at Shiroro hydropower station and environs

    Adegun, Olubunmi; Ajayi, Olalekan; Badru, Gbolahan; Odunuga, Shakirudeen

    2018-02-01

    The study examines the interplay among water resources, hydropower generation and agricultural landuse at the Shiroro hydropower station and its environs, in north-central Nigeria. Non-parametric trend analysis, hydropower footprint estimation, reservoir performance analysis, change detection analysis, and inferential statistics were combined to study the water-energy and food security nexus. Results of Mann-Kendall test and Sen's slope estimator for the period 1960 to 2013 showed a declining rainfall trend at Jos, around River Kaduna headwaters at -2.6 mm yr-1, while rainfall at Kaduna and Minna upstream and downstream of the reservoir respectively showed no trend. Estimates of hydropower footprint varied between 130.4 and 704.1 m3 GJ-1 between 1995 and 2013. Power generation reliability and resilience of the reservoir was 31.6 and 38.5 % respectively with year 2011 being the most vulnerable and least satisfactory. In addition to poor reliability and resilience indices, other challenges militating against good performance of hydropower generation includes population growth and climate change issues as exemplified in the downward trend observed at the headwaters. Water inflow and power generation shows a weak positive relationship with correlation coefficient (r) of 0.48, indicating less than optimal power generation. Total area of land cultivated increased from 884.59 km2 in 1986 prior to the commissioning of the hydropower station to 1730.83 km2 in 2016 which signifies an increased contribution of the dam to ensuring food security. The reality of reducing upstream rainfall amount coupled with high water footprint of electricity from the reservoir, therefore requires that a long term roadmap to improve operational coordination and management have to be put in place.

  13. Transient Simulations in Hydropower Stations Based on a Novel Turbine Boundary

    Yanna Liu

    2016-01-01

    Full Text Available Most accidents in hydropower stations happened during transient processes; thus, simulation of these processes is important for station design and safety operation. This study establishes a mathematical model of the transient process in hydropower stations and presents a new method to calculate the hydraulic turbine boundary based on an error function of the rotational speed. The mathematical derivation shows that the error function along the equal-opening characteristic curve is monotonic and has opposite signs at the two sides, which means that a unique solution exists to make the error function null. Thus, iteration of the transient simulation is unique and monotonous, which avoids iterative convergence or false solution and improves the solution efficiency compared with traditional methods. Simulation of an engineering case illustrates that the results obtained by the error function are reasonable. Then, the accuracy and feasibility of the mathematical model using the proposed solution are verified by comparison with model and field tests.

  14. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.

    Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin

    2018-03-01

    Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.

  15. Improving the global efficiency in small hydropower practice

    Razurel, P.; Gorla, L.; Crouzy, B.; Perona, P.

    2015-12-01

    The global increase in energy production from renewable sources has seen river exploitation for small hydropower plants to also grow considerably in the last decade. River intakes used to divert water from the main course to the power plant are at the base of such practice. A key issue concern with finding innovative concepts to both design and manage such structures in order to improve classic operational rules. Among these, the Minimal Flow Release (MFR) concept has long been used in spite of its environmental inconsistency.In this work, we show that the economical and ecological efficiency of diverting water for energy production in small hydropower plants can be improved towards sustainability by engineering a novel class of flow-redistribution policies. We use the mathematical form of the Fermi-Dirac statistical distribution to define non-proportional dynamic flow-redistribution rules, which broadens the spectrum of dynamic flow releases based on proportional redistribution. The theoretical background as well as the economic interpretation is presented and applied to three case studies in order to systematically test the global performance of such policies. Out of numerical simulations, a Pareto frontier emerges in the economic vs environmental efficiency plot, which show that non-proportional distribution policies improve both efficiencies with respect to those obtained from some traditional MFR and proportional policies. This picture is shown also for long term climatic scenarios affecting water availability and the natural flow regime.In a time of intense and increasing exploitation close to resource saturation, preserving natural river reaches requires to abandon inappropriate static release policies in favor of non-proportional ones towards a sustainable use of the water resource.

  16. Path Transmissibility Analysis Considering Two Types of Correlations in Hydropower Stations

    Baoping Zhi

    2013-01-01

    Full Text Available A new vibration model is built by introducing the head-cover vibration transfer path based on a previous analysis of the vertical vibration model for hydropower station units and powerhouses. This research focuses on disturbance- and parameter-related transfer paths in a practical situation. In a complex situation, the application of the stochastic perturbation method is expanded using an algebra synthesis method the Hadamard product, and theoretical analyses, and numerical simulations of transfer paths in the new vibration model are carried out through the expanded perturbation method. The path transfer force, the path transmissibility, and the path disturbance ranges in the frequency domain are provided. The results indicate that the methods proposed in this study can efficiently reduce the disturbance range and can accurately analyze the transfer paths of hydraulic-source vertical vibration in hydropower stations.

  17. Research on efficiency test of a turbine in Khan Khwar hydropower station

    Zhang, H K; Liang, Z; Deng, M G; Liu, X B; Wang, H Y; Liu, D M

    2012-01-01

    The efficiency test is an important indicator to evaluate the energy conversion performance of a hydraulic turbine. For hydropower stations which do not have the direct flow measurement conditions, whether the characteristic curve of a turbine obtained through similarity theory conversion by using the comprehensive characteristic curve of the turbine can correctly reflect the operating performance of the prototype unit is a key issue in this industry. By taking the No.1 unit of Khan Khwar hydropower station as the example, the efficiency test of this turbine was studied on the site, including the measurement method of test parameters, the configuration of the computer test system, as well as the processing and analysis of test data.

  18. Research on Francis Turbine Modeling for Large Disturbance Hydropower Station Transient Process Simulation

    Guangtao Zhang

    2015-01-01

    Full Text Available In the field of hydropower station transient process simulation (HSTPS, characteristic graph-based iterative hydroturbine model (CGIHM has been widely used when large disturbance hydroturbine modeling is involved. However, by this model, iteration should be used to calculate speed and pressure, and slow convergence or no convergence problems may be encountered for some reasons like special characteristic graph profile, inappropriate iterative algorithm, or inappropriate interpolation algorithm, and so forth. Also, other conventional large disturbance hydroturbine models are of some disadvantages and difficult to be used widely in HSTPS. Therefore, to obtain an accurate simulation result, a simple method for hydroturbine modeling is proposed. By this method, both the initial operating point and the transfer coefficients of linear hydroturbine model keep changing during simulation. Hence, it can reflect the nonlinearity of the hydroturbine and be used for Francis turbine simulation under large disturbance condition. To validate the proposed method, both large disturbance and small disturbance simulations of a single hydrounit supplying a resistive, isolated load were conducted. It was shown that the simulation result is consistent with that of field test. Consequently, the proposed method is an attractive option for HSTPS involving Francis turbine modeling under large disturbance condition.

  19. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  20. Effects of small hydropower plants on mercury concentrations in fish.

    Cebalho, Elaine C; Díez, Sergi; Dos Santos Filho, Manoel; Muniz, Claumir Cesar; Lázaro, Wilkinson; Malm, Olaf; Ignácio, Aurea R A

    2017-10-01

    Although the impacts of large dams on freshwater biota are relatively well known, the effects of small hydropower plants (SHP) are not well investigated. In this work, we studied if mercury (Hg) concentrations in fish rise in two tropical SHP reservoirs, and whether similar effects take place during impoundment. Total Hg concentrations in several fish species were determined at two SHP in the Upper Guaporé River basin floodplain, Brazil. In total, 185 specimens were analysed for Hg content in dorsal muscle and none of them reported levels above the safety limit (500 μg kg -1 ) for fish consumption recommended by the World Health Organisation (WHO). The highest levels of Hg (231 and 447 μg kg -1 ) were found in carnivorous species in both reservoirs. Mercury increased as a function of standard length in most of the fish populations in the reservoirs, and higher Hg concentrations were found in fish at the reservoir compared with fish downstream. The high dissolved oxygen concentrations and high transparency of the water column (i.e. oligotrophic reservoir) together with the absence of thermal stratification may explain low Hg methylation and low MeHg levels found in fish after flooding. Overall, according to limnological characteristics of water, we may hypothesise that reservoir conditions are not favourable to high net Hg methylation.

  1. Design of a reliable and low-cost stand-alone micro hydropower station

    Kusakana, K.; Munda, J.L. [Tshwane Univ. of Technology, Pretoria (South Africa)

    2008-07-01

    A stand-alone micro-hydropower station was presented. The plant was comprised of a squirrel cage induction machine coupled to a Kaplan water turbine. Power converters were used to control the variable frequency and voltage outputs of the generator caused by variations in water flow. The hydropower plant was installed a farm in the Kwazulu-Natal region of South Africa, and was designed to provide electricity in relation to the low power demand of users in the region as well as according to the site's hydrology and topology. Load forecasts for the 8 houses using the system were conducted. A generator with a higher output than the average power needed to feed the load was selected in order to ensure load supply during peak demand. The system was designed to shore energy generated during off-peak periods in batteries. An AC-DC-AC converter was used as an interface between the generator and the load in order to ensure voltage and frequency stabilization. Simulations of plant components were conducted to demonstrate output power supply during water flow variations. Results of the modelling study indicated that power converters are needed to stabilize generator outputs. The hydropower design is a cost-effective means of supplying power to low-income households. 10 refs., 2 tabs., 7 figs.

  2. Sensitivity analysis of a Pelton hydropower station based on a novel approach of turbine torque

    Xu, Beibei; Yan, Donglin; Chen, Diyi; Gao, Xiang; Wu, Changzhi

    2017-01-01

    Highlights: • A novel approach of the turbine torque is proposed. • A unify model is capable of the dynamic characteristics of Pelton hydropower stations. • Sensitivity analysis from hydraulic parameters, mechanic parameters and electric parameters are performed. • Numerical simulations show the sensitivity ranges of the above three parameters. - Abstract: Hydraulic turbine generator units with long-running operation may cause the values of hydraulic, mechanic or electric parameters changing gradually, which brings a new challenge, namely that whether the operating stability of these units will be changed in the next thirty or forty years. This paper is an attempt to seek a relatively unified model for sensitivity analysis from three aspects: hydraulic parameters (turbine flow and turbine head), mechanic parameters (axis coordinates and axial misalignment) and electric parameters (generator speed and excitation current). First, a novel approach of the Pelton turbine torque is proposed, which can make connections between the hydraulic turbine governing system and the shafting system of the hydro-turbine generator unit. Moreover, the correctness of this approach is verified by comparing with other three models of hydropower stations. Second, this latter is analyzed to obtain the sensitivity of electric parameter (excitation current), the mechanic parameters (axial misalignment, upper guide bearing rigidity, lower guide bearing rigidity, and turbine guide bearing rigidity) on hydraulic parameters on the operating stability of the unit. In addition to this, some critical values and ranges are proposed. Finally, these results can provide some bases for the design and stable operation of Peltonhydropower stations.

  3. Analysis of the cost for the refurbishment of small hydropower plants

    Ogayar, B.; Vidal, P.G.; Hernandez, J.C.

    2009-01-01

    In view of all the concerns associated with fossil fuels and energy demand it is appropriate to investigate the large number of abandoned small hydropower plants. In order to solve the difficulty implied, by a viability study on the refurbishment of a small hydropower plant, a series of simple equations has been developed based on the economic optimization of the different elements. These equations can also be used for completely new hydropower plants. The result of this study will allow us to obtain quite approximate costs for the refurbishment of old hydropower plants, or the construction of new ones. These data on costs will act as a reference to examine real possibilities of refurbishment through different tools of financial and economic analysis. Although the equations developed have used unitary prices referring to Spain, they will be applicable to other countries just changing those prices for those of the country, required. (author)

  4. Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom

    Kelly-Richards, Sarah; Silber-Coats, Noah; Crootof, Arica; Tecklin, David; Bauer, Carl

    2017-01-01

    The transition to renewable energy technologies raises new and important governance questions. With small hydropower (SHP) expanding as part of renewable energy and climate mitigation strategies, this review assesses its impacts and identifies escalating policy issues. To provide a comprehensive literature review of small hydropower, we evaluated over 3600 articles and policy documents. This review identified four major concerns: (1) confusion in small hydropower definitions is convoluting scholarship and policy-making; (2) there is a lack of knowledge and acknowledgement of small hydropower’s social, environmental, and cumulative impacts; (3) small hydropower’s promotion as a climate mitigation strategy can negatively affect local communities, posing contradictions for climate change policy; and (4) institutional analysis is needed to facilitate renewable energy integration with existing environmental laws to ensure sustainable energy development. For readers interested in small hydropower, we clarify areas of confusion in definition and explain the corresponding impacts for distinct system designs. For a broader readership, we situate small hydropower implementation within international trends of renewable energy development – the contradictory impacts of climate change policy, emerging dynamics in energy finance, and reliance on market mechanisms. Our paper provides a timely contribution to scholarship on small hydropower and the transition to renewable energy. - Highlights: • Confusion in small hydropower definitions is convoluting small hydropower debates. • Small hydropower’s negative impacts are largely overlooked in policy discussions. • Small hydropower exemplifies paradoxical problems with climate change policy. • Policies needed to integrate renewable energy development with national environmental institutions.

  5. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station

    Long Zhang

    2016-06-01

    Full Text Available The time-dependent behavior of the left bank abutment slope at Jinping I hydropower station has a major influence on the normal operation and long-term safety of the hydropower station. To solve this problem, a geomechanical model containing various faults and weak structural planes is established, and numerical simulation is conducted under normal water load condition using FLAC3D, incorporating creep model proposed based on thermodynamics with internal state variables theory. The creep deformations of the left bank abutment slope are obtained, and the changes of principal stresses and deformations of the dam body are analyzed. The long-term stability of the left bank abutment slope is evaluated according to the integral curves of energy dissipation rate in domain and its derivative with respect to time, and the non-equilibrium evolution rules and the characteristic time can also be determined using these curves. Numerical results show that the left bank abutment slope tends to be stable in a global sense, and the stress concentration is released. It is also indicated that more attention should be paid to some weak regions within the slope in the long-term deformation process.

  6. Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China

    Xu, N. W.; Li, T. B.; Dai, F.; Zhang, R.; Tang, C. A.; Tang, L. X.

    2016-03-01

    Rockbursts were frequently encountered during the construction of deep tunnels at the Jinping II hydropower station, Southwest China. Investigations of the possibility of rockbursts during tunnel boring machine (TBM) and drilling and blasting (D&B) advancement are necessary to guide the construction of tunnels and to protect personnel and TBM equipment from strainburst-related accidents. A real-time, movable microseismic monitoring system was installed to forecast strainburst locations ahead of the tunnel faces. The spatiotemporal distribution evolution of microseismic events prior to and during strainbursts was recorded and analysed. The concentration of microseismic events prior to the occurrence of strainbursts was found to be a significant precursor to strainbursts in deep rock tunnelling. During a 2-year microseismic investigation of strainbursts in the deep tunnels at the Jinping II hydropower station, a total of 2240 strainburst location forecasts were issued, with 63 % correctly forecasting the locations of strainbursts. The successful forecasting of strainburst locations proved that microseismic monitoring is essential for the assessment and mitigation of strainburst hazards, and can be used to minimise damage to equipment and personnel. The results of the current study may be valuable for the construction management and safety assessment of similar underground rock structures under high in situ stress.

  7. Long-Term Scheduling of Large-Scale Cascade Hydropower Stations Using Improved Differential Evolution Algorithm

    Xiaohao Wen

    2018-03-01

    Full Text Available Long-term scheduling of large cascade hydropower stations (LSLCHS is a complex problem of high dimension, nonlinearity, coupling and complex constraint. In view of the above problem, we present an improved differential evolution (iLSHADE algorithm based on LSHADE, a state-of-the-art evolutionary algorithm. iLSHADE uses new mutation strategies “current to pbest/2-rand” to obtain wider search range and accelerate convergence with the preventing individual repeated failure evolution (PIRFE strategy. The handling of complicated constraints strategy of ε-constrained method is presented to handle outflow, water level and output constraints in the cascade reservoir operation. Numerical experiments of 10 benchmark functions have been done, showing that iLSHADE has stable convergence and high efficiency. Furthermore, we demonstrate the performance of the iLSHADE algorithm by comparing it with other improved differential evolution algorithms for LSLCHS in four large hydropower stations of the Jinsha River. With the applications of iLSHADE in reservoir operation, LSLCHS can obtain more power generation benefit than other alternatives in dry, normal, and wet years. The results of numerical experiments and case studies show that the iLSHADE has a distinct optimization effect and good stability, and it is a valid and reliable tool to solve LSLCHS problem.

  8. Head losses in small hydropower plant trash racks (SHP

    N. Walczak

    2016-12-01

    Full Text Available Small hydropower plants (SHP are technical facilities that are part of alternative energy sources [Paish 2002]. They are primarily characterised by low unit power (in Poland below 5 MW and are often constructed on existing barrages. Electrical current produced by these plants is used to meet local demand. Considering the exploitation of SHPs, it is important to ensure a stable flow through turbines. Aggidis et al. [2010] analysed SHP equipment costs depending on the turbine set. The turbines are protected against damage with trash racks applied for capturing water-borne detritus, such as plant debris carried by water. However, trash racks as solid equipment of SHPs cause head losses, and as a consequence reduce the efficiency of the system. These losses result not only from the spacing of bars, their shape and the technical condition of the inlet chamber, but also from plant debris, its nature, and the quantity of accumulated material that effectively limits the flow. The plant debris captured on trash racks is characterised by diversity in terms of species composition related to the vegetation period and the area where hydraulic facilities are located. Therefore, it is important to maintain trash racks clean by regular removal of the accumulated material. In this context, modernised and newly built power plants are fitted with mechanical cleaners. In older facilities, manual intervention for regular cleaning is required. The present study analyses how the bar shape and the orientation angle of trash racks as well as the accumulated plant debris affect head losses. The results were obtained from laboratory tests. The research examined the impact the inclination angle of trash racks (30°, 60° and 80° has on head loss values for three different shapes of bars (cylindrical, angled and flat rectangular and various weight portions of plant debris (0.25, 0.375 and 0.5 kg. The summarised losses were determined by measuring the difference in water

  9. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    J. Li

    2018-06-01

    Full Text Available In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  10. Present situation and future prospect of hydropower in China

    Huang, Hailun; Yan, Zheng [Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2009-08-15

    Hydropower is a clean and renewable energy source. Considering the economic, technical and environmental benefits of hydropower, most countries give priority to its development. China has the richest hydro resources on the planet with a total theoretical hydropower potential of 694 GW. Developing hydropower is of great importance to alleviate the energy crisis and environmental pollution resulting from the rapid economic growth of China in the 21st century. This paper provides a survey of hydropower development in China. Over the last five decades, China's hydropower has developed quickly. The installed capacity of hydropower is 145.26 GW presently. Some large hydropower plants have been in operation and many are still under construction, including the Three Gorges Project (TGP) and pumped-storage power stations. Small hydropower development accelerates rural electrification of this country. (author)

  11. Evaluation of small hydropower plants in Latin America and the Caribbean

    Pardo-Gomez, R.

    1991-01-01

    Latin America and the Caribbean Region has a long-standing tradition of small hydropower plant development. In the 1890s the first plants were installed in the Region, and in the first half of this century pioneering efforts were made to develop the technology. The major reason was the technical modernization of agriculture (coffee, cacao, sugar, etc.) and small-scale mining, which led to increased energy demand in isolated areas when the electrification process was just beginning in the region. However, interest in small hydropower plants (SHP) waned because of technological improvements, enhanced efficiency, lower purchase prices and installation costs of gasoline engines, and the expansion of interconnected power systems

  12. Resource and utilization of Estonian hydropower

    Raesaar, P.

    2005-01-01

    An overview of the Estonian hydropower resources and their utilization at present as well as prospective for the future are presented in this paper. A short overview of advantages of small hydropower stations and related issues is given. Some technological aspects are treated briefly. (authors)

  13. 47 CFR 95.139 - Adding a small base station or a small control station.

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Adding a small base station or a small control... base station or a small control station. (a) Except for a GMRS system licensed to a non-individual, one or more small base stations or a small control station may be added to a GMRS system at any point...

  14. Hazard Assessment of Debris Flows in the Reservoir Region of Wudongde Hydropower Station in China

    Cencen Niu

    2015-11-01

    Full Text Available The outbreak of debris flows in a reservoir region can affect the stability of hydropower stations and threaten the lives of the people living downstream of dams. Therefore, determining the hazard degree of debris flows in a reservoir region is of great importance. SPOT5 remote sensing images and digital elevation models are introduced to determine the characteristics of debris-flow catchments. The information is acquired through comprehensive manual investigation and satellite image interpretation. Ten factors that influence debris flow are extracted for the hazard assessment. The weight of these factors is determined using the analytic hierarchy process method. As a multi-criterion decision analysis method, fuzzy synthetic evaluation is applied for hazard assessment.

  15. Key technologies and risk management of deep tunnel construction at Jinping II hydropower station

    Chunsheng Zhang

    2016-08-01

    Full Text Available The four diversion tunnels at Jinping II hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500–2000 m and a maximum depth of 2525 m. The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones (EDZs, and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittle–ductile–plastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.

  16. The future of small hydropower within the European union. An environmental policy study based on the European Water framework directive and the renewable energy directive

    Pabbruwee, Kees

    2006-01-01

    Small hydropower facilities according to European Union (EU) standards have an installed capacity of less than 10 MW. The Renewable Energy Directive has set targets for installed capacity and electricity produced by small hydropower facilities to be reach

  17. Assessment of hydropower potential in small karst catchments: the case of the Rocche Plateau, Central Italy

    Leopardi Maurizio

    2017-01-01

    Full Text Available Estimation of flow duration characteristics is key in assessing hydropower potential in natural catchments. However, such analysis is not usually straightforward, especially in ungauged sites and/or in complex catchment areas. In this study we evaluate the feasibility of revamping of a small hydroelectric power plant, located in a karst plateau in central Italy, by assessing the hydropower potential of its feeding surface and subsurface stream network. A thorough analysis of runoff processes occurring in the examined area is carried out in order to corroborate regionalization studies based on measured specific flows in neighboring homogeneous basins. The results show an appreciable availability of water resources to be exploited for hydropower purposes.

  18. Private investment for building a small hydropower plant at Zetea dam base

    Popa, Florica; Paraschivescu, Adina; Vladescu, Aurelia; Popa, Bogdan

    2007-01-01

    Zetea lake grading project comprises an earthen dam, made out of local materials, having as main purposes water supply, flood control and protection against flooding. The paper analyzes the possibility of building a small hydropower plant at the base of the dam, using private investment resources, in order to put to good use the water flow evacuated from the storage lake. (authors)

  19. Life cycle greenhouse gas emissions estimation for small hydropower schemes in India

    Varun; Prakash, Ravi; Bhat, I.K.

    2012-01-01

    This paper presents for the first time correlations for greenhouse gas (GHG) emissions from small hydropower schemes in India. In this paper an attempt has been made to develop life cycle GHG emissions correlations for three different types of small hydropower schemes (run-of river, canal based and dam-toe) in India. It has been found out that GHG emissions depend on the head and capacity of the small hydropower project. The results obtained from correlations show good agreement with the estimated results using EIO-LCA (Economic Input–Output-Life Cycle Assessment) technique. These correlations may be useful for the development of new small hydropower (SHP) schemes, as they can be used to predict life cycle GHG emissions based on capacity, head and type of SHP schemes. -- Highlights: ► A study has been carried out for the Life Cycle Greenhouse gas emissions estimation for SHP schemes in India. ► Around 145 SHP schemes have been studied and their GHG emissions have been estimated. ► Based upon these results correlations have been developed for three different types of SHP schemes.

  20. 78 FR 71601 - KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit Application Accepted...

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14521-001, 14561-000] KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On May 13, 2013, KC Scoby...

  1. Perspectives for hydropower stations in Switzerland: long-term competitiveness and possibilities for improvement

    Filippini, M.; Banfi, S.; Luchsinger, C.; Wild, J.; Balmer, M.; Grand, D.; Henkels, L.; Semadeni, M.; Gnansounou, E.

    2001-01-01

    This first general study - which has the character of a preliminary study - examines the questions if the liberalisation of the electricity market will have a negative effect on the competitiveness of hydropower in the long-term and what measures can be taken against such effects. Long-term competitiveness is defined as the ability of a business in this sector to make investments in renewal in the long-term, i.e. after its concessions have expired. The three main aims of the study are: 1. Assessment of the long-term competitiveness of the sector and identification of the factors which could either have a negative effect on it or improve it, 2. Analysis of cost structures and presentation of measures through which the long-term competitiveness of the sector can be reinforced, 3. Presentation of possible political measures to be taken in this business area in order to improve the long-term competitiveness of hydropower stations. The study identifies the most important factors that determine future competitiveness as being the market prices for electricity and capital costs (depreciation and interest on own and borrowed capital). Further, water fees, taxes and regulations concerning residual water flow can be of great importance for investment decisions, in particular for those enterprises that operate close to their profitability limits. The results of the analysis indicate that, in the future, a considerable number of enterprises must be reckoned with that will refrain from renewing their plant. Such outcomes depend, of course, on developments in electricity market prices, specific investment costs, rates of interest and other economic, political, and legal conditions. Making a prognosis about the development of such parameters is linked with a high degree of uncertainty. By means of sensitivity calculations and the definition of various scenarios, attempts are made to take these uncertainties into account . Finally, the study makes reference to the fact that

  2. World Small Hydropower Development Report 2013 - South Africa

    Jonker Klunne, W

    2013-01-01

    Full Text Available of the world's biggest dry-cooled power stations - Matimba Power Station (coal-fired; installed capacity 3,990 MW). South Africa, which for many years operated with overcapacity, has begun to experience a power crisis induced by rapid growth in electricity...

  3. Drinking-water hydropower station in Sachseln, Switzerland; Trinkwasserkraftwerk Mettental Sachseln. Programm Kleinwasserkraftwerke

    Cappelletti, R.; Siegrist, W.; Schwab, B.

    2007-06-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) describes a small hydropower project realised in the Mettental valley in Sachseln, Switzerland. The system installed is described. This provides the necessary pressure reduction in the drinking-water supply system between the springs in the mountains and the reservoir in the valley whilst generating electrical power at the same time. A Pelton turbine that meets all drinking-water quality requirements is used to generate 300 kW of electrical power using the pressure obtained from the height-difference of around 880 metres. The first two years of operation have proved that the system provides over 30% more power than expected. The report includes technical details on the installation and reports on initial experience gained with the system.

  4. Sustainable Effects of Small Hydropower Substituting Firewood Program in Majiang County, Guizhou Province, China

    Xiaoxia Zhang

    2017-06-01

    Full Text Available Small hydropower substituting fuel (SHSF is an ecological environment protection program to improve regional ecosystems and alleviate poverty. However, the sustainability of SHSF programs remains controversial due to lingering doubts about its potential for socioeconomic development and its environmental impacts. The sustainability of SHSF was examined based on field investigations and household questionnaire surveys. The results were as follows: (1 Biomass of SHSF protected masson pine (Pinus massoniana and weeping cypress (Platycladus orientalis plantations were 11.06 t·ha−1 and 7.15 t·ha−1 higher than unprotected plantations, respectively. Furthermore, the differences in ecosystem biomass were mainly derived from arbor biomass. While the energy conversion efficiency based on field investigations was merely 1.28 kg (kWh−1, which was only 64% of the empirical value and 54% of the guideline for accounting for the ecological benefit of small hydropower substituting fuel. (2 Households’ total income in SHSF villages was higher than in households with access to a hydropower plant but no substituting fuel or households with no hydropower plant. (3 Most of the households had a positive attitude towards SHSF because of its cheaper electricity and associated ecological environmental improvements. Overall, our results suggest optimistic and sustainable prospects for the SHSF program; however, continued education and policy communications are needed to sustain program success.

  5. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  6. Unloading performances and stabilizing practices for columnar jointed basalt: A case study of Baihetan hydropower station

    Qixiang Fan

    2017-12-01

    Full Text Available The columnar jointed rock mass (CJR, composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes. Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.

  7. Developing a Model to Assess the Potential Impact of TUM Hydropower Turbines on Small River Ecology

    Weiwei Yao

    2018-05-01

    Full Text Available Small hydropower is a renewable energy technology that is used for electricity generation worldwide, but still has potential for further development. However, during the installation of small hydropower, the ecological impacts of the power plants need to be thoroughly investigated. In addressing the challenges of energy production and minimizing the environmental impacts of small hydropower installation and operation, this study has applied an ecohydraulic model to investigate river hydrodynamics, hydromorphology, habitat, and the population impacts of small hydropower, and presented the Mum River as a case study. Two scenarios were implemented in this research to simulate the hydrodynamic, sedimentation, habitat, and population status in order to assess the potential effects caused by the TUM plant. At the Mum River, two scenarios were proposed: the TUM plant was not considered in scenario S1, but was considered in scenario S2. The model results for scenario S2 indicated that the habitat was suitable for fish species living in the Mum River, with fish population numbers between 4.6 × 103 and 6.6 × 103. The S2 results indicated that the impacts of the TUM plant were negligible when compared with S1. Although the impact of the TUM plant on the Mum River is relatively large when the discharge is high (19 m3/s, calculations based on stable flow shows that the TUM plant could function well on the river ecosystem when the discharge is low or at normal rates. Therefore, this study shows that the TUM plant would be a good option to meet the needs of energy generation whilst having a minimal impact on river habitats and changes in fish species population in similar small rivers and streams.

  8. Estimating Ecological Value of Small Hydropower Using Contingent Valuation Method: An Application to Tongjiqiao Reservoir in Zhejiang " Province, China

    Han Hongyun; Zhao Liange; Zhang Tong

    2012-01-01

    The small hydropower (SHP) will be less competitive in the absence of environmental value. The lack of information has become an important obstacle challenging decision-makers in resource-use choices. This paper is an application of contingent valuation method (CVM) in rural China to estimate the willing- ness-to-pay (WTP) for environmental services provided by exiting hydropower station. Using the single-bounded and dichotomous- choice CVM, the ecological value of Tongjiqiao Reservoir (TJQR) is estimated, and the annual mean WTPs of single-bounded and double-bounded CVM estimation are 141.05 and 219.52 Yuan (RMB)/a, respectively. The 95% confidence interval of annual WTP on an average is 118.47, 166.79 Yuan (RMB)/a and 204.41, 236.22 (Yuan RMB)/a, respectively. In contrast, double-bounded model could obtain much more information of WTP of the inves- tigated, thus reducing the confidence interval of estimation, and enhancing the estimation accuracy of the WTP. According to the estimated mean WTP of the double-bounded CVM, the total eco- system service value of the TJQR is 15.54 million Yuan (RMB). Compared with the conventional electricity of fossil power and large hydropower, the SHP will be less competitive in the absence of non-market value, ignoring that the environmental impacts of existing SHP will undermine the healthy development of clean energy sector.

  9. World Small Hydropower Development Report 2013 - Southern Africa

    Jonker Klunne, W

    2013-01-01

    Full Text Available of electricity. Lesotho has a very small electricity sector, thus recognizes the benefits of renewable energies. By 2020 the target for Lesotho is that 35 per cent of its electricity for rural electrification should come from renewables....

  10. Experience in small hydropower indigenous manufacture of mini hydraulic turbines

    Luo Gao Rong [Organization of the United Nations, Beijing (China). International Centre of Small Hydropowers

    1995-07-01

    This document reports the China experience with fabrication of mini hydraulic turbines for small hydroelectric power plants. The document presents the necessity of indigenous manufacture for MHP equipment, the standardized and serialized production, the planning of the series of turbines, the manufacturing of turbine runners, and as a case study the basic conditions for manufacturing MHP turbines.

  11. An approach to the investment analysis of small and medium hydro-power plants

    Forouzbakhsh, F.; Hosseini, S.M.H.; Vakilian, M.

    2007-01-01

    Hydro-power plants, as a part of infrastructure projects, play an important role in the economic-social development of countries. Since a large amount of investment is needed for construction of these power plants, which appeared to be an obstacle in these developments, however it is possible to finance these infrastructure plants by assigning these affairs to private sectors by using build operate transfer (BOT) method, which is quite well-known all around the world. This paper reviews the structure of BOT contracts and through an economic evaluation based on different percentage of investments of private sector in providing the expenses of small and medium hydro-power plants (S and M-HPP) (e.g. MHPP in 'Bookan, Iran' and SHPP in 'Nari, Iran'), demonstrates that by increasing the percentage the share of the private sector in the investment, the economic indices B/C and NPV improve substantially

  12. Prediction of small hydropower plant power production in Himreen Lake dam (HLD using artificial neural network

    Ali Thaeer Hammid

    2018-03-01

    Full Text Available In developing countries, the power production is properly less than the request of power or load, and sustaining a system stability of power production is a trouble quietly. Sometimes, there is a necessary development to the correct quantity of load demand to retain a system of power production steadily. Thus, Small Hydropower Plant (SHP includes a Kaplan turbine was verified to explore its applicability. This paper concentrates on applying on Artificial Neural Networks (ANNs by approaching of Feed-Forward, Back-Propagation to make performance predictions of the hydropower plant at the Himreen lake dam-Diyala in terms of net turbine head, flow rate of water and power production that data gathered during a research over a 10 year period. The model studies the uncertainties of inputs and output operation and there's a designing to network structure and then trained by means of the entire of 3570 experimental and observed data. Furthermore, ANN offers an analyzing and diagnosing instrument effectively to model performance of the nonlinear plant. The study suggests that the ANN may predict the performance of the plant with a correlation coefficient (R between the variables of predicted and observed output that would be higher than 0.96. Keywords: Himreen Lake Dam, Small Hydropower plants, Artificial Neural Networks, Feed forward-back propagation model, Generation system's prediction

  13. The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations

    Kaldellis, J.K.

    2007-01-01

    Hydropower is the most widely used renewable energy source worldwide, contributing almost with 18.5% to the fulfillment of the planet electricity generation. However, most locations in Europe appropriate for the installation of large hydro power stations have already been exploited. Furthermore, there is a significant local communities' opposition towards new large power stations; hence, small hydro power stations remain one of the most attractive opportunities for further utilization of the available hydro potential. Greece and more precisely the country's mainland possesses a significant hydro-power potential which is up to now only partially exploited. In parallel, a large number of private investors have officially expressed their interest in creating small hydro power stations throughout the country, encouraged by the significant Greek State subsidy opportunities for renewable energy applications. However, up to now a relatively small number of projects have been realized, mainly due to decision-making problems, like the administrative bureaucracy, the absence of a rational national water resources management plan and the over-sizing of the proposed installations. Certainly, if the above problems are suitably treated, small hydro-power plants can be proved considerably profitable investments, contributing also remarkably to the national electricity balance and replacing heavy polluting lignite and imported oil. In the context of the above interesting issues, the present study reviews in detail the existing situation of small hydropower plants in Greece and investigates their future prospects as far as the energy, economic and environmental contribution are concerned

  14. Ecohydrological Design of small hydropower plants: assessment of environmental flows

    Diez H, Juan M; Olmeda S, Sergio

    2008-01-01

    The small hydroelectric energy has contributed substantially to the progress of the life standards in the world by means of a technology with a relatively low environmental impact. The Small Hydroelectric Plant (SHP) is the convenient type of hydro energetic facility for Colombia, reason why it predictably will play a capital role in the exploitation of its excellent potential during this decade. The regulatory guidelines for the SHP re licensing enforce hydrological design criteria that incorporate the ecological requirements of discharge in the fluvial reaches affected by flow derivations. The Instream Flow (IF) should be considered as an ecological restriction to the hydroelectric use, which can be satisfactorily set with reliable approaches. This work shows the basic typology of IF assessment methods, describing the reputed Instream Flow Incremental Methodology (IFIM) with a case study of SHP re licensing. It also demonstrates the possibility of harmonize the hydroelectric operation with the maintenance of an acceptable ecological condition, preserving some IF that can be assessed with the IFIM analytic frame. The new eco hydrological methods for IF setting facilitate SHP that are profitable and defensible in environmental terms.

  15. Joint development of China's medium/small hydropower projects with international investment

    Xiaozhang, Z.

    1991-01-01

    A general profile of development of small and medium hydropower in China, is described at first. The socio-economic impacts as well as direct financial benefit will then be analyzed. A prospective view of medium/small hydro development for year 2,000 leads to a description of needs for foreign investment in this field. Following the adoption of open policy, a series of regulations for joint venture with foreign investment have been stipulated by the government, and are briefly illustrated. Future prospect is predicted on the basis of past experiences and planning for the next decade. 3 tabs

  16. Small hydropower spot prediction using SWAT and a diversion algorithm, case study: Upper Citarum Basin

    Kardhana, Hadi; Arya, Doni Khaira; Hadihardaja, Iwan K.; Widyaningtyas, Riawan, Edi; Lubis, Atika

    2017-11-01

    Small-Scale Hydropower (SHP) had been important electric energy power source in Indonesia. Indonesia is vast countries, consists of more than 17.000 islands. It has large fresh water resource about 3 m of rainfall and 2 m of runoff. Much of its topography is mountainous, remote but abundant with potential energy. Millions of people do not have sufficient access to electricity, some live in the remote places. Recently, SHP development was encouraged for energy supply of the places. Development of global hydrology data provides opportunity to predict distribution of hydropower potential. In this paper, we demonstrate run-of-river type SHP spot prediction tool using SWAT and a river diversion algorithm. The use of Soil and Water Assessment Tool (SWAT) with input of CFSR (Climate Forecast System Re-analysis) of 10 years period had been implemented to predict spatially distributed flow cumulative distribution function (CDF). A simple algorithm to maximize potential head of a location by a river diversion expressing head race and penstock had been applied. Firm flow and power of the SHP were estimated from the CDF and the algorithm. The tool applied to Upper Citarum River Basin and three out of four existing hydropower locations had been well predicted. The result implies that this tool is able to support acceleration of SHP development at earlier phase.

  17. Managing Sustainable Development Conflicts: The Impact of Stakeholders in Small-Scale Hydropower Schemes

    Watkin, Laura Jane; Kemp, Paul S.; Williams, Ian D.; Harwood, Ian A.

    2012-06-01

    The growing importance of the environment and its management has simultaneously emphasized the benefits of hydroelectric power and its environmental costs. In a changing policy climate, giving importance to renewable energy development and environmental protection, conflict potential between stakeholders is considerable. Navigation of conflict determines the scheme constructed, making sustainable hydropower a function of human choice. To meet the needs of practitioners, greater understanding of stakeholder conflict is needed. This paper presents an approach to illustrate the challenges that face small-scale hydropower development as perceived by the stakeholders involved, and how they influence decision-making. Using Gordleton Mill, Hampshire (UK), as an illustrative case, soft systems methodology, a systems modeling approach, was adopted. Through individual interviews, a range of problems were identified and conceptually modeled. Stakeholder bias towards favoring economic appraisal over intangible social and environmental aspects was identified; costs appeared more influential than profit. Conceptual evaluation of the requirements to meet a stakeholder-approved solution suggested a complex linear systems approach, considerably different from the real-life situation. The stakeholders introduced bias to problem definition by transferring self-perceived issues onto the project owner. Application of soft systems methodology caused a shift in project goals away from further investigation towards consideration of project suitability. The challenge of sustainable hydropower is global, with a need to balance environmental, economic, and social concerns. It is clear that in this type of conflict, an individual can significantly influence outcomes; highlighting the need for more structured approaches to deal with stakeholder conflicts in sustainable hydropower development.

  18. Managing sustainable development conflicts: the impact of stakeholders in small-scale hydropower schemes.

    Watkin, Laura Jane; Kemp, Paul S; Williams, Ian D; Harwood, Ian A

    2012-06-01

    The growing importance of the environment and its management has simultaneously emphasized the benefits of hydroelectric power and its environmental costs. In a changing policy climate, giving importance to renewable energy development and environmental protection, conflict potential between stakeholders is considerable. Navigation of conflict determines the scheme constructed, making sustainable hydropower a function of human choice. To meet the needs of practitioners, greater understanding of stakeholder conflict is needed. This paper presents an approach to illustrate the challenges that face small-scale hydropower development as perceived by the stakeholders involved, and how they influence decision-making. Using Gordleton Mill, Hampshire (UK), as an illustrative case, soft systems methodology, a systems modeling approach, was adopted. Through individual interviews, a range of problems were identified and conceptually modeled. Stakeholder bias towards favoring economic appraisal over intangible social and environmental aspects was identified; costs appeared more influential than profit. Conceptual evaluation of the requirements to meet a stakeholder-approved solution suggested a complex linear systems approach, considerably different from the real-life situation. The stakeholders introduced bias to problem definition by transferring self-perceived issues onto the project owner. Application of soft systems methodology caused a shift in project goals away from further investigation towards consideration of project suitability. The challenge of sustainable hydropower is global, with a need to balance environmental, economic, and social concerns. It is clear that in this type of conflict, an individual can significantly influence outcomes; highlighting the need for more structured approaches to deal with stakeholder conflicts in sustainable hydropower development.

  19. Assessment of small versus large hydro-power developments - a Norwegian case study

    Bakken, Tor Haakon; Harby, Atle

    2010-07-01

    Full text: The era of new, large hydro-power development projects seems to be over in Norway. Partly as a response to this, a large number of applications for the development of smallscale hydro power projects up to 10 MW overflow the Water Resources and Energy Directorate, resulting in an extensive development of small tributaries and water courses in Norway. This study has developed a framework for the assessment and comparison of several small versus many large hydro-power projects based on a multi-criteria analysis (MCA) approach, and further tested this approach on planned or developed projects in the Helgeland region, Norway. Multi-criteria analysis is a decision-support tool aimed at providing a systematic approach for the comparison of various alternatives with often non-commensurable and conflicting attributes. At the same time, the technique enables complex problems and various alternatives to be assessed in a transparent and simple way. The MCA-software was in our case equipped with 2 overall criteria (objectives) with a number of sub criteria; Production with sub-criteria like volume of energy production, installed effect, storage capacity and economical profit; Environmental impacts with sub-criteria like fishing interests, biodiversity, protection of unexploited nature The data used in the case study is based on the planned development of Vefsna (large project) with the energy/effect production estimated and the environmental impacts identified as part of the feasibility studies (the project never reached the authorities' licensing system with a formal EIA). The small-scale hydro-power projects used for comparison are based on realized projects in the Helgeland region and a number of proposed projects, up scaled to the size of the proposed Vefsna-development. The results from the study indicate that a large number of small-scale hydro-power projects need to be implemented in order to balance the volume of produced electricity/effect from one

  20. Hydropower development in India

    Saxena, Praveen [Govt. of India, New Delhi (India). Ministry of New and Renewable Energy], E-mail: psaxena_98@yahoo.com; Kumar, Arun [Indian Institute of Technology Roorkee, Uttarakhand (India). Alternate Hydro Energy Centre], E-mail: aheciitr@gmail.com

    2011-04-15

    India is posed for large deployment of hydropower in present conducive policy and investment environment. Growing energy demand and concern for carbon emission is making hydropower development more favorable. The Government of India is ensuring a good performance of the new SHP stations by linking the incentives to the SHP developers with the performance of the station. (author)

  1. Small hydropower for rural electrification in South Africa - using experiences from other African countries

    Jonker Klunne, WE

    2009-10-01

    Full Text Available Local hydropower sources can play an important role in the electrification of rural areas in South Africa remote from the national electricity grid. To ensure the sustainability of hydropower developments it is essential that lessons learned...

  2. Short-term optimal operation of Three-gorge and Gezhouba cascade hydropower stations in non-flood season with operation rules from data mining

    Ma Chao; Lian Jijian; Wang Junna

    2013-01-01

    Highlights: ► Short-term optimal operation of Three-gorge and Gezhouba hydropower stations was studied. ► Key state variable and exact constraints were proposed to improve numerical model. ► Operation rules proposed were applied in population initiation step for faster optimization. ► Culture algorithm with difference evolution was selected as optimization method. ► Model and method proposed were verified by case study with feasible operation solutions. - Abstract: Information hidden in the characteristics and relationship data of a cascade hydropower stations can be extracted by data-mining approaches to be operation rules and optimization support information. In this paper, with Three-gorge and Gezhouba cascade hydropower stations as an example, two operation rules are proposed due to different operation efficiency of water turbines and tight water volume and hydraulic relationship between two hydropower stations. The rules are applied to improve optimization model with more exact decision and state variables and constraints. They are also used in the population initiation step to develop better individuals with culture algorithm with differential evolution as an optimization method. In the case study, total feasible population and the best solution based on an initial population with an operation rule can be obtained with a shorter computation time than that of a pure random initiated population. Amount of electricity generation in a dispatch period with an operation rule also increases with an average increase rate of 0.025%. For a fixed water discharge process of Three-gorge hydropower station, there is a better rule to decide an operation plan of Gezhouba hydropower station in which total hydraulic head for electricity generation is optimized and distributed with inner-plant economic operation considered.

  3. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    Guo, W C; Yang, J D; Chen, J P; Teng, Y

    2014-01-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode

  4. The influence of mechanical gear on the efficiency of small hydropower

    Ferenc, Zbigniew; Sambor, Aleksandra

    2017-11-01

    Pursuant to the "Strategy of development of renewable energy", an increase in the share of renewable energy sources in the national fuel-energy balance up to 14% by 2020 is planned in the structure of usage of primary energy carriers. The change in the participation of the clean energy in the energy balance may be done not only by the erection of new and renovation of the already existing plants, but also through an improvement of their energetic efficiency. The study presents the influence of the mechanical gear used on the quantity of energy produced by a small hydropower on the basis of SHP Rzepcze in Opole province in 2005-2010. The primary kinematic system was composed of a Francis turbine of a vertical axis, a toothed intersecting axis gear of 1:1 ratio, a belt gear of a double ratio. After a modernization the system was simplified by means of reducing the intersecting axis gear and the double ratio of the belt gear. The new kinematic system utilized a single-ratio belt gear of a vertical axis. After the kinematic system was rearranged, a significant improvement of efficiency of the small hydropower was concluded, which translates into an increase of the amount of energy produced.

  5. Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations

    Petras Punys

    2015-07-01

    Full Text Available This article discusses the environmental issues facing small hydropower plants (SHPs operating in temperate lowland rivers of Lithuania. The research subjects are two medium head reservoir type hydro schemes considered within a context of the global fleet of SHPs in the country. This research considers general abiotic indicators (flow, level, water retention time in the reservoirs of the stream that may affect the aquatic systems. The main idea was to test whether the hydrologic regime has been altered by small hydropower dams. The analysis of changes in abiotic indicators is a complex process, including both pre- and post-reservoir construction and post commissioning of the SHPs under operation. Downstream hydrograph (flow and stage ramping is also an issue for operating SHPs that can result in temporary rapid changes in flow and consequently negatively impact aquatic resources. This ramping has been quantitatively evaluated. To avoid the risk of excessive flow ramping, the types of turbines available were evaluated and the most suitable types for the natural river flow regime were identified. The results of this study are to allow for new hydro schemes or upgrades to use water resources in a more sustainable way.

  6. Small hydroelectric power stations and their reality

    Kamenski, Miroslav

    1999-01-01

    Construction of a small hydroelectric power station provides additional amounts of electric energy, engages a private capital, revives investment activities and promotes the use of renewable energy sources. Transmission losses are reduced, a voltage of higher quality is achieved and idle power is compensated by the generation of electricity in the small hydroelectric power stations and at the place of consumption. Legislation and technical regulations, however, require a multidisciplinary approach, defining of complex spaces and environmental protection. Unfortunately, complete documents should be prepared for small,hydroelectric plants just as for big ones what is a long procedure and many of those papers are unnecessary or even superfluous. (Author)

  7. An approach to the investment analysis of small and medium hydro-power plants

    Forouzbakhsh, F. [University of Tehran (Iran). Faculty of Engineering; Hosseini, S.M.H. [Islamic Azad University, Tehran (Iran). Faculty of Engineering; Vakilian, M. [Sharif Institute of Technology, Tehran (Iran). Faculty of Electrical Engineering

    2007-02-15

    Hydro-power plants, as a part of infrastructure projects, play an important role in the economic-social development of countries. Since a large amount of investment is needed for construction of these power plants, which appeared to be an obstacle in these developments, however it is possible to finance these infrastructure plants by assigning these affairs to private sectors by using build operate transfer (BOT) method, which is quite well-known all around the world. This paper reviews the structure of BOT contracts and through an economic evaluation based on different percentage of investments of private sector in providing the expenses of small and medium hydro-power plants (S and M-HPP) (e.g. MHPP in ''Bookan, Iran'' and SHPP in ''Nari, Iran''), demonstrates that by increasing the percentage the share of the private sector in the investment, the economic indices B/C and NPV improve substantially. (author)

  8. Estimation of the cost of electro-mechanical equipment for small hydropower plants – review and comparison of methods

    Lipiński Seweryn

    2017-01-01

    Full Text Available The estimate of the cost of electro-mechanical equipment for new small hydropower plants most often amounts to about 30-40% of the total budget. In case of modernization of existing installations, this estimation represents the main cost. This matter constitutes a research problem for at least few decades. Many models have been developed for that purpose. The aim of our work was to collect and analyse formulas that allow estimation of the cost of investment in electro-mechanical equipment for small hydropower plants. Over a dozen functions were analysed. To achieve the aim of our work, these functions were converted into the form allowing their comparison. Then the costs were simulated with respect to plants’ powers and net heads; such approach is novel and allows deeper discussion of the problem, as well as drawing broader conclusions. The following conclusions can be drawn: significant differences in results obtained by using various formulas were observed; there is a need for a wide study based on national investments in small hydropower plants that would allow to develop equations based on local data; the obtained formulas would let to determinate the costs of modernization or a new construction of small hydropower plant more precisely; special attention should be payed to formulas considering turbine type.

  9. Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects

    Linnerud, Kristin; Andersson, Ane Marte; Fleten, Stein-Erik

    2014-01-01

    Policy uncertainty can be a powerful deterrent to immediate investments. Based on panel data of 214 licenses to construct small run-of-the-river hydropower plants, we examine whether the prospect of a common Swedish–Norwegian market for green certificates (i.e., a renewable portfolio standard scheme) affected the timing of investments. Our results show that traditional utilities and other professional investors in the energy market acted in accordance with a real options investment rule, and the prospect of possible future subsidies delayed their investment decision. On the other hand, our results do not show that farmers and other non-professional investors incorporated timing considerations in their investment decisions. Rather, our results indicate that these investors behaved as if their investment opportunity is now-or-never, investing if the project is profitable according to a net present value investment rule, ignoring the opportunity to create additional value by waiting. The observed difference in behavior between professional and non-professional investors is interesting given the distributed nature of many renewable energy technologies, and can help planners and policymakers better understand the forces shaping the future market for electricity. - Highlights: • We examine whether the prospect of introducing subsidies delayed investments in hydropower. • We find that professional and non-professional investors behaved differently. • Professional investors explored the opportunity to create additional value by waiting. • Farmers behaved as if their investment opportunity was now-or-never. • These observations are interesting given the distributed nature of renewable energy technologies

  10. Trans, Switzerland: new drinking-water hydropower station; Gemeinde Trans (GR) - Neubau Trinkwasserkraftwerk - Bauprojekt

    Gadient, N.; Scherrer, I.

    2008-10-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the construction project for the realisation of a hydropower installation that uses the water of the drinking-water mains in Trans, Grisons, Switzerland, to generate electricity. Figures are presented on the head of water available, the proposed electrical power to be installed as well as the annual production and the financing of the project. The latter has been assured by the Swiss scheme for the cost-covering remuneration of electrical energy generated using renewable resources. The construction project agreed on is described and discussed. The project is to be realised together with the refurbishment of the existing drinking-water supply system. The installations necessary and the proposed electromechanical equipment are described and discussed. Also, the supply of increased amounts of water for fire-fighting purposes are noted.

  11. Small Hydropower Plants in Pomerania: The Example of Evolution of Modern Industrial Brick Architecture

    Macikowski, Bartosz

    2017-10-01

    Modernism is usually recognized and associated with the aesthetics of the International Style, represented by white-plastered, horizontally articulated architecture with skimpy decoration, where function was the main imperative of the architects’ ambitions. In Northern Europe though, Modernism also revealed its brick face, representing different manners, styles, and appearances. The brick face of Modernism reflected, in fact, the complexity of the modern change, breaking ties with the historic styles of the 19th century and being still present in the beginning of the 20th century. Regardless of the cosmopolitan character of the International Style and its unified aesthetics, architects tried to find and keep shades of individuality. This was especially visible in the references to either regional or even local traditions. This diversity of modernistic architecture is intensified by its different functions. The language of industrial architecture derives its forms directly from its nature of pure functional idiom, devoted to economic and functional optimization. The industrial form usually seems subordinate to the technical nature of objects. But regardless of that, in the 19th century and the first half of the 20th century we can observe an interesting evolution of styles and tendencies in industrial architecture, even in such a narrow and specific field like the architecture of small hydropower plants. The purpose of the research was to recognize the evolution of the architectural form of hydropower plants as a developing branch of industry in the first half of the 20th century. In Pomerania, during this period, a dynamic growth of investments took place, which concerned the use of the Pomeranian rivers’ potential to produce electric energy. At the end of the 19th century, electricity had a strong meaning as a symbol of a radical civilizational change, which influenced also the aesthetic aspects of architecture. This could suggest that the architecture of

  12. Big concerns with small projects: Evaluating the socio-ecological impacts of small hydropower projects in India.

    Jumani, Suman; Rao, Shishir; Machado, Siddarth; Prakash, Anup

    2017-05-01

    Although Small Hydropower Projects (SHPs) are encouraged as sources of clean and green energy, there is a paucity of research examining their socio-ecological impacts. We assessed the perceived socio-ecological impacts of 4 SHPs within the Western Ghats in India by conducting semi-structured interviews with local respondents. Primary interview data were sequentially validated with secondary data, and respondent perceptions were subsequently compared against the expected baseline of assured impacts. We evaluated the level of awareness about SHPs, their perceived socio-economic impacts, influence on resource access and impacts on human-elephant interactions. The general level of awareness about SHPs was low, and assurances of local electricity and employment generation remained largely unfulfilled. Additionally most respondents faced numerous unanticipated adverse impacts. We found a strong relationship between SHP construction and increasing levels of human-elephant conflict. Based on the disparity between assured and actual social impacts, we suggest that policies regarding SHPs be suitably revised.

  13. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Preliminary study on the reactivation of the WERAP small hydro power station in Bubikon

    Bretscher, A.; Gutzwiller, S.

    2003-01-01

    This study on the revitalisation of a small hydro power station belonging to old spinning mill in Bubikon, Switzerland, proposes ideas for the reactivation of an old hydropower installation that once helped power a spinning mill. Details are given on the history of the mill and the hydrological conditions to be expected at the site. Three variants are proposed for the refurbishment, including the revision of the power station's existing 44 kW Francis turbine dating from 1908, the addition of further, similar Francis turbine or its replacement with a new 61 kW Francis turbine. The costs and amortisation of the refurbishment variants are examined, the revenues that can be expected from its operation and other financial factors are discussed. Further, environmental and legal aspects of the project are examined and suggestions are made for the next steps to be taken towards the realisation of this small hydropower plant. An annex provides photographs of the location and the power station's equipment

  15. Cost determination of the electro-mechanical equipment of a small hydro-power plant

    Ogayar, B.; Vidal, P.G. [Grupo de Investigacion IDEA, Escuela Politecnica Superior, University of Jaen, Campus de Las Lagunillas, s/n. 23071-Jaen (Spain)

    2009-01-15

    One of the most important elements on the recovery of a small hydro-power plant is the electro-mechanical equipment (turbine-alternator), since the cost of the equipment means a high percentage of the total budget of the plant. The present paper intends to develop a series of equations which determine its cost from basic parameters such as power and net head. These calculations are focused at a level of previous study, so it will be necessary to carry out the engineering project and request a budget to companies specialized on the construction of electro-mechanical equipment to know its cost more accurately. Although there is a great diversity in the typology of turbines and alternators, data from manufacturers which cover all the considered range have been used. The above equations have been developed for the most common of turbines: Pelton, Francis, Kaplan and semiKaplan for a power range below 2 MW. The obtained equations have been validated with data from real installations which have been subject to analysis by engineering companies working on the assembly and design of small plants. (author)

  16. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.

    Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor

    2015-05-19

    Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.

  17. Clean development mechanism and off-grid small-scale hydropower projects: Evaluation of additionality

    Tanwar, Nitin

    2007-01-01

    The global climate change mitigation policies and their stress on sustainable development have made electrification of rural mountainous villages, using small hydro, an attractive destination for potential clean development mechanism (CDM) projects. This invariably involves judging the additionality of such projects. The paper suggests a new approach to judge the additionality of such stand-alone small hydropower projects. This has been done by breaking up additionality into two components: external and local. The external additionality is project developer dependent. For determining the local additionality, the paper takes into account the probability of a village getting electrified over a period of time, which is kept equal to the possible crediting period. This is done by defining an electrification factor (EF) whose value depends on the degree of isolation, financial constraints and institutional constraints encountered while electrifying a mountainous village. Using this EF, the additionality of a CDM project can be judged in a much easier and accurate way. The paper is based on the data and inputs gathered during site visits to many isolated villages located in the eastern Indian Himalayas

  18. Analysis of the potential of small hydro-power installations - Preliminary study on hydro-power schemes on rivers; Programm Kleinwasserkraftwerke. Potenzialanalyse Kleinwasserkraftwerke - Vorstudie zu Kraftwerken an Fliessgewaessern

    Baur, M.; Dettli, R. [econcept AG, Zuerich (Switzerland); Weingartner, R.; Viviroli, D.; Imhof, P.; Faessler, M.; Gerhardinger, H. [University of Berne, Geographisches Institut, Gruppe fuer Hydrologie (GIUB), Berne (Switzerland)

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results obtained from an analysis of the potential of small hydro-power installations in Switzerland. The current situation is reviewed and a 'bottom-up' analysis of the potential available is made. Data is presented on the potential of installations with power-ratings above and below 300 kW. Cantonal case-studies are examined. In a further 'top-down' examination, flow-rates and height-differences are looked at. The development of a 'potential-map' for Switzerland is described. The report is completed with the presentation of the conclusions made from the work. Suggestions for further work that could be done on the subject are made.

  19. A stream-scale model to optimize the water allocation for Small Hydropower Plants and the application to traditional systems

    Razurel, Pierre; Niayifar, Amin; Perona, Paolo

    2017-04-01

    Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by

  20. A multi-scale spatial approach to address environmental effects of small hydropower development.

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  1. Critical evaluation of the hydropower applications in Greece

    Kaldellis, J.K. [Laboratory of Soft Energy Applications and Environmental Protection, TEI Piraeus, P.O. Box 41046, Athens 12201 (Greece)

    2008-01-15

    Hydropower is a proven technology for electricity generation, contributing with almost 20% to the fulfilment of the planet electricity demand. Hydropower is also renewable because it draws its essential energy from the sun and particularly from the hydrological cycle. Greece and more precisely the west and north part of the mainland possesses significant hydropower potential that is up to now partially exploited. In the present survey, one investigates the existing situation concerning the applications of hydropower plants in Greece, while the results obtained are compared with the corresponding international and European situation. Subsequently, emphasis is laid on estimating the electricity-generation utilization degree of the existing large hydropower stations, using 25-year long official data. The results obtained underline the fact that the electricity generation is not a priority for the national water management policy and most Greek hydropower stations are used mainly to meet the corresponding peak load demand. On the other hand, increased interest to create numerous new small hydropower plants throughout Greece has been expressed during the last 5 years. According to the information gathered and analyzed, one may state that the available local hydropower potential is quite promising and can substantially contribute to the accomplishment of the national-EU target to cover the 21% of the corresponding electricity consumption from renewable resources. For this purpose one should first define an approved and rational water resources management plan and secondly support the increased utilization of large and small hydropower plants for electricity generation. In this case, properly designed hydropower plants should lead to considerable profits, contributing also in the country's independency from imported oil and accomplishing the Kyoto protocol obligations. (author)

  2. Improving the ecohydrological and economic efficiency of Small Hydropower Plants with water diversion

    Razurel, Pierre; Gorla, Lorenzo; Tron, Stefania; Niayifar, Amin; Crouzy, Benoît; Perona, Paolo

    2018-03-01

    Water exploitation for energy production from Small Hydropower Plant (SHP) is increasing despite human pressure on freshwater already being very intense in several countries. Preserving natural rivers thus requires deeper understanding of the global (i.e., ecological and economic) efficiency of flow-diversion practice. In this work, we show that the global efficiency of SHP river intakes can be improved by non-proportional flow-redistribution policies. This innovative dynamic water allocation defines the fraction of water released to the river as a nonlinear function of river runoff. Three swiss SHP case studies are considered to systematically test the global performance of such policies, under both present and future hydroclimatic regimes. The environmental efficiency is plotted versus the economic efficiency showing that efficient solutions align along a (Pareto) frontier, which is entirely formed by non-proportional policies. On the contrary, other commonly used distribution policies generally lie below the Pareto frontier. This confirms the existence of better policies based on non-proportional redistribution, which should be considered in relation to implementation and operational costs. Our results recommend abandoning static (e.g., constant-minimal-flow) policies in favour of non-proportional dynamic ones towards a more sustainable use of the water resource, also considering changing hydroclimatic scenarios.

  3. Optimal sizing of a run-of-river small hydropower plant

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    The sizing of a small hydropower plant of the run-of-river type is very critical for the cost effectiveness of the investment. In the present work, a numerical method is used for the optimal sizing of such a plant that comprises two hydraulic turbines operating in parallel, which can be of different type and size in order to improve its efficiency. The study and analysis of the plant performance is conducted using a newly developed evaluation algorithm that simulates in detail the plant operation during the year and computes its production results and economic indices. A parametric study is performed first in order to quantify the impact of some important construction and operation factors. Next, a stochastic evolutionary algorithm is implemented for the optimization process. The examined optimization problem uses data of a specific site and is solved in the single and two-objective modes, considering, together with economic, some additional objectives, as maximization of the produced energy and the best exploitation of the water stream potential. Analyzing the results of various optimizations runs, it becomes possible to identify the most advantageous design alternatives to realize the project. It was found that the use of two turbines of different size can enhance sufficiently both the energy production of the plant and the economic results of the investment. Finally, the sensitivity of the plant performance to other external parameters can be easily studied with the present method, and some indicative results are given for different financial or hydrologic conditions

  4. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    -based local grid is supplied. In this case, the PV-battery system will operate as a PQ bus to inject the desired active and reactive powers to local grid, while the hydropower station will act as a slack bus which maintains its voltage amplitude and frequency. An integrated small-signal state-space model......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to hydropower...

  5. The quality of Portuguese Environmental Impact Studies: The case of small hydropower projects

    Pinho, Paulo; Maia, Rodrigo; Monterroso, Ana

    2007-01-01

    In most Environmental Impact Assessment (EIA) systems environmental authorities can stop an EIA process by refusing the respective EIA Report, on the grounds of technical or methodological insufficiencies identified in the review procedure. However, often times, it cannot be taken for granted that, once an EIA Report is formally accepted, as part of an EIA process, its quality standard is, consistently, of a satisfactory level. This paper summarises the results of a one-year research project aimed at assessing the quality of EIA studies carried out for small hydropower plants in Portugal. An extensive survey was carried out to analyse all EIA Reports that were the basis of successful EIA processes involving this kind of small scale projects, under the old and the new national EIA legislation, that is, over the last two decades. Often times unnoticeable to the general public and the media, located in isolated areas upstream secondary rivers, these projects are likely to generate some significant environmental impacts, in particular on the aesthetics value and character of local landscapes and on pristine ecological habitats. And yet, they are usually regarded as environmental friendly projects designed to produce emission free energy. The design of the evaluation criteria benefited from the literature review on similar research projects carried out in other EU countries. The evaluation exercise revealed a number of technical and methodological weaknesses in a significant percentage of cases. A set of simple and clear cut recommendations is proposed twofold: to improve the current standard of EIA practice and to strengthen the role of the so called EIA Commissions, at the crucial review stage of the EIA process

  6. Design and construction of Minokawai hydro-power station; Minokawai suiryoku hatsudensho no sekkei to seko

    Kudo, A; Murakami, H; Hatano, K [Kansai Electric Power Co. Inc., Osaka (Japan)

    1994-09-05

    Minokawai power station is a plant with low head and large water quantity (output: 23.4MW) that utilizes Imawatari dam down the Kiso river. In constructing this power station, vertical drilling of about 33m in depth was executed in soft sedimentary rock area with uniaxial compression strength of 100kgf/cm{sup 2} or so. This report describes the geological condition in the drilling area and the outline of design and execution of corresponding landslide preventions. The drilling area mainly consists of tuff-containing sandstone and conglomerate with several weak layers such as lignite layers, and its stratum slopes gently from the mountain side to the river side. When the landslide preventions were designed, it was especially considered to secure stability of the drilling surface of earth filling as well as to control shear deformation along the lignite layer. Based on the two-dimensional elasto-plastic FEM analysis, structural design of landslide prevention walls and reinforcing methods using ground anchors and lock-bolts were determined. Construction works have been proceeded with as the ground behavior has been measured and controlled by setting many instruments such as insertion-type clinometers on the landslide preventions and the back ground. 2 refs., 18 figs., 5 tabs.

  7. Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant

    Pang, Mingyue; Zhang, Lixiao; Ulgiati, Sergio; Wang, Changbo

    2015-01-01

    The belief that small hydropower (SHP) systems are sources of clean energy with few or no ecological problems has been driving the rapid expansion of SHP plants in China and elsewhere. This paper presents an evaluation of the ecological impacts of SHP based on an emergy analysis of a plant located in Guizhou Province in southwest China. The results suggest that periodic downstream drying-up of the river is the largest contributor to the induced ecological impacts in terms of emergy cost. In 2010, the ecosystem service losses caused by downstream ecosystem degradation totaled 2.35E+18 seJ, which accounts for 38% of the total emergy utilized in the annual operation of this plant. If such losses could be avoided, i.e., if the SHP operated as designed, SHP projects would produce relatively modest impacts on the environment. When the reaches downstream of the SHP plant are not affected, the environmental loading ratio (ELR) is 2.20 and the emergy sustainability index (ESI) is 0.93; however, the ELR increases to 3.82 and ESI decreases to 0.38 when river drying-up occurs. These results indicate that China should rigorously investigate potential ecological problems of SHP development and proceed with caution rather than readily believing unjustified assumptions. - Highlights: • Ecological impacts of a SHP plant in China are analyzed using emergy synthesis. • The ecosystem degradation due to periodic drying-up was the largest emergy cost. • The eco-friendliness of SHP is questionable when it is intensively developed. • China should proceed with caution regarding the potential ecological impact of SHP

  8. Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydropower reservoir.

    Espa, Paolo; Castelli, Elena; Crosa, Giuseppe; Gentili, Gaetano

    2013-07-01

    Sediment flushing may be effective in mitigating loss of reservoir storage due to siltation, but flushing must be controlled to limit the impact on the downstream environment. A reliable prediction of the environmental effects of sediment flushing is hindered by the limited scientific information currently available. Consequently, there may be some controversy as regards to management decisions, planning the work, and monitoring strategies. This paper summarizes the main results of a monitoring campaign on the stream below a small alpine hydropower reservoir subjected to annual flushing between 2006 and 2009. The removed sediment was essentially silt, and the suspended solid concentration (SSC) of the discharged water was controlled to alleviate downstream impact. Control was achieved through hydraulic regulation and mechanical digging, alternating daytime sediment evacuation, and nocturnal clear water release. The four operations lasted about two weeks each and had an average SSC of about 4 g L(-1). Maximum values of SSC were generally kept below 10 g L(-1). Downstream impact was quantified through sampling of fish fauna (brown trout) and macroinvertebrate in the final reach of the effluent stream. The benthic community was severely impaired by the flushing operations, but recovered to pre-flushing values in a few months. As expected, the impact on brown trout was heavier on juveniles. While data biasing due to fish removal and re-stocking cannot be ruled out, the fish community seems to have reached a state of equilibrium characterized by a lower density than was measured before the flushing operations.

  9. Small and medium-sized hydropower projects in competitive markets: the case of Rio Piedras

    Restrepo Posada, Federico

    1999-01-01

    The article describes the case of the Rio Piedras Hydropower Project, a first private hydropower generation initiative in Colombia, within the new regulatory framework for the provision of public services and electric generation under laws 142 and 143, passed in 1994. Reference is made in this article to the background and characteristics of the Project, and some obstacles, challenges and risks encountered are described, as well as the way in which they are being controlled. The investment and commercialization modules developed in analyzing the project are also presented. Finally, some reflections are given as to the medium and long term prospects for electric generation projects in Colombia. (The author)

  10. Modeling and dynamic behaviour of hydropower plants

    Kishor, Nand

    2017-01-01

    This book presents a systematic approach to mathematical modeling of different configurations of hydropower plants over four sections - modeling and simulation approaches; control of hydropower plants; operation and scheduling of hydropower plants, including pumped storage; and special features of small hydropower plants.

  11. An approach to the investment analysis of small and medium hydro-power plants

    Forouzbakhsh, Farshid; Hosseini, S.M.H.; Vakilian, M.

    2007-01-01

    Hydro-power plants, as a part of infrastructure projects, play an important role in the economic-social development of countries. Sincea large amount of investment is needed for construction of these power plants, which appeared to be an obstacle in these developments,however it is possible...

  12. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  13. Forecasting and prevention of water inrush during the excavation process of a diversion tunnel at the Jinping II Hydropower Station, China.

    Hou, Tian-Xing; Yang, Xing-Guo; Xing, Hui-Ge; Huang, Kang-Xin; Zhou, Jia-Wen

    2016-01-01

    Estimating groundwater inflow into a tunnel before and during the excavation process is an important task to ensure the safety and schedule during the underground construction process. Here we report a case of the forecasting and prevention of water inrush at the Jinping II Hydropower Station diversion tunnel groups during the excavation process. The diversion tunnel groups are located in mountains and valleys, and with high water pressure head. Three forecasting methods are used to predict the total water inflow of the #2 diversion tunnel. Furthermore, based on the accurate estimation of the water inrush around the tunnel working area, a theoretical method is presented to forecast the water inflow at the working area during the excavation process. The simulated results show that the total water flow is 1586.9, 1309.4 and 2070.2 m(3)/h using the Qshima method, Kostyakov method and Ochiai method, respectively. The Qshima method is the best one because it most closely matches the monitoring result. According to the huge water inflow into the #2 diversion tunnel, reasonable drainage measures are arranged to prevent the potential disaster of water inrush. The groundwater pressure head can be determined using the water flow velocity from the advancing holes; then, the groundwater pressure head can be used to predict the possible water inflow. The simulated results show that the groundwater pressure head and water inflow re stable and relatively small around the region of the intact rock mass, but there is a sudden change around the fault region with a large water inflow and groundwater pressure head. Different countermeasures are adopted to prevent water inrush disasters during the tunnel excavation process. Reasonable forecasting the characteristic parameters of water inrush is very useful for the formation of prevention and mitigation schemes during the tunnel excavation process.

  14. Study on the stability of waterpower-speed control system for hydropower station with upstream and downstream surge chambers based on regulation modes

    Chen, J P; Yang, J D; Guo, W C; Teng, Y

    2014-01-01

    In allusion to the hydropower station with upstream and downstream surge chambers, a complete mathematical model of waterpower-speed control system that includes pipeline system and turbine regulation system is established under the premise of the breakthrough of Thoma assumption in this paper. The comprehensive transfer functions and free movement equations that characterize the dynamic characteristics of system are derived when the mode of governor is respectively frequency regulation and power regulation. Then according to Routh- Hurwitz theorem, the stability domain that describes the good or bad of stability is drawn in the coordinate system with the relative areas of upstream and downstream surge chambers as abscissa and ordinate respectively. Finally, the effects of Thoma assumption, flow inertia, regulation modes, and governor parameters on the stability of waterpower-speed control system are analyzed by means of stability domain. The following conclusions have been come to: Thoma assumption made the stability worse. The flow inertia T w has unfavorable effect on the stability of the two regulation modes. The stability of power regulation mode is obviously superior to frequency regulation mode under the same condition, but the parametric variation sensibility of the former is inferior to the latter. For the governor parameters, the stability continually gets better with the increase of temporary droop b t and damping device time constant T d , while the stability of frequency regulation would get worse with the increase of temporary droop b t when the damping device time constant T d takes small value. As the increase of permanent droop b p , the stability of power regulation mode gets worse

  15. Model for 3D-visualization of streams and techno-economic estimate of locations for construction of small hydropower plants

    Izeiroski, Subija

    2012-01-01

    platform practical and efficient information regarding the elevation drops along river streams from the potential points of intake locations to the location of objects of the small hydropower plants. In the hydrology analysis are used historic measured data in table format regarding the flow rates and precipitation for the period 1961-2000 from two pluviometric station that are close each other. At the calculation of precipitations at annual level in GIS platform is used a stochastic quadratic equation for correlation between the rainfall (precipitation) and elevation which is valid for the climatic zone of the south-west region of Republic of Macedonia. using more hydrological methods: Rational method, Area-proportion method, Regression analysis and others, are obtained graphic raster maps for numerical values of flow rates at pixel level, and also is executed a comparative analysis of obtained results. Having available data for slope (elevation drops) and values of flows, is made analysis of the hydro power potential and locations for SHP construction along Brajchanska river and its main tributaries. The analysis showed that at the higher elevation of 1000 m.a.s.l. are found more than 10 potential locations for SHP construction. From the executed analysis was also determined, that the combination of more intakes that are directed to one SHP plant gives significantly more power output and energy. Together with the techno-engineering analysis, is also given a short review considering the economic justification for SHP construction and the impact at the environment. The developed model at the study area can also serve as a practical model at the analysis regarding the assessment and the site selection of SHP in all other areas reach with water resources. The methodological approach developed in this research, can contribute to a great extent for quick and efficient decision making regarding the preliminary screening of locations and assessment of the hydro power potentials

  16. Guide to the construction of small-scale hydropower plants; 2. ed.; Leitfaden fuer den Bau von Kleinwasserkraftanlagen

    Berg, W.; Giesecke, J.; Grabitz, R.; Haakh, F.; Haury, H.G.; Horlacher, H.B.; Hutarew, A.; Latrille, W.; Mackert, W.; Mueller, P.; Sauer, K.; Schmid, H.; Schweickert, H.; Waller, H.

    1994-12-31

    Hydropower plays a prominent role in Baden-Wuerttemberg`s policy of promoting the use of renewable energy resources. This is due, firstly, to the fact that hydropower is a reliable, proven technology, and secondly to the favourable topographic and hydrological conditions Baden-Wuerttemberg offers for the development of hydropower. The Baden-Wuerttembergian Water Management Association hopes that this guide will provide the interested reader with sufficient information for assessing or initiating concrete projects. The individual chapters have been adapted from papers of the team of authors referred to in the foreword. They are largely representative of the Federal German Republic (Baden-Wuerttemberg). The guide thus provides a complement to the Manual of the International Electrotechnical Commission, the first German translation of which is contained in chapter 3. As this manual is required to be valid worldwide, it must necessarily be confined to technical and process organisational matters. The editors have been at pains t provide a concrete, practice-oriented rather than a textbook-like presentation of the subject. The Water Management Association and the authors hope that this guide will stimulate public interest in the continued development of small-scale hydropower plants in compliance with energy-political, private-economical, and ecological requirements. (orig.) [Deutsch] Die Wasserkraft nimmt im Hinblick auf eine staerkere Hinwendung zu regenerativen Energiequellen eine Vorreiterstellung in Baden-Wuerttemberg ein. Dies liegt in der zuverlaessigen und erprobten Technologie begruendet und in den guenstigen topographischen und hydrologischen Voraussetzungen fuer die Wasserkraftnutzung in Baden-Wuerttemberg. Der Wasserwirtschaftsverband Baden-Wuerttemberg hofft, mit dem `Leitfaden` den Interessenten genuegend Informationen an die Hand gegeben zu haben, die zur Beurteilung und gegebenenfalls zur Inangriffnahme eines konkreten Projektes erforderlich sind. Die

  17. Ecological footprint analysis of environmental impacts by cascaded exploitation of diversion-type small hydropower: a case study in southwest china

    Wang, Zhenhua; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Zhao, Weihua

    2017-05-01

    Cascaded exploitation of diversion-type small hydropower (SHP) offers a source of new energy as well as socioeconomic benefits; however, it inevitably causes environmental disturbance and damage. Previous studies on the cumulative effect of cascaded diversion SHP rarely discussed using quantitative analysis method. In this paper, the ecological footprint analysis approach is proposed to assess the positive and negative impacts of cascaded diversion SHP on environment of a small-scale river in Southwest China. Positive impact is defined as ecological supply footprint (ESF), which refers to vegetation protection by replacing firewood with SHP. Negative impact is defined as ecological loss footprint (ELF), which includes fish and net primary productivity loss, vegetation destruction and soil erosion. With the raising in the number (n>4) of diversion SHP stations, the difference between ELF and ESF increases remarkably, suggesting that the adverse impacts of cascaded diversion SHP accumulate in the study area. Compared with vegetation destruction and soil erosion, the cumulative loss of fish and net productivity is the most important aspect of the adverse impacts which needs more attentions.

  18. On the development of small nuclear power stations

    Goetzmann, C.A.

    1989-01-01

    There are weighty reasons for and against the building of small nuclear power stations. Factors such as specific investment costs, opportunities for and areas of application, geographical conditions as well as those relating to infrastructure, security and availability play an important role in the planning, construction and running of a nuclear power station. For the usual large power stations, the comparatively low specific investment costs and a proven technology are favorable factors which minimize the investment risk. The article presents an overview of reasons for using small power stations and also considers the difficulties which would arise in practice. (orig.) [de

  19. Mini-hydropower development in human province of China and its position in the national economy

    Daogao, L.

    1991-01-01

    Hunan province is situated in the southern part of the middle reaches of Yangtze River. With a population of 61 million, it covers an area of about 211,800 km 2 , equivalent to forty percents of the territorial area of France. Throughout the province, there are more than 5300 rivers and 13000 reservoirs completed before 1991, of which over 7300 mini-hydropower stations are under operation. The theoretical hydropower potential is 15320 MW among them 12990 MW can be exploited with a total installed capacity of 1320 MW and an annual generation output of 4150 GWh. The paper will describe the general condition of the hydropower resources, development of mini-hydropower in Human province and its positive role in the national economy. Additionally, the standard of classification, the type of equipment for the medium and small-sized hydropower plants and market conditions in Hunan will be also involved in the paper. 5 tabs

  20. Reactivation of a small hydropower plant in Aathal-Seegraeben; Aathal-Seegraeben (ZH) - Reaktivierung KW Unteraathal - Bauprojekt - Technischer Bericht

    Eichenberger, P.; Scherrer, I.

    2008-10-15

    This technical report for the Swiss Federal Office of Energy (SFOE) reports on a project for the reactivation of a small hydropower installation originally built in 1915 in an old spinning mill in Aathal-Seegraeben, Switzerland. The report reviews the existing installations, including weir, headwater channel, machine house and tailwater channel as well as the existing electrical installations. The reactivation project is presented and the work involved is discussed. The economic viability of the project is looked at and contributions from the Swiss cost-covering remuneration scheme for power from renewable sources of energy are noted. Environmental aspects are reviewed and the preservation of the historical buildings is discussed. The report is completed with a selection of attachments concerning the project.

  1. Short-term hydro generation scheduling of Xiluodu and Xiangjiaba cascade hydropower stations using improved binary-real coded bee colony optimization algorithm

    Lu, Peng; Zhou, Jianzhong; Wang, Chao; Qiao, Qi; Mo, Li

    2015-01-01

    Highlights: • STHGS problem is decomposed into two parallel sub-problems of UC and ELD. • Binary coded BCO is used to solve UC sub-problem with 0–1 discrete variables. • Real coded BCO is used to solve ELD sub-problem with continuous variables. • Some heuristic repairing strategies are designed to handle various constraints. • The STHGS of Xiluodu and Xiangjiaba cascade stations is solved by IB-RBCO. - Abstract: Short-term hydro generation scheduling (STHGS) of cascade hydropower stations is a typical nonlinear mixed integer optimization problem to minimize the total water consumption while simultaneously meeting the grid requirements and other hydraulic and electrical constraints. In this paper, STHGS problem is decomposed into two parallel sub-problems of unit commitment (UC) and economic load dispatch (ELD), and the methodology of improved binary-real coded bee colony optimization (IB-RBCO) algorithm is proposed to solve them. Firstly, the improved binary coded BCO is used to solve the UC sub-problem with 0–1 discrete variables, and the heuristic repairing strategy for unit state constrains is applied to generate the feasible unit commitment schedule. Then, the improved real coded BCO is used to solve the ELD sub-problem with continuous variables, and an effective method is introduced to handle various unit operation constraints. Especially, the new updating strategy of DE/best/2/bin method with dynamic parameter control mechanism is applied to real coded BCO to improve the search ability of IB-RBCO. Finally, to verify the feasibility and effectiveness of the proposed IB-RBCO method, it is applied to solve the STHGS problem of Xiluodu and Xiangjiaba cascaded hydropower stations, and the simulating results are compared with other intelligence algorithms. The simulation results demonstrate that the proposed IB-RBCO method can get higher-quality solutions with less water consumption and shorter calculating time when facing the complex STHGS problem

  2. Efficiency of a small wind power station

    Ivanov, K.; Christov, Ch.; Kozarev, N.

    2001-01-01

    The aim of the study is to obtain the optimal solution for wind station both by technical parameters and costs. The energetic characteristics of the wind as a renewable energy source are discussed and assessment of the economical efficiency is made. For the determination of the optimal wind parameters the method of integral wind curves is used. The low power wind generators (0.4 - 1.5 kW) are considered as optimal for the presented wind characteristics

  3. The application of the ISO 14001 environmental management system to small hydropower plants

    2010-01-01

    advance appropriate environmental actions. The process includes six stages: (1) Initial environmental review, (2) Environmental policy, (3) Planning, (4) Implementation and Operation, (5) Checking and Correcting action and (6) Management review. Certification process in practice is also divided in four steps: (1) Analysis of the environment, (2) List of the regulatory requirements and Checking of conformity with the environmental laws, (3) Defining the environmental policy and building the environmental management system and finally (4) Test audit. The output of this process is Certification audit. Experience feedbacks and testimonies of ISO 14001 certification of small hydroelectric power stations are presented in the second part of this document: - The hydroelectric power stations of Mas Naffre (Tarn - 81, France), of Nevache (Hautes Alpes - 05, France), of Couscouillets (Villelongue, Hautes- Pyrenees, France) and other examples in the EU (Switzerland and Sweden). Existing alternative environmental standards, like 'Eugene' and 'Greenhydro' Standards are presented as well

  4. The Small-Scale Hydropower Plants in Sites of Environmental Value: An Italian Case Study

    Marianna Rotilio

    2017-11-01

    Full Text Available Since ancient times water has been accompanying technological change in the energy sector. Used as a source of hydraulic energy, it currently generates one-fifth of the global electricity production. However, according to collective imagination, hydroelectric plants are constructions of high environmental, acoustic, and visual impact, which may harm the preservation of the territory. This paper intends to address the topic of mini-hydropower that, in addition to providing the production of renewable energy, ensures a limited environmental impact even in delicate contexts with high landscape values, by elaborating a research methodology that makes these interventions compatible with them. The process of “global compatibility” checks developed to assess the feasibility of the intervention will be explained in the paper. We intend to describe here the research process undertaken to make the planning of this type of system sustainable, in contexts that need to be rehabilitated in relation both to the accessibility of citizens and to the environmental enhancement. The intervention planned will be characterized by the combined use of other renewable energy sources, in addition to water. The proposed methodology has been tested on a case study in the village of Roccacasale, in the province of L’Aquila.

  5. Optimisation of small-scale hydropower using quality assurance methods - Preliminary project; Vorprojekt: Optimierung von Kleinwasserkraftwerken durch Qualitaetssicherung. Programm Kleinwasserkraftwerke

    Hofer, S.; Staubli, T.

    2006-11-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary project that examined how quality assurance methods can be used in the optimisation of small-scale hydropower projects. The aim of the project, to use existing know-how, experience and synergies, is examined. Discrepancies in quality and their effects on production prices were determined in interviews. The paper describes best-practice guidelines for the quality assurance of small-scale hydro schemes. A flow chart describes the various steps that have to be taken in the project and realisation work. Information collected from planners and from interviews made with them are presented along with further information obtained from literature. The results of interviews concerning planning work, putting to tender and the construction stages of these hydro schemes are presented and commented on. Similarly, the operational phase of such power plant is also examined, including questions on operation and guarantees. The aims of the follow-up main project - the definition of a tool and guidelines for ensuring quality - are briefly reviewed.

  6. Perspectives for hydropower stations in Switzerland: long-term competitiveness and possibilities for improvement; Perspektiven fuer die Wasserkraftwerke in der Schweiz. Langfristige Wettbewerbsfaehigkeit und moegliche Verbesserungspotenziale

    Filippini, M.; Banfi, S. [Istituto di Microeconomia e Economia Pubblica, MecoP, Universita della Svizzera Italiana, Lugano (Switzerland); Luchsinger, C.; Wild, J.; Balmer, M.; Grand, D.; Henkels, L.; Semadeni, M. [Swiss Federal Institute of Technology (ETHZ), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland); Gnansounou, E. [Swiss Federal Institute of Technology (EPFL), Laboratoire de systemes energetiques (LASEN), Lausanne (Switzerland)

    2001-07-01

    This first general study - which has the character of a preliminary study - examines the questions if the liberalisation of the electricity market will have a negative effect on the competitiveness of hydropower in the long-term and what measures can be taken against such effects. Long-term competitiveness is defined as the ability of a business in this sector to make investments in renewal in the long-term, i.e. after its concessions have expired. The three main aims of the study are: 1. Assessment of the long-term competitiveness of the sector and identification of the factors which could either have a negative effect on it or improve it, 2. Analysis of cost structures and presentation of measures through which the long-term competitiveness of the sector can be reinforced, 3. Presentation of possible political measures to be taken in this business area in order to improve the long-term competitiveness of hydropower stations. The study identifies the most important factors that determine future competitiveness as being the market prices for electricity and capital costs (depreciation and interest on own and borrowed capital). Further, water fees, taxes and regulations concerning residual water flow can be of great importance for investment decisions, in particular for those enterprises that operate close to their profitability limits. The results of the analysis indicate that, in the future, a considerable number of enterprises must be reckoned with that will refrain from renewing their plant. Such outcomes depend, of course, on developments in electricity market prices, specific investment costs, rates of interest and other economic, political, and legal conditions. Making a prognosis about the development of such parameters is linked with a high degree of uncertainty. By means of sensitivity calculations and the definition of various scenarios, attempts are made to take these uncertainties into account . Finally, the study makes reference to the fact that

  7. Small-scale hydropower in the Netherlands : problems and strategies of system builders

    Manders, T.N.; Höffken, J.I.; van der Vleuten, E.B.A.

    2016-01-01

    Small-scale hydroelectricity (hydel) currently receives worldwide attention as a clean, green, and socially just energy technology. People generally assume that downsizing hydel plants reduces harmful impacts. However, recent debates call for careful circumspection of small hydel’s environmental,

  8. An overview of the photovoltaic, wind power, solar water heating and small-scale hydropower supply industries in South Africa up to 1994/95

    Stassen, G.; Holm, D.

    1997-01-01

    This paper contains a broad overview of the South African photovoltaic, solar water heating, wind power and small-scale hydropower industries. Against the general lack of a comprehensive national database on renewable energy supply and demand, this overview attempts to provide general background information on these commercial industries, market trends, local sales figures, export volumes and installed capacity estimates. It also identifies the industry's major constraints, as well as their future outlook. (author). 12 refs., 13 tabs., 4 figs

  9. Refurbishment of small hydropower plants in Romania; Sanierung von Kleinwasserkraftwerken in Rumaenien

    Gmeinbauer, Joerg [Wien Energie GmbH, Wien (Austria)

    2010-07-01

    In 2008 Wien Energie subsidiary Wienstrom GmbH participated in three public auctions of Hidroelectrica S.A. for the sale of old small hydro power plants in Romania. Together with strategic partners Wienstrom could successfully compete against local and international competition and acquired 31 small hydro power plants with a total installed capacity of around 20 MW. The plants were integrated into the newly established Vienna Energy Forta Naturala Srl. and are being completely refurbished at the moment. Wien Energie consequently is already the third largest operator of small hydro power plants in Romania. (orig.)

  10. Influence of small hydropower plants on brown trout (Salmo trutta L. population in Mislinja River

    Blaž Cokan

    2013-12-01

    Full Text Available The brown trout (Salmo trutta L. in the Mislinja River has been endangered for years because of small hydroelectric power plants. To find out how they are affecting the population of the brown trout in the Mislinja River, we conducted a sampling of the brown trout, using a generating set. We measured the length and weight of all caught specimens and analysed the obtained data. The results are presented in this paper, e.g., biomass, estimations of abundance, average weight, average length and number of captured brown trout. We discovered that the population of the brown trout has decreased in all the sections where water has been taken away for small hydroelectric power plants.

  11. THE CHOICE OF THE GENERATOR AND ELECTRICITY STABILIZATION FOR SMALL HYDROPOWER PLANTS

    Kvitko A. V.; Daybova L. A.; Kondratenko Y. E.

    2015-01-01

    The article analyzes the main characteristics of the electricity generators to use them as a part of small hydroelectric power plants. It is shown, that contactless asynchronous generators in comparison with synchronous generators and DC generators have improved their operational and technical characteristics, and above all, their reliability and performance efficiency. We have shown graphic dependences of the cost and the weight of power generators. It is proposed using direct frequency conv...

  12. The small hydropower plant in the old river Aare in Niedergoesgen, Switzerland

    Eichenberger, P.

    2007-07-01

    This preliminary project for the Swiss Federal Office of Energy (SFOE) presents a project which proposes the construction of a new small hydro plant in Niedergoesgen/Gretzenbach, Switzerland, that is to make use of the waters of the old river Aare. The project proposes the construction of a new, 350 kW plant at the site of an existing sill across the old river that originally formed part of a water-power installation given up in 1917. The existing parts of the old installation are described and the legal situation concerning water rights and land ownership are examined. Three variants for a new installation are described. Technical figures and energy-production estimates for a new installation are discussed. Ecological aspects are examined, as are the recreational aspects of the river at this location. Cost estimates and economic viability are discussed.

  13. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs

  14. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  15. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  16. Assessing the Ecological and Socio-Economic Impacts of Extensive Small Hydropower Development in the Western Ghats of Karnataka, India.

    Jumani, S.

    2016-12-01

    The growth of small hydro-power projects (SHPs) is being widely encouraged as they are believed to be environmentally sustainable and socially equitable sources of energy. Easy policies, carbon credits and government sponsored monetary incentives have led to the mushrooming of SHPs along most tropical rivers, especially in developing countries. Our field study conducted between December, 2013 and September, 2014 assessed the social and ecological impacts of a cluster of SHPs in the biodiversity hotspot of the Western Ghats in India. Ecological impacts were studied with respect to freshwater fish assemblages, river water parameters, forest fragmentation and spread of invasive species. Social surveys were conducted to understand impacts on SHPs on socio-economic activities, resource access and human-animal conflict. Ecological impacts were found to be substantial. Freshwater fish species richness was significantly higher in un-dammed sites, and this variation in richness was explained by dam-related variables. Within dammed streams, spatial sections that were particularly damaging were identified. Fish species and guilds that were particularly susceptible to be adversely impacted were identified as indicator species. Four SHPs having a cumulative capacity of 45MW led to a direct loss of 14.5ha of forest land. Resultant loss in canopy cover and spread of invasive plant species was quantified. More than 10% of the river stretch was left de-watered due to the dams. Socially, SHPs were not as beneficial as they are believed to be. Respondents claimed that human-elephant conflict began only after SHP construction began. This relationship was examined with secondary data, and found to be true. In light of our findings, we suggest that the policy regarding SHPs be revised. Given that 6474 sites have been identified for SHP development in India, all without any individual or cumulative impact assessments or public consultations, studies to understand their impacts at the

  17. Optimal water allocation in small hydropower plants between traditional and non-traditional water users: merging theory and existing practices.

    Gorla, Lorenzo; Crouzy, Benoît; Perona, Paolo

    2014-05-01

    Water demand for hydropower production is increasing together with the consciousness of the importance of riparian ecosystems and biodiversity. Some Cantons in Switzerland and other alpine regions in Austria and in Süd Tiröl (Italy) started replacing the inadequate concept of Minimum Flow Requirement (MFR) with a dynamic one, by releasing a fix percentage of the total inflow (e.g. 25 %) to the environment. Starting from a model proposed by Perona et al. (2013) and the need of including the environment as an actual water user, we arrived to similar qualitative results, and better quantitative performances. In this paper we explore the space of non-proportional water repartition rules analysed by Gorla and Perona (2013), and we propose new ecological indicators which are directly derived from current ecologic evaluation practices (fish habitat modelling and hydrological alteration). We demonstrate that both MFR water redistribution policy and also proportional repartition rules can be improved using nothing but available information. Furthermore, all water redistribution policies can be described by the model proposed by Perona et al. (2013) in terms of the Principle of Equal Marginal Utility (PEMU) and a suitable class of nonlinear functions. This is particularly useful to highlights implicit assumptions and choosing best-compromise solutions, providing analytical reasons explaining why efficiency cannot be attained by classic repartition rules. Each water repartition policy underlies an ecosystem monetization and a political choice always has to be taken. We explicit the value of the ecosystem health underlying each policy by means of the PEMU under a few assumptions, and discuss how the theoretic efficient redistribution law obtained by our approach is feasible and doesn't imply high costs or advanced management tools. For small run-of-river power plants, this methodology answers the question "how much water should be left to the river?" and is therefore a

  18. Modelling and controlling hydropower plants

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  19. The importance of hydropower in Austria

    Kobau, R.; Pirker, O.; Spolwind, R.; Weiss, B.

    2009-01-01

    This article discusses the importance of hydropower-based power generation in Austria as a clean and emission-free source of electricity. The contribution made to total electricity generation is examined and figures are quoted. Hydropower is provided from both storage dams and run-of-river power stations such as those on the river Danube. The use of the various types of hydropower in connection with their economic optimisation, for example for the supply of valuable peak power, is discussed. The promotion of hydropower within the scope of European climate-protection efforts is examined. Projects concerning the augmentation of hydropower capacities are discussed and three exemplary projects are briefly described. Finally, the situation in Austria is compared with that to be found in neighbouring Switzerland.

  20. Small hydropower plant in Ruetenen - Drainage water utilization from the Alpine motor way tunnel 'Seelisberg' in Switzerland

    Odermatt, K.; Ettlin, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project that uses the drainage water from the Seelisberg motor way tunnel in central Switzerland to drive a small turbine that uses the fall distance between the collection point near the tunnel portal and the lake of Lucerne, which lies 48 meters below, to generate more than 100 kW of electrical power. The operation of the hydraulic power station and the experience gained during initial operation are described and the somewhat erratic amounts of water - depending on rainfall, snow-melting etc. - are discussed. Figures are given on the building and operational costs, electricity production and the price of the electricity produced. The report is illustrated with technical drawings and photos of the installation

  1. Hydropower research programme 2008 - 2011; Forschungsprogramm Wasserkraft 2008 - 2011. Schlussbericht zur Entwicklung eines Forschungsprogramms. Aktualisierte Fortschreibung vom September 2008

    Jorde, K.

    2007-07-01

    This revised final report on the development of a research programme for the Swiss Federal Office of Energy (SFOE) describes the proposals for the development of a concept for Swiss hydropower research activities for the period 2008 - 2011. According to the authors, the new research programme will not only include activities in the small hydropower area, but rather all aspects of hydropower usage, including dams and large hydropower stations. The results of a survey made concerning research and further education in the hydropower area are discussed. These results formed the basis of the new concept. The report also presents a review of the present situation with regard to hydrological questions and dams as well as mechanical and electrical equipment. The education and training of professionals is looked at and national and international co-operation in the hydropower area is also discussed. Future developments are looked at, as are the economic aspects of the use of hydropower. Measures to be taken in the research area are proposed.

  2. Small-scale hydro-power plant in Quinto - Preliminary project; Progetto minicentrale idroelettrica, Ri Secco - Quinto. Programma piccole centrali idrauliche. Progetto di massima

    Dotti, R. [Reali e Guscetti SA, Ambri (Switzerland); Rosselli, P. [Celio Engineering SA, Ambri (Switzerland)

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a project for the realisation of a small hydro-power plant on the alpine stream 'Ri Secco' in the municipality of Quinto, southern Switzerland. The Ri Secco partly flows in a steep canyon. The elevation difference of 810 or 620 m (depending on the location of the water deviation from the stream) is favorable to the installation of a small-scale high-head power plant. The report presents details on the hydrological data and the dimensioning of the installation. Several variants are considered, which also include two possible penstock diameters for each weir location. The electricity production expected is discussed, as is the economic viability of the project.

  3. Local stakeholder participation in CDM and new climate mitigation mechanisms – case study of a small scale hydropower project in China

    Dong, Yan; Olsen, Karen Holm; Filzmoser, Eva

    2014-01-01

    and China’s stakeholder participation policies in environment impact assessment at project level, the PDD of this project and similar projects were analyzed providing an overall impression of the stakeholder participations process and results in such projects. Afterwards, we focused on a single case, where...... that the Clean Development Mechanism (CDM) Executive Board should collect information on practices for local stakeholder consultation in collaboration with the Designated National Authorities (DNA) Forum and provide technical assistance for the development of guidelines for local stakeholder participation......, if a country requests assistance. Learning from a case study of how local stakeholder participation is practiced in CDM in a small scale hydropower project in China, this paper identifies the strengths and weaknesses of how the concept is applied in practice. To understand the execution of both CDM policies...

  4. Mini and micro hydropower systems in India

    Kothari, D.P.

    1992-01-01

    Hydropower is one of the renewable sources of energy. In the field of hydropower, even though small/mini/micro hydropower systems make fractional increases in the overall energy production, their impact on the local areas in which they are sited can be significant in stimulating growth of rural industry and in meeting the basic energy needs of the local population for domestic and agricultural use. They also help in reducing demand on other non-renewable polluting resources like fossil fuels. Moreover as compared to big hydropower systems, small hydropower systems are cost competitive and minimally disruptive to the environment. They require less time for construction and reduce transmission losses. They can be designed to suit the limits of water resources available and can be tailored to the needs of the end-use market. Aspects of small hydropower projects which needs to be studied are listed. Modelling of turbines and generators for such projects, and factors to be considered in selection of suitable turbine and generator for a particular small hydropower system are discussed. The technology for small hydropower systems is well developed and available in India. The present estimated potential of such systems in India is 5000 MW out of which 207 MW is harnessed. These small hydropower plants are mostly located in the northern states like Jammu and Kashmir, Uttar Pradesh, Punjab, and Rajasthan. Construction works for 234 MW at 88 sites are going on. During the 8th plan period, 218.5 MW is planned to be developed with an outlay of Rs. 548.25 crores. It is suggested that special subsidies and liberal term loans should be made available for implementing such systems. (M.G.B.). 8 refs., 2 tabs., 1 fig

  5. Small-scale hydropower plants and rare bryophytes and lichens. Knowledge and lack of knowledge; Smaakraftverk og sjeldne moser og lav. Kunnskap og kunnskapsmangler

    Evju, Marianne; Hassel, Kristian; Hagen, Dagmar; Erikstad, Lars

    2011-08-15

    There is a large and increasing interest for the development of small-scale hydropower in Norway. Small-scale hydropower plants may impact the biological diversity negatively through destruction, degradation or fragmentation of habitats. Both the environmental investigations and the treatment of applications for small-scale hydropower plants put a great emphasis on red listed species, and in particular on red-listed bryophytes and lichens growing in stream ravines and in meadows and rock faces influenced by waterfalls. Bryophytes and lichens can be difficult to identify in the field, and knowledge of the species' ecology, distribution and population sizes is insufficient. A large review of environmental investigations of small-scale hydropower plants, documented that red-listed lichens were rarely recorded, and red-listed bryophytes were never recorded. In this report, we try to make visible the knowledge we have and the knowledge we lack of red listed bryophytes and lichens in areas in which the development of small-scale hydropower is relevant. Most focus is placed on bryophytes. The report is mainly a collation of existing knowledge. There is a great variation among stream ravines in the occurrence of species. Several factors, such as stability of moisture conditions, tree species composition and bedrock, interact to affect the occurrence of species. Red-listed bryophytes and lichens occur both in the forest and in affiliation with the stream. A reduction of local moisture, through e.g. logging of forest close to the stream or reduction of the water flow, will probably affect the species negatively. River regulation will change the frequency of flooding and affect the ice drift in the stream, which may negatively affect species living on dead wood in or close to the stream. Several species are vulnerable to deteriorated habitat quality and habitat fragmentation as their habitat requirements are narrow and their dispersal capacity is limited. However, we

  6. Renewable Energy Essentials: Hydropower

    NONE

    2010-07-01

    Hydropower is currently the most common form of renewable energy and plays an important part in global power generation. Worldwide hydropower produced 3 288 TWh, just over 16% of global electricity production in 2008, and the overall technical potential for hydropower is estimated to be more than 16 400 TWh/yr.

  7. Utilization of the residual water resource from the Kozloduy NPP's hot channel for building a small hydropower plant (TK1)

    Tolev, T.

    2004-01-01

    A hydropower plant built on the hot channel of the NPP should be capable to utilise the whole changing water flow from the NPP cooling system. Tree factors - level of the hot channel, level of the Danube river and the water flow - determine the power potential of the HPP. The water level in the hot channel varies between 31.20 and 32.50 m with an optimum at 31.50 m. The Danube river level varies in a wide range. The head at 85% of the river level and at a level of the channel 31.50 m is 7.2 m. The water flow depends on the NPP operation and it is between 45 m 3 /s and 140 m 3 /s. Thus the nominal power of the HPP is 5 740 kW. The construction of the HPP is justified in case of at least 30 years of operation. The calculations are made for the operation of units 5 and 6 which are expected to work during this period. A significant role for the maximal utilisation of the resource of the hot channel plays the choice of the hydro-turbines. The horizontal PIT-Kaplan turbines are considered as the most appropriate. The integrating of the plant into the electric network and possible impact on the environment are also considered

  8. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    Wang, Bing; Liang, Xiao-Jie; Zhang, Hao; Wang, Lu; Wei, Yi-Ming

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  9. Hydropower Baseline Cost Modeling

    O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Qin Fen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chalise, Dol Raj [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Centurion, Emma E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  10. Small-scale hydro-power plant in Anzonico - Preliminary project; Progetto microcentrale idroelettrica, Anzonico. Programma Centrali idrauliche. Progetto di massima

    Dotti, R. [Reali e Guscetti SA, Ambri (Switzerland); Rosselli, P. [Celio Engineering SA, Ambri (Switzerland)

    2009-01-15

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a project for the realisation of a small hydro-power plant in the municipality of Anzonico, southern Switzerland. The water of a small alpine stream is to be used for power generation and vineyard irrigation as well as for the creation of an additional water resource for fire fighting in this sensitive region. The report is foreseen to support the request for a water usage concession to the authorities of the Canton of Ticino. It presents details on the hydrological data for the river and the dimensioning of the installation. The hydrological installations and the turbine foreseen are described and discussed, as is the removal of river sediment. The electricity production expected is discussed, as is the economic viability of the project. Synergies exist with the local electricity utility that will renew and improve its power distribution and telecommunication system when the penstock will be mounted in the underground.

  11. Many and small or large and few? A comparison of the environmental effects of different strategies for the development of hydropower plants.; Mange og smaa eller store og faa? En sammenligning av miljoevirkningene ved ulike strategier for utvikling av vannkraft.

    Bakken, Tor Haakon; Sundt, Haakon; Ruud, Audun

    2012-11-01

    This study compared the cumulative environmental impact of 27 small hydro power plants to the environmental impact of an average of three large hydropower plants, which range from the small farms and the average of the major producing about as much energy. Based on the empirical basis used in this study are the environmental impacts of large hydropower fewer and less severe than the cumulative environmental impacts from the 27 small plants. The results are, however marginal in favor of big hydro power plants and suffers from uncertainties due to lack of precision in the raw data, limitations of the methodic of accumulating environmental effects of many small facilities and extensive use of discretion in the transition between the scientific description of the environmental impacts and impact classes (Statens Vegvesen, 2006). The input data in the study has primarily been published available environmental impact assessment (KU). The results must therefore be said to have limited power statement in order to draw general conclusions. The identified environmental effects are to some extent, different from the type and size, so that an individual valuation and political or administrative priorities will to a large extent determine the preferred strategy for the development of hydropower. From 2012 promoted the production stimulating action as a result of common certificate market with Sweden. Small hydro power plants has so far been a priority in Norway, but when Norway implements EU Water Framework Directive in all areas of precipitation, one should be aware of our findings, especially regarding the potential in expanding of existing hydropower plants. (auth)

  12. Fishy Business: Response of Stream Fish Assemblages to Small Hydro-power Plant Induced Flow Alteration in the Western Ghats, Karnataka

    Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.

    2017-12-01

    Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for

  13. 2014 Hydropower Market Report

    Rocío Uría-Martínez, Patrick W. O’Connor, Megan M. Johnson

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  14. Small hydropower plants in Switzerland: definition of spatial priorities, taking into account the conflicting interests of power production and protection of the environment

    Wehse, Heiko; Pazhepurackel, Vinitha

    2012-01-01

    Due to the promotion of small hydropower plants in Switzerland, a lot of new projects have been planned. This leads to conflicts of interests, especially between ecology and power production. Where should new power plants be built, and which rivers should be protected from any further impact ? In this paper a methodology is developed in order to find answers to those questions. It confronts the oppositional interests for the use and protection of rivers in a transparent way. By doing so, it is hoped to rationalize conflicts. The methodology should help the authorities to evaluate new projects, and it is a basis for regional strategies of river use and protection. The method was tested in collaboration with the cantonal authority of Bern to classify all the rivers of the canton (12'000 km) [Conseil-executif du canton de Berne 2009]. For each river section, the different interests were identified. It has been adapted for the canton of Fribourg to classify the river reaches where new plants are planned [Wehse 2010]. In 2011 the swiss confederation has published a recommendation for the cantonal and communal authorities, concerning the elaboration of cantonal strategies for the use and protection of the rivers [Wehse 2011], which is based on the same method. (authors)

  15. The 'Alte Ziegelei' small hydro-power installation in Derendingen, Switzerland; Kleinwasserkraftwerk alte Ziegelei in Derendingen. Programm Kleinwasserkraftwerke. Erfahrungs- und Schlussbericht

    Koehli, T.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the experience gained with a small hydro-power installation in Derendingen, Switzerland. This unique 'micro' installation uses an archimedian screw to produce 6.8 kW of power from a head of 1.15 m and a through-flow of 800 - 1000 litres per second. Optimisation of the project is discussed as are the effects of changing water levels above and below the screw. Winter operation is described and the mounting of gratings necessary to avoid the intake of debris is discussed. Fish-passes are looked at and the effort required for maintenance is compared with that for other types of installations. An accident that occurred is analysed and the results of energy-efficiency measurements made on the installation are presented. The report is rounded off with an evaluation of the plant's performance and a review of future work to be done.

  16. Summary of the Midwest conference on small-scale hydropower in the Midwest: an old technology whose time has come

    None

    1980-05-01

    A variety of decision makers convened to examine and discuss certain significant problems associated with small-scale hydroelectric development in the Midwestern region, comprised of Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin. The conference opened with an introductory panel of resource persons who outlined the objectives of the conference, presented information on small-scale hydro, and described the materials available to conference participants. A series of workshop sessions followed. Two of the workshop sessions discussed problems and policy responses raised by state and Federal regulation. The remaining two workshops dealt with economic issues confronting small-scale hydro development and the operation and usefulness of the systems dynamics model developed by the Thayer School of Engineering at Dartmouth College. A plenary session and recommendations completed the workshop.

  17. Hydropower annual report 2003

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering Lab. (INEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering Lab. (INEL)

    2004-02-01

    This report describes hydropower activities supported by the U.S. Department of Energy (DOE) Wind and Hydropower Program during Fiscal Year 2003 (October 1, 2002 to September 30, 2003). Background on the program, FY03 accomplishments, and future plans are presented in the following sections.

  18. Hydropower Modeling Challenges

    Stoll, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andrade, Juan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brancucci Martinez-Anido, Carlo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    Hydropower facilities are important assets for the electric power sector and represent a key source of flexibility for electric grids with large amounts of variable generation. As variable renewable generation sources expand, understanding the capabilities and limitations of the flexibility from hydropower resources is important for grid planning. Appropriately modeling these resources, however, is difficult because of the wide variety of constraints these plants face that other generators do not. These constraints can be broadly categorized as environmental, operational, and regulatory. This report highlights several key issues involving incorporating these constraints when modeling hydropower operations in terms of production cost and capacity expansion. Many of these challenges involve a lack of data to adequately represent the constraints or issues of model complexity and run time. We present several potential methods for improving the accuracy of hydropower representation in these models to allow for a better understanding of hydropower's capabilities.

  19. Drinking-water hydropower station 'Loye' in Grone, Switzerland - Feasibility study; Petite centrale hydro-electrique de Loye sur le reseau d'eau potable de la commune de Grone. Etude de faisabilite

    NONE

    2007-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) describes a small hydropower project to be realised in Grone, southern Switzerland. The system planed is described. This provides the necessary pressure reduction in the drinking-water supply system between the springs in the mountains and the reservoir in the valley whilst generating electrical power at the same time. A one-injector Pelton turbine that meets all drinking-water quality requirements is used to generate 48 kW of electrical power using the pressure obtained from the height-difference of around 164 metres. The forecast electricity production amounts to 283,000 kWh/y, of which 88,000 kWh in the wintertime. The expected production cost is 0.219 CHF/kWh. A 550 m long pipeline has to be replaced.

  20. Cost base for small-scale hydropower plants : with a generating capacity of up to 10 000 kw : price level 1 January 2010

    Slapgaard, Jan

    2012-07-25

    This manual has been prepared as a tool for calculation of average foreseeable contractor costs (civil works) and supplier costs (mechanical and electrical equipment) for large hydroelectric power plants with an early phase generating capacity of up to 10 000 kw. These costs will depend on a number of conditions which may vary from plant to plant, and this requires that the user to have a sound technical knowledge. This applies in particular to the civil works associated with the hydropower plant. The manual is a supplement to our cost base for larger hydropower projects (Manual No. 1/2012) (au)

  1. Projects for small hydro-power installations in the Canton of Uri, Switzerland; Kanton Uri. Projekte fuer Kleinwasserkraftwerke - Vorstudie

    NONE

    2009-11-15

    This report for the Swiss Federal Office of Energy (SFOE) on a preliminary study presents and discusses small-hydro projects at three locations in the Swiss Canton of Uri. Three of originally six potential locations were selected for further investigation. Factors such as the usable quantities of water available at the locations are discussed. The projects Brunnital, Gruonbach and Palanggenbach are discussed in detail. Water quantities and various components of the installations such as water intakes, de-sanding installations, pressure conduits, machine houses and tailrace channels are described, as is the electro-mechanical equipment proposed. Also, environmental aspects are dealt with. Annual electricity production and economic viability are further topics covered in the report.

  2. The small hydropower plant in the old river Aare in Niedergoesgen, Switzerland; Kleinwasserkraftwerk Ballyschwelle, alte Aare, Niedergoesgen. Vorprojekt

    Eichenberger, P.

    2007-07-15

    This preliminary project for the Swiss Federal Office of Energy (SFOE) presents a project which proposes the construction of a new small hydro plant in Niedergoesgen/Gretzenbach, Switzerland, that is to make use of the waters of the old river Aare. The project proposes the construction of a new, 350 kW plant at the site of an existing sill across the old river that originally formed part of a water-power installation given up in 1917. The existing parts of the old installation are described and the legal situation concerning water rights and land ownership are examined. Three variants for a new installation are described. Technical figures and energy-production estimates for a new installation are discussed. Ecological aspects are examined, as are the recreational aspects of the river at this location. Cost estimates and economic viability are discussed.

  3. Modelling the feasibility of retrofitting hydropower to existing South ...

    An investigation was carried out with the primary objective of ascertaining whether it is possible to develop a model for determining the feasibility of retrofitting hydropower to existing dams in South Africa. The need for such a model is primarily due to the growing importance of small-scale hydropower projects resulting from ...

  4. Hydropower research and development

    NONE

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  5. Hydropower Vision: Full Report

    None, None

    2016-07-01

    Hydropower has provided clean, affordable, reliable, and renewable electricity in the United States for more than a century. Building on hydropower’s historical significance, and to inform the continued technical evolution, energy market value, and environmental performance of the industry, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has led a first-of-its-kind comprehensive analysis focused on a set of potential pathways for the environmentally sustainable expansion of hydropower (hydropower generation and pumped storage) in the United States.

  6. Hydropower development trends from a technological paradigm perspective

    Xu, Jiuping; Ni, Ting; Zheng, Bobo

    2015-01-01

    Highlights: • We propose a novel concept of hydropower development technological paradigm. • We create a data analysis system to visualize the keyword foci. • Future trajectories include hybrid power systems and resources from seawater. • The HDTP consists of a three-stage evolution and a policy framework. • The HDTP provides a how-to-do solution for the soft path. - Abstract: Hydropower has long been considered the backbone of the power generation sector in low-carbon and sustainable energy systems. Yet, as reliance on hydropower has been generally declining, the world is awakening to the need to fundamentally rethink the way hydropower is developed and managed. The paper proposes a systematic methodology to research the development trends and find a more sustainable hydropower path. Literature mining using the data analysis system and the technological paradigm theory were adopted to conduct the research. The keyword visualization results were found to meet the laws for the three phases of the technological paradigm. Specific key areas, such as small hydropower plants, hybrid power systems, and hydropower from seawater were identified as past, present and near future trajectories. To further accelerate hydropower development, specific subsidies and incentives need to be provided in areas such as capital costs and technological support. The study paves the way for a soft path solution which complements the hard path in hydropower field

  7. Hydropower's role in delivering sustainability

    Altinbilek, D.; Seelos, K.; Taylor, R.

    2005-01-01

    equipment within existing infrastructure; this can extend the operating life by a further 30 to 50 years. Small-scale, decentralised development has been responsible for bringing light and power to remote communities. Such schemes have catalysed local commercial diversification and prosperity. The lower investment demand of smaller schemes has enabled private sector involvement through independent power production. Typically smaller schemes become grid connected if the power system is accessible, as this increases the security of supply. Furthermore, schemes at remote sites can assist transmission system stability. A further important role of smaller scale hydro is the recovery of energy at water infrastructure developed for other purposes. In many countries, large schemes play a significant role in national and regional supply security due to the flexibility of storage reservoirs and independence from fuel price fluctuations. Hydro also integrates well with other generation technologies, with its flexibility enabling thermal plants to operate steadily (saving fuel and reducing emissions). In addition, its responsiveness permits the back-up of the intermittent renewables. The question of storage is clearly a major issue in balancing supply and demand. Hydro reservoirs and pump-storage schemes offer security in the stability and reliability of power systems; they can absorb power when there is an excess and follow load demand instantaneously. A major challenge is that 'support' and 'storage' services are rarely understood and encouraged in the market-driven arena. The main arguments against hydropower concern its social impacts, such as land transformation, displacement of people, and environmental changes, i.e. fauna, flora, sedimentation and water quality. The social and environmental impacts can, however, be mitigated by taking appropriate steps according to established codes of good practice. As a tool for this purpose, the hydropower sector has recently developed and

  8. Technology Roadmap: Hydropower

    NONE

    2012-07-01

    Hydropower could double its contribution by 2050, reaching 2,000 GW of global capacity and over 7,000 TWh. This achievement, driven primarily by the quest of clean electricity, could prevent annual emissions of up to 3 billion tonnes of CO2 from fossil-fuel plants. The bulk of this growth would come from large plants in emerging economies and developing countries. Hydroelectricity’s many advantages include reliability, proven technology, large storage capacity, and very low operating and maintenance costs. Hydropower is highly flexible, a precious asset for electricity network operators, especially given rapid expansion of variable generation from other renewable energy technologies such as wind power and photovoltaics. Many hydropower plants also provide flood control, irrigation, navigation and freshwater supply. The technology roadmap for Hydropower details action needed from policy makers to allow hydroelectric production to double, and addresses necessary conditions, including resolving environmental issues and gaining public acceptance.

  9. Preliminary study for the revitalisation of the 'Duersteller' small hydropower installation in Wetzikon, Switzerland; Vorstudie Kleinwasserkraftwerk J. Duersteler and Co AG Wetzikon ZH. Revitalisierungsvorhaben des Kraftwerkes mit seinen 80-jaehrigen Francis-Doppelturbinen

    NONE

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the possibility of revitalising an 80-year-old, small industrial hydropower plant fitted with twin Francis turbines. The present situation and the condition of the turbines and their associated water channels are described and the hydrological data of the Aabach stream is presented. Details are given on the presently installed technical apparatus and the legal and ownership situation. Environmental and historical aspects are discussed. The economics of the proposed revitalisation project are discussed and possible restrictions that could be enforced by the authorities are looked at. The report is concluded with recommendations for further action.

  10. Preliminary study for a drinking-water hydro-power station in Raron, Switzerland; Vorstudie Trinkwasserkraftwerk 'Moos', Gemeinde Raron VS

    Loretan, F. [Schneider - Bregy und Partner AG, Raron, (Switzerland); Hiller, B. [Ryser Ingenieure AG, Berne (Switzerland)

    2006-07-01

    This final report for the Small Hydro Programme of the Swiss Federal Office of Energy (SFOE) presents the concept for the augmentation of an existing drinking-water-powered small hydro-electric project with an additional installation that is to use the overflow-water of a reservoir to drive a 75 kW Pelton turbine. The paper discusses the hydraulic situation and describes the installations proposed. Energy production and the costs involved are listed and commented on. Water in drinking-water quality from the Loetschberg railway tunnel is also to be used in the system.

  11. assessment of the hydropower potential of kangimi reservoir

    2012-11-03

    Nov 3, 2012 ... other renewable energy sources such as wind, small or mini hydropower ... plied to Kaduna treatment plant during the periods of low flow in River .... following functional reservoir relationships that are very site specific: i.

  12. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    2010-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  13. Development potential for hydropower

    Laufer, F.; Groetzinger, S.; Peter, M.; Schmutz, A.

    2004-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the potential for the development of hydropower in Switzerland. The report updates the energy perspectives made ten years earlier. An overview of Swiss electricity production and consumption is presented and the proportion provided by hydropower is noted. Figures on installed capacity and import/export quantities are presented and discussed. Technological developments and the economical frameworks involved are discussed, as are regulatory measures that can be taken. Theoretical and technically realisable potentials for increased use of hydropower are discussed. The methods used to do this are examined. Strategies and measures to be taken are listed and discussed. An appendix includes data sheets on power plant modelling, including examples

  14. Hydropower and its development

    Janusz Steller

    2013-09-01

    Full Text Available Even if the documented history of hydropower reaches back as far as 5000 years ago, it owes its rapid acceleration in growth to the industrial revolution at the beginning of the nineteenth century. The end of the twentieth century brought about new challenges associated, on the one hand, with a growing demand for ancillary grid services, and on the other with new requirements for mitigating the environmental impact. Hydropower technology expansion had come about in a manner aiming to at least partially exploit the mechanical energy of sea and ocean waters. This study points out to the most important trends in and barriers to hydropower development, with particular focus on the situation in Poland. This author sees the main threats to Polish hydropower development in how it is perceived solely through the prism of the generation of a particular volume of green energy, and a total underestimation of the quality of electricity supply and the numerous non-energy benefits resulting from hydroelectric power plant operation.

  15. Developing hydropower overseas

    Smith, W.B.

    1991-01-01

    This article examines how the National Hydropower Association (NHA) has found ways to support its members who desire to expand their business programs to foreign markets through participation in a wide range of government programs. The topics of the article include the market in developing countries, the certificate of review, products and services, and domestic and international competition

  16. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fernandez, Alisha R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modular hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.

  17. The 'Muehle' small hydropower plant in Lengnau, Switzerland; Kleinwasserkraftwerk Muehle Lengnau (AG), Nr. 861 an der Surb. Auflage- und Konzessionsprojekt

    Chapallaz, J.-M. [JMC Engineering, Baulmes (Switzerland); Eichenberger, P. [Colenco Power Engineering AG, Baden-Daettwil (Switzerland)

    2007-10-15

    This technical report for the Swiss Federal Office of Energy (SFOE) presents the project for the renewal of the concession for the use of the waters of the river Surb in Lengnau, Switzerland. The refurbishment of the existing installation proposed has to be carried out for flood-prevention and other reasons. Details and history of the existing installation and the old mill are listed. The proposed refurbished installations are described and figures on the proposed 12 kW hydropower installation are provided. The geographical situation and changes required are looked at and commented on. The building work necessary is described and the costs involved are discussed, as is the economic feasibility of the project.

  18. Decentralized electrification by small-scale hydraulic stations : a viable solution in mountainous regions

    Dahman Saidi, A.

    1998-01-01

    The installation of a small-scale hydroelectric generating station to supply electricity to the small community of Takordmi in Morocco was described. The community of Takordmi consists of 32 households located in the remote mountainous region of Morocco. Takordmi was without electrical power until 1992 when a small 15 kW Pelton turbine was installed to supply electricity to the residents. Water to power the turbine generator was supplied by a small stream with an output of 4 to 8 liters per second and a head of 535 meters. Since the unit was installed, the mean monthly consumption of the community has been only 115 kWh, which averages to 4 kWh per household. The success of the Takordmi project has prompted the electrification of several other small communities in the remote regions of Morocco either by similar micro-hydroelectric stations or by photovoltaic cells. This project, funded by the Republic of Austria, demonstrates that it is feasible to provide electricity to remote rural communities by using local sources of power. 3 figs

  19. Environmental impact of hydropower systems

    Malai, Marius

    1996-01-01

    The installed hydropower potential of Romania is evaluated to 15,700 MW and 42 billion MWh/year power generation. Only 39% of this potential are currently being utilized. In this note, the impact of Somes-Tarnita and Mariselu-Cluj hydropower systems on the environment is presented. Also, the socio-economic effects on the local communities are considered. These two hydropower systems supply a total electric power of 470 GWh/year

  20. Hydropower's Biogenic Carbon Footprint.

    Scherer, Laura; Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations.

  1. Hydropower's Biogenic Carbon Footprint

    Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations. PMID:27626943

  2. Hydro-power

    Piro, P.

    2010-01-01

    On average the hydro-power sector produces 12% of the electrical power in France. A quarter of this production might pass to another operator than EDF because the end of some grants is nearing (2012 for 12 installations). In France the power of rivers belongs to the state that gives operators grants to harness it. The allowance lasts 75 years usually but for installations below 4.5 MW a permanent and definitive grant is allowed. Most installations are ancient and their investment have been paid off since a long, so hydro-power is the most profitable renewable energy in France. A lot of bidders are expected. Each bid will be assessed on 3 criteria: -) the global energy efficiency of the waterfall, -) a balanced management of the water resource, and -) an economic and financial offer to the state. The balance between the different uses of water is getting more delicate to reach and this renewal of grants will be an opportunity for the state to impose a better preservation of the environment. In July 2008, the French government announced a program for the re launching of the hydro-power, this program has been reduced and now only 3000 GWh supplementary are expected by 2020. (A.C.)

  3. Characteristics of Sanxikou Water-retaining Hydropower Station and Its Application of New Technology%三溪口河床式水电站工程特点与新技术应用

    赖勇; 黄荣卫; 张永进

    2014-01-01

    针对三溪口河床式水电站工程过闸流量大、基础为深厚强透水砂砾卵石,防渗及防冲问题突出的特点,泄洪闸底板表面考虑抗冲耐磨要求设置聚丙烯纤维混凝土面层,防冲槽局部以抛石混凝土技术进行加固;枢纽右岸地势低,防渗系统封闭困难,利用枢纽右岸上游330国道路堤兼作挡水溢流坝,并在路堤迎水坡脚设置悬挂式防渗墙,连接上游山体与闸前垂直式防渗墙构建防渗系统;枢纽交通桥兼作左右岸外部交通连接线,基础承载力要求高,根据泄洪闸结构特点及河床地质条件,以泄洪闸底板作为筏型基础,低压注浆技术在渗流状态下强透水地基中被成功运用。%Sanxikou hydropower station is a water-retaining station with large flow ,it is located on the foundation of thick permeable gravel pebbles ,which causes the problem of seepage and erosion .Regarding to these problems ,FRC(fiber re-inforced concrete) was used on the floor of the gate and RFC(rocked-filled concrete) was used in anti-scour channel for energy dissipation and erosion control .The embankment of State Road 330 located at the right bank of the upstream was served as water-retaining and overfall dam ,due to the low-lying right bank of the river which made it hard to seal the an-ti-seepage system .In addition ,Suspended cut-off wall was constructed at the heel of the riverside slope to connect the anti-seepage system between the upstream mountain and the vertical cut-off wall in front of the gate .The traffic bridge as the connecting media between the left and right bank ,the bearing capacity of its foundation was set high .According to the structural characteristics and the geological condition of the sluice ,the floor of the sluice was used as raft foundation and low pressure grouting method in sandy gravels were applied on strong permeable foundation successfully in the state of seepage .

  4. Hydropower systems planning in distribution networks based on GIS

    Ramirez-Rosado, I.J.; Zorzano-Santamaria, P.; Fernandez-Jiminez, L.A.; Garcia-Garrido, E.; Zorzano-Alba, E.; Lara-Santillan, P.M.; Mendoza-Villena, M. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering

    2005-07-01

    Planning models for hydraulic energy systems developed with a new computational geographic information system (GIS) tool were presented. The GIS tool was used to identify sections of rivers that are suitable for small-scale run-of-river hydropower generation in the La Rioja region of Spain. The tool was also used to evaluate economic data related to financing grants, technological costs, installation costs, and forecast demands for various consumption scenarios. Case studies of 2 hydropower systems were used to test the tool. The planning models were based on levelized electric costs (LEC) of run-of-river hydropower systems, and enabled the systems to be analyzed in isolation as well as when connected to an existing electricity network. Results of the modelling studies showed that the tool is capable of analyzing the LEC of potential hydropower systems in a range of different scenarios while maintaining the geographic characteristics and requirements of individual regions. 7 refs., 4 figs.

  5. Effects of small hydropower plants on low-and moss flora. A feasibility study; Virkninger av smaa vannkraftverk paa lav- og mosefloraen: en forundersoekelse

    Ihlen, Per G.; Bjelland, Torbjoerg; Vaskinn, Kjetil; Johnsen, Geir Helge

    2012-07-01

    We have established a list of lichen- and moss flora of a waterway to be developed for hydropower production (Vangjolo) and in a control water system (Roesgrovi), both in Voss in Hordaland. The waterways have similar bedrock, exposure, vegetation and elevation. To monitor any change in the flora, it was laid out 20 fixed routes from each river systems where low-and moss flora were recorded. To relate this to the monitoring of potential impacts, l flow, humidity, air temperature, water temperature and dew point temperature were logged. It was recorded 66 species total for Roesgrovi and Vangjolo, and 32 mosses, 29 lichens and 5 vascular plants. The results show that the rivers are so similar to the low-and moss flora that they can form the basis for further investigations. This is also shown by the DCA-analyses. The waterways comprises a combination of species with the same requirements as to moisture, and contains species of high and low Ellenberg indicator values for moisture. There is no statistically significant difference between Roesgrovi and Vangjolo in the fixed routes average values. The hydrological and local climatic measurements also show that the river systems are comparable for further study of possible changes after development. (eb)

  6. Hydropower externalities: a meta analysis

    Mattmann, M.; Logar, I.; Brouwer, R.

    2016-01-01

    This paper presents a meta-analysis of existing research related to the economic valuation of the external effects of hydropower. A database consisting of 81 observations derived from 29 studies valuing the non-market impacts of hydropower electricity generation is constructed with the main aim to

  7. Renewable energy in the Baltic countries: the case of hydropower

    Punys, P.; Dumbrauskas, A.; Rimkus, Z.; Streimikiene, D.

    2006-01-01

    This paper analyses the use of renewable energy sources (RES) dedicated mainly for electricity generation in the Baltic countries (Estonia, Latvia and Lithuania). Hydropower sector including both large (medium) and small power plants is particularly considered. The region has very limited energy resources of its own and is heavily dependent on the import of the primary energy sources (in some way except Estonia). The main objective of energy policy of the Baltic countries is to reduce such a total dependence by favouring the use of RES. A brief description of energy sector is given, focusing on electricity generation. RES potential currently in use and to be exploited in the future, buy- back rates of the key sources are presented. The countries' target broken down according to the individual RES to meet the EU 'green' electricity directive (2001/77/CE) are presented. Small and large hydropower potential is analyzed, a general overview of hydro-plants in operation and planned schemes is provided. A particular attention is devoted to environmental and social aspects of hydropower development. The requirements of the protected areas in relation to dam construction are analyzed, an estimation of resistance to small hydropower development is shown. The environmental legislation including forbidden rivers for damming actually in force in the Baltic countries is considered; hydropower image perceptible by general public, NGOs and official environmental bodies are discussed. The causes and legal basis of the promulgation of the list of forbidden rivers are revealed. A conclusion is drawn that the contradiction between two EU legal frameworks - environmental protection and promotion of renewables, in the case of hydropower, exists. The evaluation of the quantitative impact of the forbidden rivers on small hydropower resources in Lithuania proves. the environmental legislation is one of the strictest in the European countries. (authors)

  8. Renewable energy in pakistan: part-II mini/micro hydropower plants

    Maher, M.J.

    2005-01-01

    Part-1 of this series dealt with Wind-Energy Prospects in Pakistan. This second part gives a brief account Mini/Micro Hydro-Power Plants in Pakistan. Hydropower is well-known throughout the world and currently contributes 6-7% of total world energy-production and 20% of total world electricity generation. Most of the hydro-plants are usually designed for higher generation capacity than that which could be needed to utilize the average water-flows. Small hydro-plants are another potential source of energy among the non-conventional energy sources, which can reduce the load on conventional-energy production. Small hydropower technology is today a mature and proven technology. Civil works and installation of equipment involve simple process, which offer good opportunity to local people for employment and use locally available materials Nevertheless a small decentralized hydel plant, based on natural waterfalls is a very desirable option for geographically remote, but naturally suitable locations which are otherwise far from the national physical infrastructure. The development of Mini/Micro hydel stations in these areas, with isolated, thinly clustered, population, is a very appropriate solution to meet power-needs of such areas for lighting as well as cottage industry. The unique feature of these installations is the participation of local community to the optimum extent. The entire civil works, the intake system, power channel, forebay, penstock and power house building, as well as labour is provided by the inhabitants voluntarily. While maximum use is made of stone, with minimum use of cement, the generator, distribution wires, etc., need to be arranged from the market. The turbine is manufactured using indigenous materials. The installation-cost per KW is relatively low i.e. Rs. 25,000/- as compared to large-scale installations. There could of course be variations, in the installation-cost, depending on the market prices of the material. (author)

  9. Water-quality impact assessment for hydropower

    Daniil, E.I.; Gulliver, J.; Thene, J.R.

    1991-01-01

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  10. Drinking-water supply system of Arbedo-Castione. Replacement of the main water supply line and installation of a small hydropower plant; Sostituzione condotta adduzione sorgenti in valle d'Arbedo e ricupero energetico. Acquedotto di Arbedo-Castione

    Conti, M.

    2005-07-01

    This report presents the comparative evaluation of variants for the replacement work of the main drinking-water supply line from the Arbedo valley to the community of Arbedo-Castione, southern Switzerland. Three variants include the installation of a small hydropower plant to take advantage of the elevation difference of 340 m between the location of water collection and the water reservoir. The base case only includes the line replacement. The feasibility study includes both a technical and an economical analysis. The average water flow rate is estimated to 12 l/s. The nominal electrical power would be 25 kW. Power production cost is calculated to about 0.09 Swiss francs/kWh. The author concludes that an optimized variant with small hydropower plant would be the best solution, also from the point of view of environmental aspects.

  11. Design of the ATLAS New Small Wheel Gas Leak Tightness Station for the Micromegas Detector Modules

    Gazis, Evangelos; The ATLAS collaboration

    2017-01-01

    In this work we describe advanced data processing and analysis techniques intended to be used in the gas tightness station at CERN for Quality Assurance and Quality Control of the New Small Wheel Micromegas Quadruplets. We combine two methods: a conventional one based on the Pressure Decay Rate and an alternative-novel one, based on the Flow Rate Loss. A prototype setup has been developed based on a Lock-in Amplifier device and should be operated in conjunction with the gas leak test via the Flow Rate Loss. Both methods have been tested by using emulated leak branches based on specific thin medical needles. The semi-automatic data acquisition, monitoring and processing system is presented also in this work while a more sophisticated environment based on the WinCC-OA SCADA is under development.

  12. Simulation of a small muon tomography station system based on RPCs

    Chen, S.; Li, Q.; Ma, J.; Kong, H.; Ye, Y.; Gao, J.; Jiang, Y.

    2014-10-01

    In this work, Monte Carlo simulations were used to study the performance of a small muon Tomography Station based on four glass resistive plate chambers(RPCs) with a spatial resolution of approximately 1.0mm (FWHM). We developed a simulation code to generate cosmic ray muons with the appropriate distribution of energies and angles. PoCA and EM algorithm were used to rebuild the objects for comparison. We compared Z discrimination time with and without muon momentum measurement. The relation between Z discrimination time and spatial resolution was also studied. Simulation results suggest that mean scattering angle is a better Z indicator and upgrading to larger RPCs will improve reconstruction image quality.

  13. The impact of global change on the hydropower potential of Europe: a model-based analysis

    Lehner, Bernhard; Czisch, Gregor; Vassolo, Sara

    2005-01-01

    This study presents a model-based approach for analyzing the possible effects of global change on Europe's hydropower potential at a country scale. By comparing current conditions of climate and water use with future scenarios, an overview is provided of today's potential for hydroelectricity generation and its mid- and long-term prospects. The application of the global water model WaterGAP for discharge calculations allows for an integrated assessment, taking both climate and socioeconomic changes into account. This study comprises two key parts: First, the 'gross' hydropower potential is analyzed, in order to outline the general distribution and trends in hydropower capabilities across Europe. Then, the assessment focuses on the 'developed' hydropower potential of existing hydropower plants, in order to allow for a more realistic picture of present and future electricity production. For the second part, a new data set has been developed which geo-references 5991 European hydropower stations and distinguishes them into run-of-river and reservoir stations. The results of this study present strong indications that, following moderate climate and global change scenario assumptions, severe future alterations in discharge regimes have to be expected, leading to unstable regional trends in hydropower potentials with reductions of 25% and more for southern and southeastern European countries

  14. On the suitability of roach, perch, vendace and whitefish for canning in small scale canning stations

    Mailis Kuuppo

    1978-07-01

    Full Text Available The suitability of roach (Rutilus rutilus, perch (Perca fluviatilis, vendace (Coregonus albula L., and whitefish (Coregonus sp. for canning in small scale canning stations was tested. Various pretreatment methods and processing conditions were evaluated for different fish species. Processing equipment suitable for small scale canning stations was developed in the course of this study. The keepability of the canned products was followed by physical, organoleptic and microbiological determinations during a period of 18 months. The roach, vendace and whitefish preserves were of the types »canned fish in tomato sauce» and »canned fish in oil and its own juice» and the perch preserves of the type »canned fish in brine». Roach, vendace and whitefish were salted by immersing into 21 % brine for 4—25 minutes depending on the size of the fish and preheated by smoking at 90° C for 60 —120 minutes. Products of good quality were obtained from whitefish which was dried by cooking in oil at 120 °C for 3 minutes instead of smoking. The perch were cooked in 3 % and 4 % brine for 15—20 minutes depending on the size of the fish. The best time and temperature combination for the aimed F value 10 and for a product of good quality was 60 minutes at 115°C when using rotation. In organoleptic evaluation all the canned products were judged to be of good quality and there were no significant changes in appearance, texture, taste or aroma during 18 months' storage at room temperature. No microbial growth or swelling of the cans was detected during storage. Use of frozen raw material in canning whitefish had no detectable effect on the quality of the final product.

  15. Hydropower: Partnership with the Environment

    None

    2001-06-01

    This brochure provides useful information on types of hydroelectric facilities as well as general information on capacity, generation, environmental issues, and advanced conventional hydropower technology within the United States.

  16. Using ecological hydrograph for determination of flow remaining in sections of reduced flow of small hydropower plants; Uso do hidrograma ecologico para determinacao de vazoes remanescentes em trechos de vazao reduzida de pequenas centrais hidreletricas

    Oliveira, Samuel Torres de; Dzedzej, Maira; Batista, Thiago Roberto; Silva, Benedito [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Santos, Afonso Henrique Moreira [MS Consultoria Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2010-07-01

    The rivers have been providing the basis for socio-economic development. Water is used for many different purposes, domestic, industrial, agricultural and power generation, in addition to providing navigation routes, and food resources for fisheries. The installation of hydroelectric centers which cause diversion of the river, leads to the creation of a reduced flow section. The residual flow proposed for this area should respect the characteristics of hydrological, morphological, chemical and ecological state of the river, ensuring their multiple uses. This work's purpose is the determination of a flow, or a set of adequate minimum flows for the reduced flow section of Small Hydropower Plants (SHP), to ensure the sustainability of the river and estuary ecosystems, communities and human welfare. The proposal of a holistic methodology for determining an environmental flow, using either hydrological, hydraulic and habitat methodologies, aims to innovate in the destination, not just of a fixed value of in stream flow, but of a complete system of adequate flows to the river under study. Finally, we present the case of PCH Rio Manso, of property Ecopart Investimentos S.A., located on rio Lourenco Velho, Itajuba city, MG; a project currently under review by the responsible environmental agency, aiming to acquire the Previous License. (author)

  17. The impacts of climate change on a Norwegian high-head hydropower plant

    Chernet, Haregewoin Haile; Alfredsen, Knut; Killintveit, Aanund

    2010-07-01

    Full text: Norway relies on hydropower for 99 percent of the electricity production and thus Hydropower is important for Norway today and in the future energy system. The work presented in this paper shows how a high-head hydropower system in Norway will be affected in the future climate. The Aurland Hydropower system, operated by E-Co Vannkraft, Norway is the test case for the study. The Aurland hydropower system has many reservoirs and transfer systems and is considered to be one of the complex systems in Norway, but also a typical example of a Norwegian high head system. The nMAG Hydropower simulation model, which has been developed at the Norwegian Hydro technical Laboratory, is used to simulate the hydropower system. Historical and future inflow series were transposed from the neighbouring catchment Flaamselvi using scaling based on area and specific runoff, as there is no discharge station in Aurland catchment with long unregulated inflow series to set up the model and to be used for developing future climate scenarios. To generate the future inflow series for the analysis, the HBV hydrological model is calibrated for the Flaamselvi catchment. The model is then used to generate future inflow series of using the Hadley GCM (HADAm3) and A2, B2 climate scenarios. The operation of the hydropower system is then simulated for the period 2071 -2100 to see how future power production is affected by the change in the inflow conditions. The HBV model is also used to see how snow accumulation will be affected in the future as snow melt is important for Norwegian reservoir and hydropower systems. The Hydrologic scenarios under climate change imply an average increase in runoff for the system. Snow accumulation will decrease with sooner snow melt and more winter precipitation as rain. The hydropower simulation results show that associated with the increase in runoff there is an increase in energy generation with 10-20% under the current reservoir operation strategies

  18. Regulatory risks in Brazil - obstacle to the development of new small hydropower plants; Riscos regulatorios no Brasil - obstaculo ao desenvolvimento de novas pequenas centrais hidroeletricas

    Prado Junior, Fernando A. Almeida [Sinerconsult Consultoria Treinamento e Participacoes Ltda., Sao Paulo, SP (Brazil)]. E-mail: fernando@sinerconsult.com.br; Alves, Gilberto [Companhia Energetica de Sao Paulo (CESP), SP (Brazil)]. E-mail: gilberto@cesp.com.br; Yamagushi, Hugo R. [ARSESP - Agencia de Regulacao de Saneamento e Energia do Estado de Sao Paulo, Sao Paulo (Brazil)]. E-mail: hyamagushi@sp.gov.br; Braun, Paulo Victor C.B. [EMAE Empresa Metropolitana de Aguas e Energia Eletrica, Sao Paulo, SP (Brazil)]. E-mail: paulo.victor@emae.sp.gov.br

    2008-10-15

    The paper analyses the risks of legal and regulatory order that affect the activity of exploration of Small Power Hydro plants in Brazil. In the scope of the main administrative phases of these activities, namely, inventory, basic project, attainment of licenses and connection to the electric grid, the main difficulties faced by entrepreneurs are identified and analysed. (author)

  19. Gis-based procedures for hydropower potential spotting

    Larentis, Dante G.; Collischonn, Walter; Tucci, Carlos E.M. [Instituto de Pesquisas Hidraulicas da UFRGS, Av. Bento Goncalves, 9500, CEP 91501-970, Caixa Postal 15029, Porto Alegre, RS (Brazil); Olivera, Francisco (Texas A and M University, Zachry Department of Civil Engineering 3136 TAMU, College Station, TX 77843-3136, US)

    2010-10-15

    The increasing demand for energy, especially from renewable and sustainable sources, spurs the development of small hydropower plants and encourages investment in new survey studies. Preliminary hydropower survey studies usually carry huge uncertainties about the technical, economic and environmental feasibility of the undeveloped potential. This paper presents a methodology for large-scale survey of hydropower potential sites to be applied in the inception phase of hydroelectric development planning. The sequence of procedures to identify hydropower sites is based on remote sensing and regional streamflow data and was automated within a GIS-based computational program: Hydrospot. The program allows spotting more potential sites along the drainage network than it would be possible in a traditional survey study, providing different types of dam-powerhouse layouts and two types (operating modes) of projects: run-of-the-river and storage projects. Preliminary results from its applications in a hydropower-developed basin in Brazil have shown Hydrospot's limitations and potentialities in giving support to the mid-to-long-term planning of the electricity sector. (author)

  20. Hydropower, an energy source whose time has come again

    1980-01-01

    Recent price increases in imported oil demonstrate the urgency for the U.S. to rapidly develop its renewable resources. One such renewable resource for which technology is available now is hydropower. Studies indicate that hydropower potential, particularly at existing dam sites, can save the county hundreds of thousands of barrels of oil per day. But problems and constraints-economic, environmental, institutional, and operational-limit is full potential. Federal programs have had little impact on helping to bring hydro projects on line. Specifically, the Department of Energy's Small Hydro Program could do more to overcome hydro constraints and problems through an effective outreach program and more emphasis on demonstration projects.

  1. Matrix of risk and premium for the developing of small hydropower projects; Matriz de risco e premio para o desenvolvimento de projetos de PCHs (Pequenas Centrais Hidroeletricas)

    Santos, Afonso Henriques Moreira; Garcia, Marco Aurelio R.A.; Cruz, Ricardo A. Passos da

    2008-07-01

    The aim of this paper is to propose a method for valuation of assets of small hydroelectric plants in different stages of maturation. To this end, we adopted the principle of risk premium, associated with a portion of the profitability of the project (internal rate of return-IRR) in every stage of development. In other words: the more mature the project, the lower your risk and consequently lower the corresponding premium, adopting as a total prize the IRR expected to the project.

  2. The influence of climate change on Tanzania's hydropower sustainability

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the

  3. Health implications of hydropower development

    Biswas, A.K.

    1982-01-01

    Hydropower development had been neglected in many countries during the past few decades, but the situation dramatically changed during the 1970s owing to the constantly increasing costs of electricity generation by fossil-fuel and nuclear power plants. Currently, hydroelectric generation accounts for approximately 23% of total global electricity supply. Much of the hydropower potential in developing countries of Africa, Asia and Latin America still remains to be exploited. Like any other source of energy, hydropower development has several health impacts. Conceptually, health implications of hydropower development can be divided into two broad categories: short-term and long-term problems. Short-term health impacts occur during the planning, construction and immediate post-construction phases, whereas long-term impacts stem from the presence of large man-made lakes, development of extensive canal systems, alteration of the ecosystem of the area, and changing socio-economic conditions. Longer-term impacts are further classified into two categories: introduction of new diseases and/or intensification of existing ones due to the improvements of the habitats of disease-carrying vectors, and health problems arising from resettlement of the people whose homes and land-holdings are inundated by the reservoirs. All these impacts are discussed in detail. Health impacts of hydropower developments have not yet been studied extensively. It is often implicitly assumed that health impacts of major dams are minor compared with other social and environmental impacts. Future studies could possibly reverse this assumption. (author)

  4. China's rising hydropower demand challenges water sector

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, Winnie; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China

  5. Characterization of the Water Quality Status on a Stretch of River Lérez around a Small Hydroelectric Power Station

    Enrique Valero

    2012-10-01

    Full Text Available The renewable energy emerged as a solution to the environmental problems caused by the conventional sources of energy. Small hydropower (SHP is claimed to cause negligible effects on the ecosystem, although some environmental values are threatened and maintenance of an adequate water quality should be ensured. This work provides a characterization of the water quality status in a river stretch around a SHP plant on river Lérez, northwest Spain, for four years after its construction. The ecological and chemical status of the water as well as the ecological quality of the riparian habitat, were used as measures of quality. Data were compared with the water quality requirements. The variations in the quality parameters were analyzed over time and over the river sections with respect to the SHP plant elements. Two years after construction, the temperature and dissolved oxygen values achieved conditions for salmonid water and close to the reference condition, while pH values were low. The Iberian Biological Monitoring Working Party (IBMWP index showed a positive trend from two years after the construction and stabilized at “unpolluted or not considerably altered water”. Quality parameters did not present significant differences between sampling points. The SHP plant construction momentarily altered the quality characteristics of the water.

  6. Hydroelectricity and ecological considerations. Falsification of the environmental reality by the opponents of hydropower

    Andrzej Giziński

    2013-09-01

    Full Text Available Opponents of hydroelectricity claim falsely that hydrotechnical development of the Lower Vistula River constitutes implementation of Edward Gierek’s concept of bringing only environmental damage1. Statements on the negative environmental impact of constructing small hydroelectric power stations (SHPS are equally groundless. Permanent protests against the construction of dams and river damming, regardless of the motivations and will of protesters, increase energy dependence on Russia, and preserves the poor, post-Bierut hydrological situation2. The main fallacy made by hydropower opponents is the alternative treatment of power and environmental purposes. Environmental errors consist in continuous omission of even the most obvious positive ecological effects of constructing river dams and – what is especially reprehensible – inventing non-existent threats, e.g. lethal concentration of toxic heavy metals in deposits of the Włocławek Reservoir or the detrimental impact of warming up water in stage of falls on the fish population below the dam.

  7. Impact of Austrian hydropower plants on the flood control safety of the Hungarian Danube reach

    Zsuffa, I.

    1999-01-01

    Statistical analysis of daily water level data from four gauging stations along the Hungarian Danube reach has been carried out with the purpose of analysing the impact of the Austrian hydropower plants on the floods of the river. Conditional probability distribution functions of annual flood load maxima and annual number of floods were generated for the periods 1957-1976 and 1977-1996. By comparing these distribution functions, it could be shown that the flood load maxima have decreased, while the number of small and medium floods have increased during the past forty years. These changes indicate a decreased rate of flood superposition resulting from the barrages constructed in this period. The significantly decreased flood load maxima indicate that the Austrian barrage system has positive impact on the flood control safety of the Hungarian Danube reach

  8. Refurbishment of hydropower generation plants

    Kofler, W.

    2001-01-01

    This article presents the factors taken into consideration and the methods used for the management of refurbishment work in the hydropower installations of the TUWAG - a Tyrolean hydropower company in Austria. The technical and financial advantages to be gained from refurbishment are discussed and the requirements placed on the structuring of refurbishment projects are described. Various factors such as plant operation and maintenance, increased returns through better efficiency and cost reduction through lower wear and tear and reduced risk of failure are discussed. Annexes to the article cover monitoring and measurement techniques, the simulation of mechanical and hydraulic conditions, profitability calculations and turbine management

  9. New construction of the Wespimuehle small hydro power station in Winterthur, Switzerland; Stadt Winterthur (ZH). Neubau Kleinwasserkraftwerk Wespimuehle - Konzessionsprojekt

    NONE

    2009-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents a project concerning the renewal of an existing small hydro installation in the historical Wespimuehle on the Toess river in Winterthur, Switzerland. The existing installation is described as is the station's present concession. The proposals for the renewal of this installation are described and discussed, including water intake, electro-mechanical components and the station's tail water channel. The necessary building work and access to the installations are discussed. Investment, operating and maintenance costs are discussed. The expected profits to be gained from the new installation and the risks involved in the project are discussed.

  10. Hydropower and Sustainable Development: A Journey

    Schumann, Kristin; Saili, Lau; Taylor, Richard; Abdel-Malek, Refaat

    2010-09-15

    Hydropower produces 16% of our electricity; it is one of the world's major renewable energy resources. It is playing an important role in enabling communities around the world to meet their power and water needs. The pace of hydropower growth has been rapid but sometimes with little guidance to ensure development is based on sustainability principles. Some of the most promising initiatives to fill the void, such as the Hydropower Sustainability Assessment Protocol, have been driven by the hydropower sector itself. Efforts focus on carrying forward this momentum to obtain a tool for hydropower sustainability agreed across sectors and stakeholders.

  11. The role of hydropower in meeting Turkey's electric energy demand

    Yuksek, Omer; Komurcu, Murat Ihsan; Yuksel, Ibrahim; Kaygusuz, Kamil

    2006-01-01

    The inherent technical, economic and environmental benefits of hydroelectric power, make it an important contributor to the future world energy mix, particularly in the developing countries. These countries, such as Turkey, have a great and ever-intensifying need for power and water supplies and they also have the greatest remaining hydro potential. From the viewpoint of energy sources such as petroleum and natural gas, Turkey is not a rich country; but it has an abundant hydropower potential to be used for generation of electricity and must increase hydropower production in the near future. This paper deals with policies to meet the increasing electricity demand for Turkey. Hydropower and especially small hydropower are emphasized as Turkey's renewable energy sources. The results of two case studies, whose results were not taken into consideration in calculating Turkey's hydro electric potential, are presented. Turkey's small hydro power potential is found to be an important energy source, especially in the Eastern Black Sea Region. The results of a study in which Turkey's long-term demand has been predicted are also presented. According to the results of this paper, Turkey's hydro electric potential can meet 33-46% of its electric energy demand in 2020 and this potential may easily and economically be developed

  12. Hydropower Baseline Cost Modeling, Version 2

    O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.

  13. Renovation and uprating of seven hydropower plants in Java

    Nuessli, W.

    1991-01-01

    The Indonesian Power Authority is planning to renovate and uprate seven hydropower stations in Java to expand plant life expectancy, ensure operating safety and reliability, and increase power and generation within economical limits. The power plants were constructed in the early 1920s and extended between 1945 and 1950. Their capacities vary between 4 and 20 MW. For the renovation project, Colenco Power Consulting Ltd. is acting as a consultant to PLN. In February 1990, Colenco inspected all seven power plants. The results of the inspections served as the basis for the development of renovation plans for each of the seven hydropower plants. To determine the cost of the proposed renovation plans, appraisers had to determine a method for comparing the value of an existing plant to that of a renovated one. The two different evaluation methods used for these comparisons are the focus of this paper

  14. World Small Hydropower Development Report 2013 - Lesotho

    Jonker Klunne, W

    2013-01-01

    Full Text Available . The designations employed and the presentations of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of UNIDO and ICSHP concerning the legal status of any country, territory, city or area or of its... of these being in urban areas. 3 The Government has set a goal of increasing electrification rate to 35 per cent of total households by 2015 and 40 per cent by 2020. The Electricity Supply Industry in Lesotho is regulated by the Lesotho Electricity...

  15. World Small Hydropower Development Report 2013 - Swaziland

    Jonker Klunne, W

    2013-01-01

    Full Text Available Power in Swaziland is supplied and distributed by the Swaziland Electricity Company (SEC), which was established in 2007 by the Swaziland Electricity Company Act. SEC currently has a monopoly on the import, distribution and supply of electricity via...

  16. determination of head for small hydropower development

    eobe

    volumetric flow of 31.73 m3/s, the power potential of the River Ethiope was placed at 2.43 MW. It ca. /s, the power potential ... water projects such as water supply, irrigation and ..... f is the friction factor (unit-less), L is the length of the pipe (m), D ...

  17. Hydropower in the Southeast: Balancing Lakeview and Production Optimization

    Engstrom, J.

    2017-12-01

    Hydropower is the most important source of renewable electricity in Southeastern U.S. However, the region is repeatedly struck by droughts, and there are many conflicting interests in the limited water resource. This study takes a historical perspective and investigates how hydropower production patterns have changed over time, considering both natural drivers and human dimensions. Hydropower production is strongly tied to the natural variability of large-scale atmospheric drivers (teleconnections) as they affect the water availability in the whole river system and partly also the market demand. To balance the water resource between different interests is a complex task, and the conflicting interests vary by basin, sometimes over a relatively small geographic area. Here road networks adjacent to the hydropower reservoirs are used as an indicator of human development and recreational activities. Through a network analysis of the historical development of road networks surrounding the reservoir, the local and regional conflicting interests are identified and the influence on renewable electricity production quantified.

  18. Perfection of design of soil dams of small hydroelectric power stations

    Inoyatov, M.B.; Rasulov, S.

    2008-01-01

    The important question connected with building of dams of smallhydroelectric power stations in rock conditions is water filtration throughthe side of dam containing as a rule the alluvial material. This process canbe accompanied by internal erosion long-term exposure of which lead tocarry-over more bigger particles with progressive increasing permeabilitytill catastrophic level. This question authors consider in this article

  19. Hydropower strategy for the Philippines

    McCandless, D.H.

    1995-01-01

    The government-owned National Power Corporation (NPC) of the Philippines is in the early stages of a complete privatisation programme. The electric power sector is expected eventually to be structured around a company that will own the major transmission facilities and will serve as a broker of power and energy between generating companies and the existing distribution companies, Rural Electric Co-operations and other power users. NPC's non-transmission assets will probably be spun-off into various corporations including three generating companies, an engineering and services company and a company owning the Calivaya-Botocan-Kalayaan hydro complex. Plans for increased capacity include a real term increase in the hydropower contribution although it will decline as a percentage of the energy mix as coal and gas plants are developed. Details of the privatisation of specific hydropower projects in the Luzon, Visayas and Mindanao grids are described. (U.K.)

  20. Access to realization of small hydroelectric power station in Republic of Macedonia

    Jakimova Filipovska, Nevenka

    2001-01-01

    In the paper an overview of the small-scale hydroelectric power plants is presented. The categorization groups of small to micro hydroelectric power plants by different countries are given. Also, the evaluation models of the projects for realization the small hydroelectric power plants are analysed. The aim of the paper is to stress the advantages of the small hydro projects and their implementation in Macedonia

  1. Private hydropower projects: exporting the american experience

    Rogers, W.L.; Bourgeacq, J.P.

    1991-01-01

    This paper addresses different aspects of exporting the American knowledge and experience in the private development of small-scale hydropower projects. It details the 'export' and 'adaptation/translation' of American PURPA philosophy to other countries. The major stumbling blocks on the road to exportation are listed. The subject countries'market evaluation is explained, as well as methods for researching and gathering the necessary information on a specific country. Methods of choosing a target country are discussed, and the criteria necessary for making a choice are detailed. The subject of legal framework and privatization of power generation issues overseas and the ways and means to help the 'export of U.S. expertise' through U.S. Government programs are described. The subjects of financing and joint ventures with local entities are also included in this paper. Various scenarios for private development overseas are presented

  2. Private equity, public affair: Hydropower financing in the Mekong Basin

    Merme, V.; Ahlers, R.; Gupta, J.

    2014-01-01

    Large-scale hydropower development is increasingly popular. Although international finance is a significant driver of hydropower market expansion, financial data is relatively obscure and literature remains scarce. This article tracks the financial process in hydropower development in the Mekong

  3. Pumped Storage and Potential Hydropower from Conduits

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  4. Hydropower development in the Philippines

    Lopez, P.L.

    1997-01-01

    The present policy on energy development is geared towards harnessing renewable and indigenous energy resource which can offer clean, abundant and efficient power supply for the country. a review of the current generation mix of the power system, especially the Luzon grid will establish a high dependency in imported fuel - oil and coal to power our generating plants. Thus, the policy of reducing dependence on imported fuel will depend largely on the success of tapping the alternative renewable and indigenous sources. The sustainable development era of the 90's brought fresh interest on the performance and commercial viability of indigenous and/or renewable sources of energy such as wind, solar, geothermal, natural gas and water power or hydropower. Among these alternative renewable sources, water or hydropower is the most readily available, and will produce clean domestic source of electricity - no carbon dioxide, sulfur dioxide, nitrous oxide or any other air emissions. The potential is available in most parts of the country that are mountainous and have high rainfall. In terms of production, hydropower leads as the most developed and more proven in terms of commercial viability. It is also more reliable, efficient and less expensive than geothermal, biomass, wind and solar energy, as will be shown later. (author)

  5. Evaluation of economic rent of hydropower projects

    Shrestha, Ram M.; Abeygunawardana, A.M.A.K.

    2009-01-01

    Existing studies have mostly estimated the ex post economic rent of hydropower for the hydroelectric system of a province or a country as a whole and have ignored the site- or project-specific variations in the economic rent of hydropower plants. Further, most of the existing studies have used simplified methods to calculate the rent ex post. This paper presents a rigorous methodology for estimation of site-specific (i.e., project specific) economic rent of hydropower ex ante. It applies the methodology in the case of a hydropower project and analyzes the sensitivity of the rent to variations in some key parameters.

  6. Assessing Climate Change Impacts on Global Hydropower

    Aanund Killingtveit

    2012-02-01

    Full Text Available Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86% source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting regional variations in hydropower generation potential? This paper is a study that aims to evaluate the changes in global hydropower generation resulting from predicted changes in climate. The study uses an ensemble of simulations of regional patterns of changes in runoff, computed from global circulation models (GCM simulations with 12 different models. Based on these runoff changes, hydropower generation is estimated by relating the runoff changes to hydropower generation potential through geographical information system (GIS, based on 2005 hydropower generation. Hydropower data obtained from EIA (energy generation, national sites, FAO (water resources and UNEP were used in the analysis. The countries/states were used as computational units to reduce the complexities of the analysis. The results indicate that there are large variations of changes (increases/decreases in hydropower generation across regions and even within regions. Globally, hydropower generation is predicted to change very little by the year 2050 for the hydropower system in operation today. This change amounts to an increase of less than 1% of the current (2005 generation level although it is necessary to carry out basin level detailed assessment for local impacts which may differ from the country based values. There are many regions where runoff and hydropower generation will increase due to increasing precipitation, but also many regions where there will be a decrease. Based on this

  7. Hydropower externalities: A meta-analysis

    Mattmann, Matteo; Logar, Ivana; Brouwer, Roy

    2016-01-01

    This paper presents a meta-analysis of existing research related to the economic valuation of the external effects of hydropower. A database consisting of 81 observations derived from 29 studies valuing the non-market impacts of hydropower electricity generation is constructed with the main aim to quantify and explain the economic values for positive and negative hydropower externalities. Different meta-regression model specifications are used to test the robustness of significant determinants of non-market values, including different types of hydropower impacts. The explanatory and predictive power of the estimated models is relatively high. Whilst controlling for sample and study characteristics, we find significant evidence for public aversion towards deteriorations of landscape, vegetation and wildlife caused by hydropower projects. There is however only weak evidence of willingness to pay for mitigating these effects. The main positive externality of hydropower generation, the avoidance of greenhouse gas emission, positively influences welfare estimates when combined with the share of hydropower in national energy production. Sensitivity to scope is detected, but not linked to specific externalities or non-market valuation methods. - Highlights: • A global meta-analysis of valuation studies of hydropower externalities is presented. • Positive and negative externalities are distinguished. • Welfare losses due to environmental deteriorations outweigh gains of GHG reductions. • There is only weak evidence of public WTP for mitigating negative externalities. • The non-market values of hydropower externalities are sensitive to scope.

  8. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    , F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41. Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf , N., & Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9), 494-502. Wischmeier, W. H. and D. D. Smith. (1978). Predicting rainfall erosion losses: guide to conservation planning. USDA, Agriculture Handbook 537. U.S. Government Printing Office, Washington, DC. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161-170.

  9. Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    Kværna, Tormod; Gibbons, Steven; Mykkeltveit, Svein

    2017-01-01

    The IMS infrasound arrays have up to 15 sites with apertures up to 3 km. They are distributed remarkably uniformly over the globe, providing excellent coverage of South America, Africa, and Antarctica. Therefore, many infrasound arrays are in regions thousands of kilometers from the closest seismic array. Existing 3-component seismic stations, co-located with infrasound arrays, show how typical seismic signals look at these locations. We estimate a theoretical array response assuming a seismo...

  10. Balanced scorecard in SMEs – a proposal for small gas stations in Portugal

    Monte, Ana Paula; Fontenete, Christiane Nicole Santos Morais

    2012-01-01

    As current business environment is demanding a constant adaptation of companies, the planning and strategic management should be an ongoing and natural process in all kind of organizations. The use of management and monitoring strategic performance tools such as the Balanced Scorecard (BSC) have been popular; even to Small and Medium-sized Enterprises. This paper aims to investigate whether the BSC is being used in monitoring the performance of small businesses, particularly in small fu...

  11. Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower

    Philipp Emanuel Hirsch

    2016-08-01

    Full Text Available Hydropower reservoirs play an increasingly important role for the global electricity supply. Reservoirs are anthropogenically-dominated ecosystems because hydropower operations induce artificial water level fluctuations (WLF that exceed natural fluctuations in frequency and amplitude. These WLF have detrimental ecological effects, which can be quantified as losses to ecosystem primary production due to lake bottoms that fall dry. To allow for a sustainable development of hydropower, these “ecological costs” of WLF need to be weighed against the “economic benefits” of hydropower that can balance and store intermittent renewable energy. We designed an economic hydropower operation model to derive WLF in large and small reservoirs for three different future energy market scenarios and quantified the according losses in ecosystem primary production in semi-natural outdoor experiments. Our results show that variations in market conditions affect WLF differently in small and large hydropower reservoirs and that increasing price volatility magnified WLF and reduced primary production. Our model allows an assessment of the trade-off between the objectives of preserving environmental resources and economic development, which lies at the core of emerging sustainability issues.

  12. Power source labelling and hydro-power - a chance or a risk?

    Wurche, P.

    2005-01-01

    This short article discusses the electricity labelling legislation passed in Switzerland in November 2004 and similar legislation currently being introduced on a Europe-wide basis. In the future, electricity consumers will be provided with regular information on where and in which type of power station their electricity is generated. The article discusses how such a declaration may affect Swiss hydro-power stations and the changes in customer-perception that the power generation declaration will initiate

  13. Using a noise monitoring station in a small quarry located in an urban area.

    Wichers, Michiel; Iramina, Wilson Siguemasa; de Eston, Sérgio Médici; Ayres da Silva, Anna Luiza Marques

    2017-12-22

    Mining plays an important role in Brazilian exports. On the other hand, large urban centers like São Paulo, with approximately 21 million inhabitants, also demand an increasing domestic consumption of natural resources, such as construction aggregate. There are many quarries located in the surroundings of urban centers in Brazil, competing with the growth of urbanized areas. Such proximity leads to a series of conflicts involving quarries and surrounding communities, where the increase in noise levels is highlighted. Operations in quarries, in general, are intermittent. Noisier equipment, such as drilling rigs and primary crushers, operates only a few hours during the day, while other operations, such as screening and secondary and tertiary crushing, are more constant. This paper presents a study carried out in a quarry located near São Paulo, where in addition to conventional short term noise measurements at surrounding receptors, one noise monitoring station was installed, allowing to identify the noisiest moments during the quarry operating time. Through data transmitted by wireless technology, it was possible to follow the noise variations emitted from mining activities in real time and observe the noisiest events that were recorded for events that exceeded the established standards. A mobile application associated to this monitoring station facilitated the quarry's manager and employees to access immediately the monitoring information. Therefore, by using this system, it was possible to evaluate the effectiveness of noise reduction measures already taken and indicate what steps still need to be held.

  14. Role of hydropower development for improving energy mix with reference to India

    Jose, P.C.

    2010-09-15

    With more than 70% of the electricity requirement in India being contributed from thermal sources and various issues and problems such as peaking shortage, low PLF operation of many thermal generating stations etc., there is an urgent need to review the prevailing energy mix. Hydropower potential is abundantly available to the tune of about 148,700 MW and more than 75% of which remaining untapped and with all the inherent advantages associated with hydropower, the energy mix can be improved by the development of the balance huge potential.

  15. The water footprint of electricity from hydropower

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    Hydropower accounts for about 16% of the world’s electricity supply. Although dams often have big environmental and social impacts, proponents of hydropower regard it as a comparatively clean, low-cost and renewable form of energy. It has been debated whether hydroelectric generation is merely an

  16. System dynamics in hydropower plants

    Stuksrud, Dag Birger

    1998-12-31

    The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.

  17. External effects in Swiss hydropower

    Hauenstein, W.; Bonvin, J.; Vouillamoz, J.

    1999-01-01

    The article discusses the external costs and benefits of hydropower that are not internalised in normal book-keeping. Several negative and positive effects are discussed. The results of a study that addressed the difficult task of quantifying these external effects are presented. An assessment of the results gained shows that difficulties are to be met regarding system limits, methods of expressing the effects in monetary terms and ethical factors. The report also examines the consideration of external effects as a correction factor for falsified market prices for electricity

  18. U.S. Hydropower Resource Assessment - California

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  19. US hydropower resource assessment for New Jersey

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  20. US hydropower resource assessment for Texas

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Texas.

  1. US hydropower resource assessment for Montana

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  2. US hydropower resource assessment for Kansas

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

  3. US Hydropower Resource Assessment for Massachusetts

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the Commonwealth of Massachusetts.

  4. Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985

    Anon.

    1985-01-01

    Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses

  5. Norwegian hydropower a valuable peak power source

    Brekke, Hermod

    2010-07-01

    Full text: The paper gives a historical technical review of the development and installation of approximately 20 000 MW of hydraulic turbines in Norway after World War II. The non polluting production of electricity was consumed for lightening and heating for civil consume and the growing electric furnace industry in Norway in addition to export in rainy years. The paper is mainly based on the authors experience in the design of large turbines, and control systems for operation of Francis Turbines and Reversible Pump Turbines for high and medium heads and Pelton turbines for high heads. During the last 15 years the development of small hydro power plants has also given an increasing contribution to the power production. A brief discussion will be given on the choice of equipment for small hydro production with a very small winter production and overload during the summer. The possibility of operation of a small hydropower plants connected to an isolated grid will also briefly be presented. In addition to the general design of turbines and control systems for large hydro plants, a detailed description will be given of the stability analysis for the governing system which was developed for the large high head plants with long high pressure tunnels systems. A discussion will be included on the introduction of the air cushioned surge chambers for fast stable operation of power plants with long tunnels, connected to isolated grids. Also the principle of stabilizing unstable turbine governing system by means of pressure feed back systems, will be presented and discussed. A description of such system developed in 1992, will be given proving that stability could be obtained in a system with long conduits connected to the turbines. However, the 'governing speed' needed for isolated operation could not be fulfilled without a fast by pass pressure relieve system for Francis turbines, which was not installed in the case for the analysis. Finally a discussion will be

  6. Hydrological assessment for mini hydropower potential at Sungai Pahang - Temerloh

    Sidek, L M; Zaki, A Z A; Muda, Z C; Basri, H; Mustaffa, Z; Ibrahim, M I H; Thiruchelvam, S

    2013-01-01

    Sg Pahang at Temerloh was considered for assessment of hydropower potential using hydrological analysis method and hydrological model. The available data related to topography, soil, land use, weather and discharge pertaining to the study catchment were used to characterize the catchment. The characterization was required for water resources hence hydropower assessment. The hydrology of the study catchment was simulated through the model. This hydrological study is required due to the proposed mini hydroelectric power plant at Pulau Temerloh. It is essential to evaluate the existing river flow characteristic and to model the environmental flow assessment of the river. Two rainfalll stations, JPS Temerloh and Pintu Kawalan Paya Kertam Station are selected to develop the Rainfall Intensity Duration frequency (RIDF) Curve to determine the rainfall intensity of the area. Daily river flow were recorded at Sg Pahang at Temerloh and Sg Pahang at Lubok Paku were used to develop the Flow Duration Curve (FDC) to study the characteristic of Sungai Pahang flow. The 7 days low flow with 10 years return period (7Q10 low flow) was obtained using both Gumbel Method and Log Pearson Type III Method. The results from FDC shows that 50% percentage of time the Sg Pahang - Temerloh is exceeded over a historical period is 400 m 3 /s and 50% percentage of time the Sg Pahang - Lubok Paku is exceeded over a historical period is 650 m 3 /s. The required environmental flow are set to be 7Q10 low flow which is 64.215 m 3 /s for Sg Pahang at Temerloh and 79.24 m 3 /s for Sg Pahang at Lubok Paku. The results show the water resources are abundant and hence boost the mini hydropower potentiality at Sg Pahang.

  7. Hydropower: Setting a Course for Our Energy Future

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  8. 75 FR 16456 - Inglis Hydropower, LLC; Notice Soliciting Scoping Comments

    2010-04-01

    ... Hydropower, LLC; Notice Soliciting Scoping Comments March 26, 2010. Take notice that the following...: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project... Commission staff intends to prepare a single Environmental Assessment (EA) for the Inglis Hydropower Project...

  9. Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty

    Weiyao Tang

    2018-01-01

    Full Text Available As large-scale hydropower projects are influenced by many factors, risk evaluations are complex. This paper considers a hydropower project as a complex system from the perspective of sustainability risk, and divides it into three subsystems: the natural environment subsystem, the eco-environment subsystem and the socioeconomic subsystem. Risk-related factors and quantitative dimensions of each subsystem are comprehensively analyzed considering uncertainty of some quantitative dimensions solved by hybrid uncertainty methods, including fuzzy (e.g., the national health degree, the national happiness degree, the protection of cultural heritage, random (e.g., underground water levels, river width, and fuzzy random uncertainty (e.g., runoff volumes, precipitation. By calculating the sustainability risk-related degree in each of the risk-related factors, a sustainable risk-evaluation model is built. Based on the calculation results, the critical sustainability risk-related factors are identified and targeted to reduce the losses caused by sustainability risk factors of the hydropower project. A case study at the under-construction Baihetan hydropower station is presented to demonstrate the viability of the risk-evaluation model and to provide a reference for the sustainable risk evaluation of other large-scale hydropower projects.

  10. Small Hydropower in Latvia and Intellectualization of its Operating Systems / Par Mazo HIDROENERĢĒTIKU LATVIJĀ un TĀS Staciju VADĪBAS SISTĒMAS INTELEKTUALIZĀCIJU

    Mahnitko, A.; Gerhards, J.; Linkevics, O.; Varfolomejeva, R.; Umbrasko, I.

    2013-12-01

    The authors estimate the potential for power generation from water resources of small and medium-sized rivers, which are abundant in Latvia. They propose the algorithm for optimal operation of a small-scale hydropower plant (SHPP) at the chosen optimality criterion in view of the plant's participation in the market. The choice of SHPP optimization algorithm is made based on two mathematical programming methods - dynamic and generalized reduced gradient ones. Approbation of the algorithm is illustrated by an example of optimized SHPP operation. Darbā analizētas tradicionālo un pieejamo vietējo atjaunojamo energoresursu - mazo un vidējo upju hidroresursa izmantošanas iespējas Latvijas enerģētikā. Tiek sniegts faktiskais materiāls šajā jautājumā, kas iegūts, balstoties uz oficiālos avotos publicētiem citu autoru iepriekš veiktajiem pētījumiem. Tiek atzīmēts, ka teritoriju, kas atrodas mazo upju tuvumā un nav ietvertas centralizētās elektroapgādes sistēmā, saimnieciskā apgūšana rada apstākļus patērētāju stimulēšanai izmantot autonomus vietējos energoresursus, ieskaitot hidroenerģiju, izmantojošas mazas jaudas energoiekārtas. Atjaunojamās enerģijas tehnoloģiju un iekārtu pastāvīga attīstība un pilnveidošanās veicinās mazo upju plūsmas izmantošanas elektroenerģijas ražošanas efektivitātes paaugstināšanos. Mūsdienu enerģētikas attīstības koncepcija, kas balstīta uz viedo tīklu (smart grids) izveidi, ļauj paaugstināt mazās hidroenerģētikas darbības efektivitāti, integrējot to elektroenerģētiskajā sistēmā. Mazo hidroelektrostaciju (MHES) darbības vadības sistēmas intelektualizācijas pamatā jābūt kompleksam algoritmam un programmām, kas ļauj tiešsaistes (online) režīmā nodrošināt izdevīgu MHES darbības grafiku (režīmu) maksimālā ienākuma gūšanai, balstoties uz zināmu elektroenerģijas cenas prognozi attiecīgajam laika periodam (diennaktij). MHES darbības optimiz

  11. Hydropower - internalized costs and externalized benefits

    Koch, F.H.

    2002-01-01

    The benefits of hydropower consist of the minimal level of noxious and greenhouse gas emissions, it's energy security from political instability, and its renewable, non-depletable nature. The costs of hydropower consist of negative effects on the river ecosystem and of social changes in communities in the vicinity of large projects. Public awareness of these costs has increased dramatically during the past two decades, and new hydro projects will not get approval unless adequate mitigation measures are taken to avoid, offset, or compensate for adverse environmental and social effects. To a very large extent, the hydropower industry has internalized what were previously social and environmental externalities. However, hydropower operators do not receive any compensation for the benefits, and to date their competitors (coal, natural gas, oil) have not been required to internalize their adverse environmental externalities. (emissions, depletion of supplies, and sometimes dependence on imported primary energy sources). This creates an uneven playing field, and the hydropower industry enthusiastically welcomes a discussion of this issue, and eventually measures to rectify the situation. The IEA Hydropower Agreement has completed a major international study on the environmental and social impacts of hydropower, and one major component of this study was a Life Cycle Assessment and comparison of all the most important electricity generation technologies. (author)

  12. China's rising hydropower demand challenges water sector.

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  13. 78 FR 14528 - Mayo Hydropower, LLC, Avalon Hydropower, LLC; Notice of Application for Transfer of License, and...

    2013-03-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11169-029] Mayo Hydropower, LLC, Avalon Hydropower, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On November 20, 2012, Mayo Hydropower, LLC (transferor) and Avalon Hydropower...

  14. Rebuilding the Chalberhoeni small hydro power station in Saanen, Switzerland; Chalberhoeni - Rapport Final

    Cavin, G. [Stucky SA, Renens (Switzerland); Wagner, T. [Sigmaplan, Berne (Switzerland)

    2009-07-01

    These two final illustrated reports for the Swiss Federal Office of Energy (SFOE) deal with various aspects of the Chalberhoeni small hydro project in Saanen, Switzerland. The first report presents data on the catchment area involved, available head, residual water quantities, installed power and annual production figures. Investments and operating costs are looked at. The second report describes the project and discusses regional planning aspects, hydrological basics and environmental issues in connection with the renewal project, including details on invertebrates found in the stream and their relevance to fishing and nature protection issues.

  15. Fish, the protection of streams and rivers, and hydropower

    Berg, R.; Blasel, K.

    2004-01-01

    This article discusses how the river Rhine along the Swiss-German border has been affected by man-made changes over the last 200 years. The grave effects on fish stocks caused by the construction of several hydropower stations along this stretch of the river are discussed. The two programmes 'Salmon 2000' and 'Rhine 2020' are discussed that aim to provide power station dams with fish passes to enable migrant fish to reach their old spawning grounds. Proposals are described that are to improve the situation and new Europe-wide regulations on the matter are discussed. The changes that the influence of man have caused on the Rhine's fauna are described and an historical review of the changes which the river has undergone is presented

  16. Hydropower Generation Vulnerability in the Yangtze River in China under Climate Change Scenarios: Analysis Based on the WEAP Model

    Yue Zhang

    2017-11-01

    Full Text Available Global warming caused by human activities exacerbates the water cycle, changes precipitation features, such as precipitation amount, intensity and time, and raises uncertainties in water resources. This work uses run-off data obtained using climate change models under representative concentration pathways (RCPs and selects the Yangtze River Basin as the research boundary to evaluate and analyse the vulnerability of hydropower generation in 2016–2050 on the basis of the water evaluation and planning model. Results show that the amount of rainfall during 2016–2050 in the Yangtze River Basin is estimated to increase with fluctuations in RCP4.5 and RCP8.5 scenarios. In the RCP4.5 scenario, hydropower stations exhibit large fluctuations in generating capacity, which present the trend of an increase after a decrease; in the RCP8.5 scenario, the generating capacity of hydropower stations in the Yangtze River Basin presents a steady increase. Over 50% of the generating capacity in the Yangtze River Basin is produced from the Three Gorges Dam and 10 other hydropower stations. Over 90% is generated in eight river basins, including the Jinsha, Ya-lung and Min Rivers. Therefore, climate change may accelerate changes in the Yangtze River Basin and further lead to vulnerability of hydropower generation.

  17. Realisation of a small-scale hydro-power plant between two drinking water reservoirs in the municipality of Vira Gambarogno - Feasibility study; Realizzazione di una microcentrale idroelettrica sulla condotta di adduzione tra il serbatoio Monti di Fosano e il serbatoio Fosano. Programma piccole centrali idrauliche. Studio di fattibilita

    Mutti, M.

    2009-02-15

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a project for the realisation of a small hydro-power plant on the drinking water supply in the municipality of Vira Gambarogno, southern Switzerland. The old conduit connecting two drinking water reservoirs has to be replaced. The elevation difference of 260 m is favorable to the installation of a turbine near the lower reservoir. The report presents details on the hydrological data and the dimensioning of the installation. Several variants are considered, which also include the possible reconstruction of the lower reservoir and/or an increased water flow rate from the springs. The electricity production expected is discussed, as is the economic viability of the project.

  18. Feasibility study for the retrofitting a small hydroelectric power station at the mill of Noiraigue, Switzerland

    Choulot, A.; Chenal, R.; Denis, V.; Chuat, O.

    2006-01-01

    For the time being, the old mill on the left bank of the river Noiraigue, Switzerland is equipped with a small turbine of only a few kW. The present study investigates the technical and economical possibilities for maximizing the electric power production at the site. Two variants were studied: variant A retains the existing construction at the site and comprises a single turbine with a maximum electric power output of 70 kW. The annual energy production would be 348'300 kWh and the production cost 0.13 CHF/kWh. Variant B includes important modifications in the construction - especially the dam and the channels. Two turbines with a total maximum power output of 118 kW are foreseen. The annual energy production would be 448'500 kWh and the production cost 0.15 CHF/kWh. Due to these findings, variant A is preferred and proposed for realization

  19. Techno-economic evaluation of small hydro power plants in Greece: a complete sensitivity analysis

    Kaldellis, J.K.; Vlachou, D.S.; Korbakis, G.

    2005-01-01

    Hydropower has by far been the most mature renewable energy resource used for electricity generation in our planet. Recently, the investors' interest was whipped up by the mass development of small hydropower (SHP) stations, as they are the most prosperous for additional hydropower penetration in developed electricity markets. In Greece, the increasing interest for building SHP stations got off the ground since 1994. Ever since, an enormous number of requests keep piling up in the Greek Regulatory Authority of Energy and the Ministry of Development, with the object of creating new SHP stations of total capacity over 600 MW. The present work is concentrated on the systematic investigation of the techno-economic viability of SHP stations. The study is concluded by a sensitivity analysis properly adapted for the local market financial situation, in order to enlighten the decision makers on the expected profitability of the capital to be invested. According to the results obtained, the predicted internal rate of return (IRR) values are greater than 18% for most SHP cases analysed. Finally, as per the sensitivity analysis carried out, the installation capacity factor, the local market electricity price annual escalation rate and the reduced first installation cost are found to be the parameters that mostly affect the viability of similar ventures

  20. The application of the ISO 14001 environmental management system to small hydropower plants; L'application de l'ISO 14001 systeme environnemental de gestion aux petites centrales hydro-electriques

    NONE

    2010-07-01

    advance appropriate environmental actions. The process includes six stages: (1) Initial environmental review, (2) Environmental policy, (3) Planning, (4) Implementation and Operation, (5) Checking and Correcting action and (6) Management review. Certification process in practice is also divided in four steps: (1) Analysis of the environment, (2) List of the regulatory requirements and Checking of conformity with the environmental laws, (3) Defining the environmental policy and building the environmental management system and finally (4) Test audit. The output of this process is Certification audit. Experience feedbacks and testimonies of ISO 14001 certification of small hydroelectric power stations are presented in the second part of this document: - The hydroelectric power stations of Mas Naffre (Tarn - 81, France), of Nevache (Hautes Alpes - 05, France), of Couscouillets (Villelongue, Hautes- Pyrenees, France) and other examples in the EU (Switzerland and Sweden). Existing alternative environmental standards, like 'Eugene' and 'Greenhydro' Standards are presented as well

  1. Hydropower Manufacturing and Supply Chain Analysis

    Cotrell, Jason R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    Hydropower Manufacturing and Supply Chain Analysis presentation from the WPTO FY14-FY16 Peer Review. The project objective is to provide data and insights to inform investment strategies, policy, and other decisions to promote economic growth and manufacturing.

  2. Longtan hydropower project and the financial constraints

    Ding Zhao.

    1995-01-01

    China has large untapped resources of hydropower, including such schemes as the Longtan project on the Hongshui river. Despite the attractiveness of the resource and China's need for power, development of these projects is constrained by financial problems. (Author)

  3. Hydropower scene: boost for Dominican power supply

    1988-12-01

    When it is completed in 1991, the 150 MW Jiguey-Aguacate multi-purpose hydropower scheme will be the largest hydro project in the Dominican Republic. Construction of the scheme was recommended as a result of various studies carried out by the Instituto Nacional de Recursos Hidraulicos (INDHRI), which examined the hydropower potential of the Niazo river. Work is now in progress on site, with commissioning of the first unit expected in 1990.

  4. Risk management of hydropower development in China

    Tang, Wenzhe; Li, Zhuoyu; Qiang, Maoshan; Wang, Shuli; Lu, Youmei

    2013-01-01

    There is a rapidly increasing demand for hydropower in China. However, little research has been conducted to systematically investigate the overall aspects of hydropower development risks. With support of the data collected from a fieldwork survey, this study reports the multiple facets of hydropower development risks in China as perceived by main project participants. All groups have a common view on the criticality of safety, and the groups also have their own priorities, i.e., resettlement of migrants, incompetence of subcontractors, project delay, inadequate or incorrect design, premature failure of facilities and ecological and environmental impacts are the key risks to clients, whereas quality of work, financial related risks, reputation, and claims and disputes are the main concerns to contractors. A case study of Three Gorges Project further demonstrates that, hydropower development risks can be effectively managed by encouraging joint efforts of all participants to achieve the goals on producing renewable energy, reducing emissions of CO 2 , and providing important social/economical benefits. Future hydropower development should emphasize the interactions between project delivery, environmental, and economical processes to reach appropriate trade-offs among involving stakeholders, by adequately considering the inter-relations between project participants' risks as well as hydropower project's externalities on a broad view. - Highlights: • Largely attributed to unforeseen geology conditions, safety is critical in hydropower development. • Resettlement of migrants is the principal risk to clients, whereas quality of works is the first concern to contractors. • One group's risks are typically related to others', needing collaborative risk management by participants. • Three Gorges Project plays a key role on producing renewable energy, and providing social/economical benefits. • Hydropower development should emphasize the interactions between

  5. River flow availability for environmental flow allocation downstream of hydropower facilities in the Kafue Basin of Zambia

    Kalumba, Mulenga; Nyirenda, Edwin

    2017-12-01

    The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s

  6. Hydropower Resource Assessment of Brazilian Streams

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  7. Simulation algorithm for spiral case structure in hydropower station

    Xin-yong Xu

    2013-04-01

    Full Text Available In this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structure surrounding the spiral case was simulated with a three-dimensional finite element model. Then, the distribution and evolution of the structural damage were studied. Based on investigation of the change of gap openings between the steel liner and concrete structure, the impact of the non-uniform variation of gaps on the load-bearing ratio between the steel liner and concrete structure was analyzed. The comparison of calculated results of the simplified and simulation algorithms shows that the simulation algorithm is a feasible option for the calculation of spiral case structures. In addition, the shell-spring model was introduced for optimization analysis, and the results were reasonable.

  8. Hydrograph variances over different timescales in hydropower production networks

    Zmijewski, Nicholas; Wörman, Anders

    2016-08-01

    The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of white noise) as a result of current production objectives.

  9. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to

  10. Joint irrigation districts hydropower assessment study. Final feasibility assessment report. Volume I

    None

    1979-02-01

    In August 1978, the United States Department of Energy and the Turlock Irrigation District entered into a cooperative agreement for a Joint District's Low-Head Hydropower Assessment Study. The purpose of the agreement was to carry out a study of the hydropower potential at sites within the borders of the Turlock, Merced, South San Joaquin, and Oakdale Irrigation Districts in California. The required data were gathered and analyzed. The results of this study indicate the total potential small hydropower capacity with the Joint Districts is 19,560 kW installed with an annual energy generation of 68,561,800 kWh. This is equivalent to oil-savings of 118,616 barrels per y.

  11. Land Systems Impacts of Hydropower Development

    Wu, G. C.; Torn, M. S.

    2016-12-01

    Hydropower is often seen as the low-cost, low-carbon, and high-return technology for meeting rising electricity demand and fueling economic growth. Despite the magnitude and pace of hydropower expansion in many developing countries, the potential land use and land cover change (LULCC), particularly indirect LULCC, resulting from hydropower development is poorly understood. Hydropower-driven LULCC can have multiple impacts ranging from global and local climate modification (e.g., increased extreme precipitation events or increased greenhouse gas emissions), ecosystem degradation and fragmentation, to feedbacks on hydropower generation (e.g., increased sedimentation of the reservoir). As a result, a better understanding of both direct and indirect LULCC impacts can inform a more integrated and low-impact model for energy planning in countries with transitioning or growing energy portfolios. This study uses multi-scale remote sensing imagery (Landsat, MODIS, fine-resolution commercial imagery) to estimate LULCC from past hydropower projects intended primarily for electricity generation in 12 countries in Africa, South and Central America, South Asia, and Southeast Asia. It is important to examine multiple locations to determine how socio-political and environmental context determines the magnitude of LULCC. Previous studies have called for the need to scale-up local case studies to examine "cumulative impacts" of multiple development activities within a watershed. We use a pre-test/post-test quasi-experimental design using a time series of classified images and vegetation indices before and after hydropower plant construction as the response variable in an interrupted time series regression analysis. This statistical technique measures the "treatment" effect of hydropower development on indirect LULCC. Preliminary results show land use change and landscape fragmentation following hydropower development, primarily agricultural and urban in nature. These results suggest

  12. Modelling the feasibility of retrofitting hydropower to existing South ...

    sources (including nuclear energy) will be nearly 30% (Eskom,. 2011). South Africa ... Hydropower has the following advantages over other forms of .... well as negative environmental impacts. ... Potential environmental impacts of hydropower.

  13. Runoff and Sediment Response to Cascade Hydropower Exploitation in the Middle and Lower Han River, China

    Junhong Zhang

    2017-01-01

    Full Text Available With the rapid development of hydropower exploitation in China, changes in runoff and sediment transport have become a significant issue that cannot be neglected. In this study, the Han River was selected as a study case, where the runoff variation and changes in sediment load at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations were analyzed in different time periods. The results indicate that impact of cascade hydropower exploitation on runoff and sediment transport is significantly different even during the same time periods. After reservoir regulation, the decreasing of sediment load is faster than that of runoff. Strong positive correlation between runoff and sediment load exists during different time periods, while reservoir operation leads to different turning points at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations in the middle and lower Han River. As a key driving factor, runoff variation contributed to sediment transport with different impact index CR. The impact index CR before and after the first change point at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations is 43.35%, −3.68%, 11.17%, and 30.12%, respectively. This study helps us understand and evaluate the hydrological changes under cascade hydropower exploitation in the middle and lower Han River.

  14. An estimation of the Swiss hydropower rent

    Banfi, Silvia; Filippini, Massimo; Mueller, Adrian

    2005-01-01

    The electricity generation in Switzerland is mostly based on hydropower (∼58%) and nuclear power (∼38%). The exploitation of water in the hydropower sector can generate significant economic rent. One possibility to capture this rent is through royalties or fees. This system has been used in Switzerland since many decades. However, the actual water fee system is not flexible and does not take into consideration different production costs between the type and location of hydropower plants. Furthermore, storage plants can sell electricity to a higher price than run-of-river plants. A flexible system is needed in a liberalized electricity market, to take into account these different production situations and the fact that prices may vary considerably over time. The main goal of this paper is to calculate the potential economic rent that could be generated in the Swiss hydropower sector under a future liberalized market. Based on the results of the paper, it can be concluded that the introduction of a flexible fee system could improve the competitiveness of the hydropower sector and promote an energy system based on renewable energy sources

  15. Hydro-power: a long history, a bright future

    Deudney, D

    1981-07-01

    A brief history of the spread of hydro-power in the world was given. Tables showing hydro-power potential and use, and the % electricity from hydro-power for 13 countries were included along with a graph showing % hydro-power operating, planned and under construction by region. The need for committed and farsighted political leadership for future development and the possibility of hydro production reaching 4 to 6 times its present level were discussed.

  16. Optimised deployment of hydro-power generation facilities

    Werlen, K.

    2004-01-01

    This article discusses how the opening-up of the European electricity market has led to the creation of more room for manoeuvre in the deployment of the generation capacity of dam and pumped-storage-based hydropower facilities and low-head power stations. Software tools for the optimisation of the operation of power generation facilities that can take care of complex hydraulic interdependencies are described. The use of the software for the assessment of new installations being planned or of older installations being extended is examined. The influence of climatic conditions, market prices for power, the general requirements placed on the system and other influences on financial gain are looked at. The article makes recommendations on those factors influencing the design of the software and for its optimal use in practice

  17. Development potential for hydropower; Ausbaupotential der Wasserkraft

    Laufer, F.; Groetzinger, S.; Peter, M.; Schmutz, A.

    2004-11-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the potential for the development of hydropower in Switzerland. The report updates the energy perspectives made ten years earlier. An overview of Swiss electricity production and consumption is presented and the proportion provided by hydropower is noted. Figures on installed capacity and import/export quantities are presented and discussed. Technological developments and the economical frameworks involved are discussed, as are regulatory measures that can be taken. Theoretical and technically realisable potentials for increased use of hydropower are discussed. The methods used to do this are examined. Strategies and measures to be taken are listed and discussed. An appendix includes data sheets on power plant modelling, including examples

  18. Hydropower potential of the lower Vistula

    Michał Szydłowski

    2015-03-01

    Full Text Available This paper presents an estimate analysis of the hydropower potential of the lower Vistula River from Warsaw to Gdańsk Bay. The calculations were made for a hydraulic model of the lower Vistula which takes into account potential development of barrages in a cascade system. Results obtained from the model simulations and from hydrological calculations were used to estimate the power of hydropower plants and the average annual energy output from the entire cascade system. The results of calculations indicate significant energy benefits resulting from the development of a cascade of hydropower plants in the lower Vistula. This study does not discuss the cascade project’s economic viability or other aspects of its development (inland waterways, flood control, etc..

  19. The sustainability of hydropower projects in Brazil

    de Methodio Maranhao Neto, Gil; Yana, Laurent

    2010-09-15

    The construction of hydropower plants unquestionably impacts the environment and communities. But countries such as Brazil have been able to build up a sophisticated socio-environmental legislation and institutions as well as a democratic and participative licensing process to protect the nature and the population affected. In some cases, plants greatly contribute towards the creation of local welfare to the population as well as good environmental practices. As a good example of best practices on socio-environmental standards, we will analyze Jirau Hydropower Project, currently under construction on the Madeira River, north of Brazil.

  20. Minimizing water consumption when producing hydropower

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  1. Hydropower and local community : A case study of the Kamchay dam, a China-funded hydropower project in Cambodia

    Pheakdey, Heng

    2017-01-01

    To solve its chronic power shortage, the Government of Cambodia has placed the development of hydropower as one of the national priorities. With a total of US$2.4bn in investment, China is the most prominent player in hydropower development in Cambodia. The increase of hydropower projects and

  2. Innovations in PHWR design, integration of nuclear power stations into power systems and role of small size nuclear power plants in a developing country

    Mehta, S.K.; Kakodkar, A.; Balakrishnan, M.R.; Ray, R.N.; Murthy, L.G.K.; Chamany, B.F.; Kati, S.L.

    1977-01-01

    PHWR concept of thermal reactors has been considered with a view to exploiting the limited resources of natural uranium and keeping in mind the projected nuclear power programme covering fast breeder reactors. Experience in engineering of current PHWR units in India, gradual build up of necessary infrastructure and operational experience with one unit, have helped in building up design and technological capability in the country. The R and D facilities have been so planned that additional data required for the design of bigger reactor units (i.e.500/600 MWe) could be generated with minimal augmentation. Satisfactory operation of a nuclear power station demands certain prerequisites from the connected power system. The grid should have load patterns suitable for base load operation of these stations, should be stiff so far as voltage and frequency fluctuations are concerned and should have high reliability. A typical power grid in this country is characterised by heavy loads during peak hours and very light loads during night. Regional grids are of small size and the few interconnections existing between the regional grids consist of weak tie lines. Amongst all types of the power stations, it is the nuclear system which undergoes maximum strain and economic penalty while operating when connected to such a power system. Consistent with the above, phase installation of small-size power reactor units of about 200 MWe capacity may facilitate setting up of larger unit sizes at a later date. The effect of any possible reduction in the capital cost of a larger unit power station will enable the power station to partially meet the demand of the more productive types of loads. This paper deals with some of the major design changes that are being incorporated in the PHWR type power reactors currently being set up and the research and development back-up required for the purpose. Since the unit sizes of the power reactors presently contemplated are small compared to nuclear

  3. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  4. Interactions between land use, climate and hydropower in Scotland

    Sample, James

    2015-04-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs on a 1 km by 1 km grid across Scotland, using a variety of future land use and climate change scenarios. Parameter-related uncertainty in the model has been constrained using Bayesian Markov Chain Monte Carlo (MCMC) techniques to derive posterior probability distributions for key model parameters. Our results give an indication of the sensitivity and vulnerability of Scotland's run-of-river hydropower resources to possible changes in climate and land use. The effects are spatially variable and the range of uncertainty is sometimes large, but consistent patterns do emerge. For example, many locations are predicted to experience enhanced seasonality, with significantly lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require

  5. Climate Risk in Southern and Eastern Africa's Hydropower Generation

    Dalin, C.; Conway, D.; Landman, W.; Osborn, T.

    2016-12-01

    Hydropower comprises a major proportion of electricity production in southern and eastern Africa and is undergoing rapid expansion. Hydropower production in both regions is exposed to high levels of climate variability and regional linkages are strong, yet an understanding of aggregate climate risk is lacking. Here we map regions of coherent precipitation variability with current and planned (2030) hydropower sites, river basin configuration and regional energy grids to assess aggregate exposure to hydropower supply disruption. If fully implemented hydropower will be increasingly concentrated in the Nile basin in eastern Africa and the Zambezi basin in southern Africa. Regions of similar rainfall variability show close alignment with the main sites of hydropower. Future concentration of hydropower will greatly increase the concurrent risk of climate related electricity supply disruption. Nascent electricity sharing mechanisms could mitigate risk but face considerable political and infrastructural challenges.

  6. Proven but new. Innovation of hydropower

    Harreiter, Herfried [Verbund Hydro Power AG, Vienna (Austria); Godde, Dominik [E.ON Generation GmbH, Hannover (Germany); Zickermann, Richard [ALSTOM (Schweiz) AG, Baden (Switzerland)

    2012-07-01

    Hydropower has been utilised traditionally and its technology is being further developed and advanced. Current developments are addressed by outlining the challenges for operators and manufacturers. The case examples show a wide range of possible innovations. This refers to single components up to novel overall concepts like hybrid plants and compact turbine plants as well as run-of-river power plants. (orig.)

  7. Thayer Lake Hydropower Development -- Final Report

    Matousek, Mark [ORENCO Hydropower, Palo Alto, CA (United States)

    2017-06-30

    The Thayer Lake Hydropower Development (THLD) has been under study since the late 1970’s as Angoon explored opportunities to provide lower cost renewable power to the Community and avoid the high cost of diesel generation. Kootznoowoo Inc. (Kootznoowoo), the tribal corporation for Angoon’s current and past residents, was provided the rights by Congress to develop a hydropower project within the Admiralty Island National Monument. This grant (DE-EE0002504) by the Department of Energy’s (DOE’s) Office of Indian Energy and a matching grant from the Alaska Energy Authority (AEA) were provided to Kootznoowoo to enable the design, engineering and permitting of this hydropower project on Thayer Creek. Prior to the grant, the USFS had performed a final environmental impact statement (FEIS) and issued a Record of Decision (ROD) in 2009 for a 1.2 MW hydropower project on Thayer Creek that would Angoon’s needs with substantial excess capacity for growth. Kootznoowoo hired Alaska Power & Telephone (AP&T) in 2013 to manage this project and oversee its development. AP&T and its subcontractors under Kootznoowoo’s guidance performed several activities, aligned with the task plan defined in the grant.

  8. Hydropower and the world's energy future

    2000-11-01

    The potential role of hydropower in the context of world-wide demographic growth and increasing demand for energy, and the benefits inherent in hydroelectric power in comparison with other energy options are discussed. Environmental and social impacts, and examples of mitigation measures are reviewed. Recommendations regarding best practices in the future development of hydroelectric power projects proposed

  9. Hydropower | Climate Neutral Research Campuses | NREL

    project. Options usually include self-financing, issuing bonds, or obtaining third-party financing from how hydropower may fit into your climate action plans. Campus Options Considerations Sample Project to handle permitting issues? Does your campus need a hydraulics laboratory? Is financing available

  10. Analysis of the environmental impact study of PCH (small hydropower plant) Ninho da Aguia. Proposal for optimization of the environmental licensing process using a simplified matrix; Analise do estudo de impacto ambiental da PCH Ninho da Aguia. Proposta de otimizacao do processo de licenciamento ambiental utilizando uma matriz simplificada

    Barbosa, Tania Aparecida de Souza

    2004-07-01

    This work intended to study the methodologies used for EIA - Study of Environmental Impact - and propose the adaptation of a simplified matrix for the assessment of environmental impacts regarding small hydropower plants. A case study of Ninho da Aguia SHP, located in the city of Delfim Moreira, MG, was used for elaborating the matrix. The methodology used the analysis of all the negative impacts and they were given combined weight based on a pre-established impact scale. The weights that were given to each impact were distributed according to the combination of features presented in the referred EIA. The results attained show that the environmental damage is reduced by 45% when the mitigating measures suggested by the EIA and by the analysis carried out by this study are applied. Besides, this preliminary proposal will make it possible for environmental licensing process to be accelerated. Today, this process is considered as an inhibiting investment because of it takes too much time. Also, the proposal may be used as initial guidelines regarding the environmental cost of the implementation of enterprises. The proposed matrix shows itself as efficient because it is easy to be used and it is a useful tool for the analysis of projects that will be implemented. (author)

  11. Small zeolite column tests for removal of cesium from high radioactive contaminated water in Fukushima Daiichi Nuclear Power Station

    Hijikata, Takatoshi; Uozumi, Koichi; Tukada, Takeshi; Koyama, Tadafumi; Ishikawa, Keiji; Ono, Shoichi; Suzuki, Shunichi; Denton, Mark; Raymont, John

    2011-01-01

    After the earthquake on March 11th 2011, a large amount (more than 0.12 million m 3 ) of highly radioactive contaminated water had pooled in Fukushima Daiichi nuclear power station. As an urgent issue, highly radioactive nuclides should be removed from this contaminated water to reduce radioactivity in the turbine buildings and nuclear reactor buildings. Removal of Cs from this contaminated water is a key issue, because 134 Cs and 137 Cs are highly radioactive γ-emitting nuclides. The zeolite column system was used for Cs and Sr removal from the radioactive water of Three-Mile Island Unit 2, and modified columns were then developed as a Cs removal method for high-level radioactive water in US national laboratories (WRSC, ORNL, PNNL, Hanford, etc.). In order to treat Fukushima's highly contaminated water with a similar system, it was necessary to understand the properties of zeolite to remove Cs from sea salt as well as the applicability of the column system to a high throughput of around 1200 m 3 /d. The kinetic characteristics of the column were another property to be understood before actual operation. Hence, a functional small-scale zeolite column system was installed in CRIEPI for conducting the experiments to understand decontamination behaviors. Each column has a 2- or 3-cm inner diameter and a 12-cm height, and 12 g of zeolite-type media was packed into the column. The column experiments were carried out with Kurion-zeolite, Herschelite, at different feed rates of simulated water with different concentrations of Cs and sea salt. As for the water with 4 ppm Cs and 0 ppm sea salt, only a 10% Cs concentration was observed in the effluent after 20,000 bed volumes were fed at a rate of 33 cm/min, which corresponds to the actual system. On the other hand, a 40% Cs concentration was observed in the effluent after only 50 bed volumes were passed for water with 2 ppm Cs and 3.4 wt.% sea salt at a feed rate of 34 cm/min. As the absorption of Cs is hampered by the

  12. Perspectives for hydropower in Switzerland - chances offered by the 'green power' market

    Spreng, D.; Truffer, B.; Wuestenhagen, R.

    2003-01-01

    This short article discusses the chances offered to operators of hydropower stations by 'green power' markets for the sale of power produced under strict conditions in environment-friendly power generation facilities. The development of these markets is discussed as are the interdependencies between the public's use of green power markets and measures taken by the state to promote the use of renewable forms of energy. The results of market research on customer willingness to purchase environment-friendly electricity are discussed and the important role of hydropower in this business is stressed. The differing interests of various customer segments are discussed and the part played by 'green stocks' and other sustainable investments in the financial market is looked at

  13. The role of hydropower in environment ally sustainable energy development

    Gabriel, H.F.

    2005-01-01

    Hydropower has historically been the renewable energy leader, and from a technical-cost perspective, is very likely to remain the only viable renewable energy source for many countries. In recent years, hydropower has been much maligned, especially by NGOs, for not being a sustainable source of energy. Though hydropower is clearly a renewable source of energy, but the question arises whether it can also be sustainable. Hydropower can play an increasingly important role in enabling communities around the world to meet sustainability objectives. To become more accepted as a key contributor to sustainable energy systems, new and existing hydropower projects need to be built and operated in an environmentally, socially and economically sustainable manner. This paper highlights the sustain ability aspects of hydropower and discusses the criteria for selection of environmentally friendly hydropower project sites so that that hydropower can be developed in a sustainable manner and once again be considered favorably in the planning of generation mix for new energy development. Sustainability of hydropower projects involves treating both the social and environmental sustainability of the project at an early stage and including the interests of all stakeholders of the project. As a case study, the Ghazi- Barotha Hydropower Project (GBHP) in Pakistan has been selected, as it is the best example in managing the social issues and gaining public acceptance because of proper planning and addressing environmental and social issues at an early stage. (author)

  14. Steady and transient regimes in hydropower plants

    Gajic, A.

    2013-12-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

  15. Steady and transient regimes in hydropower plants

    Gajic, A

    2013-01-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock

  16. The future of hydropower planning modeling

    Haas, J.; Zuñiga, D.; Nowak, W.; Olivares, M. A.; Castelletti, A.; Thilmant, A.

    2017-12-01

    Planning the investment and operation of hydropower plants with optimization tools dates back to the 1970s. The focus used to be solely on the provision of energy. However, advances in computational capacity and solving algorithms, dynamic markets, expansion of renewable sources, and a better understanding of hydropower environmental impacts have recently led to the development of novel planning approaches. In this work, we provide a review, systematization, and trend analysis of these approaches. Further, through interviews with experts, we outline the future of hydropower planning modeling and identify the gaps towards it. We classified the found models along environmental, economic, multipurpose and technical criteria. Environmental interactions include hydropeaking mitigation, water quality protection and limiting greenhouse gas emissions from reservoirs. Economic and regulatory criteria consider uncertainties of fossil fuel prices and relicensing of water rights and power purchase agreements. Multipurpose considerations account for irrigation, tourism, flood protection and drinking water. Recently included technical details account for sedimentation in reservoirs and variable efficiencies of turbines. Additional operational considerations relate to hydrological aspects such as dynamic reservoir inflows, water losses, and climate change. Although many of the above criteria have been addressed in detail on a project-to-project basis, models remain overly simplistic for planning large power fleets. Future hydropower planning tools are expected to improve the representation of the water-energy nexus, including environmental and multipurpose criteria. Further, they will concentrate on identifying new sources of operational flexibility (e.g. through installing additional turbines and pumps) for integrating renewable energy. The operational detail will increase, potentially emphasizing variable efficiencies, storage capacity losses due to sedimentation, and the

  17. Hydropower in Turkey: potential and market assessment

    2010-10-15

    The Turkish hydropower market provides huge opportunities for investors and suppliers. Successful market entry is not easy, however, as the market is still not fully liberalized, the need for local intelligence is large and the competition is increasing. There are also potential political, reputational and environmental risks, typical for an emerging economy. The World Bank global 'Ease of doing business' ranking (2010), ranks Turkey as number 73 of 183 countries. (Author)

  18. 75 FR 67993 - Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

    2010-11-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Hydropower Resource Assessment at Existing... comment the ``Hydropower Resource Assessment at Existing Reclamation Facilities'' (HRA) Draft Report. The HRA is an assessment of the economic and technical potential for hydropower development at existing...

  19. 77 FR 51551 - Proposed Renewal of Information Collection: Alternatives Process in Hydropower Licensing

    2012-08-24

    ...: Alternatives Process in Hydropower Licensing AGENCY: Office of the Secretary, Office of Environmental Policy... approval for the collection of information for Alternatives Process in Hydropower Licensing. This... comments should reference Alternatives Process in Hydropower Licensing. FOR FURTHER INFORMATION CONTACT: To...

  20. 78 FR 69080 - Houtama Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2013-11-18

    ... Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On August 14, 2013, Houtama Hydropower LLC filed an.... Hampton, CEO, Houtama Hydropower [[Page 69081

  1. Socio-environmental integration of hydropower facilities

    Harby, Atle; Forseth, Torbjoern; Ruud, Audun; Bakken, Tor Haakon

    2017-01-01

    Centre for Environmental Design of Renewable Energy (CEDREN) is a research centre focusing on hydropower production and environmental impacts of hydropower. The main objective of CEDREN is to develop and communicate design solutions for renewable energy production that address environmental and societal challenges at local, regional, national and global levels. Environmental design means that planning, building and operation have to include technical, economic, environmental and socio-political aspects throughout the whole life-span of the project. Methods and tools to ensure environmental design are developed in CEDREN and applied to case studies in Norway and internationally. These methods and tools focus on finding physical and biological bottlenecks for affected species and ecosystems by mapping, modelling and analysis of both physical conditions and ecological status. CEDREN proposes different measures, tools and methods to improve the environmental conditions as well as how to maintain or increase the power production. In addition, a strong focus must be made on political governance to ensure more representative participation of relevant stakeholders in the process of finding the best technical, economic and political solutions for power production, the environment and the society. Key research findings used to develop relationships between physical factors like flow, flow fluctuations, water temperature, water velocity, water depth and water-covered area and biological response will be shown. Examples of improved methods for better planning procedures with stakeholder engagement will be proposed. Examples of methods and tools for environmental design of hydropower will be given for several regulated rivers in Norway and abroad. (authors)

  2. India's hydropower vision to 2030 - environmental issues

    Goel, R.S.

    2004-01-01

    The economic advantages of hydropower has been enhanced in the recent years with the steep increases in the energy costs from fossil fuel and the rapid approaching limits to the exploitable resources of such fuels. It is a matter of concern that the share of hydropower in the total installed capacity in India has been declining in successive plans. In the 1962-63, hydro projects had a 50% share in the total installed capacity which has declined to 24%. Such a dismal share of hydro thermal mix is adversely affecting the optimal utilisation of natural and financial resources besides resulting in failure of power grids. Even a layman can appreciate that in the situation of monsoonic weather the storage of river flows during floods is unavoidable not only to meet the basic needs of bulging population for diverse uses but also to moderate the floods, droughts and poverty. This article focuses on the environmental issues related to hydropower and river valley projects, while pinpointing the vital need of large storage projects in India. The water is becoming scarcer in India due to bulging population; but the environmental activism and biased media reporting are creating large scale obstructions in the execution of hydro projects

  3. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  4. Project SHARE Sustainable Hydropower in Alpine Rivers Ecosystems

    Mammoliti Mochet, Andrea

    2010-05-01

    SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems is a running project early approved and co funded by the European regional development fund in the context of the European Territorial Cooperation Alpine Space programme 2007 - 2013: the project is formally ongoing from August 2009 and it will end July 2012. Hydropower is the most important renewable resource for electricity production in alpine areas: it has advantages for the global CO2 balance but creates serious environmental impacts. RES-e Directives require renewable electricity enhance but, at the same time, the Water Framework Directive obliges member States to reach or maintain a water bodies "good" ecological status, intrinsically limiting the hydropower exploitation. Administrators daily face an increasing demand of water abstraction but lack reliable tools to rigorously evaluate their effects on mountain rivers and the social and economical outputs on longer time scale. The project intends to develop, test and promote a decision support system to merge on an unprejudiced base, river ecosystems and hydropower requirements. This approach will be led using existing scientific tools, adjustable to transnational, national and local normative and carried on by permanent panel of administrators and stakeholders. Scientific knowledge related to HP & river management will be "translated" by the communication tools and spent as a concrete added value to build a decision support system. In particular, the Multicriteria Analysis (MCA) will be applied to assess different management alternatives where a single-criterion approach (such as cost-benefit analysis) falls short, especially where environmental, technical, economic and social criteria can't be quantified by monetary values. All the existing monitoring databases will be used and harmonized with new information collected during the Pilot case studies. At the same time, all information collected will be available to end users and actors of related

  5. Hydropower assessment of Bolivia—A multisource satellite data and hydrologic modeling approach

    Velpuri, Naga Manohar; Pervez, Shahriar; Cushing, W. Matthew

    2016-11-28

    This study produced a geospatial database for use in a decision support system by the Bolivian authorities to investigate further development and investment potentials in sustainable hydropower in Bolivia. The study assessed theoretical hydropower of all 1-kilometer (km) stream segments in the country using multisource satellite data and a hydrologic modeling approach. With the assessment covering the 2 million square kilometer (km2) region influencing Bolivia’s drainage network, the potential hydropower figures are based on theoretical yield assuming that the systems generating the power are 100 percent efficient. There are several factors to consider when determining the real-world or technical power potential of a hydropower system, and these factors can vary depending on local conditions. Since this assessment covers a large area, it was necessary to reduce these variables to the two that can be modeled consistently throughout the region, streamflow or discharge, and elevation drop or head. First, the Shuttle Radar Topography Mission high-resolution 30-meter (m) digital elevation model was used to identify stream segments with greater than 10 km2 of upstream drainage. We applied several preconditioning processes to the 30-m digital elevation model to reduce errors and improve the accuracy of stream delineation and head height estimation. A total of 316,500 1-km stream segments were identified and used in this study to assess the total theoretical hydropower potential of Bolivia. Precipitation observations from a total of 463 stations obtained from the Bolivian Servicio Nacional de Meteorología e Hidrología (Bolivian National Meteorology and Hydrology Service) and the Brazilian Agência Nacional de Águas (Brazilian National Water Agency) were used to validate six different gridded precipitation estimates for Bolivia obtained from various sources. Validation results indicated that gridded precipitation estimates from the Tropical Rainfall Measuring Mission

  6. Rebuilding of the Altermatt hydropower installation in Frauenfeld, Switzerland - Building permission and implementation project; Werkbetriebe Frauenfeld: Neubau Wasserkraftwerk Altermatt-Frauenfeld - Konzessions- und Bauprojekt. Schlussbericht

    Hintermann, M.

    2008-04-15

    This illustrated final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at a project concerning the rebuilding of the existing Altermatt hydropower station in Frauenfeld, Switzerland. The history of the installation, built in 1860 and put out of service in the 1980s, is briefly discussed. The project for the reactivation of the location with a new hydropower station is discussed and various studies made concerning the location are examined. Figures on the water flow to be expected are presented and the concept behind the project is discussed, as are details such as water levels and installations that will help fish and beavers get past the power station's dam. The electromechanical installations of the 120 kW power station are briefly described. Environmental aspects are also discussed and figures are quoted on the energy production to be expected and the costs involved.

  7. Monitoring Systems for Hydropower Plants

    Damaschin Pepa

    2015-07-01

    Full Text Available One of the most important issue in hydro power industry is to determine the necessary degree of automation in order to improve the operation security. Depending upon the complexity of the system (the power plant equipment the automation specialist will build a philosophy of control following some general principals of security and operation. Helped by the modern digital equipment, today is relative easy to design a complete monitoring and supervising system including all the subparts of a hydro aggregate. A series of sensors and transducers specific for each auxiliary installation of the turbine and generator will be provided, together with a PLC or an industrial PC that will run an application software for implementing the security and control algorithms. The purpose of this paper is to offer a general view of these issues, providing a view of designing an automation & control and security system for hydro power plants of small, medium and big power.

  8. Hydropower development and the meaning of place. Multi-ethnic hydropower struggles in Sikkim, India

    Dukpa, Rinchu Doma; Joshi, Deepa; Boelens, Rutgerd

    2018-01-01

    Academic research and media tend to emphasize the strong opposition to hydropower development in Sikkim, India, and position this as resistance to an environmentally-destructive, trans-local development, particularly by the culturally-rooted, ethnic minority Bhutia and Lepcha communities. There are

  9. Hydropower in China at present and its further development

    Chang, XiaoLin; Zhou, Wei [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Liu, Xinghong [School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072 (China)

    2010-11-15

    At present, China's economic development faces energy challenge, and the appropriate solution of energy bottleneck is the key to healthy, rapid and sustainable development. China's gross amount of hydraulic resource ranks first in the world; however, because of low level of development, hydraulic resource has a broad development prospect. Now, China's hydropower development is in its peak period. By the end of 2004, the gross installed hydropower capacity of China broke through 100 million kW. From there, it has remained in the top slot worldwide. The vigorous development of hydropower is necessary because of the energy shortage and environmental pollution in China in order to attain sustainable development of China's economy. Abundant hydraulic resource, huge market demands, the strategy of western development and the favorable environment of economic development provide hydropower construction with unprecedented advantages and opportunities. Chins hydropower development aims at an installed hydropower capacity of up to 194 million kW by 2010, accounting for 23.1% of the gross installed power capacity and 35% of hydropower resource. Finally, we present the general condition of Three Gorges project as well as the new mode of hydropower development of Three Gorges Project Corporation, i.e., cascade development. (author)

  10. Hydropower Regulatory and Permitting Information Desktop (RAPID) Toolkit

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    Hydropower Regulatory and Permitting Information Desktop (RAPID) Toolkit presentation from the WPTO FY14-FY16 Peer Review. The toolkit is aimed at regulatory agencies, consultants, project developers, the public, and any other party interested in learning more about the hydropower regulatory process.

  11. 77 FR 2286 - Northern Illinois Hydropower, LLC; Notice of Meeting

    2012-01-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12717-002] Northern Illinois Hydropower, LLC; Notice of Meeting a. Date and Time of Meeting: Thursday, January 26, 2012 from 11... Meeting: Commission staff will meet with Northern Illinois Hydropower, LLC to discuss potentially moving...

  12. Geothermal and hydropower production in Iceland

    Rosa, D.J.

    1993-01-01

    This paper analyzes the impact of current and future development of geothermal and hydropower production on the economy of Iceland. Natural conditions in Iceland favor the increased utilization and development of both of these abundant power sources. The mean surface run-off in Iceland is about 50 l/s/km 2 (liters per second per square kilometer), with a large part of the country consisting of a plateau more than 400 meters above sea level. More than half of the country is above 500 meters above sea level. ne technically harnessable hydropower potential is estimated at 64 TWh/year (terawatthours per year), of which 30 TWh/year is considered economically and environmentally harnessable. In addition, Iceland has abundant geothermal energy sources. A quarter of the entire country is a volcanic area. Keeping in mind that geothermal resources are not strictly renewable, it is estimated that the potential power production from this source is 20 TWh/year. Present utilization of these two resources totals only 4.2 TWh/year, or only about 8% of Iceland's aggregate potential. There are many issues facing Iceland today as it considers development opportunities utilizing both of these abundant power supplies. This paper will first consider the technical aspects of both hydropower and geothermal power production in Iceland. Then, the economic consequences of alternative utilization of these energy sources will be evaluated. The first alternative to be considered will be the direct export of power by HVDC submarine cable to other countries, such as Scotland or the United Kingdom. Iceland could, as a second alterative, concentrate its efforts on bringing in energy intensive industries into the country

  13. Development of New Micro Hydropower Turbine

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  14. U.S. hydropower resource assessment for Nevada

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

  15. U.S. hydropower resource assessment for Idaho

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  16. Low-head hydropower impacts on steam dissolved oxygen

    Thene, J.R.; Stefan, H.G.; Daniil, E.I.

    1989-01-01

    A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards

  17. New construction of the Kelchbach hydropower installation - Preliminary project; Vorprojekt Neubau Kraftwerk Kelchbach. Programm Kleinwasserkraftwerke - Schlussbericht

    Kalbermatten, J.

    2009-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) describes the preliminary project for the new construction of a small hydropower installation on the Kelchbach stream in Naters, Switzerland. After a pressure-pipe rupture, the old, over 100 year-old installation was closed down. The replacement installation is planned to increase power production. The works necessary for the realisation of this hydropower project are described and discussed. Several older studies on the replacement of the installation are listed. Three variants are presented and discussed as are hydrological data on the project. Cost estimates are presented and discussed. Estimates of energy production are also presented and discussed, as is the economic viability of the project. Environmental aspects of the project are also examined.

  18. Developing a workable public input process for aesthetics and recreational needs during hydropower licensing

    Howe, D.; Stimac, M.

    1993-01-01

    Aesthetics and recreation are becoming increasingly important issues during hydropower licensing. A variety of regulations and legislation mandate the protection of instream flows for aesthetic and recreational resources. These have provided impetus for determining the effects of instream flows on recreation and aesthetic resources. A public survey designed for a proposed small hydropower project, located in a heavily used recreation area, attempts to determine the aesthetic and recreational preferences for instream flows. The major components in designing the survey are discussed. The public input process is still underway, however, preliminary results indicate lower flows in the river are generally preferable by visitors of the area. This is likely because of the types of users and the recreation activities performed

  19. A model of the environmental impacts of hydropower projects

    Kemppainen, T.; Haemaelaeinen, I.

    1992-01-01

    The aim was to create a model of the effects of hydropower modernization and extension projects in Finland. To illustrate the effects of hydropower projects a checklist in the form of matrice was constructed. In this matrice all issues that could be significant in future hydropower projects were collected. Stable physical environmental changes are the starting-point for this matrice. The temporary change of hydropower constructions have also been under consideration. These are mainly environmental changes during construction. In chapter two the effects of hydropower modernization and extension projects physical environmental changes were examined. In chapter three the matrice was applied to some example cases. The cases were chosen to represent future hydropower projects. In addition these example cases represent urban areas, rural areas and uninhabited areas. The example cases were the extension of Tainionkoski hydropower plant at Vuoksi river, the modernization of Aeetsae power plant at Kokemaeenjoki river, the modernization of Stadsfors power plant at Lapuanjoki river in the centre of Uusikaarlepyy town and the construction of Kaitfors power plant at Perhonjoki river. Conclusions from usability of the model can be drawn on the ground of the example cases. The purpose of the model is to produce a checklist of estimated environmental effects in hydropower project of various kinds. Examination of issues within the model depends on local circumstances. Endangered animal and plant species, for example, can be studied and estimated only if endangered animal and plant species exist in the area of hydropower plant. Furthermore, the direction and extent of environmental effects depend on the local circumstances. The model is mainly a checklist of environmental effects caused by hydropower plant projects

  20. Effects of the uncertainty of energy price and water availability forecasts on the operation of Alpine hydropower reservoir systems

    Anghileri, D.; Castelletti, A.; Burlando, P.

    2016-12-01

    European energy markets have experienced dramatic changes in the last years because of the massive introduction of Variable Renewable Sources (VRSs), such as wind and solar power sources, in the generation portfolios in many countries. VRSs i) are intermittent, i.e., their production is highly variable and only partially predictable, ii) are characterized by no correlation between production and demand, iii) have negligible costs of production, and iv) have been largely subsidized. These features result in lower energy prices, but, at the same time, in increased price volatility, and in network stability issues, which pose a threat to traditional power sources because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. Storage hydropower systems play an important role in compensating production peaks, both in term of excess and shortage of energy. Traditionally, most of the research effort in hydropower reservoir operation has focused on modeling and forecasting reservoir inflow as well as designing reservoir operation accordingly. Nowadays, price variability may be the largest source of uncertainty in the context of hydropower systems, especially when considering medium-to-large reservoirs, whose storage can easily buffer small inflow fluctuations. In this work, we compare the effects of uncertain inflow and energy price forecasts on hydropower production and profitability. By adding noise to historic inflow and price trajectories, we build a set of synthetic forecasts corresponding to different levels of predictability and assess their impact on reservoir operating policies and performances. The study is conducted on different hydropower systems, including storage systems and pumped-storage systems, with different characteristics, e.g., different inflow-capacity ratios. The analysis focuses on Alpine hydropower systems where the hydrological regime ranges from purely ice and snow-melt dominated to mixed snow

  1. Hydropower may produce more greenhouse gases

    Kolshus, Hans H.; Folkestad, Tonje

    2002-01-01

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  2. The Meielsgrund and Turbach small hydro power stations in Saanen, Switzerland; PCH du Meielsgrund et PCH de Turbach - Rapports finaux

    Cavin, G. [Stucky SA, Renens (Switzerland); Wagner, T. [Sigmaplan, Berne (Switzerland)

    2009-12-15

    These four final illustrated reports for the Swiss Federal Office of Energy (SFOE) deal with various aspects of two small hydro projects on two affluents of the river Saane in Switzerland. The first report presents two variants for the enhancement of the existing Meielsgrund installation as well as a new, parallel installation. The catchment area involved, available head, residual water quantities, installed power and annual production figures are discussed. Investments, operating costs and financial viability are also looked at. The second report describes the project and discusses regional planning aspects, hydrological basics and environmental issues in connection with the renewal project, including details on invertebrates found in the stream and their relevance to fishing and nature protection issues. The third and fourth reports concern the Turbach small hydro installation. The topics discussed in these two reports are basically similar to those considered for the Meielsgrund installation.

  3. 75 FR 65620 - Inglis Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting...

    2010-10-26

    ... Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments...: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The project would be... ready for environmental analysis at this time. l. The proposed 2.0-megawatt Inglis Hydropower Project...

  4. World Small Hydropower Development Report 2013 - Eastern Africa

    Jonker Klunne, W

    2013-01-01

    Full Text Available are faced with unreliable electricity supply as a result of fallbacks of national grid leading in widespread use of alternative means to ensure a steady supply of electricity. Despite the political and social challenges and energy barriers, the region...

  5. A feasibility and implementation model of small-scale hydropower ...

    2016-10-04

    Oct 4, 2016 ... Furthermore, water scarcity in South Africa has threatened the viability of ..... environmentally it produces no atmospheric pollutant and no waste (Okot .... mechanical equipment (turbines, generators and controls) capital costs.

  6. DOE Hydropower Program Annual Report for FY 2002

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  7. China’s rising hydropower demand challenges water sector

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  8. Incidental irradiation of mediastinal and hilar lymph node stations during 3D-conformal radiotherapy for non-small cell lung cancer

    Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka; Garmol, Dariusz

    2008-01-01

    Purpose. To estimate the doses of incidental irradiation in particular lymph node stations (LNS) in different extents of elective nodal irradiation (ENI) in 3D-conformal radiotherapy (3D-CRT) for non-small cell lung cancer (NSCLC). Methods. Doses of radiotherapy were estimated for particular LNS delineated according to the recommendations of the Univ. of Michigan in 220 patients treated using 3D-CRT with different (extended, limited and omitted) extents of ENI. Minimum doses and volumes of LNS receiving 40 Gy or more (V40) were compared for omitted vs. limited+extended ENI and limited vs. extended ENI. Results. For omission of the ENI the minimum doses and V40 for particular LNS were significantly lower than for patients treated with ENI. For the limited ENI group, the minimum doses for LNS 5, 6 lower parts of 3A and 3P (not included in the elective area) did not differ significantly from doses given to respective LNS for extended ENI group. When the V40 values for extended and limited ENI were compared, no significant differences were seen for any LNS, except for group 1/2R, 1/2L. Conclusions. Incidental irradiation of untreated LNS seems play a part in case of limited ENI, but not in cases without ENI. For subclinical disease the delineation of uninvolved LNS 5, 6, and lower parts of 3A, 3P may be not necessary, because these stations receive the substantial part of irradiation incidentally, if LNS 4R, 4L, 7, and ipsilateral hilum are included in the elective area while this is not case for stations 1 and 2

  9. SMALL HYDRO PLANTS IN LAND USE SYSTEM PLANNING IN POLAND

    Anita Bernatek

    2014-10-01

    Full Text Available Small hydropower plants are present in the land use system planning in Poland. At the national level the important role of spatial planning in the development of renewable energy was highlighted, included small hydroplants. However, it seems that at the regional level this demand has not been realized. The necessity of developing small hydroplants as a renewable energy was highlighted, but negative environmental impact was not indicated. At local level legal instrument of small hydropower plants is specified.

  10. The 'Chriz' small hydro project; Kleinkraftwerk Chriz - Konzessionsprojekt

    Amacker, P.

    2008-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the project for the renewal of a small hydropower installation in the village of Eischoll in the Swiss Alps. The history of the power station is reviewed and its present state is analysed. The possibilities for its renewal and project financing are discussed, as are rights concerning the use of water and regional planning aspects. The project foresees the use of various older installations and the construction of a new turbine house in the valley. Details on dimensions, the proposed installed power and energy production of the scheme are presented as well as details on the connection to the electricity mains. Environmental aspects and details on the costs and time-scales involved in the construction of the small power station are presented.

  11. Small hydro in Africa

    Jonker Klunne, W

    2011-10-01

    Full Text Available hydro, the author has started an online database of small hydropower projects in eastern and southern Africa. The main aim of the database is to catalogue the current situation and to make that accessible to policymakers, project developers, as well...

  12. Conflicting hydropower development and aquatic ecosystem conservation in Bhutan

    Wi, S.; Yang, Y. C. E.

    2017-12-01

    Hydropower is one of the clean energy sources that many Himalayan countries are eager to develop to solve their domestic energy deficit issue such as India, Nepal and Pakistan. Like other Himalayan countries, Bhutan also has a great potential for hydropower development. However, Bhutan is one of few countries that has a domestic energy surplus and export its hydropower generation to neighboring countries (mainly to India). Exporting hydropower is one of the major economic sources in Bhutan. However, constructions of dams and reservoirs for hydropower development inevitably involve habitat fragmentation, causing a conflict of interest with the pursuit of value in aquatic ecosystem conservation. The objectives of this study is to 1) develop a distributed hydrologic model with snow and glacier module to simulate the hydrologic regimes of seven major watersheds in Bhutan; 2) apply the hydrologic model to compute hydropower generation for all existing and potential dams; 3) evaluate cascade impacts of each individual dam on downstream regions by employing three hydro-ecological indicators: the River Connectivity Index (RCI), Dendritic Connectivity Index (DCI), total affected river stretch (ARS), and 4) analyze the tradeoffs between hydropower generation and river connectivity at the national scale by means of a multiple objective genetic algorithm. Modeling results of three Pareto Fronts between ecological indicators and hydropower generation accompany with future energy export targets from the government can inform dam selections that maximizing hydropower generation while minimizing the impact on the aquatic ecosystem (Figure 1a). The impacts of climate change on these Pareto front are also explored to identify robust dam selection under changing temperature and precipitation (Figure 1b).

  13. Methodology for transient simulation of a small heliothermic central station; Metodologia para simulacao transiente de uma pequena central heliotermica

    Wendel, Marcelo

    2010-08-15

    The final steps of generating electricity from concentrated solar power technologies are similar to conventional thermal processes, since steam or gas is also employed for moving turbines or pistons. The fundamental difference lies on the fact that steam or hot gas is generated by solar radiation instead of fossil fuels or nuclear heat. The cheapest electricity generated from solar energy has been achieved with large-scale power stations based on this concept. Computer simulations represent a low-cost option for the design of thermal systems. The present study aims to develop a methodology for the transient simulation of a micro-scale solar-thermal power plant (120 kWe) which should be appropriate in terms of accuracy and computational effort. The facility considered can optionally operate as a cogeneration plant producing electric power as well as chilled water. Solar radiation is collected by parabolic troughs, electricity is generated by an organic Rankine cycle and chilled water is produced by an absorption cooling cycle. The organic Rankine cycle is of interest because it allows for a plant with relatively simple structure and automated operation. The simulation methodology proposed in this study is implemented in TRNSYS with new components (TYPEs) developed for the solar field and thermal cycles. The parabolic trough field component is based on an experimental efficiency curve of the solar collector. In the case of the Rankine and absorption cycles, the components are based on performance polynomials generated with EES from detailed thermodynamic models, which are calibrated with performance data from manufacturers. Distinct plant configurations are considered. An optimization algorithm is used for searching the best operating point in each case. Results are presented for the following Brazilian sites: Fortaleza, Petrolina and Bom Jesus da Lapa. The latter offers the highest global plant performance. An analysis about the influence of the thermal storage on

  14. Examining the economic impacts of hydropower dams on property values using GIS.

    Bohlen, Curtis; Lewis, Lynne Y

    2009-07-01

    While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water

  15. Simulation with the MELCOR code of two severe accident sequences, Station Blackout and Small Break LOCA, for the Atucha I nuclear power plant

    Valle Cepero, Reinaldo

    2004-01-01

    The results of the PSA-I applied to the Atucha I nuclear power plant (CNA I) determine the accidental sequences with the most influence related to the probability of the core reactor damage. Among those sequences are include, the Station Blackout and lost of primary coolant, combine with the failure of the emergency injection systems by pipe breaks of diameters between DN100 - DN25 or equivalent areas, Small LOCA. This paper has the objective to model and analyze the behavior of the primary circuit and the pressure vessel during the evolution of those two accidental sequences. It presented a detailed analysis of the main phenomena that occur from the initial moment of the accident to the failure moment of the pressure vessel and the melt material fall to the reactor cavity. Two sequences were taken into account, considering the main phenomena (core uncover, heating, fuel element oxidation, hydrogen generation, degradation and relocation of the melt material, failure of the support structures, etc.) and the time of occurrence, of those events will be different, if it is considered that both sequences will be developed in different scenarios. One case is an accident with the primary circuit to a high pressure (Station Blackout scenario) and the other with a early primary circuit depressurization due to the lost of primary coolant. For this work the MELCOR 1.8.5 code was used and it allows within a unified framework to modeling an extensive spectrum of phenomenology associated with the severe accidents. (author)

  16. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  17. Modular Hydropower Engineering and Pilot Scale Manufacturing

    Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, the castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously

  18. Hydrogen production at hydro-power plants

    Tarnay, D. S.

    A tentative design for hydrogen-producing installations at hydropower facilities is discussed from technological, economic and applications viewpoints. The plants would use alternating current to electrolyze purified river water. The hydrogen would be stored in gas or liquid form and oxygen would be sold or vented to the atmosphere. The hydrogen could later be burned in a turbine generator for meeting peak loads, either in closed or open cycle systems. The concept would allow large hydroelectric plants to function in both base- and peak-load modes, thus increasing the hydraulic utilization of the plant and the capacity factor to a projected 0.90. Electrolyzer efficiencies ranging from 0.85-0.90 have been demonstrated. Excess hydrogen can be sold for other purposes or, eventually, as domestic and industrial fuel, at prices competitive with current industrial hydrogen.

  19. Current status and future developments of small and micro hydro in southern Africa

    Jonker Klunne, W

    2015-01-01

    Full Text Available of plants are in operation or under development. Small and micro hydropower are less well understood. Historically small hydropower has played an important role in the development of the region, but since mid 1960s the emphasis has been on fossil fuel based...

  20. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  1. Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report

    Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supporting sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE. The

  2. Greaseless Bushings for Hydropower Applications: Program, Testing, and Results

    Jones, John

    1999-01-01

    ...) bushings at its hydropower and navigation facilities. Products of this type currently on the market, however, were not specifically developed for the high-load, low-speed oscillating operating conditions typical for power-generation machinery...

  3. Hydropower's Contribution to Energy Security

    Altinbilek, D.; Abdel-Malek, R.; Devernay, J.M.; Gill, R.; Leney, S.; Moss, Terry; Schiffer, H.P.; Taylor, R.M.

    2007-07-01

    The role of hydropower within mixed power systems is analysed from the point of view of both quantitative and qualitative performance. Interrelationships with all other generation technologies are discussed and synergies identified. Resources, sustainability criteria and investment challenges are reviewed in the context of development. The objective of the paper is to define hydropower's contribution within the clean, clever and competitive markets of the future.

  4. Hydropower is not plain sailing all the way

    De Vries, E.

    1991-01-01

    A report is given of the conference Hidroenergia 1991, which was held in Nice, France, from 12 to 15 June. The author highlights the subjects on the problems of implementing hydro-power, and the environmental effects of the use of hydro-power. Special attention is paid to the activities of the European Community to limit the constraints, which form hindrances to the development of hydroelectric power. 2 ills., 3 refs

  5. Hydropower engineering. Paper no. IGEC-1-005

    Cervantes, M.

    2005-01-01

    Hydropower, one of the corner stones of sustainable energy development, is the largest renewable source of energy. There is a large demand worldwide for people trained to design, operate, maintain and optimise hydropower systems. Hydro Power University, a name which encompasses both education, research and development within hydropower in Sweden, offers a unique and broad international masters programme within hydropower engineering including civil, mechanical and electrical engineering. The programme is the result of a close collaboration between Lulea University of Technology and Uppsala University, at the research and education level. This master programme, Hydropower Engineering, is open to both Swedish and foreign students free of charge. It aims to provide students with state of the art knowledge and experience on parts of the hydropower system such as turbine technology, generator design, rotor dynamics, tribology, dams/dam safety, maintenance and operation and environmental aspects. World unique laboratory experiments are offered to the students at Porjus and Alvkarleby, Sweden. The Porjus Hydropower Centre offers world unique facilities: two full scale turbines of 10 MW each, one with the latest generator technology - Powerformer. The turbines are exclusively dedicated for use in education, research and development. State of the art in measurement technology is available. Both units are at the centre of each education programme offered by the Hydro Power University. In Alvkarleby, spillways, discharge capacity and turbines model testing can be undertaken at the Vattenfall laboratory also with state of the art experimental material and highly qualified staff. The large number of applications from developing countries indicates a need of scholarships, which needs to be resolved for the development of hydropower. (author)

  6. Measurement of the Parameter Kappa, and Reevaluation of Kappa for Small to Moderate Earthquakes at Seismic Stations in the Vicinity of Yucca Mountain, Nevada

    Biasi, Glenn; Anderson, John G

    2007-01-01

    The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (∼20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could result in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: (1) The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in

  7. Measurement of the Parameter Kappa, and Reevaluation of Kappa for Small to Moderate Earthquakes at Seismic Stations in the Vicinity of Yucca Mountain, Nevada

    Biasi, Glenn; Anderson, John G

    2007-12-05

    The parameter kappa was defined by Anderson and Hough (1984) to describe the high-frequency spectral roll-off of the strong motion seismic spectrum. In the work of Su et al., (1996) the numerical value of kappa estimated for sites near Yucca Mountain was small (~20 ms). The estimate obtained from these events has been applied through a rigorous methodology to develop design earthquake spectra with magnitude over 5.0. Smaller values of kappa lead to higher estimated ground motions in the methodology used by the Probabilistic Seismic Hazard Analysis (PSHA) for Yucca Mountain. An increase of 10 ms in kappa could result in a substantial decrease in the high frequency level of the predicted ground motions. Any parameter that plays such a critical role deserves close examination. Here, we study kappa and its associated uncertainties. The data set used by Su et al (1996) consisted of 12 M 2.8 to 4.5 earthquakes recorded at temporary stations deployed after the June 1992 Little Skull Mountain earthquake. The kappa elements of that study were revisited by Anderson and Su (MOL.20071203.0134) and substantially confirmed. One weakness of those studies is the limited data used. Few of these stations were on tuff or on Yucca Mountain itself. A decade of Southern Great Basin Digital Seismic Network (SGBDSN) recording has now yielded a larger body of on-scale, well calibrated digital ground motion records suitable for investigating kappa. We use the SGBDSN data to check some of the original assumptions, improve the statistical confidence of the conclusions, and determine values of kappa for stations on or near Yucca Mountain. The outstanding issues in kappa analysis, as they apply to Yucca Mountain, include: 1. The number itself. The kappa estimate near 20 msec from Su et al. (1996) and Anderson and Su (MOL.20071203.0134) is markedly smaller than is considered typical in California (Silva, 1995). The low kappa value has engineering consequences because when it is applied in ground

  8. Optimising India's small hydro resources

    Kumar, A.

    1995-01-01

    A brief history is given of an initiation to develop small scale hydropower projects in the Himalayas. The experience of the Indian project managers in utilising international funds from the Global Environment Facility could serve as a model for other small remote communities in the rest of the world. Lessons learned are reported. (UK)

  9. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  10. Short-term forecasting model for aggregated regional hydropower generation

    Monteiro, Claudio; Ramirez-Rosado, Ignacio J.; Fernandez-Jimenez, L. Alfredo

    2014-01-01

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  11. Hydropower and biomass as renewable energy sources in Turkey

    Kaygusuz, K.

    2001-01-01

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  12. A future role for cascade hydropower in the electricity system of China

    Tang, Xinhua; Zhou, Jianjun

    2012-01-01

    Due to the dominance of coal power, the electricity sector is the primary contributor of greenhouse gas emissions in China. The increase of peak-load and intermittent renewable power requires significant resources of regulation facilities. Comprehensively utilizing large-scale cascade hydropower plants (CHPPs), which are being rapidly developed in China, as renewable regulating facilities would be a strategic decision, considering the flexibility of hydropower. Jointly modeling a set of CHPP in the upstream Yangtze River indicated that the CHPP can regulate peak-load up to 30–40 GW and intermittent renewables to scales of nearly 15 GW from wind and solar sources with the help of ±800 KV ultra-high voltage direct current (UHVDC) transmissions. The present study shows that the hydraulic stability of the concerned river reaches can be preserved easily and the comprehensive efficiency of regulation and transmission by CHPPs is much higher than that of pumped hydro energy storage (PHES) stations. As increasingly more giant CHPPs emerge in west China, using them primarily as regulating facilities can enhance the structure of power grids, promote the development of renewables, save energy and reduce emissions. Thus we propose to shift the CHPPs that were originally projected mainly for electricity to facility primarily for power improvement. - Highlights: ► Large cascade hydropower plant (CHPP) is efficient and renewable peaking facility (PF). ► CHPPs can easily anti-regulate the hydro-fluctuations caused by power regulations. ► Remote CHPPs with UHVDC transmission can massively replace the traditional PFs.► Shift China's CHPPs mainly as PF to promote intermittent renewables are proposed.

  13. Detecting Human Hydrologic Alteration from Diversion Hydropower Requires Universal Flow Prediction Tools: A Proposed Framework for Flow Prediction in Poorly-gauged, Regulated Rivers

    Kibler, K. M.; Alipour, M.

    2016-12-01

    Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.

  14. Advanced hydropower turbine: AHTS-Advanced Hydropower Turbine System Program; Turbinas hidraulicas avancadas: Programa AHTS-Advanced Hydropower Turbine System

    Macorin, Adriano De Figueiredo; Tomisawa, Alessandra Terumi; Van Deursen, Gustavo Jose Ferreira; Bermann, Celio [Universidade de Sao Paulo (USP), SP (Brazil)], email: brunosilva@usp.br

    2010-07-01

    Due to a privileged hydrography and energy policies that remounts to the beginning of the 20th century, Brazilian's electrical grid can be considered one of the cleanest in the world regarding the emission of atmospheric pollutants. Nevertheless, as in every human large enterprise, it is well known that hydroelectric power plants also lead to harmful environmental impacts. This article presents the AHTS Program (Advanced Hydropower Turbine System) started in 1994 in USA and developed to assess and conceive new hydro turbines to mitigate two of the main negative impacts of the installation and operation of this kind of power plant: (a) turbine-passed fish mortality and (b) the low dissolved oxygen - DO - levels downstream of the dams. The criteria used to concept the turbines are also justified in this article. As well as the modifications made in each case by the following companies: Alden Research Lab e o Northern Research and Engineering Corporation (ARL/NREC) and Voith Hydro (Voith). (author)

  15. The Method of Optimization of Hydropower Plant Performance for Use in Group Active Power Controller

    Glazyrin G.V.

    2017-04-01

    Full Text Available The problem of optimization of hydropower plant performance is considered in this paper. A new method of calculation of optimal load-sharing is proposed. The method is based on application of incremental water flow curves representing relationship between the per unit increase of water flow and active power. The optimal load-sharing is obtained by solving the nonlinear equation governing the balance of total active power and the station power set point with the same specific increase of water flow for all turbines. Unlike traditional optimization techniques, the solution of the equation is obtained without taking into account unit safe operating zones. Instead, if calculated active power of a unit violates the permissible power range, load-sharing is recalculated for the remaining generating units. Thus, optimal load-sharing algorithm suitable for digital control systems is developed. The proposed algorithm is implemented in group active power controller in Novosibirsk hydropower plant. An analysis of operation of group active power controller proves that the application of the proposed method allows obtaining optimal load-sharing at each control step with sufficient precision.

  16. Using hydropower to complement wind energy: a hybrid system to provide firm power

    Jaramillo, O.A.; Borja, M.A.; Huacuz, J.M. [Instituto de Investigaciones Electricas, Morelos (Mexico). Energias No Convencionales

    2004-09-01

    This paper presents a theoretical study of how wind power can be complemented by hydropower. A conceptual framework is provided for a hybrid power station that produces constant power output without the intermittent fluctuations inherent when using wind power. Two hypothetical facilities are considered as case studies. One of them is a hydropower plant located on the ''Presidente Benito Juarez'' dam in Jalapa del Marques, Oaxaca, Mexico. The other hypothetical facility is a wind farm located near ''La Venta's', an area in Juchitan, Oaxaca, Mexico. The wind-hydro-power system is a combined wind and hydro power plant in a region that is rich in both resources. The model shows that the hybrid plant could provide close to 20 MW of firm power to the electrical distribution system. On a techno-economic basis, we obtain the levelized production cost of the hybrid system. Taking into account two different discount rates of 7% and 10%, figures for levelized production cost are developed. (author)

  17. Metaheuristic Approaches for Hydropower System Scheduling

    Ieda G. Hidalgo

    2015-01-01

    Full Text Available This paper deals with the short-term scheduling problem of hydropower systems. The objective is to meet the daily energy demand in an economic and safe way. The individuality of the generating units and the nonlinearity of their efficiency curves are taken into account. The mathematical model is formulated as a dynamic, mixed integer, nonlinear, nonconvex, combinatorial, and multiobjective optimization problem. We propose two solution methods using metaheuristic approaches. They combine Genetic Algorithm with Strength Pareto Evolutionary Algorithm and Ant Colony Optimization. Both approaches are divided into two phases. In the first one, to maximize the plant’s net generation, the problem is solved for each hour of the day (static dispatch. In the second phase, to minimize the units’ switching on-off, the day is considered as a whole (dynamic dispatch. The proposed methodology is applied to two Brazilian hydroelectric plants, in cascade, that belong to the national interconnected system. The nondominated solutions from both approaches are presented. All of them meet demand respecting the physical, electrical, and hydraulic constraints.

  18. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the

  19. Prospects for the utilization of small nuclear plants for civil ships, floating heat and power stations and power seawater desalination complexes

    Polunichev, V.I.

    2000-01-01

    Small power nuclear reactor plants developed by OKB Mechanical Engineering are widely used as propulsion plants in various civil ships. Russia is the sole country in the world that possesses a powerful icebreaker and transport fleet which offers effective solution for vital socio-economic tasks of Russia's northern regions by maintaining a year-round navigation along the Arctic sea route. In the future, intensification of freighting volumes is expected in Arctic seas and at estuaries of northern rivers. Therefore, further replenishment of nuclear-powered fleet is needed by new generation ice-breakers equipped with advanced reactor plants. Adopted progressive design and technology solutions, reliable equipment and safety systems being continuously perfected on the basis of multi year operation experience feedback, addressing updated safety codes and achievement of science and technology, allow the advanced propulsion reactor plants of this type to be recommended as energy sources for floating heat and power co-generation stations and power-seawater desalination complexes. (author)

  20. comparative measurement o river for small hydro tive measurement

    eobe

    Keywords: Keywords: small hydropower, electric power, volum ... gathering systems. .... or revolving cups connected to the end. ..... Also, the float velocity may have been affected by wind ... completely dedicated as off-grid supply can meet the.

  1. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    van Vliet, M. T H; van Beek, L. P H|info:eu-repo/dai/nl/14749799X; Eisner, S.; Flörke, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Bierkens, M. F P|info:eu-repo/dai/nl/125022794

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding

  2. Estimation of economic parameters of U.S. hydropower resources

    Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Reeves, Kelly S. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Carroll, Greg R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  3. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; Troia, Matthew J.

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  4. Fuzzy rule-based model for hydropower reservoirs operation

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  5. Reevaluation of Turkey's hydropower potential and electric energy demand

    Yueksek, Omer

    2008-01-01

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  6. Fire Stations

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  7. Hydro-power installation on the Prascherbach, Nufenen, Switzerland; Wasserkraftwerk Prascherbach, Nufenen. Programm Kleinwasserkraftwerke - Schlussbericht

    Marugg, R.

    2008-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes project variants for the replacement of an 80-year old hydro-power plant in Nufenen, Switzerland. Details on the new power station, which is to produce 300 kilowatts of electrical power using a height difference of 340 metres is to provide 1.3 million kilowatt-hours of electricity per year. The report reviews the history of the project, which goes back to the 1990s and describes the project approved in 1999 as well as the updates made afterwards. The financial aspects of the project and remuneration for the power generated are examined. Environmental issues connected with the project are also discussed. The proposed course of events involved in taking further steps toward the realisation of the installation are discussed. An appendix includes copies of the various documents pertaining to cost estimation, water quantities, environmental protection and the granting of building permission.

  8. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    Key, T. [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  9. 78 FR 56872 - City of Barre, Vermont; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-09-16

    ..., Vermont; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting... construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The Nelson Street 17 kW...

  10. 78 FR 61958 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    2013-10-08

    ... Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On August 20, 2013, the New England Hydropower Company... river are owned by the city of Meriden. Applicant Contact: Mr. Michael C. Kerr, New England Hydropower...

  11. 75 FR 18193 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    2010-04-09

    ... Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and... No.: 12626-002. c. Date filed: March 31, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e... Power Act, 16 U.S.C. 791(a)-825(r). h. Applicant Contact: Damon Zdunich, Northern Illinois Hydropower...

  12. 78 FR 66355 - Pleasant Grove City, UT; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-11-05

    ... City, UT; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and... Grove City, Utah (Pleasant Grove) filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  13. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    2013-09-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-9-000] Hydropower... license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of 2013. The workshop will be held in...

  14. 75 FR 59707 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2010-09-28

    ... Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments... on July 16, 2010, Coastal Hydropower, LLC filed an application for a preliminary permit, pursuant to... Hydropower, LLC, Key Centre, 601 108th Avenue, NE., Suite 1900, Bellevue, WA 98004; phone: (425) 943-7690...

  15. 78 FR 61987 - Corbett Water District; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-10-09

    ... District; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting... construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The Corbett Hydroelectric...

  16. 75 FR 7469 - Panel Member List for Hydropower Licensing Study Dispute Resolution; Notice Extending Filing Date...

    2010-02-19

    ... List for Hydropower Licensing Study Dispute Resolution; Notice Extending Filing Date for Applications for Panel Member List for Hydropower Licensing Study Dispute Resolution February 4, 2010. On October... on a list of resource experts willing to serve as a third panel member in the Commission's hydropower...

  17. 78 FR 64493 - Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft...

    2013-10-29

    ... Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft Preliminary Draft... Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric Project. f. Location: At the confluence of..., Business Manager, Juneau Hydropower, Inc., P.O. Box 22775, Juneau, AK 99802; 907-789-2775, email: duff...

  18. 75 FR 81643 - Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

    2010-12-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Hydropower Resource Assessment at Existing... period for review of the Hydropower Resource Assessment at Existing Reclamation Facilities Draft Report... sustainable, affordable hydropower for our national electricity supplies. Reclamation has 476 dams and 8,116...

  19. 75 FR 51258 - Boott Hydropower, Inc.; Eldred L Field Hydroelectric Facility Trust; Notice of Application for...

    2010-08-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2790-055] Boott Hydropower... Hydropower, Inc. and Eldred L Field Hydroelectric Facility Trust. e. Name of Project: Lowell Hydroelectric... Affairs Coordinator, Boott Hydropower, Inc., One Tech Drive, Suite 220, Andover, MA 01810. Tel: (978) 681...

  20. 78 FR 53752 - City of Sandpoint, Idaho; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-08-30

    ... Sandpoint, Idaho; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and... intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The Little...

  1. 78 FR 61985 - City of Astoria, Oregon; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-10-09

    ..., Oregon; Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting... of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The...

  2. 75 FR 62516 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    2010-10-12

    ... Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments...: Northern Illinois Hydropower, LLC. e. Name of Project: Dresden Island Project. f. Location: U.S. Army Corps... Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i. FERC...

  3. 76 FR 7835 - Great River Hydropower, LLC; Notice of Scoping Meetings and Environmental Site Review and...

    2011-02-11

    ... Hydropower, LLC; Notice of Scoping Meetings and Environmental Site Review and Soliciting Scoping Comments.... c. Date filed: July 12, 2010. d. Applicant: Great River Hydropower, LLC. e. Name of Project: Upper... 796-foot-long by 46-foot-wide by 25-foot-high concrete hydropower structure consisting of 30 turbine...

  4. 75 FR 24937 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    2010-05-06

    ... Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and... No.: 12717-002. c. Date filed: May 27, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e. Name... Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i. FERC Contact: Dr. Nicholas Palso...

  5. 77 FR 58375 - Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2012-09-20

    ... Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On May 18, 2012, Inglis Hydropower, LLC filed an... study the feasibility of a hydropower project located at the Inglis Bypass Channel, located on the...

  6. 75 FR 59706 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2010-09-28

    ... Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments... on July 16, 2010, Coastal Hydropower, LLC filed an application for a preliminary permit, pursuant to... generation of the project would be 7.9 gigawatt-hours. Applicant Contact: Neil Anderson, Coastal Hydropower...

  7. 77 FR 31349 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2012-05-25

    ... Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On April 12, 2012, Coastal Hydropower, LLC filed an... generation of 31.5 gigawatt-hours. Applicant Contact: Neil Anderson, Coastal Hydropower, LLC, Key Centre, 601...

  8. 78 FR 63176 - Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting...

    2013-10-23

    ... Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To... of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The...

  9. 78 FR 55251 - Hydropower Regulatory Efficiency Act of 2013; Notice of Workshop

    2013-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-9-000] Hydropower... hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of 2013. Participants should be prepared to discuss...

  10. 77 FR 30308 - Proposed Renewal of Information Collection: Alternatives Process in Hydropower Licensing

    2012-05-22

    ...: Alternatives Process in Hydropower Licensing AGENCY: Office of the Secretary, Office of Environmental Policy... the Alternatives Process in Hydropower Licensing, OMB Control Number 1094-0001. FOR FURTHER... more of the Departments develop for inclusion in a hydropower license issued by the Federal Energy...

  11. 75 FR 10230 - Inglis Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    2010-03-05

    ... Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and Protests... No.: P-12783-003. c. Date filed: July 22, 2009. d. Applicant: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be located at the existing...

  12. 76 FR 12103 - Erie Boulevard Hydropower, L.P; Notice of Settlement Agreement and Soliciting Comments

    2011-03-04

    ... Hydropower, L.P; Notice of Settlement Agreement and Soliciting Comments Take notice that the following... Boulevard Hydropower, L.P. e. Location: The existing multi-development project is located on the Oswegatchie... 791 (a)-825(r) h. Applicant Contact: Daniel Daoust, Erie Boulevard Hydropower, 33 West 1st Street...

  13. 75 FR 62518 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    2010-10-12

    ... Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments...: Northern Illinois Hydropower, LLC. e. Name of Project: Brandon Road Hydroelectric Project. f. Location: U.S... Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i. FERC Contact: Janet Hutzel, (202...

  14. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a

  15. Regulatory Approaches for Adding Capacity to Existing Hydropower Facilities

    Levine, Aaron L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Curtis, Taylor L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kazerooni, Borna [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-24

    In 2015, hydroelectric generation accounted for more than 6 percent of total net electricity generation in the United States and 46 percent of electricity generation from all renewables. The United States has considerable hydroelectric potential beyond what is already being developed. Nearly 7 GW of this potential is found by adding capacity to existing hydropower facilities. To optimize the value of hydroelectric generation, the U.S. Department of Energy's Hydropower Vision Study highlights the importance of adding capacity to existing facilities. This report provides strategic approaches and considerations for Federal Energy Regulatory Commission licensed and exempt hydropower facilities seeking to increase generation capacity, which may include increases from efficiency upgrades. The regulatory approaches reviewed for this report include capacity and non-capacity amendments, adding capacity during relicensing, and adding capacity when converting a license to a 10-MW exemption.

  16. Damages and methods for reparation; Hydropower structures; Skador och reparationsmetoder

    Sandstroem, Tomas

    2008-10-15

    As the focus of the Swedish Hydropower Industry shifted from the developing phase of the 20th century to the present phase of managing and maintenance of the hydropower plants and the adherent structures knowledge regarding issues concerning repair work and degradation processes of concrete has become truly important. Hydropower structures are submitted to live loads (for example caused by ice, water, snow and wind) and physical attacks such as Freeze/thaw, leaching and erosion (abrasion and cavitation). Hydropower structures are also submitted to chemical and electro chemical attacks like ASR and corrosion of the reinforcement bars. All of the mentioned processes have a negative affect on concrete structures service life. As it is today the Hydropower Industry possesses a rather high degree of knowledge concerning principal repair and strengthening techniques like shotcreting and grouting. The purpose of this report is (1) to point out the Swedish Hydropower Industry's need for extensive knowledge regarding overlays and toppings and (2) the potential advantages of overlays and toppings as repair techniques with respect to hydropower environments and the corresponding degradation processes acting on those structures. The performance of repairing a concrete structure using overlays or toppings is principally executed by the removal (totally or partially) of the damaged concrete surface, afterwards a new concrete overlay or topping is applied. The overlay must be able to withstand the live loads and the physical, chemical and electro-chemical attacks that are acting on the structure. The overlay is also required to co-operate with, and protect, the host material for a very long time. This report deals with the most common types of physical and chemical processes that are acting in Hydropower environments and the damages that they are causing concrete structures. Some of the common principal repair techniques that can be used when repairing the damaged concrete

  17. Exemplary Design Envelope Specification for Standard Modular Hydropower Technology

    Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pracheil, Brenda M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Kutz, Benjamin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bishop, Norm [Knight Piesold, Denver, CO (United States); Welch, Tim [U.S. Department of Energy (DOE), Washington, DC (United States). Office of Energy Efficiency and Renewable Energy (EERE); Rabon, Daniel [U.S. Department of Energy (DOE), Washington, DC (United States). Office of Energy Efficiency and Renewable Energy (EERE); Fernandez, Alisha [McKeown and Associates, Moberly, MO (United States)

    2017-02-01

    Hydropower is an established, affordable renewable energy generation technology supplying nearly 18% of the electricity consumed globally. A hydropower facility interacts continuously with the surrounding water resource environment, causing alterations of varying magnitude in the natural flow of water, energy, fish, sediment, and recreation upstream and downstream. A universal challenge in facility design is balancing the extraction of useful energy and power system services from a stream with the need to maintain ecosystem processes and natural environmental function. On one hand, hydroelectric power is a carbon-free, renewable, and flexible asset to the power system. On the other, the disruption of longitudinal connectivity and the artificial barrier to aquatic movement created by hydraulic structures can produce negative impacts that stress fresh water environments. The growing need for carbon-free, reliable, efficient distributed energy sources suggests there is significant potential for hydropower projects that can deploy with low installed costs, enhanced ecosystem service offerings, and minimal disruptions of the stream environment.

  18. Hydropower, an integral part of Canada's climate change strategy

    Fortin, P.

    1999-01-01

    The development and implementation of a climate change policy could be among the most far-reaching environmental initiatives ever embarked upon in Canada and abroad. If Canada is to stabilize or reduce its Greenhouse Gas (GHG) emissions over the long term, a significant adjustment to Canadian industry will be required as we move away from fossil fuel-intensive and GHG producing activities. Future hydroelectric projects provide Canada with a unique opportunity to significantly reduce the costs associated with stabilizing its GHG emissions. In addition, the energy storage and dispatchability associated with hydropower can support development of other low emitting renewable resources such as wind and solar. This document discusses the potential role of hydropower as a tool to reduce emissions, recommends action to reduce barriers facing hydropower and comments on some of the policy tools available to manage Canada's GHG emissions. (author)

  19. The Regulatory Noose: Logan City’s Adventures in Micro-Hydropower

    Megan Hansen

    2016-06-01

    Full Text Available Recent growth in the renewable energy industry has increased government support for alternative energy. In the United States, hydropower is the largest source of renewable energy and also one of the most efficient. Currently, there are 30,000 megawatts of potential energy capacity through small- and micro-hydro projects throughout the United States. Increased development of micro-hydro could double America’s hydropower energy generation, but micro-hydro is not being developed at the same rate as other renewable sources. Micro-hydro is regulated by the Federal Energy Regulatory Commission and subject to the same regulation as large hydroelectric projects despite its minimal environmental impact. We studied two cases of micro-hydro projects in Logan, Utah, and Afton, Wyoming, which are both small rural communities. Both cases showed that the web of federal regulation is likely discouraging the development of micro-hydro in the United States by increasing the costs in time and funds for developers. Federal environmental regulation like the National Environmental Policy Act, the Endangered Species Act, and others are likely discouraging the development of clean renewable energy through micro-hydro technology.

  20. An empirical analysis of the hydropower portfolio in Pakistan

    Siddiqi, Afreen; Wescoat, James L.; Humair, Salal; Afridi, Khurram

    2012-01-01

    The Indus Basin of Pakistan with 800 hydropower project sites and a feasible hydropower potential of 60 GW, 89% of which is undeveloped, is a complex system poised for large-scale changes in the future. Motivated by the need to understand future impacts of hydropower alternatives, this study conducted a multi-dimensional, empirical analysis of the full hydropower portfolio. The results show that the full portfolio spans multiple scales of capacity from mega (>1000 MW) to micro (<0.1 MW) projects with a skewed spatial distribution within the provinces, as well as among rivers and canals. Of the total feasible potential, 76% lies in two (out of six) administrative regions and 68% lies in two major rivers (out of more than 125 total channels). Once projects currently under implementation are commissioned, there would be a five-fold increase from a current installed capacity of 6720 MW to 36759 MW. It is recommended that the implementation and design decisions should carefully include spatial distribution and environmental considerations upfront. Furthermore, uncertainties in actual energy generation, and broader hydrological risks due to expected climate change effects should be included in the current planning of these systems that are to provide service over several decades into the future. - Highlights: ► Pakistan has a hydropower potential of 60 GW distributed across 800 projects. ► Under-development projects will realize 36.7 GW of this potential by 2030. ► Project locations are skewed towards some sub-basins and provinces. ► Project sizes are very diverse and have quite limited private sector ownership. ► Gaps in data prevent proper risk assessment for Pakistan's hydropower development.

  1. Greenhouse gas emissions of hydropower in the Mekong River Basin

    Räsänen, Timo A.; Varis, Olli; Scherer, Laura; Kummu, Matti

    2018-03-01

    The Mekong River Basin in Southeast Asia is undergoing extensive hydropower development, but the magnitudes of related greenhouse gas emissions (GHG) are not well known. We provide the first screening of GHG emissions of 141 existing and planned reservoirs in the basin, with a focus on atmospheric gross emissions through the reservoir water surface. The emissions were estimated using statistical models that are based on global emission measurements. The hydropower reservoirs (119) were found to have an emission range of 0.2-1994 kg CO2e MWh-1 over a 100 year lifetime with a median of 26 kg CO2e MWh-1. Hydropower reservoirs facilitating irrigation (22) had generally higher emissions reaching over 22 000 kg CO2e MWh-1. The emission fluxes for all reservoirs (141) had a range of 26-1813 000 t CO2e yr-1 over a 100 year lifetime with a median of 28 000 t CO2e yr-1. Altogether, 82% of hydropower reservoirs (119) and 45% of reservoirs also facilitating irrigation (22) have emissions comparable to other renewable energy sources (equalling even the emission from fossil fuel power plants (>380 kg CO2e MWh-1). These results are tentative and they suggest that hydropower in the Mekong Region cannot be considered categorically as low-emission energy. Instead, the GHG emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.

  2. Two new micro hydropower plants at Osco; Creazione di due microcentrali elettriche nel territorio di Osco. Rapporto finale dicembre 2007

    NONE

    2007-07-01

    A feasibility study for two small hydropower plants in Osco, southern Switzerland is reported. This alpine community wants to take advantage of an elevation difference of 1500 m between a possible water catchment on a mountain stream and the location of a future hydropower plant. The report confirms the technical and economical feasibility of the project. Two series-connected plants are foreseen, with a total power of about 500 kW and a yearly expected production of 3,375,000 kWh. The project would have a positive side-effects on the public relations of the community and on education in its schools. It would prevent land slides that may happen on the steep hillsides after heavy rain fall and improve the availability of useful water resources downhill in the main valley. Federal and regional subsidies are expected. Construction work is thought to begin 2008.

  3. Drinking-water hydropower installation at Schattdorf - Preliminary project; Trinkwasserkraftwerk Oberfeld Haldi bei Schattdorf. Programm Kleinwasserkraftwerke. Vorprojekt 2009

    Gasser, M.

    2009-09-15

    This preliminary project report for the Swiss Federal Office of Energy (SFOE) describes the project for the construction of a small hydropower installation near Schattdorf, Switzerland. The location of the Faetsch springs and the ownership of the various land parcels involved are described. The general water supply project for Oberfeld-Haldi and the various springs and reservoirs involved are also discussed. The works necessary for the realisation of the hydropower project are described and discussed. Cost estimates are presented and the application for cost-covering remuneration of the scheme is noted. Estimates of energy production are presented and discussed, as is the economic viability of the project. Environmental aspects of the project are also discussed.

  4. Renewal of the Stanipac hydropower plant in Burgdorf; Febacom AG - Burgdorf. Gesamterneuerung Kraftwerk Stanipac - Burgdorf. Vorprojektstudie - Schlussbericht

    Hintermann, M.

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE), takes a look at the results of a preliminary study on the renewal of the Stanipac hydropower installation in Burgdorf, Switzerland. This small hydropower plant is the first of a series of nine installations situated along a canal. Proposals for the renewal of the installation are discussed. Topographical and hydrological factors are presented and discussed. Also, data on water quantities is presented. The existing installation dating from 1946 is described. Three variants for the renewal are noted and the appropriate installations, their costs and their production estimates are discussed. A best solution is proposed and the necessary installations are described in more detail, as is the economic viability of the scheme. Photos of the existing installation, figures on the proposed installation and project sketches are presented.

  5. Summary Report of Advanced Hydropower Innovations and Cost Reduction Workshop at Arlington, VA, November 5 & 6, 2015

    O' Connor, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rugani, Kelsey [Kearns & West, Inc., San Francisco, CA (United States); West, Anna [Kearns & West, Inc., San Francisco, CA (United States)

    2016-03-01

    On behalf of the U.S. Department of Energy (DOE) Wind and Water Power Technology Office (WWPTO), Oak Ridge National Laboratory (ORNL), hosted a day and half long workshop on November 5 and 6, 2015 in the Washington, D.C. metro area to discuss cost reduction opportunities in the development of hydropower projects. The workshop had a further targeted focus on the costs of small, low-head1 facilities at both non-powered dams (NPDs) and along undeveloped stream reaches (also known as New Stream-Reach Development or “NSD”). Workshop participants included a cross-section of seasoned experts, including project owners and developers, engineering and construction experts, conventional and next-generation equipment manufacturers, and others to identify the most promising ways to reduce costs and achieve improvements for hydropower projects.

  6. Small hydro schemes in Turtmanntal, Switzerland

    2008-01-01

    This two-part report for the Swiss Federal Office of Energy (SFOE) presents several variants and two preliminary projects with respect to schemes for the use of hydropower in the Turtmanntal valley in the Swiss Alps. The various possible sites for the power stations both on the left and right-hand sides of the main valley are described. Technical details and prognoses for costs and energy production are discussed for all these variants. In the second part of the report, preliminary projects for hydropower installations on the Braendji and Piji streams are presented. Costs and economic viability are discussed and time-scales for the realisation are examined.

  7. Willingness to pay for environmental improvements in hydropower regulated rivers

    Kataria, Mitesh

    2009-01-01

    This paper uses a choice experiment to estimate how Swedish households value different environmental improvements for the hydropower regulated rivers. We obtained clear evidence that Swedish households have preferences for environmental improvement in hydropower regulated waters, at least when the cost is relatively low. Remedial measures that improve the conditions for all of the included environmental attributes i.e. fish, benthic invertebrates, river-margin vegetation and birds were found to have a significant welfare increasing impact. The results can be of value for the implementation of the Water Framework Directives in Sweden, which aims to reform the use of all surface water and ground water in the member states. (author)

  8. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  9. Memorandum of Understanding for Hydropower Two-Year Progress Report

    None

    2012-04-01

    On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts.” This report documents efforts so far.

  10. DOE Hydropower Program Annual Report for FY 2004

    Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ahlgrimm, James [U.S. Dept. of Energy, Washington, D.C. (United States); Acker, Tomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  11. DOE Hydropower Program Biennial Report for FY 2005-2006

    Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Acker, Thomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Northern Arizona State Univ., Flagstaff, AZ (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  12. Socio environmental policy and populational resettlement in hydropower plants

    Regini Nuti, Mirian; Feitosa Garcia, Marcia

    2003-01-01

    This paper aims to discuss the resettlement process caused by hydropower plants considering the Brazilian Power Sector ongoing context It is based on the analysis of the hydropower plants that started operation phase in the last tem years There are 17 projects provoking the displacement of 21000 families The paper presents the resettlement modalities used in these projects Finally, the main aspects of the resettlement process in the last decade are focused in order to contribute to the Brazilian Power Sector Resettlement Guidelines improvement and actualization

  13. The environmental impacts of peaking at hydropower plants

    Halleraker, Jo Halvard

    2001-01-01

    A recent energy act in Norway allows hydropower plants to be operated so that hydro peaking is permitted. However, it is uncertain how fish react to the variations in discharge and depth that follow hydro peaking. SINTEF Energy Research is cooperating with other research institutions to investigate the consequences of these variations on the biota. Among the research tools is an aqua channel which is an indoor laboratory flume where fish behaviour can be studied in detail. It has been constructed to provide the hydropower industry and public authorities with means of better determining the effects of hydro peaking. (author)

  14. Reducing potential damages by freshet abatement in hydropower lakes. An argument for financing hydropower projects

    Ionescu, Stefan

    1996-01-01

    Dam reservoirs with significant water volumes (storage coefficients exceeding 8-10%) cause diminishing of the maximum flow downstream, especially due to the aleatory variation of the initial water level in the reservoir. Depending on the flow reduction in the dam, a methodology for determining the flow for the whole water course downstream is proposed, taking into account various potential combinations for flood generation in the catchment area. Differences between potential damages caused by floods in case of natural conditions versus those occurring in case of engineered zones result in important public financial benefits, amounting up to around 30% of the investments required for dam construction. For instance, in the case of hydropower lake Dragan on the Crisul Repede River the damages diminished down to about 50% for downstream watercourse. (authors)

  15. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  16. DOE Hydropower Program Biennial Report for FY 2005-2006

    Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington

  17. Waste Transfer Stations

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  18. The Thur weir small hydro scheme in Muellheim; Projekt Thurwehr Muellheim. Programm Kleinwasserkraftwerke - Zwischenbericht

    Jaeggi, F. [Isento AG c/o Atel EcoPower, Olten (Switzerland); Herrmann, Ch. [Tobias Rapp, BHAteam Ingenieure AG, Frauenfeld (Switzerland)

    2009-06-15

    This interim report for the Swiss Federal Office of Energy (SFOE) takes a look at a small hydro scheme in Muellheim, Switzerland. An existing weir that provides water for two small hydropower stations is to be augmented with a new installation at the weir. Three possible variants for the project are described and discussed. The topology, geology and hydrology of the location are examined. The project also involves a higher weir and the provision of a fish pass. Special consideration concerning the stability of a railway bridge just above the new weir is noted. The organisation of the building site and the six phases of the works to be carried out are discussed. The installation of two turbines is noted and their proposed energy production is commented on.

  19. Economic Analysis of the Impacts of Climate-Induced Changes in River Flow on Hydropower and Fisheries in Himalayan region.

    Khadka Mishra, S.; Hayse, J.; Veselka, T.; Yan, E.; Kayastha, R. B.; McDonald, K.; Steiner, N.; Lagory, K.

    2017-12-01

    Climate-mediated changes in melting of snow and glaciers and in precipitation patterns are expected to significantly alter the water flow of rivers at various spatial and temporal scales. Hydropower generation and fisheries are likely to be impacted annually and over the century by the seasonal as well as long-term changes in hydrological conditions. In order to quantify the interactions between the drivers of climate change, the hydropower sector and the ecosystem we developed an integrated assessment framework that links climate models with process-based bio-physical and economic models. This framework was applied to estimate the impacts of changes in snow and glacier melt on the stream flow of the Trishuli River of the High Mountain Asia Region. Remotely-sensed data and derived products, as well as in-situ data, were used to quantify the changes in snow and glacier melt. The hydrological model was calibrated and validated for stream flows at various points in the Trishuli river in order to forecast conditions at the location of a stream gauge station upstream of the Trishuli hydropower plant. The flow of Trishuli River was projected to increase in spring and decrease in summer over the period of 2020-2100 under RCP 8.5 and RCP 4.5 scenarios as compared to respective mean seasonal discharge observed over 1981-2014. The simulated future annual mean stream flow would increase by 0.6 m3/s under RCP 8.5 scenario but slightly decrease under RCP 4.5. The Argonne Hydropower Energy and Economic toolkit was used to estimate and forecast electricity generation at the Trishuli power plant under various flow conditions and upgraded infrastructure. The increased spring flow is expected to increase dry-season electricity generation by 18% under RCP 8.5 in comparison to RCP 4.5. A fishery suitability model developed for the basin indicated that fishery suitability in the Trishuli River would be greater than 70% of optimal, even during dry months under both RCP 4.5 and RCP 8

  20. Future hydropower production in the Lower Zambezi under possible ...

    2014-01-15

    Jan 15, 2014 ... The results show the importance of considering climate risk in technical design and financial assessment of hydropower projects in the region. ... but only report overall trends for Mozambique. Therefore, in addition to .... and lateral inflow of intermediate catchments to the down- stream reservoirs. In addition ...

  1. Climate Change and Hydropower Challenges In Southern Africa

    accumulation and the decline in energy generation by lack of sufficient water runoff are foreseeable .... are various evidences that greenhouse gas emission from human es [industries .... in regional and internal conflicts. For example a ... Hydropower Projects: Applications in India Sri Lanka and Vietnam" Policy. Research ...

  2. The potential impacts of climate change on hydropower: An ...

    African Journal of Environmental Science and Technology ... Climate change has the potential to affect hydropower generation by either increasing or ... Hence, proper adaptation measures such as standby alternative sources of energy and ... should be exploited to ensure electric power is available throughout the year, ...

  3. Development of Sustainability Assessment Framework in Hydropower sector

    Soliha Sahimi, Nur; Turan, Faiz Mohd; Johan, Kartina

    2017-08-01

    Nowadays, Malaysian demand in energy sector was drastically increase due to technological developments. Since, hydropower is one of potential renewable energy source in Malaysia. The largest electricity utility company, Tenaga Nasional Berhad was provide an electricity to more than seven million people via independent suppliers in peninsular Malaysia and Sabah by intended a potential sustainable hydropower system. In order to increasingly the power capacity from current use, 1882 MW to more than 3000 MW by years 2020. In this study, the environmental issues and also the penalty to the responsible company especially on Tenaga Nasional Berhad (TNB) towards their project or business are one of the problems. Other than that, every project or business has to prepare a sustainability statement or sustainability report as vital to Bursa Malaysia Securities Berhad under their listing requirements. Next, the sustainability performance on their project cannot be determined to achieve the key performance indicators (KPI) satisfaction from Government, stakeholder or any responsible agencies. This study presents an exhaustive review of these studies and suggests a direction for future developments. Sustainability Assessment framework or self-assessment is decidedly as a significant framework to assist towards sustainability reporting and to produce a Sustainability index for Hydropower sector using a mathematical model study. The results reveal that, the quantitative measurement from Sustainability Assessment framework to Systematic Sustainability Asssesment tool can be produce. In doing so, it is possible to improve the performance of the project especially in hydropower planner.

  4. Hydropower recovery in water supply systems: Models and case study

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  5. The potential impacts of climate change on hydropower: An ...

    Osborne

    Climate change has the potential to affect hydropower generation by either increasing or reducing flows (discharge) and the head. .... evapotranspiration levels thus reducing the runoff. (Harrison et al., 1998). Therefore .... The discharge rates are determined by factors such as climate, vegetation, soil type, drainage basin ...

  6. The blue water footprint of electricity from hydropower

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2012-01-01

    Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a

  7. Requirements and benefits of flow forecasting for improving hydropower generation

    Dong, Xiaohua; Vrijling, J.K.; Dohmen-Janssen, Catarine M.; Ruigh, E.; Booij, Martijn J.; Stalenberg, B.; Hulscher, Suzanne J.M.H.; van Gelder, P.H.A.J.M.; Verlaan, M.; Zijderveld, A.; Waarts, P.

    2005-01-01

    This paper presents a methodology to identify the required lead time and accuracy of flow forecasting for improving hydropower generation of a reservoir, by simulating the benefits (in terms of electricity generated) obtained from the forecasting with varying lead times and accuracies. The

  8. Quadrennial Technology Review 2015: Technology Assessments--Hydropower

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5 GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.

  9. The multipurpose water use of hydropower reservoir: the SHARE concept

    Branche, E.

    2017-01-01

    Multipurpose hydropower reservoirs are designed and/or operated to provide services beyond electricity generation, such as water supply, flood and drought management, irrigation, navigation, fisheries, environmental services and recreational activities, etc. While these objectives (renewable and power services, water quantity management, ecosystem services, economic growth and local livelihoods) can conflict at times, they are also often complementary. Although there are no universal solutions, there are principles that can be shared and adapted to local contexts. Indeed the development and/or operation of such multipurpose hydropower reservoirs to reach sustainable water management should rely on the following principles: shared vision, shared resource, shared responsibilities, shared rights and risks, shared costs and benefits. These principles and acknowledgement of joint sharing among all the stakeholders are essential to successful development and management of multipurpose hydropower reservoirs, and should frame all phases from early stage to operation. The SHARE concept also gives guidance. Based on 12 worldwide case studies of multipurpose hydropower reservoirs, the SHARE concept was developed and proposed as a solution to address this issue. A special focus will be presented on the Durance-Verdon Rivers in France. (author)

  10. Systematic high-resolution assessment of global hydropower potential

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.|info:eu-repo/dai/nl/364164794; Van De Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  11. 75 FR 40816 - Northern Illinois Hydropower, LLC; Notice of Meeting

    2010-07-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12626-002; Project No. 12717-002] Northern Illinois Hydropower, LLC; Notice of Meeting July 7, 2010. a. Date and Time of Meeting: Thursday, July 22, 2010 from 9 a.m. to 12 p.m. CDT. b. Place: Illinois Historic Preservation...

  12. Modeling of Reservoir Inflow for Hydropower Dams Using Artificial ...

    The stream flow at the three hydropower reservoirs in Nigeria were modeled using hydro-meteorological parameters and Artificial Neural Network (ANN). The model revealed positive relationship between the observed and the modeled reservoir inflow with values of correlation coefficient of 0.57, 0.84 and 0.92 for Kainji, ...

  13. Amtrak Stations

    Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  14. Developing a module for estimating climate warming effects on hydropower pricing in California

    Guégan, Marion; Uvo, Cintia B.; Madani, Kaveh

    2012-01-01

    Climate warming is expected to alter hydropower generation in California through affecting the annual stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected to increase hydropower demand for cooling in warm periods while decreasing demand for heating in winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the revenue losses from climate warming. Previous studies in California have only explored the effects of hydrological changes on hydropower generation and revenues. This study builds a long-term hydropower pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios under different climate warming scenarios. Results suggest higher average hydropower prices under climate warming scenarios than under historical climate. The developed tool is integrated with California's Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous consideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on pricing are considered, with respect to when such effects are ignored, underlining the importance of considering changes in hydropower demand and pricing in future studies and policy making. - Highlights: ► Addressing the major gap in previous climate change and hydropower studies in California. ► Developing an ANN-based long-term hydropower price estimation tool. ► Estimating climate change effects on hydropower demand and pricing in California. ► Investigating the sensitivity of hydropower operations to future price changes. ► Underlining the importance of consideration of climate change impacts on electricity pricing.

  15. Design and 3D printing of controllable-pitch archimedean screw for pico hydropower generation

    Lee, Kyung Tae; Kim, Eun Seob; Chu, Won Shik; Ahn, Sung Hoon [Seoul National University, Seoul (Korea, Republic of)

    2015-11-15

    Renewable energy has attracted considerable attention because the energy problem has become a worldwide issue. The development of pico-hydropower generation, as a component of distributed generation, has been a subject of concern. In particular, the Archimedean screw generator (ASG) has more benefits, such as low cost, easy maintenance, and fish-friendly characteristic, compared with other types of hydro turbine. Despite these advantages, no appropriate design theory of ASG and Controllable-pitch Archimedean screw (CPAS) exists. Hence, a design theory of ASG and CPAS was theoretically investigated and designed in this study. CPAS was designed for a small-scale hydro-power generation system. With a 3D printer, fused deposition modeling was used to fabricate the blade of CPAS with polylactic acid and epoxy surface coating. A performance evaluation was conducted and analyzed. Results indicate a similar trend with the proposed theory. The power generation was 123 W and efficiency was 71% in 0.04 m{sup 3}/s.

  16. Implications of the sedimentation phenomenon in the design of hydropower reservoirs

    Scvortov, Felix; Armencea, Gheorghe

    1992-01-01

    The influence of sedimentation phenomena on the operational parameters of the hydropower reservoirs built on several Romanian rivers was assessed. A cascade of eight reservoirs on the Olt river, with initial volumes of 20-50 M m 3 , lost about 30% of the conservation capacity and about 3-7% of head as well. Smaller reservoirs, with volumes of 2-10 M m 3 , lost 60-85% of their capacity. Dredging operations had to be done, thus, increasing the initial costs by 20%. The acquired experience revealed that the evolution in time of the reservoir capacity over the operation period should be as accurately as possible taken into account in the designing stage. The operation conditions and designing criterions for small and medium hydropower reservoir have to be reassessed also from the environmental and efficiency points of view. The content of the paper is the following: 1. Sedimentation knowledge and planning concepts for inland rivers; 2. Implications of the sedimentation phenomenon; 3. Forecast of the sedimentation phenomenon; 4. Retrospective and perspective; 5. Conclusions. (authors)

  17. Design and 3D printing of controllable-pitch archimedean screw for pico hydropower generation

    Lee, Kyung Tae; Kim, Eun Seob; Chu, Won Shik; Ahn, Sung Hoon

    2015-01-01

    Renewable energy has attracted considerable attention because the energy problem has become a worldwide issue. The development of pico-hydropower generation, as a component of distributed generation, has been a subject of concern. In particular, the Archimedean screw generator (ASG) has more benefits, such as low cost, easy maintenance, and fish-friendly characteristic, compared with other types of hydro turbine. Despite these advantages, no appropriate design theory of ASG and Controllable-pitch Archimedean screw (CPAS) exists. Hence, a design theory of ASG and CPAS was theoretically investigated and designed in this study. CPAS was designed for a small-scale hydro-power generation system. With a 3D printer, fused deposition modeling was used to fabricate the blade of CPAS with polylactic acid and epoxy surface coating. A performance evaluation was conducted and analyzed. Results indicate a similar trend with the proposed theory. The power generation was 123 W and efficiency was 71% in 0.04 m"3/s

  18. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddlemon, Gerald K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in

  19. Operating multireservoir hydropower systems for downstream water quality

    Hayes, D.F.

    1990-01-01

    Hydropower reservoir operations often impact tailwater quality and water quality in the stream or river below the impoundment for many miles. Determining optimal operating strategies for a system of hydropower reservoirs involves solving a highly dimensional nonlinear, nonconvex optimization problem. This research adds the additional complexities of downstream water quality considerations within the optimization formulation to determine operating strategies for a system of hydropower reservoirs operating in series (tandem) or parallel. The formulation was used to determine operating strategies for six reservoirs of the upper Cumberland river basin in Tennessee and Kentucky. Significant dissolved oxygen (DO) violations occur just upstream of Nashville, Tennessee below Old Hickory dam during the months of August and September. Daily reservoir releases were determined for the period of June through September which would produce the maximum hydropower revenue while meeting downstream water quality objectives. Optimal releases for three operational strategies were compared to historical operations for the years 1985, 1986, and 1988. These strategies included: spilling as necessary to meet water quality criteria, near normal operation (minimal spills), and drawdown of reservoirs as necessary to meet criteria without spills. Optimization results showed an 8% to 15% hydropower loss may be necessary to meet water quality criteria through spills and a 2% to 9% improvement in DO below Old Hickory may be possible without significant spills. Results also showed that substantial increases in initial headwater elevations would be necessary to meet daily DO criteria and avoid spills. The optimal control theory algorithm used to solve the problem proved to be an efficient and robust solver of this large optimization problem

  20. The blue water footprint of electricity from hydropower

    M. M. Mekonnen

    2012-01-01

    Full Text Available Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity – the water evaporated from manmade reservoirs to produce electric energy – for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr−1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ−1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  1. Restructuring of Turkey's electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin

    Uzlu, Ergun; Koemuercue, Murat ihsan; Akpinar, Adem

    2011-01-01

    This paper presents the historical development of Turkey's electricity power sector, the efforts for introducing competition in the power industry in Turkey, and the concerns regarding restructuring in Turkey. The contribution of the hydropower energy potential in Turkey to the reconstruction of the electricity structure in Turkey is also investigated. Then, among the 25 hydrological basins in Turkey, the Eastern Black Sea Basin located in the northeast of Turkey, which has great advantages from the view point of small hydropower potential or hydropower potential without storage, is chosen as the case study to carry out some investigations concerning its potential and to analyze the contribution of the private sector (the corporate body) in regard to the development of hydro potential in this basin within the scope of the 4628 Electricity Market Law. With this law, concerning the restructuring of the electricity market, private sector investments in this segment have increased. In total, 1524 hydroelectric power projects with 22 360 MW installed capacity has been implemented until January 22nd, 2009 and this figure is continuously rising. (author)

  2. Environmental impacts of Ghazi Barotha hydropower project on river Indus and surrounding areas

    Soomro, G.A.; Sufi, A.B.

    2005-01-01

    WAPDA being an esteemed organization of the country is involved in development of Water and Power Sector Projects. Ghazi Barotha Hydropower Project is another huge hydropower generation project in the country after Tarbela. The barrage to feed power channel of Ghazi Barotha Power Station are built over River Indus 7 Km down of Tarbela Dam. The project has been constructed to utilize the hydraulic head for power generation that is available between the tailrace of Tarbela Dam and the confluence of Haro River. In this reach river Indus drops by 76 m in distance of 63 Km. This is solely a power generation project with an installed capacity of 1450 MW. The purpose of this paper is to assess the negative impacts on the River Indus due to the construction of GBHP as Water of river Indus will be diverted to the power channel and the river Indus flows go to its lowest in low flow season. The reduction in river flow may change the ecology of the river - belas and people dependant on river water. In this context a study was made to keep the negative environmental impacts as low as possible and suggest mitigation measures to reduce negative impacts and provide enhancement measure to compensate the losses to be sustained by the area people and maintain the social life along with the ecology of the area less disturbed. The study demonstrated that the project is technically sound, economically viable and has limited environmental and social impacts on the area overall and specific the belas and people dependant on the Indus Water from Tarbela downstream up to confluence of Kabul River. (author)

  3. Projected impacts of climate change on hydropower potential in China

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-01-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by −1.7 to 2 % in the near future (2020–2050) and increase by 3 to 6 % in the late 21st century (2070–2099). The annual DHP is projected to change by −2.2 to −5.4 % (0.7–1.7 % of the total installed hydropower capacity (IHC)) and −1.3 to −4 % (0.4–1.3 % of total IHC) for 2020–2050 and 2070–2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China – mostly in south central China and eastern China – where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  4. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  5. Asynchrony of wind and hydropower resources in Australia

    Gunturu, Udaya

    2017-08-14

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  6. Dataset for case studies of hydropower unit commitment

    Jinwen Wang

    2018-06-01

    Full Text Available This paper presents the data all needed for nine case studies of hydropower unit commitment, which determines the optimal operating zones and generating discharges of units after the quarter-hourly releases and water heads are derived by the operation of cascaded hydropower reservoirs. The power output function and feasible operating zones of units are provided, and optimization solvers are used to acquire the results in detail for the case studies, including the quarter-hourly generating discharges, power generations, as well as operating zones of individual units. Performance indices, including the spillage, energy production, and the low-efficiency generating rate, are summarized for all case studies and can be readily used for comparison between algorithms in future.

  7. Asynchrony of wind and hydropower resources in Australia

    Gunturu, Udaya; Hallgren, Willow

    2017-01-01

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  8. Asynchrony of wind and hydropower resources in Australia.

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  9. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  10. Hydropower versus irrigation—an analysis of global patterns

    Zeng, Ruijie; Cai, Ximing; Ringler, Claudia; Zhu, Tingju

    2017-03-01

    Numerous reservoirs around the world provide multiple flow regulation functions; key among these are hydroelectricity production and water releases for irrigation. These functions contribute to energy and food security at national, regional and global levels. While reservoir operations for hydroelectricity production might support irrigation, there are also well-known cases where hydroelectricity production reduces water availability for irrigated food production. This study assesses these relationships at the global level using machine-learning techniques and multi-source datasets. We find that 54% of global installed hydropower capacity (around 507 thousand Megawatt) competes with irrigation. Regions where such competition exists include the Central United States, northern Europe, India, Central Asia and Oceania. On the other hand, 8% of global installed hydropower capacity (around 79 thousand Megawatt) complements irrigation, particularly in the Yellow and Yangtze River Basins of China, the East and West Coasts of the United States and most river basins of Southeast Asia, Canada and Russia. No significant relationship is found for the rest of the world. We further analyze the impact of climate variables on the relationships between hydropower and irrigation. Reservoir flood control functions that operate under increased precipitation levels appear to constrain hydroelectricity production in various river basins of the United States, South China and most basins in Europe and Oceania. On the other hand, increased reservoir evaporative losses and higher irrigation requirements due to higher potential evaporation levels may lead to increased tradeoffs between irrigation and hydropower due to reduced water availability in regions with warmer climates, such as India, South China, and the Southern United States. With most reservoirs today being built for multiple purposes, it is important for policymakers to understand and plan for growing tradeoffs between key

  11. Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces

    Jianjian Shen

    2015-10-01

    Full Text Available The bulk hydropower transmission via trans-provincial and trans-regional power networks in China provides great operational flexibility to dispatch power resources between multiple power grids. This is very beneficial to alleviate the tremendous peak load pressure of most provincial power grids. This study places the focus on peak operations of cascaded hydropower plants serving multiple provinces under a regional connected AC/DC network. The objective is to respond to peak loads of multiple provincial power grids simultaneously. A two-stage search method is developed for this problem. In the first stage, a load reconstruction strategy is proposed to combine multiple load curves of power grids into a total load curve. The purpose is to deal with different load features in load magnitudes, peaks and valleys. A mutative-scale optimization method is then used to determine the generation schedules of hydropower plants. In the second stage, an exterior point search method is established to allocate the generation among multiple receiving power grids. This method produces an initial solution using the load shedding algorithm, and further improves it by iteratively coordinating the generation among different power grids. The proposed method was implemented to the operations of cascaded hydropower plants on Xin-Fu River and another on Hongshui River. The optimization results in two cases satisfied the peak demands of receiving provincial power grids. Moreover, the maximum load difference between peak and valley decreased 12.67% and 11.32% in Shanghai Power Grid (SHPG and Zhejiang Power Grid (ZJPG, exceeding by 4.85% and 6.72% those of the current operational method, respectively. The advantage of the proposed method in alleviating peak-shaving pressure is demonstrated.

  12. Analysis of Hydropower Potential Utilization of Watercourses in Slovakia

    Gejguš, Mirko; Aschbacher, Christine; Sablik, Jozef

    2017-09-01

    This article analyzes the hydropower potential of watercourses in Slovakia, defining water as the most promising and most used renewable energy source. The hydro-energetic potential as a source of energy is determined by the calculation of the technically feasible potential of the watercourses, which is divided into exploited and unused. It also identifies the potential of utilizing the unused technical hydro-energetic potential.

  13. The Development of Brazilian Municipalities Flooded by Hydropower Plants

    Araujo, N.; Moretto, E. M.; Roquetti, D. R.; Beduschi, L. C.; Praia, A.; Pulice, S.; Albiach, E.; Athayde, S.

    2016-12-01

    Hydropower plants cause negative environmental impacts during the phases of construction and operation. On the other hand, there is a general assumption that these projects also induce local development of the affected places, since there is a great influx of social and financial capital brought locally, especially during the construction phase the relationship between hydropower plant implementation s and local development has been controversial in the Environmental Impact Assessment field, and there is no empirical evidence showing how hydroelectric dam construction affects local development. Considering municipal development as a kind of local development and operationalizing the concept of human development by adopting income, longevity and education dimensions defined by Amartya Sen, this study aimed to verify empirical evidences regarding the role of hydropower plants in human development of their flooded municipalities in Brazil. For this, we considered 134 hydroelectric plants and correspondent 641 flooded municipalities, for which 155 human development indicators were obtained for the period of 2000 to 2010. Results obtained from statistical correlation analysis and their assumption tests showed that increases in the municipal flooded area and increases in the period of flooding - to which a given municipality is submitted - were associated with lower performances of human development indicators. Specifically, increases in social inequality, poverty and lower performances of longevity and education were detected for the flooded municipalities. We also found that the financial compensation was associated with better performance of municipal income and lower performances of education and longevity. Finally, approaching the growth poles theory of François Perroux and the productive linkages theory of Albert Hirschman, we suggest that the size of the flooded areas, the flooding period and the financial compensation may lead to an enclave situation in

  14. Improved Governing of Kaplan Turbine Hydropower Plants Operating Island Grids

    Gustafsson, Martin

    2013-01-01

    To reduce the consequences of a major fault in the electric power grid, functioning parts of the grid can be divided into smaller grid islands. The grid islands are operated isolated from the power network, which places new demands on a faster frequency regulation. This thesis investigates a Kaplan turbine hydropower plant operating an island grid. The Kaplan turbine has two control signals, the wicket gate and the turbine blade positions, controlling the mechanical power. The inputs are comb...

  15. Hydropower flexibility and transmission expansion to support integration of offshore wind

    Cutululis, Nicolaos Antonio; Farahmand, Hossein; Jaehnert, S.

    2016-01-01

    is one of the fast responding sources of electricity, thus power systems with considerable amounts of flexible hydro power can potentially offer easier integration of offshore wind power. The interaction between offshore wind and hydro power can be benefic, especially when looking at how the flexibility......In 2013, offshore wind grew over 50%. This increase, concentrated in a relatively small geographical area, can lead to an increased variability of the power produced by offshore wind. The variability is one of the key issues, along transmission, in integrating offshore wind power. Hydro power...... of hydro generation can match the variability of offshore wind, allowing for larger shares of variable generation to be integrated in the power systems without decreasing its stability. The analysis includes two interrelated models, a market model and a flow-based model. The results show that hydropower...

  16. Coherence between institutions and technologies - The case of mini hydropower in Switzerland

    Crettenand, Nicolas

    2009-01-01

    Switzerland, with the forecasted electricity gap between domestic production and demand, aims to significantly increase renewable energy sources including hydropower. Mini hydropower (below 1MW) currently has considerable unused technical potential. As a renewable energy source (RES) it can contribute to climate change mitigation. CO2-taxes or emission trading systems (ETS) for planned thermal power plants could help facilitate mini hydropower (MHP). The technology is mature, but requires ade...

  17. The role of energy systems on hydropower in Turkey

    Yuksel, Ibrahim; Arman, Hasan; Halil Demirel, Ibrahim

    2017-11-01

    Over the last two decades, global electricity production has more than doubled and electricity demand is rising rapidly around the world as economic development spreads to emerging economies. Not only has electricity demand increased significantly, it is the fastest growing end-use of energy. Therefore, technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix, particularly in the developing countries. On the other hand, the hydropower industry is closely linked to both water management and renewable energy production, and so has a unique role to play in contributing to sustainable development in a world where billions of people lack access to safe drinking water and adequate energy supplies. In addition to, approximately 1.6 billion people have no access to electricity and about 1.1 billion are without adequate water supply. However, resources for hydropower development are widely spread around the world. Potential exists in about 150 countries, and about 70% of the economically feasible potential remains to be developed-mostly in developing countries where the needs are most urgent. This paper deals with renewable energy systems and the role of hydropower in Turkey.

  18. Hydropower generation and storage, transmission constraints and market power

    Johnsen, T.A.

    2001-01-01

    We study hydropower generation and storage in the presence of uncertainty about future inflows, market power and limited transmission capacity to neighboring regions. Within our simple two-period model, market power leads to too little storage. The monopolist finds it profitable to produce more than the competitive amount in the first period and thereby stores little water in the first of two periods in order to become import constrained in the second period. In addition, little storage reduces the probability of becoming export constrained in the second period, even if the second period exhibits large inflow. Empirical findings for an area in the western part of Norway with only hydropower and high ownership concentration at the supply side, fit well to our theoretical model. We apply a numerical model to examine various policies to reduce the inefficiencies created by the local monopoly. Transmission investments have two effects. First, the export possibilities in the first period increase. More export leads to lower storage in the first period. Second, larger import capacity reduces the market power problem in the second period. The two opposite effects of transmission investments in a case with market power may be unique to hydropower systems. Introducing financial transmission rights enhance the market power of the monopolist in our model. Price caps in both or in the second period only, reduce the strategic value of water storage. (Author)

  19. Hydropower in Southeast United States, -a Hydroclimatological Perspective

    Engstrom, J.

    2016-12-01

    Hydropower is unique among renewable energy sources for the ability to store its fuel (water) in reservoirs. The relationship between discharge, macro-scale drivers, and production is complex since production depends not only on water availability, but also upon decisions made by the institution owning the facility that has to consider many competing interests including economics, drinking water supply, recreational uses, etc. This analysis shows that the hydropower plants in Southeast U.S. (AL, GA, NC, SC, and TN) exhibit considerable year to year variability in production. Although the hydroclimatology of the Southeast U.S. has been analyzed partially, no previous study has linked the region's hydroelectricity production to any reported causes of interannual hydroclimatological variability, as has been completed in other regions. Due to the current short-term hydroelectricity production forecasts, the water resource is not optimized from a hydropower perspective as electricity generating potential is not maximized. The results of this study highlight the amount of untapped hydroelectricity that could be produced if long term hydroclimate and large-scale climate drivers were considered in production forecasts.

  20. Using system dynamics simulation for assessment of hydropower system safety

    King, L. M.; Simonovic, S. P.; Hartford, D. N. D.

    2017-08-01

    Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.

  1. Sustainability of hydropower as source of renewable and clean energy

    Luis, J; Sidek, L M; Desa, M N M; Julien, P Y

    2013-01-01

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  2. A new framework for sustainable hydropower development project

    Johan, Kartina; Turan, Faiz Mohd; Gani, Nur Syazwani Abdul

    2018-03-01

    This project studies on the establishment of a new framework for sustainable hydropower development. A hydropower development is listed as one of the prescribed activities under the Environmental Quality Order 1987. Thus, Environmental Impact Assessment (EIA) guidelines must be referred to comply with the Department of Environment (DoE) requirements. In order to execute EIA, an assessment tool that will be utilized in the final evaluation phase must be determined. The selected assessment tool that will be used is Systematic Sustainability Assessment(SSA) which is a new integrated tool to evaluate the sustainability performance. A pilot run is conducted in five different departments within the Energy Company to validate the efficiency of the SSA tool. The parameters to be evaluated are constructed aligned with the Sustainable Development Goals (SDG) to maintain the sustainability features. Consequently, the performance level of the sustainability with respect to People, Planet and Profit (3P’s) is able to be discovered during evaluation phase in the hydropower development for continuous improvement.

  3. Fuzzy multiobjective models for optimal operation of a hydropower system

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  4. Treatise on water hammer in hydropower standards and guidelines

    Bergant, A; Mazij, J; Karney, B; Pejović, S

    2014-01-01

    This paper reviews critical water hammer parameters as they are presented in official hydropower standards and guidelines. A particular emphasize is given to a number of IEC standards and guidelines that are used worldwide. The paper critically assesses water hammer control strategies including operational scenarios (closing and opening laws), surge control devices (surge tank, pressure regulating valve, flywheel, etc.), redesign of the water conveyance system components (tunnel, penstock), or limitation of operating conditions (limited operating range) that are variably covered in standards and guidelines. Little information is given on industrial water hammer models and solutions elsewhere. These are briefly introduced and discussed in the light of capability (simple versus complex systems), availability of expertise (in house and/or commercial) and uncertainty. The paper concludes with an interesting water hammer case study referencing the rules and recommendations from existing hydropower standards and guidelines in a view of effective water hammer control. Recommendations are given for further work on development of a special guideline on water hammer (hydraulic transients) in hydropower plants

  5. Treatise on water hammer in hydropower standards and guidelines

    Bergant, A.; Karney, B.; Pejović, S.; Mazij, J.

    2014-03-01

    This paper reviews critical water hammer parameters as they are presented in official hydropower standards and guidelines. A particular emphasize is given to a number of IEC standards and guidelines that are used worldwide. The paper critically assesses water hammer control strategies including operational scenarios (closing and opening laws), surge control devices (surge tank, pressure regulating valve, flywheel, etc.), redesign of the water conveyance system components (tunnel, penstock), or limitation of operating conditions (limited operating range) that are variably covered in standards and guidelines. Little information is given on industrial water hammer models and solutions elsewhere. These are briefly introduced and discussed in the light of capability (simple versus complex systems), availability of expertise (in house and/or commercial) and uncertainty. The paper concludes with an interesting water hammer case study referencing the rules and recommendations from existing hydropower standards and guidelines in a view of effective water hammer control. Recommendations are given for further work on development of a special guideline on water hammer (hydraulic transients) in hydropower plants.

  6. Hydropower's future, the environment, and global electricity systems

    Sternberg, R. [Department of Earth and Environmental Studies, Montclair State University, 1 Normal Ave, Montclair, NJ 07043-1624 (United States)

    2010-02-15

    Hydropower is a well established electricity system on the global scene. Global electricity needs by far exceed the amount of electricity that hydrosystems can provide to meet global electricity needs. Much of the world's hydropower remains to be brought into production. Improved technology, better calibrated environmental parameters for large projects have become the norm in the past 15 years. How and why does hydropower retain a prominent role in electricity production? How and why does hydropower find social acceptance in diverse social systems? How does hydropower project planning address issues beyond electricity generation? How does the systems approach to hydropower installations further analysis of comparative energy sources powering electricity systems? Attention to the environmental impact of hydropower facilities forms an integral part of systems analysis. Similarly, the technical, political and economic variables call for balanced analysis to identify the viability status of hydro projects. Economic competition among energy systems requires in context assessments as these shape decision making in planning of hydropower systems. Moreover, technological change has to be given a time frame during which the sector advances in productivity and share in expanding electricity generation. The low production costs per kWh assure hydropower at this juncture, 2009, a very viable future. (author)

  7. Harnessing the hydropower potential in Africa: What should be the place and role of Grand Inga hydropower project?

    Fall, Latsoucabe

    2010-09-15

    Harnessing Africa's huge hydropower potential should be made a priority for the sustainable development of the Continent. Particularly, Grand Inga hydropower project in DRC, due to its gigantic size (40,000 MW) and favourable natural characteristics, could be 'Africa's flagship Project of the 21st Century' offering enormous comparative advantages and opportunities for the benefits of the entire African Continent. Nevertheless, to make it a feasible and palpable 'Model Project', capable of producing clean and affordable energy, the paper tries to respond to key questions on the several daunting challenges to address for its sustainable, cost-effective and timely development and operation.

  8. Hydropower and sustainability: resilience and vulnerability in China's powersheds.

    McNally, Amy; Magee, Darrin; Wolf, Aaron T

    2009-07-01

    Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water

  9. Station Capacity

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  10. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Huang, W D; Fan, H G; Chen, N X

    2012-01-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  11. Improved design of guide wall of bank spillway at Yutang Hydropower Station

    Ji-bao Wang

    2010-03-01

    Full Text Available Ensuring that water flows smoothly into spillways is the main challenge in spillway design. In order to help avoid the formation of vortices and separation of flow along the guide wall in front of the gates during overflow through the spillway, an experiment with a physical model of the Yutang Dam bank spillway was carried out. The profile of the guide wall was redesigned to eliminate the formation of vortices and separation of flow. This involves opening up holes in the middle part of the guide wall. The test results show that the design is effective in improving the flow conditions of the inlet, and in ensuring the desired values of water head along the guide wall and discharge capacities of the spillway.

  12. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  13. Simulation analysis of temperature control on RCC arch dam of hydropower station

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  14. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 2. Pacific Southwest region

    None

    1979-07-01

    The estimates of existing, incremental, and the undeveloped hydropower potential for all states in the various regions of the country are presented. In the Pacific Southwest region, the maximum physical potential for all sites exceeds 33,000 MW of capacity with an estimated average annual energy greater than 85,000 GWH. By comparison, these values represent about 6% of the total potential capacity and hydroelectric energy generation estimated for the entire US. Of the total capacity estimated for the region, 9900 MW has been installed. The remainder (23,200 MW) is the maximum which could be developed by upgrading and expanding existing projects (6000 MW) and by installing new hydroelectric power capacity at all potentially feasible, undeveloped sites (17,200 MW). Small-scale facilities account for less than 4% of the region's total installed capacity, but another 600 MW could be added to these and other small water resource projects. In addition, 600 MW could be installed at potentially feasible, undeveloped small-scale sites. The small-scale resource varies considerably, with the states of California and Utah having the largest potential for incremental development at existing projects in the Pacific Southwest region. States comprising the Southwest are Arizona, California, Hawaii, Nevada, and Utah.

  15. Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil

    Barros, A.; simoes, s

    2002-05-01

    During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.

  16. High-resolution assessment of global technical and economic hydropower potential

    Gernaat, David E.H.J.; Bogaart, Patrick W.; Vuuren, van Detlef P.; Biemans, Hester; Niessink, Robin

    2017-01-01

    Hydropower is the most important renewable energy source to date, providing over 72% of all renewable electricity globally. Yet, only limited information is available on the global potential supply of hydropower and the associated costs. Here we provide a high-resolution assessment of the technical

  17. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  18. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    I. Popescu

    2012-08-01

    Full Text Available La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay, which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB, and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040. Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years, whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970–2000 and topographical characteristics of the area.

    Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy. The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  19. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Popescu, I.; Brandimarte, L.; Perera, M. S. U.; Peviani, M.

    2012-08-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040). Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years), whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970-2000) and topographical characteristics of the area. Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy). The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  20. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    Dixon, D. [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.