WorldWideScience

Sample records for small horizontal axis

  1. New airfoils for small horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, P.; Selig, M.S. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  2. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  3. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    Science.gov (United States)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  4. Aerodynamic Optimization of Airfoil Profiles for Small Horizontal Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Ali Cemal Benim

    2018-04-01

    Full Text Available The purpose of this study is the development of an automated two-dimensional airfoil shape optimization procedure for small horizontal axis wind turbines (HAWT, with an emphasis on high thrust and aerodynamically stable performance. The procedure combines the Computational Fluid Dynamics (CFD analysis with the Response Surface Methodology (RSM, the Biobjective Mesh Adaptive Direct Search (BiMADS optimization algorithm and an automatic geometry and mesh generation tool. In CFD analysis, a Reynolds Averaged Numerical Simulation (RANS is applied in combination with a two-equation turbulence model. For describing the system behaviour under alternating wind conditions, a number of CFD 2D-RANS-Simulations with varying Reynolds numbers and wind angles are performed. The number of cases is reduced by the use of RSM. In the analysis, an emphasis is placed upon the role of the blade-to-blade interaction. The average and the standard deviation of the thrust are optimized by a derivative-free optimization algorithm to define a Pareto optimal set, using the BiMADS algorithm. The results show that improvements in the performance can be achieved by modifications of the blade shape and the present procedure can be used as an effective tool for blade shape optimization.

  5. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A F; Freris, L L; Graham, J M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  6. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  7. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    Energy Technology Data Exchange (ETDEWEB)

    Dana, Scott [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Dam, Jeroen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-24

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.

  8. Positioning and tail rotor of a small horizontal axis wind turbine of due to the influence of drag coefficient and lift affecting vane cola

    International Nuclear Information System (INIS)

    Farinnas Wong, E. Y.; Jauregui Rigo, S.; Betancourt Mena, J.

    2009-01-01

    In the present investigation was carried out an assessment on the state of technology on guidance systems and tail protection when used in small horizontal axis wind turbines, work was improved methodological approach for the development of guidance systems queue by time of these machines, to incorporate the use of coefficients of lift and drag behavior varies according to the aspect ratio, using the principles of continuum mechanics and CFD methods. Two versions are analyzed , original and updated, the wind turbine CEET-01, on which the author would have been granted a Certificate of Patent of Invention and one of Industrial Model, the updated version was derived from the procedure proposed by the author, this presents a holder for the longest vane and a larger area in the vane. In addition to analyzing the amount and cost of power generated and the capacity factor at three locations in the province of Villa Clara it was concluded that the updated variant of the turbine CEET-01 is superior to the original

  9. Yaw dynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  10. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  11. Summary of tower designs for large horizontal axis wind turbines

    Science.gov (United States)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  12. Optimization model for rotor blades of horizontal axis wind turbines

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong; CHEN Yan; YE Zhiquan

    2007-01-01

    This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.

  13. Software tool for horizontal-axis wind turbine simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7, 5 CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Dpto. de Ing. Electrica y de Computadoras, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    The main problem of a wind turbine generator design project is the design of the right blades capable of satisfying the specific energy requirement of an electric system with optimum performance. Once the blade has been designed for optimum operation at a particular rotor angular speed, it is necessary to determine the overall performance of the rotor under the range of wind speed that it will encounter. A software tool that simulates low-power, horizontal-axis wind turbines was developed for this purpose. With this program, the user can calculate the rotor power output for any combination of wind and rotor speeds, with definite blade shape and airfoil characteristics. The software also provides information about distribution of forces along the blade span, for different operational conditions. (author)

  14. Aeroelastic stability and response of horizontal axis wind turbine blades

    Science.gov (United States)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  15. Miniature horizontal axis wind turbine system for multipurpose application

    International Nuclear Information System (INIS)

    Xu, F.J.; Yuan, F.G.; Hu, J.Z.; Qiu, Y.P.

    2014-01-01

    A MWT (miniature wind turbine) has received great attention recently for powering WISP (Wireless Intelligent Sensor Platform). In this study, two MHAWTs (miniature horizontal axis wind turbines) with and without gear transmission were designed and fabricated. A physics-based model was proposed and the optimal load resistances of the MHAWTs were predicted. The open circuit voltages, output powers and net efficiencies were measured under various ambient winds and load resistances. The experimental results showed the optimal load resistances matched well with the predicted results; the MHAWT without gear obtained higher output power at the wind speed of 2 m/s to 6 m/s, while the geared MHAWT exhibited better performance at the wind speed higher than 6 m/s. In addition, a DCM (discontinuous conduction mode) buck-boost converter was adopted as an interface circuit to maximize the charging power from MHAWTs to rechargeable batteries, exhibiting maximum efficiencies above 85%. The charging power reached about 8 mW and 36 mW at the wind speeds of 4 m/s and 6 m/s respectively, which indicated that the MHAWTs were capable for sufficient energy harvesting for powering low-power electronics continuously. - Highlights: • Performance of the miniature wind turbines with and without gears was compared. • The physics-based model was established and proved successfully. • The interface circuit with efficiency of more than 85% was designed

  16. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines

    Directory of Open Access Journals (Sweden)

    Kai-Wern Ng

    2013-03-01

    Full Text Available Research in marine current energy, including tidal and ocean currents, has undergone significant growth in the past decade. The horizontal-axis marine current turbine is one of the machines used to harness marine current energy, which appears to be the most technologically and economically viable one at this stage. A number of large-scale marine current turbines rated at more than 1 MW have been deployed around the World. Parallel to the development of industry, academic research on horizontal-axis marine current turbines has also shown positive growth. This paper reviews previous research on horizontal-axis marine current turbines and provides a concise overview for future researchers who might be interested in horizontal-axis marine current turbines. The review covers several main aspects, such as: energy assessment, turbine design, wakes, generators, novel modifications and environmental impact. Future trends for research on horizontal-axis marine current turbines are also discussed.

  17. Performance characteristics of a horizontal axis turbine with fusion winglet

    International Nuclear Information System (INIS)

    Zhu, Bing; Sun, Xiaojing; Wang, Ying; Huang, Diangui

    2017-01-01

    Any technique or method that can improve the efficiency in exploiting renewable wind or marine current energy has got a great significance today. It has been reported that adding a winglet at the tip of the rotor blades on a horizontal axis wind turbine can increase its power performance. The purpose of this paper is to adopt a numerical method to investigate the effects of different winglet configurations on turbine performance, especially focusing on the direction for the winglet tip to point towards (the suction side, pressure side or both sides of the main blade). The results show that the new design of an integrated fusion winglet proposed in this paper can generally improve the main blade's power producing ability, which is further enhanced with the increase of turbine's tip speed ratio with a maximum power augmentation of about 3.96%. No matter which direction the winglet tip faces, the installation angle of the winglet should match well with the real angle of incoming flow. As a whole, the turbine with winglet of two tips facing to both sides of the main blade can produce much more power than the one of winglet configuration whose tip faces only one side for different blade hub pitch angles and vast majority of tip speed ratios. The working principle behind the winglet in improving turbine performance may be that it can block the downwash fluid easily flowing around the tip section of the main blade from the pressure side to suction side, and hence diffuse and spread out the tip vortex. As a result, it finally decreases the energy loss. Besides, the relative projected rotor area in incoming flow direction will also be reduced due to the addition of the winglet, which is also helpful to turbine's power coefficient. - Highlights: • Added winglet generally increase the turbine energy extraction performance. • Winglet facing blade both sides is usually superior to that of facing one side. • Winglet can isolate downwash fluid easily flowing

  18. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  19. Nystagmus responses in a group of normal humans during earth-horizontal axis rotation

    Science.gov (United States)

    Wall, Conrad, III; Furman, Joseph M. R.

    1989-01-01

    Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.

  20. Development of a Mechanical Passive Pitch System for a 500W Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Poryzala, Tomek; Mikkelsen, Robert Flemming; Kim, Taeseong

    2017-01-01

    The goal of this paper is to design, analyze, manufacture, and test a mechanical passive pitch mechanism for a small horizontal axis wind turbine. Several pitching concepts were investigated in the wind industry and related fields before ultimately deciding on a centrifugal governor design concept...... in a pitch-to-stall configuration. Inertial and aerodynamic models were developed in order to predict steady-state performance and an optimization routine was created to optimize the pitch mechanism configuration subject to manufacturing constraints. Dynamic modeling in HAWC2 validated the steady......-state design code, aeroelastic simulations were performed in turbulent wind conditions to simulate the pitch system dynamics. Physical testing of the full turbine was not completed, however the hub sub-assembly was tested on its own to validate the passive pitch characteristics and showed good agreement...

  1. Generic vortex modelling for horizontal-axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.H.

    2002-07-01

    This paper describes a generic free-wake calculation of wind turbine wakes. The expanding, helical, tip vortices are represented by a sequence of straight segments, the blades are modelled as lines of constant bound vorticity, and the hub vortices lie along the axis of rotation. It is shown that this model is consistent with the one-dimensional analysis that leads to the Lanchester-Betz limit, in that the velocity in the far-wake is uniform with radius. Particular attention is paid to turbines operating above the Lanchester-Betz limit. It is shown that the usual relationship between the velocity through the blades and in the far-wake breaks down when there is significant wake expansion, and an empirical modification to that relation is presented. For highly expanding wakes, the dynamics of the turbine depend sensitively on the behaviour of the tip vortices. (author)

  2. The root flow of horizontal axis wind turbine blades : Experimental analysis and numerical validation

    NARCIS (Netherlands)

    Akay, B.

    2016-01-01

    Despite a long research history in the field of wind turbine aerodynamics, horizontal axis wind turbine (HAWT) blade's root flow aerodynamics is among the least understood topics. In this thesis work, a detailed investigation of the root flow is performed to gain a better insight into the features

  3. Velocity spectrum and blade’s deformation of horizontal axis wind turbines

    Directory of Open Access Journals (Sweden)

    Sanda BUDEA

    2014-04-01

    Full Text Available The paper presents the velocity distribution calculated by numerical method in axial relative motion of a viscous and incompressible fluid into the impeller of a horizontal axis wind turbine. Simulations are made for different airflow speeds: 0.5,1, 3, 4, 5 m/s. The relative vortex on the backside of the blade to the trailing edge, and the vortices increase with the wind speed can be observed from the numerical analysis. Also the translational deformation-the deflection of the wind turbine blades for different values of the wind velocities has been established in this paper. The numerical simulations are made for the following speed values:5 m/s, 10m/s and 20 m/s. ANSYS CFD – Fluent was used both to calculate the velocities spectrum and to establish the translational blades deformations. The analyzed wind impeller has small dimensions, a diameter of 2 m and four profiled blades. For this small impeller the translational deformation increases with the wind velocity from 83 to 142 mm. For high wind velocities and large–scale wind turbine impellers, these translational deformations are about several meters, reason to /shut-down the impellers to wind velocities exceeding 25 m/s.

  4. Towards a virtual platform for aerodynamic design, performance assessment and optimization of horizontal axis wind turbines

    OpenAIRE

    Martínez Valdivieso, Daniel

    2017-01-01

    This thesis focuses on the study and improvement of the techniques involved on a virtual platform for the simulation of the Aerodynamics of Horizontal Axis Wind Turbines, with the ultimate objective of making Wind Energy more competitive. Navier-Stokes equations govern Aerodynamics, which is an unresolved and very active field of research due to the current inability to capture the relevant the scales both in time and space for nowadays industrial-size machines (with rotors over 100 m...

  5. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  6. Experimental development of a torsion arc blade type horizontal axis windmil; Nejire enko yokugata suihei jiku fusha no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N. [Meiji Univ., Tokyo (Japan). Faculty of Scince and Technology

    1996-05-31

    To get more wind energy, longer rotating blades and higher towers of windmills are required. Therefore, the location of windmills is limited and the initial cost gets higher. In this study, a small size windmill which can generate electricity even in a city was developed and tested. A torsion arc blade type horizontal axis windmill was designed and the blade form, number and degree of distortion were investigated. Based on the results, a small windmill was made, rotation and generation tests were carried out and it was confirmed that the windmill could be used as a small scale wind power generation. The windmill is of simple construction having 6 arc blades and no high tower is required. This paper consists of 6 sections, i.e. Introduction, Windmill model, Tested windmill, Test facility and method, Test results and consideration, and Postscript. 2 refs., 18 figs., 1 tab.

  7. Experimental and Numerical Vibrational Analysis of a Horizontal-Axis Micro-Wind Turbine

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2018-02-01

    Full Text Available Micro-wind turbines are energy conversion technologies strongly affected by fatigue, as a result of their size and the variability of loads, induced by the unsteady wind conditions, and modulated by a very high rotational speed. This work is devoted to the experimental and numerical characterization of the aeroelastic behavior of a test-case horizontal-axis wind turbine (HAWT with a 2 m rotor diameter and a maximum power production of 3 kW. The experimental studies have been conducted at the wind tunnel of the University of Perugia and consisted of accelerometer measurements at the tower and the tail fin. The numerical setup was the Fatigue, Aerodynamics, Structures, and Turbulence (FAST code for aeroelastic simulations, which was fed as input with the same wind conditions employed in the wind tunnel tests. The experimental and numerical analyses were coupled with the perspective of establishing a reciprocal feedback, and this has been accomplished. On one hand, the numerical model is important for interpreting the measured spectrum of tower oscillations and, for example, inspires the detection of a mass unbalance at the blades. On the other hand, the measurements inspire the question of how to interpret the interaction between the blades and the tower. The experimental spectrum of tail fin vibrations indicates that secondary elements, in terms of weight, can also transmit to the tower, giving meaningful contributions to the vibration spectra. Therefore, an integrated numerical and experimental approach is not only valuable but is also unavoidable, to fully characterize the dynamics of small wind-energy conversion systems.

  8. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  9. Characterization of blade throw from a 2.3MW horizontal axis wind turbine upon failure

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Sørensen, Jens Nørkær

    2015-01-01

    The present work concerns aerodynamics of thrown objects from a 2.3 MW Horizontal Axis Wind Turbine (HAWT), as a consequence of blade failure. The governing set of ordinary differential equations for the flying objects are derived and numerically solved using a 4th order Runge-Kutta time advancing...... on their size. Thereafter, throw distance picks up exponentially with the tip speed. By comparing the throw distance calculations with and without dynamic stall model being active, it is concluded that dynamic stall does not play a major role in throw distances....

  10. Experiment and Simulation Effects of Cyclic Pitch Control on Performance of Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Le Quang Sang

    2017-06-01

      Keywords: Floating Offshore Wind Turbine, Aerodynamic Forces, Cyclic Pitch Control, FAST Code, Wind Tunnel Experiment Article History: Received February 11th 2017; Received in revised form April 29th 2017; Accepted June 2nd 2017; Available online How to Cite This Article: Sang, L.Q., Maeda, T., Kamada, Y., and Li, Q. (2017 Experiment and simulation effect of cyclic pitch control on performance of horizontal axis wind turbine to International Journal of Renewable Energy Develeopment, 6(2, 119-125. https://doi.org/10.14710/ijred.6.2.119-125

  11. Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Kavari, Ghazale; Masdari, Mehran

    2017-01-01

    This study is aimed to aerodynamically design a 1 mega-Watt horizontal axis wind turbine in order to obtain the maximum power coefficient by linearizing the chord and twist distributions. A new linearization method has been used for chord and twist distributions by crossing tangent line through...... the geometry of the blades determines the power generated by rotor, designing the blade is a very important issue. Herein, calculations are done for different types of airfoil families namely Risø-A1-21, Risø-A1-18, S809, S814 and Du 93-W-210. Hence, the effect of selecting different airfoil families is also...

  12. Dynamics of horizontal axis wind turbines. Wind energy conversion. ASRL-TR-184-9

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.; Dugundji, J.; Chopra, I.; Sheu, D.; Wendell, J.

    1978-09-01

    The underlying theory is presented for determining blade and rotor/tower vibration and dynamic stability characteristics. The dynamic analysis of horizontal axis turbines may be divided into two convenient areas, namely, (a) the investigation of the aeroelastic and response of a single blade on a rigid tower, and (b) the investigation of the mechanical stability and vibrations of the rotor system on a flexible tower. With a reasonable understanding of the behavior in these two areas, the completely coupled blade-tower aeroelastic system can be better understood, and dynamic problems can be better assessed.

  13. A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2016-02-01

    Full Text Available Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215 across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle versus optimization with three variables (airfoil type, attack angle and chord on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016 A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization. Int. Journal of Renewable Energy Development, 5(1,1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8

  14. Numerical analysis of a horizontal axis wind turbine rotor with winglets; Winglet wo motsu suiheijiku fusha no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y.; Kikuyama, K.; Imamura, H. [Nagoya University, Nagoya (Japan)

    1996-08-25

    The objective of present study is to show the aerodynamic effectivity of a horizontal axis wind turbine rotor blades with winglets by means of numerical analysis. The winglet used in this study is considered to be an inclined extension of the blade. For the numerical analysis a vortex lattice method with a free wake model was used because the model can be fitted to an arbitrary blade shape and needs no empirical parameter about wake geometry. The calculations were made on the flow field in the rotor wake and the rotor performance, and the results were compared between the rotors with and without winglets. In order to examine the structural effects, the flap bending moment was also compared. The results shows that small installation angle of winglets is found to cause a larger increase in the power coefficient and a smaller increase in the flap bending moment than radially extended rotor blades. 11 refs., 13 figs., 1 tab.

  15. Development of a model counter-rotating type horizontal-axis tidal turbine

    Science.gov (United States)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  16. The Development of Duct for a Horizontal Axis Turbine Using CFD

    Science.gov (United States)

    Ghani, Mohamad Pauzi Abdul; Yaacob, Omar; Aziz, Azliza Abdul

    2010-06-01

    Malaysia is heavily dependent on the fossil fuels to satisfy its energy demand. Nowadays, renewable energy which has attracted great interest is marine current energy, which extracted by a device called a device called marine current turbine. This energy resource has agreat potential to be exploited on a large scale because of its predictability and intensity. This paper will focus on developing a Horizontal Axis Marine Current Turbine (HAMCT) rotor to extract marine current energy suitable for Malaysian sea conditions. This work incorporates the characteristic of Malaysia's ocean of shallow water and low speed current in developing the turbines. The HAMCT rotor will be developed and simulated using CAD and CFD software for various combination of inlet and oulet duct design. The computer simulation results of the HAMCT being developed will be presented.

  17. The Simulation Study of Horizontal Axis Water Turbine Using Flow Simulation Solidworks Application

    Science.gov (United States)

    Prasetyo, H.; Budiana, EP; Tjahjana, DDDP; Hadi, S.

    2018-02-01

    The design of Horizontal Axis Water Turbine in pico hydro power plants involves many parameters. To simplify that, usually using computer simulation is applied. This research performs simulation process variation on turbine blade number, turbine blade curvature angle, turbine bucket angle and blocking system tilt angle. Those four variations were combined in order to obtain the best design of turbine. The study used Flow Simulation Solidworks application, and obtain data on turbine speed, pressure, force, and torque. However, this research focused on turbine torque value. The best design of turbine was obtained in the turbine with 6 blades, blade curvature angle of 65° and bucket angle of 10°, and blocking system tilt angle of 40°. In the best turbine, the produced torque value was 8.464 Nm.

  18. A steam superheater exchanger provided with two coaxial casings and an horizontal axis

    International Nuclear Information System (INIS)

    Marjollet, Jacques; Palacio, Gerard; Tondeur, Gerard.

    1976-01-01

    This invention concerns the general lay-out of an horizontal axis separator-superheater for supplying steam to a high power turbine, particularly for a nuclear power station. The invention significantly reduces the length of the pipework connecting the superheated steam outlet and its inlet to the turbine. For this, the outer casing is provided with a coaxial internal annular sleeve in which are housed, one above the other, the separator and the bundle of superheater tubes through which circulates the water emulsion to be separated and steam to be superheated. At the end of its treatment, the superheated steam spreads out in the space between the sleeve and the outer casing from whence it can be drawn off at any point of its periphery, thus making it possible to choose an extraction point as near as possible to the inlet of the turbine to be fed [fr

  19. Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2016-01-01

    Full Text Available In order to extend the operational life of Underwater Moored Platforms (UMPs, a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations and the shear stress transport k-ω turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.

  20. Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices

    Science.gov (United States)

    Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.

    2016-12-01

    Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC

  1. Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation

    Science.gov (United States)

    Apha Sanditya, Taufan; Prasetyo, Ari; Kristiawan, Budi; Hadi, Syamsul

    2018-03-01

    The water energy is one of potential alternative in creating power generation specifically for the picohydro energy. Savonius is a kind of wind turbine which now proposed to be operated utilizing the energy from low fluid flow. Researches about the utilization of Savonius turbine have been developed in the horizontal water pipelines and wave. The testing experimental on the Savonius Horizontal Axis Water Turbine (HAWT) by observing the effect of the blade curvature angle (ψ) of 110°, 120°, 130°, and 140° at the debit of 176.4 lpm, 345 lpm, 489.6 lpm, and 714 lpm in order to know the power output was already conducted. The optimal result in every debit variation was obtained in the blade curvature angle of 120°. In the maximum debit of 714 lpm with blade curvature angle of 120° the power output is 39.15 Watt with the coefficient power (Cp) of 0.23 and tip speed ratio (TSR) of 1.075.

  2. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Active Stall Control of Horizontal Axis Wind Turbines : A dedicated study with emphasis on DBD plasma actuators

    NARCIS (Netherlands)

    Balbino Dos Santos Pereira, R.

    2016-01-01

    The contribution of sustainable Wind Energy (WE) to the global energy scenario has been
    steadily increasing over the past decades. In the process, Horizontal Axis Wind Turbines
    (HAWT) became the most widespread and largest WE harvesting machines. Nevertheless,
    significant challenges

  4. 3D Lagrangian VPM : Simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    NARCIS (Netherlands)

    Berdowski, T.J.; Simao Ferreira, C.; Walther, J.

    2016-01-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The

  5. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    DEFF Research Database (Denmark)

    Berdowski, T.; Ferreira, Célia Maria Dias; Walther, Jens Honore

    2016-01-01

    The application of a 3-dimensional Lagrangian vortex particle method has beenassessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments InCOntrolled conditions) experiment...

  6. Two-way Fluid-Structure Interaction Simulation of a Micro Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yi-Bao Chen

    2015-01-01

    Full Text Available A two-way Fluid-Structure Interaction (FSI analyses performed on a micro horizontal axis wind turbine (HAWT which coupled the CFX solver with Structural solver in ANSYS Workbench was conducted in this paper. The partitioned approach-based non-conforming mesh methods and the k-ε turbulence model were adopted to perform the study. Both the results of one-way and two-way FSI analyses were presented and compared with each other, and discrepancy of the results, especially the mechanical properties, were analysed. Grid convergence which is crucial to the results was performed, and the relationship between the inner flow field domain (rotational domain and the number of grids (number of cells, elements was verified for the first time. Dynamical analyses of the wind turbine were conducted using the torque as a reference value, to verify the rationality of the model which dominates the accuracy of results. The optimal case was verified and used to conduct the study, thus, the results derived from the simulation of the FSI are accurate and credible.

  7. HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT

    Directory of Open Access Journals (Sweden)

    Serkan Ekinci

    2017-01-01

    Full Text Available In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs, among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic, of an MCT fixed on a sailing boat and at sail which extracts power from the flow around the boat, is undertaken. In the design stages, for analysis and optimization of the marine turbine blade design, the Momentum Blade Element Method is utilized. The Horizontal Axis Marine Turbine (HAMT, determined by the initial and mechanical design, is illustrated with its components included. Computational fluid dynamics (CFD analyses, covering turbine pod geometry at required flow rates and turbine speeds are performed. These analyses are performed very close to real conditions, considering sailing with and without the turbine running (on and off states. The alternator is determined from the results, and the final design which meets the design requirements, is obtained. As a result, a user friendly and innovative turbine design for sail boats, offering more power and efficiency, which is longer lasting compared to solar and wind technologies, that also makes use of renewable sources, such as wind and/or solar, and in addition stores and uses accumulated energy when needed, is proposed.

  8. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ammara, I.; Masson, C.; Paraschivoiu, I. [Ecole Polytechnique, Montreal (Canada)

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  9. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao [Mie Univ. (Japan)

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  10. Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2017-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT blades. In order to minimize the cost of energy (COE and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP combined with glass fiber reinforced plastic (GFRP are applied. The maximum annual energy production (AEP, the minimum blade mass and the minimum blade cost are taken as three objectives. Main aerodynamic and structural characteristics of the blades are employed as design variables. Various design requirements including strain, deflection, vibration and buckling limits are taken into account as constraints. To evaluate the aerodynamic performances and the structural behaviors, the blade element momentum (BEM theory and the finite element method (FEM are applied in the procedure. Moreover, the non-dominated sorting genetic algorithm (NSGA II, which constitutes the core of the procedure, is adapted for the multi-objective optimization of the blades. To prove the efficiency and reliability of the procedure, a commercial 1.5 MW HAWT blade is used as a case study, and a set of trade-off solutions is obtained. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  11. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  12. Design and Pitch Angle Optimisation of Horizontal Axis Hydrokinetic Turbine with Constant Tip Speed Ratio

    Directory of Open Access Journals (Sweden)

    Nigam Suyash

    2017-01-01

    Full Text Available Booming population and associated energy demands, looming threat of exhaustion of conventional sources of energy and the severe environmental repercussions of the same call for alternate sources of clean energy. Hydrokinetic turbine is one such developing technology which harnesses zero-head free flow of water and affects hydrological ecology minimally. This paper discusses the optimisation of Horizontal Axis Hydrokinetic Turbine (HAHkT blade chord length and twist angle using blade element momentum (BEM theory to achieve a constant optimal angle of attack (AoA, thus maximising the power output. To achieve this while maintaining robustness at the hub end and eliminate cavitation, two different hydrofoils (S832 and E817 are selected. S832 is simulated using ANSYS 14.0 at low (00 and high (150 angles of attack and compared against more widely used NACA 4412 to study flow separation characteristics. This is followed by calculating angles of relative flow, ratios of chord length and subsequently twist angles for each blade element using MATLAB simulations. A blade model is thus developed for visualisation using computer aided designing after obtaining optimal chord lengths and pitch angles.

  13. Numerical Simulations and Experimental Measurements of Scale-Model Horizontal Axis Hydrokinetic Turbines (HAHT) Arrays

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2014-11-01

    The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).

  14. Innovative approach to computer-aided design of horizontal axis wind turbine blades

    Directory of Open Access Journals (Sweden)

    Seyed Farhad Hosseini

    2017-04-01

    Full Text Available The design of horizontal axis wind turbine (HAWT blades involves several geometric complexities. As a result, the modeling of these blades by commercial computer-aided design (CAD software is not easily accomplished. In the present paper, the HAWT blade is divided into structural and aerodynamic surfaces with a G1 continuity imposed on their connecting region. The widely used method of skinning is employed throughout the current work for surface approximation. In addition, to ensure the compatibility of section curves, a novel approach is developed based on the redistribution of input airfoil points. In order to evaluate deviation errors, the Hausdorff metric is used. The fairness of surfaces is quantitatively assessed using the standard strain energy method. The above-mentioned algorithms are successfully integrated into a MATLAB program so as to enhance further optimization applications. The final surfaces created by the procedure developed during the present study can be exported using the IGES standard file format and directly interpreted by commercial CAD and FE software.

  15. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  16. Small-Scale vertical axis wind turbine design

    OpenAIRE

    Castillo Tudela, Javier

    2011-01-01

    The thesis focuses on the design of a small vertical axis wind turbine rotor with solid wood as a construction material. The aerodynamic analysis is performed implementing a momentum based model on a mathematical computer program. A three bladed wind turbine is proposed as candidate for further prototype testing after evaluating the effect of several parameters in turbine efficiency, torque and acceleration. The results obtained indicate that wood is a suitable material for rotor cons...

  17. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review

    Directory of Open Access Journals (Sweden)

    Shafiqur Rehman

    2018-02-01

    Full Text Available Among renewable sources of energy, wind is the most widely used resource due to its commercial acceptance, low cost and ease of operation and maintenance, relatively much less time for its realization from concept till operation, creation of new jobs, and least adverse effect on the environment. The fast technological development in the wind industry and availability of multi megawatt sized horizontal axis wind turbines has further led the promotion of wind power utilization globally. It is a well-known fact that the wind speed increases with height and hence the energy output. However, one cannot go above a certain height due to structural and other issues. Hence other attempts need to be made to increase the efficiency of the wind turbines, maintaining the hub heights to acceptable and controllable limits. The efficiency of the wind turbines or the energy output can be increased by reducing the cut-in-speed and/or the rated-speed by modifying and redesigning the blades. The problem is tackled by identifying the optimization parameters such as annual energy yield, power coefficient, energy cost, blade mass, and blade design constraints such as physical, geometric, and aerodynamic. The present paper provides an overview of the commonly used models, techniques, tools and experimental approaches applied to increase the efficiency of the wind turbines. In the present review work, particular emphasis is made on approaches used to design wind turbine blades both experimental and numerical, methodologies used to study the performance of wind turbines both experimentally and analytically, active and passive techniques used to enhance the power output from wind turbines, reduction in cut-in-speed for improved wind turbine performance, and lastly the research and development work related to new and efficient materials for the wind turbines.

  18. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions

    International Nuclear Information System (INIS)

    Pourrajabian, Abolfazl; Ebrahimi, Reza; Mirzaei, Masoud

    2014-01-01

    Highlights: • Three micro-turbines with output power less than 1 kW were designed for operation in low wind speed regions. • In addition to the output power, starting time was considered as a key parameter during the design. • The effects of generator resistive torque and number of blades on the performance of the turbines were investigated. - Abstract: Utilizing the micro scales of wind turbines could noticeably supply the demand for the electricity in low wind speed regions. Aerodynamic design and optimization of the blade, as a main part of a wind turbine, were addressed in the study. Three micro scales of horizontal axis wind turbines with output power of 0.5, 0.75 and 1 kW were considered and the geometric optimization of the blades in terms of the two involved parameters, chord and twist, was undertaken. In order to improve the performance of the turbines at low wind speeds, starting time was included in an objective function in addition to the output power – the main and desirable goal of the wind turbine blade design. A purpose-built genetic algorithm was employed to maximize both the output power and the starting performance which were calculated by the blade-element momentum theory. The results emphasize that the larger values of the chord and twist at the root part of the blades are indispensable for the better performance when the wind speed is low. However, the noticeable value of the generator resistive torque could largely delay the starting of the micro-turbines especially for the considered smaller size, 0.5 kW, where the starting aerodynamic torque could not overcome the generator resistive torque. For that size, an increase in the number of blades improved both the starting performance and also output power

  19. Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade

    Science.gov (United States)

    Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.

    2018-02-01

    Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.

  20. Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology

    International Nuclear Information System (INIS)

    Cai, Xin; Gu, Rongrong; Pan, Pan; Zhu, Jie

    2016-01-01

    Highlights: • A full-scale HAWT is simulated under operational conditions of wind shear and yaw. • The CFD method and sliding mesh are adopted to complete the calculation. • Thrust and torque of blades reach the peak and valley at the same time in wind shear. • The wind turbine produces yaw moment during the whole revolution in yaw case. • The torques and thrusts of the three blades present cyclical changes. - Abstract: The aerodynamic performance of wind turbines is significantly influenced by the unsteady flow around the rotor blades. The research on unsteady aerodynamics for Horizontal Axis Wind Turbines (HAWTs) is still poorly understood because of the complex flow physics. In this study, the unsteady aerodynamic configuration of a full-scale HAWT is simulated with consideration of wind shear, tower shadow and yaw motion. The calculated wind turbine which contains tapered tower, rotor overhang and tilted rotor shaft is constructed by making reference of successfully commercial operated wind turbine designed by NEG Micon and Vestas. A validated CFD method is utilized to analyze unsteady aerodynamic characteristics which affect the performance on such a full-scale HAWT. The approach of sliding mesh is used to carefully deal with the interface between static and moving parts in the flow field. The annual average wind velocity and wind profile in the atmospheric border are applied as boundary conditions. Considering the effects of wind shear and tower shadow, the simulation results show that the each blade reaches its maximum and minimum aerodynamic loads almost at the same time during the rotation circle. The blade–tower interaction imposes great impact on the power output performance. The wind turbine produces yaw moment during the whole revolution and the maximum aerodynamic loads appear at the upwind azimuth in the yaw computation case.

  1. The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Hao, Qi

    2014-12-30

    Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.

  2. BOUNDARY LAYER AND AMPLIFIED GRID EFFECTS ON AERODYNAMIC PERFORMANCES OF S809 AIRFOIL FOR HORIZONTAL AXIS WIND TURBINE (HAWT

    Directory of Open Access Journals (Sweden)

    YOUNES EL KHCHINE

    2017-11-01

    Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.

  3. Inverse Design of Single- and Multi-Rotor Horizontal Axis Wind Turbine Blades using Computational Fluid Dynamics

    OpenAIRE

    Moghadassian, Behnam; Sharma, Anupam

    2017-01-01

    A method for inverse design of horizontal axis wind turbines (HAWTs) is presented in this paper. The direct solver for aerodynamic analysis solves the Reynolds Averaged Navier Stokes (RANS) equations, where the effect of the turbine rotor is modeled as momentum sources using the actuator disk model (ADM); this approach is referred to as RANS/ADM. The inverse problem is posed as follows: for a given selection of airfoils, the objective is to find the blade geometry (described as blade twist an...

  4. Scope of wind energy in Bangladesh and simulation analysis of three different horizontal axis wind turbine blade shapes

    Science.gov (United States)

    Khan, Md. Arif-Ul Islam; Das, Swapnil; Dey, Saikat

    2017-12-01

    : Economic growth and energy demand are intertwined. Therefore, one of the most important concerns of the government and in the world is the need for energy security. Currently, the world relies on coal, crude oil and natural gas for energy generati on. However, the energy crisis together with climate change and depletion of oil have become major concerns to all countries. Therefore, alternative energy resources such as wind energy attracted interest from both public and private sectors to invest in energy generation from this source extensively. Both Vertical and Horizontal axis wind turbine can be used for this purpose. But, Horizontal axis is the most promising between them due to its efficiency and low expense. Bangladesh being a tropical country does have a lot of wind flow at different seasons of the year. However, there are some windy locations in which wind energy projects could be feasible. In this project a detailed review of the current st ate-of-art for wind turbine blade design is presented including theoretical maximum efficiency, Horizontal Axis Wind Turbine (HAWT) blade design, simulation power and COP values for different blade material. By studying previously collected data on the wind resources available in B angladesh at present and by analyzing this data, this paper will discuss the scope of wind energy in Bangladesh.

  5. Dynamics modeling and periodic control of horizontal-axis wind turbines

    Science.gov (United States)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that

  6. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  7. Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Astaraei, Fatemeh Razi; Moghadam, Ali

    2015-01-01

    Highlights: • The performance of four different Meta heuristic optimization algorithms was studied. • Power coefficient and produced torque on stationary blade were selected as objective functions. • Chord and twist distributions were selected as decision variables. • All optimization algorithms were combined with blade element momentum theory. • The best Pareto front was obtained by multi objective flower pollination algorithm for HATCTs. - Abstract: The performance of horizontal axis tidal current turbines (HATCT) strongly depends on their geometry. According to this fact, the optimum performance will be achieved by optimized geometry. In this research study, the multi objective optimization of the HATCT is carried out by using four different multi objective optimization algorithms and their performance is evaluated in combination with blade element momentum theory (BEM). The second version of non-dominated sorting genetic algorithm (NSGA-II), multi objective particle swarm optimization algorithm (MOPSO), multi objective cuckoo search algorithm (MOCS) and multi objective flower pollination algorithm (MOFPA) are the selected algorithms. The power coefficient and the produced torque on stationary blade are selected as objective functions and chord and twist distributions along the blade span are selected as decision variables. These algorithms are combined with the blade element momentum (BEM) theory for the purpose of achieving the best Pareto front. The obtained Pareto fronts are compared with each other. Different sets of experiments are carried out by considering different numbers of iterations, population size and tip speed ratios. The Pareto fronts which are achieved by MOFPA and NSGA-II have better quality in comparison to MOCS and MOPSO, but on the other hand a detail comparison between the first fronts of MOFPA and NSGA-II indicated that MOFPA algorithm can obtain the best Pareto front and can maximize the power coefficient up to 4.3% and the

  8. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    Energy Technology Data Exchange (ETDEWEB)

    Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

  9. Horizontal Transfer of Small RNAs To and From Plants

    Directory of Open Access Journals (Sweden)

    Lu eHan

    2015-12-01

    Full Text Available Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs. sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs and small interfering RNAs (siRNAs, are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing (HIGS system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.

  10. Small angle neutron scattering using a triple axis spectrometer

    International Nuclear Information System (INIS)

    Ahmed, F.U.; Goyal, P.S.; Kamal, L.; Yunus, S.M.; Datta, T.K.; Rahman, M.O.; Azad, A.K.; Begum, S.; Zakaria, A.K.

    1994-01-01

    SANS techniques has been developed on a triple axis neutron spectrometer at TRIGA Mark II (3 MW) research reactor, AERE, Savar, Dhaka, Bangladesh. Double crystal (with very small mosaic spread ∼ 1 min.) diffraction known as Bonse and Hart's method has been employed. Such a device is a useful tool for small angle scattering in the Q range between 10 -5 and 10 -1 Angstroms -1 and for real time experiments at short time scales. Therefore, large objects and large distance interparticle correlations can be easily investigated. The results of SANS' measurements using alumina (A1 2 0 3 ) sample are presented. The radius of gyration has been determined and the data has been fitted to the scattering function of a sphere. 9 refs., 6 figs.,

  11. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  12. Blade design and performance analysis on the horizontal axis tidal current turbine for low water level channel

    International Nuclear Information System (INIS)

    Chen, C C; Choi, Y D; Yoon, H Y

    2013-01-01

    Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis

  13. Logging while drilling keeps horizontal well on small target

    International Nuclear Information System (INIS)

    Leake, J.; Shray, F.

    1991-01-01

    This paper reports that the logging-while-drilling (LWD) measurement to two resistivities of different characteristics had led to a new interpretation method for the analysis of horizontal wells. By logging deep and shallow resistivity in real-time, marker beds were identified to help maintain well bore trajectory. The resistivity measurements were split into vertical and horizontal components to provide additional information of formation evaluation. In 1945, Ark Fuel Co. discovered and began developing the Olla field on the crest of the La Salle arch in La Salle Parish, La. Oil production comes from the Wilcox formation from alluvial sand packages that range in thickness from 3 ft to 120 ft. Now operated by Oxy U.S.A. Inc., Olla field was chosen in 1990 for a horizontal well pilot project. It was hoped that a horizontal well could alleviate water coming in one of the field's more productive sand packages- the 40-ft Cruse sand

  14. Numerical Simulations of the Aeroelastic Behavior of Large Horizontal-Axis Wind Turbines: The Drivetrain Case

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Veluri, Badrinath; Preidikman, Sergio

    2010-01-01

    In this work an aeroelastic model that describes the interaction between aerodynamics and drivetrain dynamics of a large horizontal–axis wind turbine is presented. Traditional designs for wind turbines are based on the output of specific aeroelastic simulation codes. The output of these codes giv...

  15. Development and experiment of a 60 kW horizontal-axis marine current power system

    International Nuclear Information System (INIS)

    Xu, Quan-kun; Liu, Hong-wei; Lin, Yong-gang; Yin, Xiu-xing; Li, Wei; Gu, Ya-jing

    2015-01-01

    A 60 kW horizontal-axis marine current power system is designed, built and tested to provide potentially cost-competitive electrical power for residents in remote islands. This power system mainly consists of a three-bladed marine current turbine, a drive-train system, power electronics and a control console. The turbine blade parameters are reasonably calculated and optimized based on the blade element momentum theory. The hydrodynamic performances of this turbine are predicted over a wide range of operating conditions. An adequate drive-train system is carefully designed to make the marine power system work smoothly and quietly even under harsh marine current conditions. The control console is also developed to facilitate the condition monitoring and generator power and speed regulations for this power system by adequately controlling the onshore power electronics. This power system has been tested under real marine current conditions to thoroughly evaluate its dynamic characteristics and effectiveness. - Highlights: • A 60°kW horizontal-axis marine current power system is designed, built and tested. • Detailed design procedure and experimental data are provided. • Experimental results demonstrate high power convention efficiency of the system

  16. Output characteristics of torsion arc blade type horizontal axis windmill; Nejire enko yokugata suiheijiku fusha no shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N; Kishimura, K [Meiji University, Tokyo (Japan)

    1997-11-25

    The previous paper theoretically analyzes characteristics of a torsion arc blade type (TABT) horizontal axis windmill to derive the theoretical equations, which give the results in good agreement with the observed ones, when multiplied by a blade shape factor. This paper discusses that the theoretical and observed results are in good agreement with each other by taking into consideration shape-related solidity and number of blades. The following findings are obtained, when parameters related to a 6-blade TABT horizontal axis wind mill are introduced and hysteresis brake is used as the load resistance for torque measurement. Shape factor can be represented by two factors of blade number and solidity. The same equation for shape factor is applicable to both elliptical and rectangular blades. These blades need different theoretical equations to give the results in agreement with the observed ones, when operated at a tip speed ratio (TSR) of 1.77 and 1.58, respectively. Rotational force is affected by the rear blade shape when they are operated at a respective TSR below the above level, but unaffected at beyond the above level. 5 refs., 9 figs., 1 tab.

  17. Analysis of the Drivetrain Performance of a Large Horizontal-Axis Wind Turbine: An Aeroelastic Approach

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Preidikman, Sergio; Massa, Julio C

    2010-01-01

    by means of the rotor blades, and then converting the rotational energy of the rotor blades into electrical energy by using a generator. The amount of available energy which the wind transfers to the rotor depends on the mass density of the air, the sweep area of the rotor blades, and the wind speed...... to generate electricity from the kinetic energy of the wind. In order to capture this energy and convert it to electrical energy, one needs to have a device that is capable of extracting the energy available in the wind stream. This device, or turbine, is usually composed of three major parts: the ‘rotor...... blades’, the drivetrain and the generator. The blades are the part of the turbine that touches energy in the wind and rotates about an axis. Extracting energy from the wind is typically accomplished by first mechanically converting the velocity of the wind into a rotational motion of the wind turbine...

  18. Performance testing of a small vertical-axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  19. Effect of Selection of Design Parameters on the Optimization of a Horizontal Axis Wind Turbine via Genetic Algorithm

    International Nuclear Information System (INIS)

    Alpman, Emre

    2014-01-01

    The effect of selecting the twist angle and chord length distributions on the wind turbine blade design was investigated by performing aerodynamic optimization of a two-bladed stall regulated horizontal axis wind turbine. Twist angle and chord length distributions were defined using Bezier curve using 3, 5, 7 and 9 control points uniformly distributed along the span. Optimizations performed using a micro-genetic algorithm with populations composed of 5, 10, 15, 20 individuals showed that, the number of control points clearly affected the outcome of the process; however the effects were different for different population sizes. The results also showed the superiority of micro-genetic algorithm over a standard genetic algorithm, for the selected population sizes. Optimizations were also performed using a macroevolutionary algorithm and the resulting best blade design was compared with that yielded by micro-genetic algorithm

  20. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  1. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  2. Added-Mass Effects on a Horizontal-Axis Tidal Turbine Using FAST v8

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-09

    Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and a case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.

  3. Effect of rotor configuration on guyed tower and foundation designs and estimated costs for intermediate site horizontal axis wind turbines

    Science.gov (United States)

    Frederick, G. R.; Winemiller, J. R.; Savino, J. M.

    1982-01-01

    Three designs of a guyed cylindrical tower and its foundation for an intermediate size horizontal axis wind turbine generator are discussed. The primary difference in the three designs is the configuration of the rotor. Two configurations are two-blade rotors with teetering hubs - one with full span pitchable blades, the other with fixed pitch blades. The third configuration is a three-bladed rotor with a rigid hub and fixed pitch blades. In all configurations the diameter of the rotor is 38 meters and the axis of rotation is 30.4 meters above grade, and the power output is 200 kW and 400 kW. For each configuration the design is based upon for the most severe loading condition either operating wind or hurricane conditions. The diameter of the tower is selected to be 1.5 meters (since it was determined that this would provide sufficient space for access ladders within the tower) with guy rods attached at 10.7 meters above grade. Completing a design requires selecting the required thicknesses of the various cylindrical segments, the number and diameter of the guy rods, the number and size of soil anchors, and the size of the central foundation. The lower natural frequencies of vibration are determined for each design to ensure that operation near resonance does not occur. Finally, a cost estimate is prepared for each design. A preliminary design and cost estimate of a cantilever tower (cylindrical and not guyed) and its foundation is also presented for each of the three configurations.

  4. Effects of torsional degree of freedom, geometric nonlinearity, and gravity on aeroelastic behavior of large-scale horizontal axis wind turbine blades under varying wind speed conditions

    DEFF Research Database (Denmark)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo

    2014-01-01

    Modern horizontal axis wind turbine blades are long, slender, and flexible structures that can undergo considerable deformation, leading to blade failures (e.g., blade-tower collision). For this reason, it is important to estimate blade behaviors accurately when designing large-scale wind turbine...

  5. RANS study of unsteady flow around a profile blade : application to stall of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)

    2010-07-01

    The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.

  6. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control

    International Nuclear Information System (INIS)

    Najafian Ashrafi, Z.; Ghaderi, M.; Sedaghat, A.

    2015-01-01

    Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines

  7. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    International Nuclear Information System (INIS)

    Berdowski, T; Ferreira, C; Walther, J

    2016-01-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O ( N log N )-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results. (paper)

  8. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT Blade Shapes Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    Wen-Tong Chong

    2013-06-01

    Full Text Available Three different horizontal axis wind turbine (HAWT blade geometries with the same diameter of 0.72 m using the same NACA4418 airfoil profile have been investigated both experimentally and numerically. The first is an optimum (OPT blade shape, obtained using improved blade element momentum (BEM theory. A detailed description of the blade geometry is also given. The second is an untapered and optimum twist (UOT blade with the same twist distributions as the OPT blade. The third blade is untapered and untwisted (UUT. Wind tunnel experiments were used to measure the power coefficients of these blades, and the results indicate that both the OPT and UOT blades perform with the same maximum power coefficient, Cp = 0.428, but it is located at different tip speed ratio, λ = 4.92 for the OPT blade and λ = 4.32 for the UOT blade. The UUT blade has a maximum power coefficient of Cp = 0.210 at λ = 3.86. After the tests, numerical simulations were performed using a full three-dimensional computational fluid dynamics (CFD method using the k-ω SST turbulence model. It has been found that CFD predictions reproduce the most accurate model power coefficients. The good agreement between the measured and computed power coefficients of the three models strongly suggest that accurate predictions of HAWT blade performance at full-scale conditions are also possible using the CFD method.

  9. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2012-11-01

    Full Text Available This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT blades based on the particle swarm optimization algorithm (PSO combined with the finite element method (FEM. The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

  10. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  11. Pole-mounted horizontal axis micro-wind turbines: UK field trial findings and market size assessment

    International Nuclear Information System (INIS)

    Sissons, M.F.; James, P.A.B.; Bradford, J.; Myers, L.E.; Bahaj, A.S.; Anwar, A.; Green, S.

    2011-01-01

    This paper discusses the key findings of the pole-mounted turbine (2.5-6 kWp) component of the UK micro-wind trial. The real world performance of horizontal axis turbines is compared with yield estimates based on site wind speed prediction. The distribution of UK agricultural farms is overlaid with wind resource mapping to estimate the number of potential agricultural farm sites for micro-wind. The yield performance of turbines during the monitoring period was observed to be very close to that predicted by NOABL-MCS wind speed estimates. Based on an installation criterion of a maximum 12 year payback time, with a 6% discount rate and micro-generation feed in tariffs available, there are ∼87,000 farm sites for micro-wind in the UK. If 10% of these farms were to install micro-wind turbines (to a capacity of 48 kWp per farm) this would correspond to a capacity of 418 MWp, with an annual generation yield of 1025 GWh, comparable to that of a large, on shore wind farm in the UK. It should be noted that the feed in tariff considered in this paper is that available in the UK in 2011, which, at 26.7 p/kWh (∼30 Euro cents/kWh) represents a significant subsidy. - Highlights: → Estimated 87,000 agricultural farm sites which are economic for pole mounted micro-wind in the UK. → Good agreement between NOABL-MCS yield prediction and site measurements for UK pole mounted turbines. → Pole mounted micro-wind has favourable economics under current UK feed in tariffs.

  12. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  13. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2012-07-01

    In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the HorizontalAxis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.

  14. Aerodynamics of small-scale vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  15. A horizontal two-axis diffractometer for high-energy X-ray diffraction using synchrotron radiation on bending magnet beamline BL04B2 at SPring-8

    CERN Document Server

    Kohara, S; Kashihara, Y; Matsumoto, N; Umesaki, N; Sakai, I

    2001-01-01

    A horizontal two-axis diffractometer for glasses and liquids, installed at SPring-8 bending magnet beamline BL04B2, operated at 8 GeV electron energy, is described. Photon energies of 37.8 and 61.7 keV were obtained using a bent Si (1 1 1) crystal and a bent Si (2 2 0) crystal, respectively. The instrument has been successfully applied to measure diffraction spectra of vitreous SiO sub 2 in transmission geometry up to scattering vector Q=36 A sup - sup 1 , and measured total structure factor S(Q) was well reproduced by reverse Monte Carlo modelling.

  16. A horizontal two-axis diffractometer for high-energy X-ray diffraction using synchrotron radiation on bending magnet beamline BL04B2 at SPring-8

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro; Kashihara, Yasuharu; Matsumoto, Norimasa; Umesaki, Norimasa; Sakai, Ichiro

    2001-01-01

    A horizontal two-axis diffractometer for glasses and liquids, installed at SPring-8 bending magnet beamline BL04B2, operated at 8 GeV electron energy, is described. Photon energies of 37.8 and 61.7 keV were obtained using a bent Si (1 1 1) crystal and a bent Si (2 2 0) crystal, respectively. The instrument has been successfully applied to measure diffraction spectra of vitreous SiO 2 in transmission geometry up to scattering vector Q=36 A -1 , and measured total structure factor S(Q) was well reproduced by reverse Monte Carlo modelling

  17. Three-axis optical force plate for studies in small animal locomotor mechanics

    International Nuclear Information System (INIS)

    Hsieh, S. Tonia

    2006-01-01

    The use of force plates to measure whole-body locomotor mechanics is a well-established technique. However, commercially available force plates are not sensitive enough for use on small-bodied vertebrates or invertebrates. The standard design for single- and multiple-axis, high-sensitivity force plates built by individual research groups uses semiconductor foil strain gauges to measure deflections; yet foil strain gauges are highly temperature and position sensitive, resulting in a drifting base line and nonlinear responses. I present here a design for a three-axis optical force plate that was successfully calibrated to measure forces as small as 1.5 mN and is capable of determining the position of center of pressure with a mean error of 0.07 cm along the X axis and 0.13 cm along the Y axis. Using optical sensors instead of foil strain gauges to measure deflection, this force plate is not subject to temperature-related drift and is more robust against slight positioning inaccuracies. This force plate was used to measure forces produced by amphibious fishes weighing less than 2 g as they jumped off the force platform

  18. INNOVATIVE SOLUTIONS FOR SMALL SCALE VERTICAL AXIS WIND TURBINES USED IN HARBOURS AND SHORE AREAS

    Directory of Open Access Journals (Sweden)

    IONESCU Raluca Dora

    2014-09-01

    Full Text Available The paper aims to analyse the wind turbine solutions implemented in harbours and on shore areas. Also a thorough study of the blade design solutions for small power Vertical axis wind turbines (VAWTs has been conducted, with their advantages and disadvantages, in order to find the best solution that minimises the loads and helps with the self-starting capabilities of the wind turbine. First are presented all the solutions, next are discussed several research results for each solution and, in the end, a combination of solutions is chosen for our new small power VAWT with a pre-dimensioning analysis.

  19. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1985-02-01

    In the field of reactor safety the occurrence of a small break in a horizontal primary coolant pipe is of great importance. This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HS) [de

  20. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs.

    Science.gov (United States)

    Zhou, Geyu; Zhou, Yu; Chen, Xi

    2017-01-01

    Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups' subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  1. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-05-01

    Full Text Available Small RNAs (sRNAs, including small interfering RNAs (siRNAs and microRNAs (miRNAs, are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups’ subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  2. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis...... wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent...

  3. The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm

    International Nuclear Information System (INIS)

    Zhu, G J; Guo, P C; Luo, X Q; Feng, J J

    2012-01-01

    The present paper describes a hydrodynamic optimization technique for horizontal-axial marine current turbine. The pitch angle distribution is important to marine current turbine. In this paper, the pitch angle distribution curve is parameterized as four control points by Bezier curve method. The coordinates of the four control points are chosen as optimization variables, and the sample space are structured according to the Box-Behnken experimental design method (BBD). Then the power capture coefficient and axial thrust coefficient in design tip-speed ratio is obtained for all the elements in the sample space by CFD numerical simulation. The power capture coefficient and axial thrust are chosen as objective function, and quadratic polynomial regression equations are constructed to fit the relationship between the optimization variables and each objective function according to response surface model. With the obtained quadratic polynomial regression equations as performance prediction model, the marine current turbine is optimized using the NSGA-II multi-objective genetic algorithm, which finally offers an improved marine current turbine.

  4. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance.

    Science.gov (United States)

    Ribeiro, Jéssica Alves; Marinho, Francisco Victor Costa; Rocha, Kaline; Magalhães, Francisco; Baptista, Abrahão Fontes; Velasques, Bruna; Ribeiro, Pedro; Cagy, Mauricio; Bastos, Victor Hugo; Gupta, Daya; Teixeira, Silmar

    2018-03-01

    Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.

  5. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    Science.gov (United States)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  6. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  7. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  8. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1984-12-01

    This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HP) [de

  9. Numerical modeling of a pitch oscillating S809 airfoil dynamic stall in 2D with application to a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group

    2010-07-01

    Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.

  10. The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe

    Science.gov (United States)

    Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul

    2018-03-01

    Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.

  11. Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2014-02-01

    Full Text Available A multi-objective optimization method for the structural design of horizontal-axis wind turbine (HAWT blades is presented. The main goal is to minimize the weight and cost of the blade which uses glass fiber reinforced plastic (GFRP coupled with carbon fiber reinforced plastic (CFRP materials. The number and the location of layers in the spar cap, the width of the spar cap and the position of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining FEM analysis and a multi-objective evolutionary algorithm under ultimate (extreme flap-wise load and edge-wise load conditions. The best solutions are described and the comparison of the obtained results with the original design is performed to prove the efficiency and applicability of the method.

  12. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gwang-Se; Cheong, Cheolung, E-mail: ccheong@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Busan, 609-745, Rep. of Korea (Korea, Republic of)

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  13. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Directory of Open Access Journals (Sweden)

    Gwang-Se Lee

    2014-12-01

    Full Text Available Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs, few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  14. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Science.gov (United States)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  15. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  16. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  17. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  18. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    Science.gov (United States)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  19. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  20. Small polarons and c-axis transport in highly anisotropic metals

    International Nuclear Information System (INIS)

    Ho, A.F.; Schofield, A.J.

    2002-09-01

    Motivated by the anomalous c-axis transport properties of the quasi two-dimensional metal, Sr 2 RuO 4 , and some of its relatives, we have studied the interlayer hopping of single electrons that are coupled strongly to c-axis bosons. We find a c-axis resistivity that reflects the in-plane electronic scattering in the low and very high temperature limits (relative to the characteristic temperature of the boson T boson ). For temperatures near the T boson , a broad maximum in the resistivity can appear for sufficiently strong electron-boson coupling. This feature may account for the observed 'metallic to non-metallic crossover' seen in these layered oxides, where the boson may be a phonon. (author)

  1. 湍流强度对水平轴风力机气动性能的影响%The Influence of Turbulence Intensity on Aerodynamic Performance of Horizontal Axis Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    李仁年; 任鹏; 李德顺

    2016-01-01

    In order to study the influence of turbulence intensity on aerodynamic performance of horizontal axis wind turbine,a three-dimensionally numerical simulation of wind wheel model of 33 kW horizontal ax-is wind turbine under different working conditions of wind speed of incoming flow is conducted based on CFD software by comparing and analyzing aerodynamic performance of wind turbine when the turbulence intensity(Ⅰ)is 0.1%,14% and 25%.The results show that differential pressure on the surface of horizontal axis wind turbine blade decreases on a certain degree with the increase of turbulence intensity,which causes that torque of wind wheel of wind turbine decreases and wind power utilization efficiency of wind turbine is clearly reduced.%为了研究水平轴风力机气动性能随湍流强度的影响,基于CFD软件对不同来流风速工况下的33 kW水平轴风力机风轮模型进行三维数值模拟,对比分析风力机在湍流强度Ⅰ为0.1%、14%、25%时的气动性能.结果表明:随着来流湍流强度的增加,水平轴风力机叶片表面压差会有一定程度的减小,从而导致风力机风轮转矩减小,风力机风能利用效率明显降低.

  2. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Ion NILA

    2012-06-01

    Full Text Available This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the natural frequency while wind turbine mode shapes have been utilized because of their accuracy and faster solution. In this problem 12 modes of structure have been extracted.

  3. Study on wave power generation of electricity using torsion arc blade type horizontal axis wind turbine; Nejire enko yokugata suihei jiku fusha wo mochiita haryoku hatsuden ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N; Kishimura, K [Meiji University, Tokyo (Japan)

    1996-10-27

    Windmilling characteristics of a combination of a torsion arc blade type (TABT) horizontal axis wind turbine and a reverse torsion arc blade type (RTABT) horizontal axis wind turbine were evaluated in a wave activated power generation experiment. The TABT wind turbine had six blades, and the front and rear parts of the blade were twisted in the same direction, which caused the direction of rotor rotation to change as the direction of wind along the shaft changed. The RTABT wind turbine had twelve blades, and the front and rear parts of the blade were twisted reverse to each other, which allowed the direction of rotor rotation to stay constant even in the presence of wind direction reversal. To keep the direction of rotor rotation unchanged in the presence of flow direction reversal along the power generating turbine shaft, a single-stage type RTABT wind turbine and a double-stage type were used, the double-stage type being a series connection of a first-stage RTABT (for blowout and suction) and second-stage TABT (for blowout only). Both single-type and double-type rotated in the same direction irrespective of the direction of air flow. The output of the double type was obtained by adding up the values obtained from the individual turbines. The double type was two to three times higher in efficiency than the single type in turbine revolution and power output. 2 refs., 13 figs.

  4. Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, Shanghai 200020 (China); Deng, Bin [Institute of Heat Transfer Technology, Golden Dragon Precise Copper Tube Group Inc., Shanghai 200135 (China)

    2010-11-15

    Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter (5.0 mm and 4.0 mm O.D.) horizontal microfin tubes were investigated experimentally covering nominal oil concentrations from 0% to 5%. The research results indicate that, comparing with the frictional pressure drop of pure R410A, the frictional pressure drop of R410A-oil mixture may decrease by maximum of 18% when the vapor quality is lower than 0.6, and increase by maximum of 13% when the vapor quality is higher than 0.6. A new frictional pressure drop correlation for R410A-oil mixture flow condensation inside microfin tubes is developed based on the refrigerant-oil mixture properties, and can agree with 94% of the experimental data within a deviation of -30% to +30%. (author)

  5. Behavior of water jet horizontally discharged from a small circular hole set on a circular pipe-surface into air

    International Nuclear Information System (INIS)

    Tsuyuki, Koji; Igarashi, Saburo; Sudo, Seiichi; Yamabe, Masahiro; Kikuchi, Akira; Oba, Risaburo

    2001-01-01

    In order to clarify the behavior of the water jet horizontally discharged from a small circular hole set on a circular pipe surface into air, in this paper, for the first step, we systematically observed the jet aspects, the efflux angle, the discharge coefficient and so on, when the hole diameter d is much smaller than the pipe diameter D. Since the upstream kinetic energy from the hole is somewhat higher than the downstream counterpart, the upstream partial jet with higher efflux angle crashes into the downstream partial jet and drives out the latter into up- and down-side, resulting in a marked pair of vortices, so that resulting in a three-dimensional spiral flow accompanying with marked surface waves. (author)

  6. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  7. The evaluation of validity of the RELAP5/Mod3 flow regime map for horizontal small diameter tubes at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N. [St. Petersburg State Technical Univ. (Russian Federation); Banati, J. [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    RELAP5/MOD3 code was developed for Western type power water reactors with vertical steam generators. Thus, this code should be validated also for WWER design with horizontal steam generators. In application for horizontal steam generators the situation with two-phase flow inside small diameter tubes is possible when the first circuit pressure drops in accident below the pressure level in the boiling water. It is known that computer codes have not always modelled correctly the two-phase flow inside horizontal tubes at low pressures (less than 4-6 MPa). It may be the result of erroneous prediction of the flow regime. Correct prediction of the flow regime is especially important for the fully or partly stratified flow in horizontal tubes. The aim of this study is the attempt of verification of the flow regime map, which is used in the RELAP5/MOD3 computer code for two-phase flow in horizontal small diameter tubes. `Small diameter tube` means according RELAP5/MOD3 that the inner diameter of the tube is less (or equal) than 0.018 m. The inner tube diameter in horizontal steam generators is equal 0.013 m. (orig.). 19 refs.

  8. The evaluation of validity of the RELAP5/Mod3 flow regime map for horizontal small diameter tubes at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N [St. Petersburg State Technical Univ. (Russian Federation); Banati, J [Lappeenranta Univ. of Technology (Finland)

    1998-12-31

    RELAP5/MOD3 code was developed for Western type power water reactors with vertical steam generators. Thus, this code should be validated also for WWER design with horizontal steam generators. In application for horizontal steam generators the situation with two-phase flow inside small diameter tubes is possible when the first circuit pressure drops in accident below the pressure level in the boiling water. It is known that computer codes have not always modelled correctly the two-phase flow inside horizontal tubes at low pressures (less than 4-6 MPa). It may be the result of erroneous prediction of the flow regime. Correct prediction of the flow regime is especially important for the fully or partly stratified flow in horizontal tubes. The aim of this study is the attempt of verification of the flow regime map, which is used in the RELAP5/MOD3 computer code for two-phase flow in horizontal small diameter tubes. `Small diameter tube` means according RELAP5/MOD3 that the inner diameter of the tube is less (or equal) than 0.018 m. The inner tube diameter in horizontal steam generators is equal 0.013 m. (orig.). 19 refs.

  9. Optimizing the triple-axis spectrometer PANDA at the MLZ for small samples and complex sample environment conditions

    Science.gov (United States)

    Utschick, C.; Skoulatos, M.; Schneidewind, A.; Böni, P.

    2016-11-01

    The cold-neutron triple-axis spectrometer PANDA at the neutron source FRM II has been serving an international user community studying condensed matter physics problems. We report on a new setup, improving the signal-to-noise ratio for small samples and pressure cell setups. Analytical and numerical Monte Carlo methods are used for the optimization of elliptic and parabolic focusing guides. They are placed between the monochromator and sample positions, and the flux at the sample is compared to the one achieved by standard monochromator focusing techniques. A 25 times smaller spot size is achieved, associated with a factor of 2 increased intensity, within the same divergence limits, ± 2 ° . This optional neutron focusing guide shall establish a top-class spectrometer for studying novel exotic properties of matter in combination with more stringent sample environment conditions such as extreme pressures associated with small sample sizes.

  10. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    Science.gov (United States)

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  11. An experimental study on two-phase pressure drop in small diameter horizontal, downward inclined and vertical tubes

    Directory of Open Access Journals (Sweden)

    Autee Arun

    2015-01-01

    Full Text Available An experimental study of two-phase pressure drop in small diameter tubes orientated horizontally, vertically and at two other downward inclinations of θ= 300 and θ = 600 is described in this paper. Acrylic transparent tubes of internal diameters 4.0, 6.0, and 8.0 mm with lengths of 400 mm were used as the test section. Air-water mixture was used as the working fluid. Two-phase pressure drop was measured and compared with the existing correlations. These correlations are commonly used for calculation of pressure drop in macro and mini-microchannels. It is observed that the existing correlations are inadequate in predicting the two-phase pressure drop in small diameter tubes. Based on the experimental data, a new correlation has been proposed for predicting the two-phase pressure drop. This correlation is developed by modification of Chisholm parameter C by incorporating different parameters. It was found that the proposed correlation predicted two-phase pressure drop at satisfactory level.

  12. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  13. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor

    Science.gov (United States)

    Leavitt, Justin C.; Gilcrease, Eddie B.; Wilson, Kassandra; Casjens, Sherwood R.

    2013-01-01

    Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2 kbp region. Our in vivo studies that show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful. PMID:23562538

  14. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  15. Modelo matemático para el diseño aerodinámico de los álabes de una turbina eólica de eje horizontal (TEEH Mathematical Model for Blades Aerodynami c Design of a Horizontal Axis Wind Turbine (HAWT

    Directory of Open Access Journals (Sweden)

    Julio José–Chirinos García

    2016-02-01

    Full Text Available El objetivo de esta investigación es elaborar un modelo matemát ico para el diseño aerodinámico de las palas de una turbina eólica de eje horizontal en forma rápida y confiable qu e facilite a construcción y comportamiento bajo diferentes condiciones. Este resultado se obtuvo por el método inductivo y deductivo partiendo de las teorías aerodinámicas de Glauert y otros introduciéndole modificaciones. Igualmente el d esarrollo del modelo fue programado en una hoja de cálculo que permitió calcular el radio R del rotor, la distribu ción de la cuerda c(r y la variación del ángulo de torsión Ө(r de forma automática. El desarrollo del modelo está estructura do de acuerdo a las siguientes etapas: identificación y definición, conceptualización, formulación e implementación y finalmente la validación del modelo. La validación del modelo fue hecha comparando la geometría de la pala y la potenc ia generada por el rotor con una familia de palas de fabricantes europeos. The research purpose is elaborate a mathematical model fo r blade aerodynamic designing of horizontal axis wind turbine in fast and reliable way to facilitate the construc tion and performance evaluation under different operational conditions. To reach the theoretical and empirical approa ch it was used induction and deduction method starting from aerodynamic theories of Glauert and other researchers, in which necessary modifications were introduced. Also, the development of the model was programmed in aspreadsheet which allows to calc ula table de radio R, the distribution of chord c (r, and the variation of twist angle or pitch Ө (r in automatic way. The development of the model was structured according to the following stages: identification and definition, conceptualization, formulation andimplementation and finally the validation of the m odel. The model validation was made comparing the blade geometry and generated power by the rotor with a blade family of

  16. Modelo matemático para el diseño aerodinámico de los álabes de una turbina eólica de eje horizontal (TEEH; Mathematical Model for Blades Aerodynamic Design of a Horizontal Axis Wind Turbine (HAWT

    Directory of Open Access Journals (Sweden)

    Julio José Chirinos García

    2015-12-01

    Full Text Available El objetivo de esta investigación es elaborar un modelo matemático para el diseño aerodinámico de las palas de una turbina eólica de eje horizontal en forma rápida y confiable que facilite a construcción y comportamiento bajo diferentes condiciones. Este resultado se obtuvo por el método inductivo y deductivo partiendo de las teorías aerodinámicas de Glauert y otros introduciéndole modificaciones. Igualmente el desarrollo del modelo fue programado en una hoja de cálculo que permitió calcular el radio R del rotor, la distribución de la cuerda c(r y la variación del ángulo de torsiónӨ(r de forma automática. El desarrollo del modelo está estructurado de acuerdo a las siguientes etapas: identificación y definición, conceptualización, formulación e implementación y finalmente la validación del modelo. La validación del modelo fue hecha comparando la geometría de la pala y la potencia generada por el rotor con una familia de palas defabricantes europeos.The research purpose is elaborate a mathematical model for blade aerodynamic designing of horizontal axis wind turbine in fast and reliable way to facilitate the construction and performance evaluation under different operational conditions. To reach the theoretical and empirical approach it was used induction and deduction method starting from aerodynamic theories of Glauert and other researchers, in which necessary modifications were introduced. Also, the development of the model was programmed in aspreadsheet which allows to calcula table de radio R, the distribution of chord c (r, and the variation of twist angle or pitch Ө (r in automatic way. The development of the model was structured according to the following stages: identification and definition, conceptualization, formulationandimplementation and finally the validation of the model. The model validation was made comparing the blade geometry and generated power by the rotor with a blade family of European

  17. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  18. Development and demonstration of prototype transportation equipment for emplacing HL vitrified waste canisters into small diameter bored horizontal disposal cells

    International Nuclear Information System (INIS)

    Seidler, Wolf K.; Bosgiraud, Jean-Michel; Londe, Louis

    2008-01-01

    Over a period of 4 and years the National Radioactive Waste Management Agency (Andra), working with a variety of Contractors mostly specializing in nuclear orientated mechanical applications, successfully designed, fabricated and demonstrated 2 very different prototype high level waste transport systems. The first system, based on air cushion technology, was developed primarily for very heavy loads (17 to 45 tonnes). The results of this work are described in a separate presentation (Paper 21) at this Conference. The second system, developed by Andra within the framework of the ESDRED Project, generally referred to as the 'Pushing Robot System' for vitrified waste canisters, is the subject of this paper. The 'Pushing Robot System' is a part of the French national disposal concept that is described in Andra's 'Dossier 2005'. The latter is a public document that can be viewed on Andra's web site (www.andra.fr). The 'Pushing Robot System' system is designed for the deep geological disposal (in clay formations) of 'C' type vitrified waste canisters. In its entirety the system provides for the transport, emplacement and, if necessary, the retrieval of those canisters. Nothing in the design of the Andra emplacement equipment would preclude its utilization in horizontal openings in other types of geological settings. Over a period of some 8 years Andra has developed the 'Pushing Robot System' in 3 phases. Initially there was only the 'Conceptual Design' (Phase 1) which was incorporated in the Dossier 2005. This was followed by Phase 2 i.e. the design and fabrication of a simplified full scale prototype system henceforth referred to a P1, which includes a Pushing Robot, a Dummy Canister and a Test Bench. P1 details were also incorporated in the Dossier 2005. Finally, during Phase 3, a second more comprehensive full scale prototype system P2 has been designed and is being assembled and tested this month. This system includes a Transport Shuttle, a Transfer Shielding Cask, a

  19. Theoretical and conditional monitoring of a small three-bladed vertical-axis micro-hydro turbine

    International Nuclear Information System (INIS)

    Huang, Sy-Ruen; Ma, Yen-Huai; Chen, Chia-Fu; Seki, Kazuichi; Aso, Toshiyuki

    2014-01-01

    Highlights: • This paper presents a novel 3 three-bladed vertical-axis micro-hydro turbine system. • This paper presents structure and performance of micro-hydroelectric turbine system. • The paper reveal that using VAMHT system in water is distinct from using in wind. • This paper present an experimental results of VAMHT system. • The paper show that the status transformation from cut-into stable power generation is short. - Abstract: This paper presents a novel 3-kW three-bladed vertical-axis micro-hydro turbine (VAMHT) system. The experimental results reveal that using this type of turbine in water is distinct from using it in wind. The micro-hydro turbine system uses a three-phase permanent magnet symmetric generator that transforms mechanical energy into electrical energy. The output voltage and frequency of the generator depend on water flow speed, and voltage steady equipment is used to maintain the maximum output power of the DC bus. According to the maximum power point tracking of the micro-hydro turbine system, the condition monitoring of the novel micro-hydro turbine requires no water flow meter. Furthermore, the construction and installation of the new micro-hydro turbine is simple, economical, and stable. This system combines a micro-hydro generator and electrical state-monitoring system, which can measure the speed, output power, DC-bus voltage, and all electrical characteristics of the micro-hydro turbine system. The results of comparing turbine between wind and water show that the speed ranges of water flow is narrower than that of wind, and the status transformation from cut-into stable power generation is short

  20. Stackelberg equilibria and horizontal differentiation

    OpenAIRE

    Lambertini, Luca

    1993-01-01

    This paper proposes a taxonomy of the Stackelberg equilibria emerging from a standard game of horizontal differentiation à la Hotelling in which the strategy set of the sellers in the location stage is the real axis. Repeated leadership appears the most advantageous position. Furthermore, this endogenously yields vertical differentiation between products at equilibrium.

  1. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model

  2. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    Abraham, J.P.; Mowry, G.S.; Erickson, R.A.

    2009-01-01

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  3. UASB followed by Sub-Surface Horizontal Flow Phytodepuration for the Treatment of the Sewage Generated by a Small Rural Community

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2014-10-01

    Full Text Available The paper presents the results of an experimental process designed for the treatment of the sewage generated by a rural community located in the north-east of Brazil. The process consists of a preliminary mechanical treatment adopting coarse screens and grit traps, followed by a biological treatment in a UASB reactor and a sub-surface horizontal flow phytodepuration step. The use of a UASB reactor equipped with a top cover, as well as of the phytodepuration process employing a porous medium, showed to present important health advantages. In particular, there were no significant odor emissions and there was no evidence of the proliferation of insects and other disease vectors. The plant achieved the following mean abatement efficiencies: 92.9% for BOD5, 79.2% for COD and 94% for Suspended Solids. With regard to fecal indicators average efficiencies of 98.8% for fecal coliforms and 97.9% for fecal enterococci were achieved. The UASB reactor showed an important role in achieving this result. The research was also aimed at evaluating the optimal operating conditions for the UASB reactor in terms of hydraulic load and organic volumetric loading. The achieved results hence indicated that the process may be highly effective for small rural communities in tropical and sub-tropical areas.

  4. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    Science.gov (United States)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  5. Pathologically decreased expression of miR-193a contributes to metastasis by targeting WT1-E-cadherin axis in non-small cell lung cancers

    Directory of Open Access Journals (Sweden)

    Junjie Chen

    2016-11-01

    Full Text Available Abstract Background The metastatic cascade is a complex and multistep process with many potential barriers. Recently, miR-193a has been reported to be a suppressive miRNA in multiple types of cancers, but its underlying anti-oncogenic activity in non-small cell lung cancers (NSCLC is not fully elucidated. Methods The expressions of miR-193a (miR-193a-5p in human lung cancer tissues and cell lines were detected by real-time PCR. Dual-luciferase reporter assay was used to identify the direct target of miR-193a. Cell proliferation, apoptosis, and metastasis were assessed by CCK-8, flow cytometry, and Transwell assay, respectively. Results The expression of miR-193a in lung cancer tissues was decreased comparing to adjacent non-tumor tissues due to DNA hypermethylation in lung cancer tissues. Ectopic expression of miR-193a inhibited cell proliferation, colony formation, migration, and invasion in A549 and H1299 cells. Moreover, overexpression of miR-193a partially reversed tumor growth factor-β1 (TGF-β1-induced epithelial-to-mesenchymal transition (EMT in NSCLC cells. Mechanistically, miR-193a reduced the expression of WT1, which negatively regulated the protein level of E-cadherin, suggesting that miR-193a might prevent EMT via modulating WT1-E-cadherin axis. Importantly, knockdown of WT1 resembled the anti-cancer activity by miR-193a and overexpression of WT1 partially reversed miR-193a-induced anti-cancer activity, indicating that WT1 plays an important role in miR-193a-induced anti-cancer activity. Finally, overexpression of miR-193a decreased the growth of tumor xenografts in mice. Conclusion Collectively, our results have revealed an important role of miR-193a-WT1-E-cadherin axis in metastasis, demonstrated an important molecular cue for EMT, and suggested a therapeutic strategy of restoring miR-193a expression in NSCLC.

  6. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use because they generate less noise, have bird free turbines and lower cost. There is few vertical axis wind turbines design with good power curve....... However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...

  7. Difference in quick phases induced by horizontal and vertical vestibular stimulations: role of the otolithic input.

    Science.gov (United States)

    Pettorossi, V E; Errico, P; Ferraresi, A

    1997-01-01

    Quick phases (QPs) induced by horizontal and vertical sinusoidal vestibular stimulations were studied in rabbits, cats, and humans. In all the animals, large and frequent horizontal QPs were observed following yaw stimulation in prone position. By contrast, QPs were almost absent during roll stimulation in rabbits, and they were small and oblique during pitch stimulation in cats and humans. As a result of these differences, the range of gaze displacement induced by vestibular stimulations was greater in the horizontal plane than in the vertical one. We also found that the trajectory of the QPs in rabbits was kept horizontal even when the yaw rotation was off vertical axis of +/- 45 degrees in the sagittal plane. Moreover, in the rabbit, the rare horizontal QPs induced by roll stimulation did not change their orientation at various pitch angles of roll stimulation axis. The QPs were also analyzed following roll stimulation of the rabbit in supine position. In this condition, in which the otolithic receptors were activated in the opposite way compared to prone position, large vertical QPs were elicited. We concluded that these results provide evidence that the otolithic signal plays a role in controlling occurrence and trajectory orientation of the QPs.

  8. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil; Stovas, Alexey; Alkhalifah, Tariq Ali

    2016-01-01

    in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous

  9. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis

    Directory of Open Access Journals (Sweden)

    Wang P

    2017-10-01

    Full Text Available Pei Wang,* Dong Chen,* Hongbing Ma, Yong LiDepartment of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Long noncoding RNAs (lncRNAs have been revealed to play essential role in drug resistance of multiple cancers. LncRNA MEG3 was previously reported to be associated with cisplatin (DDP resistance in non-small cell lung cancer (NSCLC cells. However, the molecular mechanism of MEG3 affecting DDP resistance in NSCLC remains to be further illustrated. In this study, we attempted to discuss whether MEG3 also could function as a competing endogenous RNA to regulate DDP resistance in NSCLC.Materials and methods: The expression of MEG3, miR-21-5p, and sex-determining region Y-box 7 (SOX7 in NSCLC tissues or cells was examined by quantitative real-time polymerase chain reaction (qRT-PCR. 3-(4,5-Dimethylthazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, flow cytometry, and caspase-3 activity analysis were applied to assess the DDP sensitivity of NSCLC cells. The interaction between MEG3, miR-21-5p, and SOX7 was explored by luciferase reporter assay, RNA immunoprecipitation (RIP assay, qRT-PCR, and Western blot. Mouse NSCLC transplanted tumor was established to verify the functional role of MEG3 in DDP resistance in vivo.Results: MEG3 was downregulated in DDP-resistant NSCLC cells. Overexpression of MEG3 enhanced DDP sensitivity of NSCLC cells in vitro. MEG3 directly interacted with miR-21-5p and suppressed its expression. miR-21-5p significantly abolished the effects of MEG3 on DDP resistance via modulating cell proliferation and apoptosis. SOX7 was identified as a direct target of miR-21-5p and MEG3 positively regulated SOX7 expression by suppressing miR-21-5p. Moreover, MEG3 knockdown-induced pro-proliferative and anti-apoptotic effects were reversed in DDP-resistant NSCLC cells by upregulating SOX7. Furthermore, upregulation of MEG3 induced

  10. Wake of inertial waves of a horizontal cylinder in horizontal translation

    Science.gov (United States)

    Machicoane, Nathanaël; Labarre, Vincent; Voisin, Bruno; Moisy, Frédéric; Cortet, Pierre-Philippe

    2018-03-01

    We analyze theoretically and experimentally the wake behind a horizontal cylinder of diameter d horizontally translated at constant velocity U in a fluid rotating about the vertical axis at a rate Ω . Using particle image velocimetry measurements in the rotating frame, we show that the wake is stabilized by rotation for Reynolds number Re =U d /ν much larger than in a nonrotating fluid. Over the explored range of parameters, the limit of stability is Re ≃(275 ±25 )/Ro , with Ro =U /2 Ω d the Rossby number, indicating that the stabilizing process is governed by the Ekman pumping in the boundary layer. At low Rossby number, the wake takes the form of a stationary pattern of inertial waves, similar to the wake of surface gravity waves behind a ship. We compare this steady wake pattern to a model, originally developed by Johnson [E. R. Johnson, J. Fluid Mech. 120, 359 (1982), 10.1017/S0022112082002808], assuming a free-slip boundary condition and a weak streamwise perturbation. Our measurements show quantitative agreement with this model for Ro ≲0.3 . At larger Rossby number, the phase pattern of the wake is close to the prediction for an infinitely small line object. However, the wake amplitude and phase origin are not correctly described by the weak-streamwise-perturbation model, calling for an alternative model for the boundary condition at moderate rotation rate.

  11. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: I. Data generation in a small fish model

    Science.gov (United States)

    Adaptive or compensatory responses to chemical exposure can significantly influence in vivo concentration-duration-response relationships. The aim of this study was to provide data to support development of a computational dynamic model of the hypothalamic-pituitary-gonadal axis ...

  12. design and implementation of a microcontroller based dual axis

    African Journals Online (AJOL)

    user

    In this paper, an efficient microcontroller-based dual axis solar radiation tracker which can be used to align a single photovoltaic (PV) ... replaced them with wind turbine generating stations. ... tracker which has both horizontal and vertical axle.

  13. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  14. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  15. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    Science.gov (United States)

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  16. Analysis of horizontal axis wind turbine blade using CFD

    African Journals Online (AJOL)

    obtained from simulation are compared with the experimental work found in ... Wind turbine rotor interacts with the wind and converts its kinetic energy into ... To get additional information on the flow characteristics a CFD analysis was also ... surface it is better to use NREL 3-D values instead of 2-D experimental values.

  17. Multi-fidelity optimization of horizontal axis wind turbines

    DEFF Research Database (Denmark)

    McWilliam, Michael; Zahle, Frederik; Pavese, Christian

    2017-01-01

    This paper is concerned with the numerical design optimization of wind turbines. Many examples of wind turbine design optimization in literature rely on simplified analysis in some form. This may lead to sub-optimal design, because the optimizer does not see the full fidelity of the problem....... Finally, AMMF was used in full aero-elastic wind turbine rotor design optimization problem based on the DTU 10 MW reference wind turbine design. Mixed results were achieved for the final study and further work is needed to find the best configuration for AMMF....

  18. Calibration guidelines for surface texture instruments - horizontal axis

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Shem, R. Krüger

    The present report is a documentation of the work carried out at DTU, on TASK 5.1: PROCEDURES FOR CALIBRATION IN X- AND Y- DIRECTION the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale. After a short introduc......The present report is a documentation of the work carried out at DTU, on TASK 5.1: PROCEDURES FOR CALIBRATION IN X- AND Y- DIRECTION the project with contract SMT4-CT97-2176 with title: Calibration Standards for Surface Topography Measuring Systems down to Nanometric Scale. After a short...

  19. Wind: small is beautiful

    International Nuclear Information System (INIS)

    Vries, E. de

    2005-01-01

    The small wind sector (0.5-100 kW) is often overlooked but could provide decentralised energy systems. Small wind turbines have been used for homes, farms and small businesses for over 80 years (e.g. in the USA and the Netherlands), receiving a boost in the 1970s and 1980s following the 1973 oil crisis when a new generation of turbines entered the European and US markets. Bergey Windpower and Southwest Windpower from the USA are the market leaders in this sector in terms of sales volume but are still classed as medium-sized enterprises. Small turbines have the disadvantage of higher costs compared with large turbines due to higher manufacturing costs, technical factors associated with the tendency to use small turbines on relatively short towers, small production runs and a failure to keep up with the latest design developments such as cost-effective state-of-the-art frequency converters. Most small turbines are horizontal axis turbines, though vertical axis turbines are produced by some manufacturers. Examples of the systems available from European suppliers are described

  20. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic...... computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down...... and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed...

  1. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    Science.gov (United States)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each consisting of 6 traces at a spacing of 1.80 m; ii- a 1000 J SIG Sparker producing a 400 Hz signal with a 220 dB re 1μPa @1m level of emission, towed at a 8 m distance of the first seismic trace. This survey provided high lateral resolution images of the seasonal thermocline located at a 30 m depth with vertical displacements induced by internal waves. References Holbrook, W.S., Paramo, P., Pearse, S. and Schmitt, R.W., 2003. Thermohaline Fine Structure in an Oceanographic

  2. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  3. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  4. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  5. High glucose contributes to the proliferation and migration of non-small cell lung cancer cells via GAS5-TRIB3 axis.

    Science.gov (United States)

    Ding, Cheng-Zhi; Guo, Xu-Feng; Wang, Guo-Lei; Wang, Hong-Tao; Xu, Guang-Hui; Liu, Yuan-Yuan; Wu, Zhen-Jiang; Chen, Yu-Hang; Wang, Jiao; Wang, Wen-Guang

    2018-01-24

    Despite the growing number of studies exhibited an association of diabetes mellitus (DM) and lung cancer progression, the concrete mechanism of DM aggravating lung cancer has not been elucidated. This study was to investigate whether and how high glucose (HG) contribute to the proliferation and migration of non-small cell lung cancer (NSCLC) cells in vitro. In the present study, we confirmed that HG promoted the proliferation and migration of NSCLC cells, and also induced an anti-apoptosis effect on NSCLC cells. Moreover, HG inhibited the expression of GAS5 in NSCLC cells but elevated the protein level of TRIB3. GAS5 overexpression promoted the degradation of TRIB3 protein by ubiquitination and inhibited the HG induced-proliferation, anti-apoptosis and migration of NSCLC cells. Importantly, TRIB3 overexpression reversed the effects of GAS5 on the HG-treated NSCLC cells. Taken together, down-regulated GAS5 by HG significantly enhanced the proliferation, anti-apoptosis and migration in NSCLC cells through TRIB3, thus promoting the carcinogenesis of NSCLC. ©2018 The Author(s).

  6. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  7. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Science.gov (United States)

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Productivity and injectivity of horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  9. The horizontal plane appearances of scoliosis

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2017-01-01

    Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen......Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two...... cases of a normal spine and a thoracic scoliosis are presented. Results: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral...... decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. Conclusions: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature...

  10. Design of rotor blade for vertical axis wind turbine using double aerofoil

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, P.D.; Ratkovich, N.; Kirkegaard, P.H.; Nielsen, Soeren R.K. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)

    2012-07-01

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use,because they generate less noise, have bird free turbines and lower cost. There are few vertical axis wind turbines design with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design. In this current work, two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK) software. Aerofoils used in this work are selected from standard aerofoil shapes. (Author)

  11. Dynamics of the off axis intense beam propagation in a spiral inflector

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in

    2017-01-01

    In this paper the dynamics of space charge dominated beam in a spiral inflector is discussed by developing equations of motion for centroid and beam envelope for the off axis beam propagation. Evolution of the beam centroid and beam envelope is studied as a function of the beam current for various input beam parameters. The transmission of beam through the inflector is also estimated as a function of the beam current for an on axis and off axis beam by tracking a large number of particles. Simulation studies show that shift of the centroid from the axis at the inflector entrance affects the centroid location at the exit of the inflector and causes reduction in the beam transmission. The centroid shift at the entrance in the horizontal plane (h plane) is more critical as it affects the centroid shift in the vertical plane (u plane) by a large amount near the inflector exit where the available aperture is small. The beam transmission is found to reduce with increase in the centroid shift as well as with the beam current.

  12. Horizontal violence in Nursing

    Directory of Open Access Journals (Sweden)

    Tsimoulaki Evangelia

    2017-01-01

    Full Text Available One’s effort to clarify the definition of horizontal labour violence is of great importance, due to the variety of definitions that are mentioned in the worldwide scientific literature. Furthermore, the reference of multiple forms of such violence herein the nurse professional group is challenging, as well. Another fact of great importance is that, any form of professional violence (horizontal violence, horizontal mobbing in the work place environment can be possibly escalated and include even physical abuse (Bullying, besides the psychological and emotional impact for the victim. The definitions of Horizontal violence, Mobbing and Bullying, include a repeated negative behaviour emanating from at least one “predator” towards at least one “victim”, with work status differences and the existence or lack of physical abuse (Bullying. Horizontal violence is a hostile, aggressive and harmful behaviour which is either overt or concealed and is pointed from an individual to another individual of the same working rank and causes intense emotional pain at the victim. The manifestations vary from humiliating tasks assignment or the victim’s efforts undermining to clearly aggressive behaviors (criticism, intimidation, sarcasm etc.. The reason behind this phenomenon is multifactorial extended not only towards the working environment but also to the personal characteristics of the “predator” as well as the possible “victim”. The researchers emphasize the high incidence of the phenomenon, as well as the cost that is induced by the violent behaviors to both the health professionals and the hospital. Finally, they point out the paradox of the presence of violence inside a system that is designed to promote health.

  13. Archimedes in Cephalonia and in Euripus Strait: Modern Horizontal Archimedean Screw Turbines for Recovering Marine Power

    Directory of Open Access Journals (Sweden)

    A. Stergiopoulou

    2013-01-01

    Full Text Available The possibility of exploiting sea and tidal currents for power generation has given little attention in Mediterranean countries despite the fact that these currents representing a large renewable energy resource could be exploited by “modern old technologies” to provide important levels of electric power. It is also well known that one of the oldest machines still in use is the Archimedes screw, a device for lifting water for irrigation and drainage, invention credited to Archimedes. The main aim of this paper is to present a new small hydro philosophy of recovering the unexploited coastal and tidal hydraulic potential by following an efficient “Archimedean philosophy” and by using modern horizontal-axis unconventional cochlear turbines. Our work proposes “the presence of Archimedes in Cephalonia and in Euripus Strait” and the optimal “Archimedean” exploitation of the Euripus tidal current and of the Cephalonia coastal paradox cross flowing continuously from Livadi Gulf to the Gulf of Sami. The present paper intends to prove the useful modern rediscovering of some old Archimedean ideas concerning spiral water wheel technologies under the form of new and efficient horizontal-axis Archimedean hydropower turbines.

  14. A broadband two axis flux-gate magnetometer

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available A broadband two axis flux-gate magnetometer was developed to obtain high sensitivity in magnetotelluric measurements. In magnetotelluric sounding, natural low frequency electromagnetic fields are used to estimate the conductivity of the Earth's interior. Because variations in the natural magnetic field have small amplitude(10-100 pT in the frequency range 1 Hz to 100 Hz, highly sensitive magnetic sensors are required. In magnetotelluric measurements two long and heavy solenoids, which must be installed, in the field station, perpendicular to each other (north-south and east-west and levelled in the horizontal plane are used. The coil is a critical component in magnetotelluric measurements because very slight motions create noise voltages, particularly troublesome in wooded areas; generally the installation takes place in a shallow trench. Moreover the coil records the derivative of the variations rather than the magnetic field variations, consequently the transfer function (amplitude and phase of this sensor is not constant throughout the frequency range 0.001-100 Hz. The instrument, developed at L'Aquila Geomagnetic Observatory, has a flat response in both amplitude and phase in the frequency band DC-100 Hz, in addition it has low weight, low power, small volume and it is easier to install in the field than induction magnetometers. The sensivity of this magnetometer is 10 pT rms.

  15. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  16. The effect of pitch angle on the performance of a vertical-axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.M.; Blocken, B.; Borg, R.P.; Gauci, P.; Staines, C.S.

    2016-01-01

    Wind energy is a highly promising resource to approach a sustainable built environment. Vertical axis wind turbines (VAWT) offer the advantage of omni-directional operation over horizontal axis wind turbines (HAWT). This makes them ideal for utilization in urban environments which are characterized

  17. Spinning pipe gas lens aberrations along the axis and in the boundary layer

    CSIR Research Space (South Africa)

    Mafusire, C

    2013-11-01

    Full Text Available When the walls of an open-ended horizontal steel pipe are heated before the pipe is rotated along its axis, the exchange of the expelled heated air with the incoming cooler air, sucked in along the axis, results in a medium capable of focusing a...

  18. Design and analysis of a semi-submersible vertical axis wind turbine

    OpenAIRE

    Siddique, Muhammad Abu Zafar

    2017-01-01

    Wind energy are deployed by two types of wind turbines. They are Horizontal Axis Wind Turbine (HAWT) and Vertical Axis Wind Turbine (VAWT), classified according to their axis of rotation. In recent years, offshore wind energy playing a vital role in the wind turbine industry due to high intensity of air, less turbulent and comparatively clean and easily employed in large area which is difficult to manage for onshore or near-shore. The advantages of HAWTs are now facing different challenge in ...

  19. Design and Analysis of Horizontal Axial Flow Motor Shroud

    Science.gov (United States)

    Wang, Shiming; Shen, Yu

    2018-01-01

    The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.

  20. The development and testing of a novel cross axis wind turbine

    Science.gov (United States)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  1. Almost horizontal turbulence

    International Nuclear Information System (INIS)

    Kolmogorov, A N

    2004-01-01

    The paper is published without modifications. Kolmogorov's manuscript was apparently prepared during his participation in one of expeditions of the ship 'D. Mendeleev' to the Atlantic Ocean (1969) or in a circumnavigation of the world (1971) organized by the Institute for Oceanology led at the time by A.S. Monin. As Kolmogorov himself wrote, the choice of the topic was stimulated by observations concerning '...meanders with horizontal sizes of hundreds of kilometers on a flow involving a layer of hundreds of meters, with subsequent disintegration of these meanders into vortices gradually decreasing in size to several kilometers'. In modern terminology, the paper is devoted to the problem of intensive mixing in pycnoclines, that is, thin layers of stratified fluid, caused by internal waves whose frequencies are less than the Brent-Vaeisaelae frequency. Here I would like to note two circumstances. The first is the scientific insight characteristic for Kolmogorov; this very approach was later reflected in numerous publications (see, for instance, the monograph by V.S. Modevich, V.I. Nikulin, and A.G. Stetsenko 'Dynamics of internal mixing in a stratified medium', Institute for Hydromechanics, Academy of Sciences of Ukraine, Naukova Dumka, Kiev 1988). The second, the more significant in my opinion, is the genuine intellectual curiosity and breadth of thought of this great thinker, who studied not only the most abstract mathematical constructions but also got his head out of the clouds with great interest to solve concrete applied problems

  2. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  3. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  4. Triple axis spectrometers

    International Nuclear Information System (INIS)

    Clausen, K.N.

    1997-01-01

    Conventional triple-axis neutron spectroscopy was developed by Brockhouse over thirty years ago' and remains today a versatile and powerful tool for probing the dynamics of condensed matter. The original design of the triple axis spectrometer is technically simple and probes momentum and energy space on a point-by-point basis. This ability to systematically probe the scattering function in a way which only requires a few angles to be moved under computer control and where the observed data in general can be analysed using a pencil and graph paper or a simple fitting routine, has been essential for the success of the method. These constraints were quite reasonable at the time the technique was developed. Advances in computer based data acquisition, neutron beam optics, and position sensitive area detectors have been gradually implemented on many triple axis spectrometer spectrometers, but the full potential of this has not been fully exploited yet. Further improvement in terms of efficiency (beyond point by point inspection) and increased sensitivity (use of focusing optics whenever the problem allows it) could easily be up to a factor of 10-20 over present instruments for many problems at a cost which is negligible compared to that of increasing the flux of the source. The real cost will be in complexity - finding the optimal set-up for a given scan and interpreting the data as the they are taken. On-line transformation of the data for an appropriate display in Q, ω space and analysis tools will be equally important for this task, and the success of these new ideas will crucially depend on how well we solve these problems. (author)

  5. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  6. Blade Simulation of Small H-Vertical Axis Wind Turbine Based on Optimal Wind Power Coefficient%风能利用系数最优小型H型垂直轴风力机叶片模拟

    Institute of Scientific and Technical Information of China (English)

    郭兴文; 刘颖波; 邱勇

    2012-01-01

    A two-dimensional CFD model of the external flow-field for a 1kW H-vertical axis wind turbine is established by using the software of Flunent. The sliding mesh technique and the SST k -to turbulent model are adopted. The model is intended to study the impact of different lengths of chord and different shapes of airfoil on the wind power coefficient for the H-vertical axis wind turbine. By fixing the Gurney flap of different heights on the tail of blade, the efficiency improvement of wind power coefficient is studied, and the curve of wind power coefficient for the H-vertical axis wind turbine with the tip-speed under different situations is derived. The results show that the blade of NACA 0018 with the chord length of 300mm is relatively suitable for an H-vertical axis wind turbine. The H-vertical axis wind turbine works more effectively at a tip-speed ratio from 2.5 to 3.5. The wind power coefficient of H-vertical axis wind turbine is able to be increased 3% by using the Gurney flap with flap height equaled to 1% of chord length and tip-speed ratio of 2.8.%采用移动网格技术,选用SST(剪切力传输)k-ω湍流模型,建立了1kW功率的H型垂直轴风力机风轮外流场CFD模型,研究了不同叶片翼型、不同弦长和翼尾加装Gurney襟翼对风力机风能利用系数的影响.结果表明,300mm弦长的NACA 0018翼型较为适合H型垂直轴风力机;在尖速比为2.5-3.5时,H型垂直轴风力机的工作效率较高;尖速比为2.8时,高度为1%弦长的Gurney襟翼翼型能够提高风能利用系数3%.

  7. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  8. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  9. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  10. Mixed convection flow past a horizontal plate

    Directory of Open Access Journals (Sweden)

    Savić Lj.

    2005-01-01

    Full Text Available The mixed convection flow past a horizontal plate being aligned through a small angle of attack to a uniform free stream will be considered in the limit of large Reynolds number and small Richardson number. Even a small angle of inclination of the wake is sufficient for the buoyancy force to accelerate the flow in the wake which causes a velocity overshoot in the wake. Moreover a hydrostatic pressure difference across the wake induces a correction to the potential flow which influences the inclination of the wake. Thus the wake and the correction of the potential flow have to be determined simultaneously. However, it turns out that solutions exist only if the angle of attack is sufficiently large. Solutions are computed numerically and the influence of the buoyancy on the lift coefficient is determined.

  11. Vertical axis wind turbines: a survey and bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Abramovich, H

    1987-01-01

    The stimulus for the development of modern, big wind turbines has been the world-wide oil crisis during the seventies. Although the horizontal axis wind turbines (HAWT) was the most popular type of wind turbine the Darrieus vertical axis wind turbine (VAWT) has been recognized as a machine with competitive economic potential. The state of the art of the VAWT is reviewed. The wind turbine carrying the name of Darrieus was first proposed by the French inventor in 1925. His original patent covered a range of vertical-axis configurations but the term 'Darrieus' is now generally associated with the curved-blade geometry. In 1966 two researchers at the Canadian NRC again raised the idea of both the straight and curved-blade versions of the Darrieus VAWT.

  12. VERITAS: Versatile Triple-Axis Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Il

    2006-04-15

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, {approx} 5 m Curved Guide, {approx} 26 m w/ R 1500 m Straight Guide before the Instrument, {approx} 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world.

  13. VERITAS: Versatile Triple-Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sung Il

    2006-04-01

    Korea Atomic Energy Research Institute is planning to build a cold neutron triple-axis spectrometer at HANARO, the 30 MW research reactor. The spectrometer is expected to be completed in 2008 with the following configuration from the upstream to the downstream. Guide Supermirror m = 2, In-pile Straight Section, ∼ 5 m Curved Guide, ∼ 26 m w/ R 1500 m Straight Guide before the Instrument, ∼ 40 m Filters PG and Be Neutron Velocity Selector (Future) Monochromators Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future) Monochromator-Sample Distance 2 m Collimation C1 Soller Collimators, 20', 40' 80'Beam Height at the Sample Table 1.5 m Sample-Analyzer Distance 1.0 m Collimation C2 Soller Collimators, 20', 40', 80' Radial Collimator Analyzers Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111) Analyzer-Detector Distance 0.5 m Detectors 5 cm Tube Detector 25 cm wide Position Sensitive Detector Once completed, the neutron flux at sample is expected to surpass that of SPINS at NCNR, making this instrument one of the most powerful 2nd generation cold neutron triple-axis spectrometers in the world

  14. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...

  15. Optical performance of inclined south-north single-axis tracked solar panels

    International Nuclear Information System (INIS)

    Li, Zhimin; Liu, Xinyue; Tang, Runsheng

    2010-01-01

    To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.

  16. Fish schooling as a basis for vertical axis wind turbine farm design.

    Science.gov (United States)

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  17. Fish schooling as a basis for vertical axis wind turbine farm design

    International Nuclear Information System (INIS)

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-01-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  18. Small-scale wind power design, analysis, and environmental impacts

    CERN Document Server

    Abraham, John P

    2014-01-01

    In today's world, clean and robust energy sources are being sought to provide power to residences, commercial operations, and manufacturing enterprises. Among the most appealing energy sources is wind power-with its high reliability and low environmental impact. Wind power's rapid penetration into markets throughout the world has taken many forms, and this book discusses the types of wind power, as well as the appropriate decisions that need to be made regarding wind power design, testing, installation, and analysis. Inside, the authors detail the design of various small-wind systems including horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs). The design of wind turbines takes advantage of many avenues of investigation, all of which are included in the book. Analytical methods that have been developed over the past few decades are major methods used for design. Alternatively, experimentation (typically using scaled models in wind tunnels) and numerical simulation (using modern comp...

  19. Theoretical tool movement required to diamond turn an off-axis paraboloid on axis

    International Nuclear Information System (INIS)

    Thompson, D.C.

    1975-01-01

    High-quality, off-axis parabolic reflectors, required by the CTR and laser-fusion programs at Lawrence Livermore Laboratory (LLL) and other ERDA laboratories, are currently manufactured by hand. There are several drawbacks to this method, including lead times of up to a year, costs in excess of dollars 75,000 for a small reflector, and unsatisfactory limits to the tolerances obtainable. This situation has led to a search for cheaper and more accurate methods of manufacturing off-axis paraboloids. An alternative method, turning the workpiece about its axis on a diamond-turning machine, is presented, and the equations describing the necessary tool movement are derived. A discussion of a particular case suggests that the proposed technique is feasible

  20. Three-Axis Ground Reaction Force Distribution during Straight Walking.

    Science.gov (United States)

    Hori, Masataka; Nakai, Akihito; Shimoyama, Isao

    2017-10-24

    We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.

  1. Vertical axis darrieus windmills for microinvestments in Patagonia Region of Argentina

    International Nuclear Information System (INIS)

    Labriola, C.V.M.; Chiapero, R.; Castaso, P.E.; Tabarrozzi, R.

    2000-01-01

    Wind converters used during last decades were either Horizontal Axis Converter (HAC) or Vertical Axis Converters (VAC): Darrieus, Savonius, etc. ). HAC technology, takes advantage of aerodynamic development and the progress of the last years on structural materials and electronics controls, sufficiently tested in gust wind. Thereby the manufacturers allow reaching the maximum speed that the mill can afford in the guaranteed parameter range, minimising the outs of service by gust of wind and consequently the non-supply energy periods. (Authors)

  2. Plankton bloom controlled by horizontal stirring

    Science.gov (United States)

    McKiver, W.; Neufeld, Z.; Scheuring, I.

    2009-10-01

    Here we show a simple mechanism in which changes in the rate of horizontal stirring by mesoscale ocean eddies can trigger or suppress plankton blooms and can lead to an abrupt change in the average plankton density. We consider a single species phytoplankton model with logistic growth, grazing and a spatially non-uniform carrying capacity. The local dynamics have multiple steady states for some values of the carrying capacity that can lead to localized blooms as fluid moves across the regions with different properties. We show that for this model even small changes in the ratio of biological timescales relative to the flow timescales can greatly enhance or reduce the global plankton productivity. Thus, this may be a possible mechanism in which changes in horizontal mixing can trigger plankton blooms or cause regime shifts in some oceanic regions. Comparison between the spatially distributed model and Lagrangian simulations considering temporal fluctuations along fluid trajectories, demonstrates that small scale transport processes also play an important role in the development of plankton blooms with a significant influence on global biomass.

  3. A inteligência empresarial e a biologia do conhecer: uma análise exploratória-qualitativa do setor de pequenas e médias empresas de consultoria de Belo Horizonte The business intelligence and the biology of knowledge: an exploratory-qualitative analysis of small and medium size advertising companies of Belo Horizonte

    Directory of Open Access Journals (Sweden)

    Mônica Erichsen Nassif Borges

    2006-01-01

    Full Text Available Este artigo busca contribuir para a ampliação dos estudos sobre Inteligência Empresarial e sua relação com o enfoque cognitivo da Biologia do Conhecer, a partir da observação de empresas de consultoria de pequeno e médio porte, tendo como referencial teórico a abordagem cognitiva da Biologia do Conhecer, de Maturana, utilizado nos estudos de Borges em sua tese de doutorado.This article searches to contribute for the amplification of studies about Business Intelligence and your relation with the cognitive approach of the Biology of Knowledge, from the comment of small and medium size advertising companies, using of the theoretical referential of the cognitive approach of the Biology of Knowledge, of Maturana, used in the studies made for Borges in its doctor thesis of.

  4. Human vertical eye movement responses to earth horizontal pitch

    Science.gov (United States)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  5. Distortion definition and correction in off-axis systems

    Science.gov (United States)

    Da Deppo, Vania; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2015-09-01

    Off-axis optical configurations are becoming more and more used in a variety of applications, in particular they are the most preferred solution for cameras devoted to Solar System planets and small bodies (i.e. asteroids and comets) study. Off-axis designs, being devoid of central obstruction, are able to guarantee better PSF and MTF performance, and thus higher contrast imaging capabilities with respect to classical on-axis designs. In particular they are suitable for observing extended targets with intrinsic low contrast features, or scenes where a high dynamical signal range is present. Classical distortion theory is able to well describe the performance of the on-axis systems, but it has to be adapted for the off-axis case. A proper way to deal with off-axis distortion definition is thus needed together with dedicated techniques to accurately measure and hence remove the distortion effects present in the acquired images. In this paper, a review of the distortion definition for off-axis systems will be given. In particular the method adopted by the authors to deal with the distortion related issues (definition, measure, removal) in some off-axis instruments will be described in detail.

  6. A novel vertical-axis wind turbine for distributed and utility deployment

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.Y. [Inha Univ., Incheon (Korea, Republic of); Lee, S. [Inha Univ., Incheon (Korea, Republic of)]|[KR Wind Energy Research Inst., Incheon (Korea, Republic of); Sabourin, T.; Park, K. [KR Windpower Inc., (United States)

    2008-07-01

    The rapid growth in the wind power industry can be attributed to energy cost saving, power reliability, grid support, and environmental concerns. Wind turbines should also comply with community noise and aesthetic requirements as well as meet a strong need for high capacity. Wind Turbine Generator Systems are classified as either horizontal axis wind turbine (HAWT) or vertical axis wind turbine (VAWT) depending on whether their axis of rotation is parallel or perpendicular to the ground. The average electric power produced by the wind turbine is proportional to the efficiency of the rotor, air density, projected area of the turbine, and cube of wind speed. The capacity factor should be increased to guarantee the economics of the turbine via increase in the rotor size or the turbine efficiency. The low rotational speed of VAWT rotors suggests that the machine will be quieter than the high-rotational speed of HAWTs, thereby being potentially suitable for applications closer to population centres. The slow rotating machine may also be considered to be visually more aesthetic. This paper presented the measured performance of a small-scale VAWT rated as 1 kW which has a tail consisting of a stabilizer and a rudder. It was tested for its electric power produced at specified wind conditions in an open-type wind tunnel. In order to eliminate the inevitable blockage effect by the size of turbine, the flow deceleration effect of the incoming air to the turbine was analyzed through model testing and numerical simulation and implemented to the proto-type testing. The turbine and its furling tail was shown to be safe. 9 refs., 1 tab., 10 figs.

  7. Horizontal Diplopia Following Upper Blepharoplasty

    Directory of Open Access Journals (Sweden)

    Tomás Ortiz-Basso

    2014-09-01

    Full Text Available Diplopia is an infrequent complication after blepharoplasty. Most of the cases are in its vertical form due to trauma of the extraocular muscles. In this article, we present a case of horizontal diplopia following cosmetic upper blepharoplasty; we review the literature on this unexpected complication and offer some recommendations to avoid it.

  8. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  9. Bubble growth in a narrow horizontal space

    International Nuclear Information System (INIS)

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  10. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  11. Small wind turbines - Technical sheet

    International Nuclear Information System (INIS)

    2015-02-01

    This publication first proposes an overview of the technical context of small wind turbines (from less than 1 kW to 36 kW). It discusses issues related to mast height, indicates the various technologies in terms of machine geometry (vertical or horizontal axis), of mast and foundations, of mechanism of orientation with respect to the wind. It also outlines that power curves are not always reliable due to a lack of maturity of techniques and technologies. Other issues are discussed: wind characteristics, and the assessment of the national potential source. The next parts address the regulatory and economic context, environmental impacts (limited impact on landscape, noise), propose an overview of actors and market (supply and demand of small wind turbines in the USA and in France, actors involved in the chain value in France), and give some recommendations for the development of small wind turbines in France. The last part proposes a technical focus on self-consumption by professional in rural areas (production and consumption in farms)

  12. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  13. Analysis of motion of inverted pendulum with vibrating suspension axis at low-frequency excitation as an illustration of a new approach for solving equations without explicit small parameter

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2014-01-01

    . Vibration intensity is assumed to be relatively low. A new modification of the method of direct separation of motions (MDSM) is proposed to study the corresponding equation which in the considered case does not contain a small parameter explicitly. The aim is to obtain solutions of this equation...... in the stability domain. It is revealed that in the considered range of parameters not only the effective stiffness of the system changes due to the external loading, but also its effective mass. Applicability of the proposed approach for solving non-linear equations without small parameter is demonstrated...

  14. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    Science.gov (United States)

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...... a structural optimization and aeroelastic analysis of an optimized Troposkein vertical axis wind turbine to minimize the relation between the rotor mass and the swept area. The aeroelastic behavior of the different designs has been analyzed using a modified version of the HAWC2 code with the Actuator Cylinder...... model to compute the aerodynamics of the vertical axis wind turbine. The combined shape and topology optimization of a vertical axis wind turbine show a minimum mass to area ratio of 1.82 kg/m2 for blades with varying blade sections from a NACA 0040 at the attachment points to a NACA 0015...

  16. Recovery of Stokes waves from velocity measurements on an axis of symmetry

    International Nuclear Information System (INIS)

    Matioc, Bogdan-Vasile

    2015-01-01

    We provide a new method to recover the profile of Stokes waves, and more generally of waves with smooth vorticity, from measurements of the horizontal velocity component on a vertical axis of symmetry of the wave surface. Although we consider periodic waves only, the extension to solitary waves is straightforward. (paper)

  17. The Winfrith horizontal impact rig

    International Nuclear Information System (INIS)

    Barr, P.

    1985-12-01

    The Horizontal Impact Rig has been designed to allow studies of the impact of radioactive material transport containers and their associated transport vehicles and impact limiters, using large scale models, and to allow physically large missiles to be projected for studying the impact behaviour of metal and concrete structures. It provides an adequately rigid support structure for impact experiments with targets of large dimensions. Details of its design, instrumentation, performance prediction and construction are given. (U.K.)

  18. Atmospheric horizontal divergence and diffusion

    International Nuclear Information System (INIS)

    Castans, M.

    1981-01-01

    The action of horizontal divergence on diffusion near the ground is established through.a very simple flow model. The shape of the well-known Pasquill-Gifford-Turner curves, that apparently take account in some way of divergence, is justified. The possibility of explaining the discre--pancies between the conventional straight line model and experimental results, mainly under low-wind-speed satable conditions, is considered. Some hints for further research are made. (auth.)

  19. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  20. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  1. comparative evaluation of pressure distribution between horizontal

    African Journals Online (AJOL)

    user

    This paper presents comparative analysis between the pressure behavior of ... Green and source function were used to evaluate the performance of horizontal well and ..... Superscript. ' derivative. D = dimensionless. h = horizontal. = change.

  2. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  3. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Marnett, M; Wellenberg, S; Schröder, W

    2014-01-01

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities

  4. HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT

    OpenAIRE

    Ekinci, Serkan; Alvar, Mustafa

    2017-01-01

    In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs), among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic), of an M...

  5. An interactive version of PropID for the aerodynamic design of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ninham, C.P.; Selig, M.S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-12-31

    The original PROP code developed by AeroVironment, Inc. and its various versions have been in use for wind turbine performance predictions for over ten years. Due to its simplicity, rapid execution times and relatively accurate predictions, it has become an industry standard in the US. The Europeans have similar blade-element/momentum methods in use for design. Over the years, PROP has continued to be improved (in its accuracy and capability), e.g., PROPSH, PROPPC, PROP93, and PropID. The latter version incorporates a unique inverse design capability that allows the user to specify the desired aerodynamic characteristics from which the corresponding blade geometry is determined. Through this approach, tedious efforts related to manually adjusting the chord, twist, pitch and rpm to achieve desired aerodynamic/performance characteristics can be avoided, thereby making it possible to perform more extensive trade studies in an effort to optimize performance. Past versions of PropID did not have supporting graphics software. The more current version to be discussed includes a Matlab-based graphical user interface (GUI) and additional features that will be discussed in this paper.

  6. The influence of noise on the design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Watson, I.

    1993-01-01

    This wind turbine noise study was initiated and funded by ETSU to help to eliminate noise as an obstacle to the harnessing of wind energy for the clean generation of electrical power. There is an abundance of theoretical papers on aerodynamic noise, but very few contain meaningful, practical verification of the complex analysis by tests on wind turbines where mechanical noise has been eliminated. This serious shortcoming initiated comprehensive tests on the 1MW, three bladed wind turbine at Richborough Power Station. This investigation is an integral part of this project. A study of the available literature on blade induced noise is also part of this project. A report on gearbox noise which is normally the main source of mechanical and discrete noise is also given. Four reports have been written to fulfil the objectives listed by ETSU. This final report summarises and comments on some of the work in the other three reports and also includes an appraisal of the effect and cost of basic design strategy to create acceptably quiet wind turbines. (author)

  7. Implications of the UK field trial of building mounted horizontal axis micro-wind turbines

    International Nuclear Information System (INIS)

    James, P.A.B.; Sissons, M.F.; Myers, L.E.; Bahaj, A.S.; Anwar, A.; Bradford, J.; Green, S.

    2010-01-01

    Building mounted micro-wind turbines and photovoltaics have the potential to provide widely applicable carbon free electricity generation at the building level. Photovoltaic systems are well understood and it is easy to predict performance using software tools or widely accepted yield estimates. Micro-wind, however, is far more complex and in comparison poorly understood. This paper presents the key findings of the building mounted ( 2 swept area, the majority of which were less than 25 kWh/m 2 . Good rural sites had an annual generation of between 100 and 280 kWh/m 2 , far less than the nominal 360 kWh/m 2 (10% load factor for a typical turbine) that is often assumed. In the light of these findings, the potential impact of the UK's latest policy instrument, the 2010 micro-generation tariffs, is considered for both micro-wind and photovoltaics. (author)

  8. Studies on Horizontal Axis Wind Turbine with Passive Teetered Brake & Damper Mechanism

    OpenAIRE

    SHIMIZU, Yukimaru; KAMADA, Yasunari; MAEDA, Takao

    1998-01-01

    In order to improve the reliability of megawatt wind turbines, the passive teetered brake & damper mechanism is applied. Its two unique effects, as its name implies, are braking and damping. The passive brake & damper mechanism is useful for variable speed control of the large wind turbine. It is comprised of teetering and feathering mechanisms. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, at the same time, a feathering mechani...

  9. Design of horizontal-axis wind turbine using blade element momentum method

    Science.gov (United States)

    Bobonea, Andreea; Pricop, Mihai Victor

    2013-10-01

    The study of mathematical models applied to wind turbine design in recent years, principally in electrical energy generation, has become significant due to the increasing use of renewable energy sources with low environmental impact. Thus, this paper shows an alternative mathematical scheme for the wind turbine design, based on the Blade Element Momentum (BEM) Theory. The results from the BEM method are greatly dependent on the precision of the lift and drag coefficients. The basic of BEM method assumes the blade can be analyzed as a number of independent element in spanwise direction. The induced velocity at each element is determined by performing the momentum balance for a control volume containing the blade element. The aerodynamic forces on the element are calculated using the lift and drag coefficient from the empirical two-dimensional wind tunnel test data at the geometric angle of attack (AOA) of the blade element relative to the local flow velocity.

  10. Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory

    Science.gov (United States)

    Wang, Jianhong; Qin, Datong; Lim, Teik C.

    2010-08-01

    A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.

  11. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L

    2007-01-01

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  12. Analysis of throw distances of detached objects from horizontal-axis wind turbines

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær

    2016-01-01

    are simulated for modern wind turbines ranging in size from 2 to 20 MW using upscaling laws. Extensive parametric analyses are performed against initial release angle, tip speed ratio, detachment geometry, and blade pitch setting. It is found that, while at tip speeds of about 70 m/s (normal operating...... assessment studies. Copyright © 2015 John Wiley & Sons, Ltd....

  13. Wind energy conversion. Volume II. Aerodynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Dugundji, J.; Martinez-Sanchez, M.; Gohard, J.; Chung, S.; Humes, T.

    1978-09-01

    The basic aerodynamic theory of the wind turbine is presented, starting with the simple momentum theory based on uniform inflow and an infinite number of blades. The basic vortex theory is then developed. Following these basics, the more complete momentum theory, including swirl, non-uniform inflow, the effect of a finite number of blades, and empirical correction for the vortex ring condition is presented. The more complete vortex theory is presented which includes unsteady aerodynamic effects but based on a semi-rigid wake. Methods of applying this theory for performance estimation are discussed as well as for the purpose of computing time varying airloads due to windshear and tower interference.

  14. Towing Tank Measurements of Hydrodynamic Performance of a Horizontal Axis Tidal Turbine Under Unsteady Flow Conditions

    Science.gov (United States)

    2013-05-10

    John Zseleczky, Mr. Daniel Rhodes, Mr. Bill Beaver and all staff of US Naval Academy Hydromechanics Laboratory for their contributions in designing...turbine centerline. Tip vortex influence was most prevalent at X/D = 0.19, the closest measured plane to the turbine plane pictured in Figure 31

  15. Detailed analysis of the blade root flow of a horizontal axis wind turbine

    Directory of Open Access Journals (Sweden)

    I. Herráez

    2016-07-01

    Full Text Available The root flow of wind turbine blades is subjected to complex physical mechanisms that influence significantly the rotor aerodynamic performance. Spanwise flows, the Himmelskamp effect, and the formation of the root vortex are examples of interrelated aerodynamic phenomena that take place in the blade root region. In this study we address those phenomena by means of particle image velocimetry (PIV measurements and Reynolds-averaged Navier–Stokes (RANS simulations. The numerical results obtained in this study are in very good agreement with the experiments and unveil the details of the intricate root flow. The Himmelskamp effect is shown to delay the stall onset and to enhance the lift force coefficient Cl even at moderate angles of attack. This improvement in the aerodynamic performance occurs in spite of the negative influence of the mentioned effect on the suction peak of the involved blade sections. The results also show that the vortex emanating from the spanwise position of maximum chord length rotates in the opposite direction to the root vortex, which affects the wake evolution. Furthermore, the aerodynamic losses in the root region are demonstrated to take place much more gradually than at the tip.

  16. Bubble shape in horizontal and near horizontal intermittent flow

    International Nuclear Information System (INIS)

    Gu, Hanyang; Guo, Liejin

    2015-01-01

    Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe

  17. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  18. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  19. Environmental restoration using horizontal wells

    International Nuclear Information System (INIS)

    Looney, B.B.; Kaback, D.S.; Hazen, T.C.; Corey, J.C.

    1992-01-01

    This paper reports that under sponsorship from the U.S. Department of Energy, technical personnel from the Savannah River Laboratory and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. The test successfully removed approximately 7250 kg of contaminants. A large amount of characterization and monitoring data was collected to aid in interpretation of the test and to provide the information needed for future environmental restorations that employ directionally drilled wells as extraction or delivery systems

  20. Effects of horizontal plyometric training volume on soccer players' performance.

    Science.gov (United States)

    Yanci, Javier; Los Arcos, Asier; Camara, Jesús; Castillo, Daniel; García, Alberto; Castagna, Carlo

    2016-01-01

    The aim of this study was to examine the dose response effect of strength and conditioning programmes, involving horizontally oriented plyometric exercises, on relevant soccer performance variables. Sixteen soccer players were randomly allocated to two 6-week plyometric training groups (G1 and G2) differing by imposed (twice a week) training volume. Post-training G1 (4.13%; d = 0.43) and G2 (2.45%; d = 0.53) moderately improved their horizontal countermovement jump performance. Significant between-group differences (p  0.05, d = trivial or small) post-training improvements in sprint, change of direction ability (CODA) and horizontal arm swing countermovement jump were reported in either group. Horizontal plyometric training was effective in promoting improvement in injury prevention variables. Doubling the volume of a horizontal plyometric training protocol was shown to have no additional effect over functional aspects of soccer players' performance.

  1. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  2. Horizontal gene transfer in chromalveolates

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2007-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  3. Improved waterflooding efficiency by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Popa, C. G. [Petroleum and Gas Univ., Ploesti (Romania); Clipea, M. [SNP Petrom SA, ICPT Campina (Romania)

    1998-12-31

    The influence of well pattern involving the use of horizontal wells on the overall efficiency of the waterflooding process was analyzed. Three different scenarios were examined: (1) a pattern of using two parallel horizontal wells, one for injection, the other for production, (2) a pattern of one horizontal well for water injection and several vertical wells for production, and (3) a pattern of using vertical wells for injection and one horizontal well for production. In each case, the waterflooding process was simulated using a two phase two dimensional numerical model. Results showed that the pressure loss along the horizontal section had a large influence on the sweep efficiency whether the horizontal well was used for injection or production. Overall, the most successful combination appeared to be using vertical wells for injection and horizontal wells for production. 4 refs., 1 tab., 15 figs.

  4. Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: Heating and cooling effects

    Science.gov (United States)

    Kumawat, Tara Chand; Tiwari, Naveen

    2018-03-01

    Steady two-dimensional solutions and their stability analysis are presented for thin film of a thermoviscous liquid flowing inside a cylinder rotating about its horizontal axis. The inner surface of the cylinder is either uniformly hotter or colder than the enveloping air. The mass, momentum, and energy equations are simplified using thin-film approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as gravitational number, Bond number, Biot number, thermoviscosity number, and Marangoni number. The viscosity of the liquid is considered as an exponential function of temperature. The viscosity increases (decreases) within the film thickness away from the inner surface of the cylinder when the surface is uniformly hotter (colder) than the atmosphere. For hotter (colder) surface, the film thickness on the rising side decreases (increases) when convective heat transfer at the free surface is increased. The surface tension gradient at the free surface generates Marangoni stress that has a destabilizing (stabilizing) effect on the thin film flow in the case of a hotter (colder) cylinder. The thermoviscosity number stabilizes (destabilizes) the flow on a heating (cooling) surface and this effect increases with an increase in the heat transfer at the free surface. For a hotter surface and in the presence of Marangoni stress, the convective heat transfer at the interface has the destabilizing effect for small values of the Biot number and assumes a stabilizing role for larger values. Non-linear simulations show consistency with the linear stability analysis.

  5. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  6. A finite element model for analyzing horizontal well BHA behavior

    Energy Technology Data Exchange (ETDEWEB)

    Akgun, F. [Petroleum Engineering, The Petroleum Institute, P.O. Box 17555, Al-Ain (United Arab Emirates)

    2004-04-01

    Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. There are a number of reasons for the discrepancy of predicted to actual production rates in horizontal wells. However, it is a difficult task, if not impossible, to identify the real reason why a horizontal well is not producing what was forecasted. Often, the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole once in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. Logging while drilling (LWD) and real time measurement of resistivity at bit help drill in the pay zone by constant monitoring of borehole trajectory and formation boundaries. Rotary steerable tools (RTS) allow spontaneous intervention to drilling direction and inclination if run with LWD tools. Nevertheless, there are still many cases where LWD cannot be deployed due to technical difficulties. One such case was noticed in the Middle East where LWD sensors were worn out completely during 1 h run time due to extreme formation abrasiveness. In the absence of LWD and RTS, it becomes a challenging task to drill a constant inclination borehole which will be addressed in this paper. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to the longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an

  7. Explorando nuevos horizontes en NASA

    Science.gov (United States)

    Villanueva, G. L.

    A pesar de la incesante expansión del Universo iniciada con el Big Bang 14 mil millones de años atrás, nuestro Universo se siente cada día más cercano. La inquebrantable vocación de la humanidad por descubrir nuevos horizontes ha permitido el acercamiento de civilizaciones en nuestro planeta y nos ha permitido conocer nuestro lugar en el Universo como nunca antes. En este artículo presento una breve sinopsis de nuestro trabajo que se relaciona con diversas investigaciones con implicaciones astrobiológicas, desde el origen de los ingredientes de la "sopa de la vida", hasta la evolución y composición de la atmósfera de Marte.

  8. Nuclear component horizontal seismic restraint

    International Nuclear Information System (INIS)

    Snyder, G.J.

    1988-01-01

    In a nuclear reactor having a reactor vessel, a reactor guard vessel, a thermal insulation shell and a horizontal seismic restraint, a restraint is described comprising: a. a first ring on the wall of the reactor vessel; b. a second ring on the wall of the reactor guard vessel in alignment with the first ring; c. a first block attached to the second ring proximate the first ring so as to provide a predetermined clearance between the first block and the first ring which is reduced to zero during thermal expansion; d. motion limit means extending through an aperture in the thermal insulation shell in alignment with the second ring and the first block; the e. a second block attached to the motion limit means proximate the second ring and in alignment the first block so as to provide a predetermined clearance between the second block and the second ring which is reduced to zero during thermal expansion

  9. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  10. Modeling and inversion of PS-wave moveout asymmetry for tilted TI media: Part 1 - Horizontal TTI layer

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Tsvankin, I.

    when the symmetry axis deviates by 20 degrees-30 degrees from the vertical horizontal direction. All relevant parameters of a TTI layer can be estimated by nonlinear inversion of the NMO velocities and zero-offset traveltimes of PP- and SS-(SVSV) waves...

  11. Full-scale fire experiments on vertical horizontal cable trays

    International Nuclear Information System (INIS)

    Mangs, J.; Keski-Rahkonen, O.

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO 2 , CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  12. Assessment of the perception of verticality and horizontality with self-paced saccades.

    Science.gov (United States)

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  13. Steady particulate flows in a horizontal rotating cylinder

    Science.gov (United States)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  14. Performance of a Horizontal Triple Cylinder Type Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2011-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  15. A review on critical heat flux in horizontal tubes

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Gaikwad, Avinash; Prabhu, S.V.

    2015-01-01

    Coolant channels of PHWR during accident similar to loss of coolant accident (LOCA) may experience different flow transients with low pressure and low flow conditions. In the advanced PHWRs it is desired to have small amount of positive quality at the exit of the coolant channel to increase the thermal efficiency. Investigation on pressure drop and heat transfer coefficient under subcooled boiling condition is important in the design and operation of the PHWRs. Understanding of thermal hydraulic phenomena associated with horizontal flow is also important in the safety and accident management in these reactors. A detailed experimental investigation on the important thermal hydraulic phenomena of horizontal tubes under low pressure and low flow conditions is carried out. The phenomena covered in this work are measurement of diabatic single phase and subcooled boiling pressure drop and local heat transfer coefficients, steady state CHF, effect of upstream flow restrictions on flow transients and CHF, CHF under oscillatory flow and flow decreasing transients. A detailed literature review is carried out on CHF in horizontal channels to take stock of the works being carried out along with current state of the art and to justify the motivation for the experimental study. This paper presents the review of available literature on horizontal CHF with the results of the experimental work. (author)

  16. Vertical and horizontal access configurations

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs

  17. Horizontal vortex single chamber hydroturbine

    Directory of Open Access Journals (Sweden)

    Sergio Antonio Zarate-Orrego

    2016-01-01

    Full Text Available Se evaluó una máquina con alta resistencia de forma para extraer energía de una quebrada, río o corriente marina, y generar electricidad. Sin instrumentos adecuados, la investigación fue cualitativa. Se supuso que si aun así funcionaba, su comportamiento podía mejorar suavizándose la forma. El aparato tiene una tobera semi-convergente de paredes planas, una cámara de vórtice cilíndrica y un rodete. Capta agua por su sección mayor y la descarga tangencialmente por su sección menor en la cámara de vórtice; ésta tiene un orificio en una de sus paredes laterales. Así forma un vórtice horizontal que hace girar un rodete cuyo eje acciona un generador eléctrico. El trabajo experimental realizado mostró que sí es posible producir energía eléctrica con este dispositivo pese a las condiciones adversas en que se ensayó.

  18. Horizontal gene transfer between bacteria.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  19. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Directory of Open Access Journals (Sweden)

    Eveline S. Graf

    2012-01-01

    Full Text Available The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location.

  20. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Science.gov (United States)

    Graf, Eveline S.; Wright, Ian C.; Stefanyshyn, Darren J.

    2012-01-01

    The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location. PMID:22666303

  1. Experiment and numerical simulation of bubbly two-phase flow across horizontal and inclined rod bundles

    International Nuclear Information System (INIS)

    Serizawa, A.; Huda, K.; Yamada, Y.; Kataoka, I.

    1997-01-01

    Experimental and numerical analyses were carried out on vertically upward air-water bubbly two-phase flow behavior in both horizontal and inclined rod bundles with either in-line or staggered array. The inclination angle of the rod bundle varied from 0 to 60 with respect to the horizontal. The measured phase distribution indicated non-uniform characteristics, particularly in the direction of the rod axis when the rods were inclined. The mechanisms for this non-uniform phase distribution is supposed to be due to: (1) Bubble segregation phenomenon which depends on the bubble size and shape: (2) bubble entrainment by the large scale secondary flow induced by the pressure gradient in the horizontal direction which crosses the rod bundle; (3) effects of bubble entrapment by vortices generated in the wake behind the rods which travel upward along the rod axis; and (4) effect of bubble entrainment by local flows sliding up along the front surface of the rods. The liquid velocity and turbulence distributions were also measured and discussed. In these speculations, the mechanisms for bubble bouncing at the curved rod surface and turbulence production induced by a bubble were discussed, based on visual observations. Finally, the bubble behaviors in vertically upward bubbly two-phase flow across horizontal rod bundle were analyzed based on a particle tracking method (one-way coupling). The predicted bubble trajectories clearly indicated the bubble entrapment by vortices in the wake region. (orig.)

  2. The effect of vertical and horizontal symmetry on memory for tactile patterns in late blind individuals.

    Science.gov (United States)

    Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B

    2013-02-01

    Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.

  3. Sheared bioconvection in a horizontal tube

    Science.gov (United States)

    Croze, O. A.; Ashraf, E. E.; Bees, M. A.

    2010-12-01

    The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.

  4. Radiologically defining horizontal gaze using EOS imaging-a prospective study of healthy subjects and a retrospective audit.

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Tan, Kimberly-Anne; Ho, Vivienne Chien-Lin; Azhar, Syifa Bte; Lim, Joel-Louis; Liu, Gabriel Ka-Po; Wong, Hee-Kit

    2018-06-01

    As sagittal alignment of the cervical spine is important for maintaining horizontal gaze, it is important to determine the former for surgical correction. However, horizontal gaze remains poorly-defined from a radiological point of view. The objective of this study was to establish radiological criteria to define horizontal gaze. This study was conducted at a tertiary health-care institution over a 1-month period. A prospective cohort of healthy patients was used to determine the best radiological criteria for defining horizontal gaze. A retrospective cohort of patients without rigid spinal deformities was used to audit the incidence of horizontal gaze. Two categories of radiological parameters for determining horizontal gaze were tested: (1) the vertical offset distances of key identifiable structures from the horizontal gaze axis and (2) imaginary lines convergent with the horizontal gaze axis. Sixty-seven healthy subjects underwent whole-body EOS radiographs taken in a directed standing posture. Horizontal gaze was radiologically defined using each parameter, as represented by their means, 95% confidence intervals (CIs), and associated 2 standard deviations (SDs). Subsequently, applying the radiological criteria, we conducted a retrospective audit of such radiographs (before the implementation of a strict radioimaging standardization). The mean age of our prospective cohort was 46.8 years, whereas that of our retrospective cohort was 37.2 years. Gender was evenly distributed across both cohorts. The four parameters with the lowest 95% CI and 2 SD were the distance offsets of the midpoint of the hard palate (A) and the base of the sella turcica (B), the horizontal convergents formed by the tangential line to the hard palate (C), and the line joining the center of the orbital orifice with the internal occipital protuberance (D). In the prospective cohort, good sensitivity (>98%) was attained when two or more parameters were used. Audit using Criterion B

  5. The Process of Horizontal Differentiation: Two Models.

    Science.gov (United States)

    Daft, Richard L.; Bradshaw, Patricia J.

    1980-01-01

    Explores the process of horizontal differentiation by examining events leading to the establishment of 30 new departments in five universities. Two types of horizontal differentiation processes--administrative and academic--were observed and each was associated with different organizational conditions. (Author/IRT)

  6. Feasibility of oil recovery by chemical flooding through horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    El-Abbas, A.M.; El-Sallaly, M. E.; Sayyouh, M. H.; El-Batanony, M. H.; Darwich, T. M.; Desouky, S. M. [Cairo Univ (Egypt)

    1998-12-31

    Crude oil production in the Gulf of Suez by polymer, surfactant, and surfactant/polymer flooding from a horizontal well in a scaled five-spot sandpacked model was studied. The suitability of the enhanced oil recovery predictive models, developed by the U.S. Department of Energy, was investigated for their ability to predict the experimental data and to assess the feasibility of oil recovery by chemical flooding. Good agreement was found between the predicted and experimental values. Experimental results showed that oil recovery was significantly affected by the physical properties of the crude oil and chemical solutions; that oil recovery was higher for a polymer flooding than for a surfactant flooding operation; and that oil recovery was improved by increasing the perforated length ratio up to a value of 0.81. A tendency for oil recovery to decrease was observed when the horizontal well was positioned below or above the central axis path of the formation at the advanced injection stages; and oil recovery by surfactant or polymer flooding was significantly affected by the onset timing of the surfactant or polymer slug injection. The oil-water bank stability in surfactant and polymer flooding processes was found to be dependent on slug size and slug injection time. 23 refs., 1 tab., 17 figs.

  7. Two-dimensional horizontal model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1988-05-01

    The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  8. Ankle-foot orthosis bending axis influences running mechanics.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  9. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm

    1999-01-01

    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  10. The stimulus integration area for horizontal vergence.

    Science.gov (United States)

    Allison, Robert S; Howard, Ian P; Fang, Xueping

    2004-06-01

    Over what region of space are horizontal disparities integrated to form the stimulus for vergence? The vergence system might be expected to respond to disparities within a small area of interest to bring them into the range of precise stereoscopic processing. However, the literature suggests that disparities are integrated over a fairly large parafoveal area. We report the results of six experiments designed to explore the spatial characteristics of the stimulus for vergence. Binocular eye movements were recorded using magnetic search coils. Each dichoptic display consisted of a central target stimulus that the subject attempted to fuse, and a competing stimulus with conflicting disparity. In some conditions the target was stationary, providing a fixation stimulus. In other conditions, the disparity of the target changed to provide a vergence-tracking stimulus. The target and competing stimulus were combined in a variety of conditions including those in which (1) a transparent textured-disc target was superimposed on a competing textured background, (2) a textured-disc target filled the centre of a competing annular background, and (3) a small target was presented within the centre of a competing annular background of various inner diameters. In some conditions the target and competing stimulus were separated in stereoscopic depth. The results are consistent with a disparity integration area with a diameter of about 5 degrees. Stimuli beyond this integration area can drive vergence in their own right, but they do not appear to be summed or averaged with a central stimulus to form a combined disparity signal. A competing stimulus had less effect on vergence when separated from the target by a disparity pedestal. As a result, we propose that it may be more useful to think in terms of an integration volume for vergence rather than a two-dimensional retinal integration area.

  11. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  12. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  13. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitiveness...

  14. Horizontal stratified flow model for the 1-D module of WCOBRA/TRAC-TF2: modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Frepoli, C.; Ohkawa, K., E-mail: liaoj@westinghouse.com [Westinghouse Electric Company LLC, LOCA Integrated Services I, Cranberry Twp, Pennsylvania (United States)

    2011-07-01

    For a two-phase flow in a horizontal pipe, the individual phases may separate by gravity. This horizontal stratification significantly impacts the interfacial drag, interfacial heat transfer and wall drag of the two phase flow. For a PWR small break LOCA, the horizontal stratification in cold legs is a highly important phenomenon during loop seal clearance, boiloff and recovery periods. The low interfacial drag in the stratified flow directly controls the time period for the loop clearance and the level of residual water in the loop seal. Horizontal stratification in hot legs also impacts the natural circulation stage of a small break LOCA. In addition, the offtake phenomenon and cold leg condensation phenomenon are also affected by the occurrence of horizontal stratification in the cold legs. In the 1-D module of the WCOBRA/TRAC-TF2 computer code, a horizontal stratification criterion was developed by combining the Taitel-Dukler model and the Wallis-Dobson model, which approximates the viscous Kelvin-Helmholtz neutral stability boundary. The objective of this paper is to present the horizontal stratification model implemented in the code and its assessment against relevant data. The adequacy of the horizontal stratification transition criterion is confirmed by examining the code-predicted flow regime in a horizontal pipe with the measured data in the flow regime map. The void fractions (or liquid level) for the horizontal stratified flow in cold leg or hot leg are predicted with a reasonable accuracy. (author)

  15. Quiet airfoils for small and large wind turbines

    Science.gov (United States)

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  16. Anterior fixation of the axis.

    Science.gov (United States)

    Traynelis, Vincent C; Fontes, Ricardo B V

    2010-09-01

    Although anterior fixation of the axis is not commonly performed, plate fixation of C2 is an important technique for treating select upper cervical traumatic injuries and is also useful in the surgical management of spondylosis. To report the technique and outcomes of C2 anterior plate fixation for a series of patients in which the majority presented with symptomatic degenerative spondylosis. Forty-six consecutive patients underwent single or multilevel fusions over a 7-year period; 30 of these had advanced degenerative disease manifested by myelopathy or deformity. Exposure was achieved with rostral extension of the standard anterior cervical exposure via careful soft tissue dissection, mobilization of the superior thyroid artery, and the use of a table-mounted retractor. It was not necessary to remove the submandibular gland, section the digastric muscle, or make additional skin incisions. Screws were placed an average of 4.6 mm (+/- 2.3 mm) from the inferior C2 endplate with a mean sagittal trajectory of 15.7 degrees (+/- 7.6 degrees). Short- and long-term procedure-related mortality was 4.4%, and perioperative morbidity was 8.9%. Patients remained intubated an average of 2.5 days following surgery. Dysphagia was initially reported by 15.2% of patients but resolved by the 8th postoperative week in all patients. Arthrodesis was achieved in all patients available for long-term follow-up. Multilevel fusions were not associated with longer hospitalization or morbidity. Anterior plate fixation of the axis for degenerative disease can be accomplished with acceptable morbidity employing an extension of the standard anterolateral route.

  17. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  18. Horizontal cooperation in transport and logistics

    NARCIS (Netherlands)

    Cruijssen, F.C.A.M.

    2006-01-01

    This thesis deals with horizontal cooperation in transport and logistics. It contains a comprehensive discussion of the available academic literature on this topic, many practical examples, and an empirical investigation of opportunities and impediments. Furthermore, three enabling concepts for

  19. High flux polarized neutrons triple-axis spectrometer: 2T (LLB-Saclay)

    International Nuclear Information System (INIS)

    Bourges, Ph.; Hennion, B.; Sidis, Y.; Boutrouille, Ph.; Baroni, P.

    1999-01-01

    A description of the performance of the newly designed thermal beam triple-axis spectrometer, 2T at LLB (Saclay) is given. The beam tube will be increased to 50 x 120 mm 2 (HxV) before the monochromator. A gain of about a factor 2 on the neutron flux at the monitor position is expected after this operation, scheduled on April/May 1999. Polarized neutrons beam option will be installed on this triple axis. The polarization is obtained using high quality heusler crystals recently grown at ILL. The size of both heusler monochromator and analyzer have been chosen to fully cover the beam size. The monochromator (analyzer) will be equipped with a vertical (horizontal) curvature. The flux of the polarized beam on the detector is then expected to be 5 times better than IN20 at ILL (best existing polarized neutrons triple-axis on thermal beam) with incident energy upto 75 MeV. (author)

  20. Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    Science.gov (United States)

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  1. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  2. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  3. A four-axis hand controller for helicopter flight control

    Science.gov (United States)

    Demaio, Joe

    1993-01-01

    A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.

  4. Horizontal fissure on neonatal plain chest radiographs: clinical implications

    International Nuclear Information System (INIS)

    Konarzewska, J.; Zawadzka-Kepczynska, A.; Bianek-Bodzak, A.; Kawinska-Kilianczyk, A.; Domzalska-Popadiuk, I.

    2005-01-01

    Regardless of etiology, pleural fluid, even in small amounts, can be visualized on the neonatal chest x-ray picture within pulmonary fissures. It remains unclear whether a marked horizontal fissure unaccompanied by any other radiological symptoms is of diagnostic value or not. Ninety-one consecutive neonatal chest radiographs with marked horizontal fissure were retrospectively analyzed. The images were made between 1999 and 2005 on 69 newborns admitted to the Neonatology Department, Institute of Obstetrics and Gynecology, Medical University of Gdansk. Analysis of the radiographs was conducted independently by three radiologists based on the following criteria: fissure thickness (marked or thickened), bronchovascular markings (increased or normal), size and shape of the heart (normal or abnormal), presence or absence of pulmonary infiltration, atelectasis, and changes related to wet lung syndrome. Due to divergent interpretations, the ultimate interpretation was established by consensus in 25 cases. The radiological findings were compared with clinical data. The compatibility of the three independent interpreters was statistically significant (p<0.0001). Marked transverse fissure was the only radiological finding on 66 x-rays. In 63 cases (69.2%) the children were asymptomatic as well. In 3 cases (3.3%) clinical symptoms of respiratory tract infection occurred. On the other 25 images, horizontal fissure was accompanied by other radiological symptoms. Chest x-ray results corresponded with clinical symptoms in 24 cases (26.4%). One child (1.1%) with radiological evidence of wet lung syndrome did not present any typical clinical symptoms of it. Horizontal fissure noted on a neonatal chest x-ray seems to be of minor diagnostic value if not accompanied by any other radiological symptoms. (author)

  5. Volume fracturing of deep shale gas horizontal wells

    Directory of Open Access Journals (Sweden)

    Tingxue Jiang

    2017-03-01

    Full Text Available Deep shale gas reservoirs buried underground with depth being more than 3500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV, low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1 × 104 m3/d and 17.5 × 104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50 × 108 m3 gas from the interval of 3500–4000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6000 m.

  6. Horizontal alveolar bone loss: A periodontal orphan

    Science.gov (United States)

    Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya

    2010-01-01

    Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for

  7. Horizontal well impact on heavy oil supply

    International Nuclear Information System (INIS)

    Bowers, B.; Bielecki, J.; Hu, J.; Wall, B.; Drummond, K.

    1993-01-01

    Horizontal wells can take advantage of gravity drainage mechanisms, which can be important in conventional heavy oil and bitumen recovery. Horizontal drilling will impact on the development of established conventional heavy oil pools by infill drilling and application of enhanced recovery techniques. There will also be an impact on the development of extensions to established and newly discovered heavy oil pools, as well as a major impact on development of bitumen resources. To assess the impact of horizontal drilling on heavy oil supply, high-impact and low-impact scenarios were evaluated under specified oil-price assumptions for four heavy oil areas in Saskatchewan and Alberta. Horizontal well potential for infill drilling, waterflood projects, and thermal projects was assessed and estimates were made of such developments as reserves additions and heavy oil development wells under the two scenarios. In the low case, projected supply of conventional heavy oil and bitumen stabilizes at a level in the 90,000-94,000 m 3 /d after 1994. In the high case, overall supply continuously grows from 80,000 m 3 /d in 1992 to 140,000 m 3 /d in 2002. Through application of horizontal drilling, reserves additions in western Canada could be improved by ca 100 million m 3 by 2002. 14 figs., 6 tabs

  8. Cell-specific cre recombinase expression allows selective ablation of glutamate receptors from mouse horizontal cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Ströh

    Full Text Available In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57, a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99% and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl. In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼ 50% in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼ 75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less

  9. Cell-Specific Cre Recombinase Expression Allows Selective Ablation of Glutamate Receptors from Mouse Horizontal Cells

    Science.gov (United States)

    Janssen-Bienhold, Ulrike; Schultz, Konrad; Cimiotti, Kerstin; Weiler, Reto; Willecke, Klaus; Dedek, Karin

    2013-01-01

    In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57), a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99%) and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl). In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼50%) in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less excitatory input

  10. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  11. Horizontal bridges in polar dielectric liquids

    Science.gov (United States)

    Woisetschläger, Jakob; Wexler, Adam D.; Holler, Gert; Eisenhut, Mathias; Gatterer, Karl; Fuchs, Elmar C.

    2012-01-01

    When a high-voltage direct-current is applied to two beakers filled with polar liquid dielectrica like water or methanol, a horizontal bridge forms between the two beakers. By repeating a version of Pellat's experiment, it is shown that a horizontal bridge is stable by the action of electrohydrodynamic pressure. Thus, the static and dynamic properties of the phenomenon called a `floating water bridge' can be explained by the gradient of Maxwell pressure, replenishing the liquid within the bridge against any drainage mechanism. It is also shown that a number of liquids can form stable and long horizontal bridges. The stability of such a connection, and the asymmetry in mass flow through such bridges caused by the formation of ion clouds in the vicinity of the electrodes, is also discussed by two further experiments.

  12. Horizontal bridges in polar dielectric liquids

    Energy Technology Data Exchange (ETDEWEB)

    Woisetschlaeger, Jakob [Graz University of Technology, Experimental Turbomachinery Research and Optical Measurement Group, Institute for Thermal Turbomachinery and Machine Dynamics, Graz (Austria); Wexler, Adam D.; Fuchs, Elmar C. [Wetsus, Center of Excellence for Sustainable Water Technology, Leeuwarden (Netherlands); Holler, Gert [Graz University of Technology, Institute of Electrical Measurement and Measurement Signal Processing, Graz (Austria); Eisenhut, Mathias [Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry, Graz (Austria); Gatterer, Karl [Graz University of Technology, Institute of Physical and Theoretical Chemistry, Graz (Austria)

    2012-01-15

    When a high-voltage direct-current is applied to two beakers filled with polar liquid dielectrica like water or methanol, a horizontal bridge forms between the two beakers. By repeating a version of Pellat's experiment, it is shown that a horizontal bridge is stable by the action of electrohydrodynamic pressure. Thus, the static and dynamic properties of the phenomenon called a 'floating water bridge' can be explained by the gradient of Maxwell pressure, replenishing the liquid within the bridge against any drainage mechanism. It is also shown that a number of liquids can form stable and long horizontal bridges. The stability of such a connection, and the asymmetry in mass flow through such bridges caused by the formation of ion clouds in the vicinity of the electrodes, is also discussed by two further experiments. (orig.)

  13. Analysis of variationfor horizontal deviation in the primary position after the inferior oblique muscle weakening

    Directory of Open Access Journals (Sweden)

    Ming-Yu Si

    2015-06-01

    Full Text Available AIM: To analyse the variation of horizontal deviation in the primary position after the inferior oblique muscle weakening, and to explore the effect of the inferior oblique muscle recession on horizontal deviations in primary position.METHODS:, In the study, 30 cases in the Department of ophthalmology of our hospital from January 2014 to September 2014 underwent the inferior oblique muscle recession as the sole without horizontal muscles surgery, who were superior obliquer paralysis and V pattern strabismus with small angle of horizontal strabismus, were analyzed. Of the 30 patients, 25 had unilateral inferior oblique muscle surgery, and then 5 had bilateral surgeries.Followed up for three to six mo, all patients were received full ophthalmologic and orthoptic examinations, including measurement of the deviation in the diagnostic positions of gaze at near 33cm and at distance 6m by prism and alternate cover test, synoptophore, Titmus stereo graph examination, Worth four lighting inspection, eye movement examination, and fundus photography preoperatively and postoperatively. The changes of horizontal deviations in the primary position after procedures were investigated. RESULT:(1The comparison of horizontal deviation showed significant difference pre- and post-operation in the exotropia group(P=0.00. It was postoperative respectively to reduce the original in external oblique average 3.35±2.87△ and 4.37±2.65△.(2The comparison of horizontal deviation showed significant difference pre-and post-operation in the esotropia group(P=0.02, and it decreased postoperatively in average 2.43±1.99△. There was no significant difference for horizontal deviation position between pre- and post-operation(P=0.089. CONCLUSION:The horizontal deviation in primary position, either exotropia or esotropia, will decrease after the Inferior oblique muscle recession. This change can be compensated by the gradually improving and establishing the fusion function.

  14. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  15. The horizontal and vertical cervico-ocular reflexes of the rabbit.

    Science.gov (United States)

    Barmack, N H; Nastos, M A; Pettorossi, V E

    1981-11-16

    Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.

  16. Congenital axis dysmorphism in a medieval skeleton : …secunda a vertendo epistropheus….

    Science.gov (United States)

    Travan, Luciana; Saccheri, Paola; Toso, Francesco; Crivellato, Enrico

    2013-05-01

    We describe here the axis dysmorphism that we observed in the skeletal remains of a human child dug up from a fifteenth century cemetery located in north-eastern Italy. This bone defect is discussed in the light of pertinent literature. We performed macroscopical examination and CT scan analysis of the axis. Axis structure was remarkably asymmetric. Whilst the left half exhibited normal morphology, the right one was smaller than normal, and its lateral articular surface showed horizontal orientation. In addition, the odontoid process appeared leftward deviated and displayed a supplementary articular-like facet situated on the right side of its surface. These findings suggest a diagnosis of unilateral irregular segmentation of atlas and axis, a rare dysmorphism dependent upon disturbances of notochordal development in early embryonic life. Likewise other malformations of the craniovertebral junction, this axis defect may alter the delicate mechanisms of upper neck movements and cause a complex series of clinical symptoms. This is an emblematic case whereby human skeletal remains may provide valuable information on the anatomical defects of craniovertebral junction.

  17. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  18. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H [ed.; IVO Group, Vantaa (Finland); Purhonen, H [ed.; VTT, Espoo (Finland); Kouhia, V [ed.; Lappeenranta Univ. of Technology (Finland)

    1998-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  19. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    Tuomisto, H.; Purhonen, H.; Kouhia, V.

    1997-01-01

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  20. New evaluation index for the retainability of a swimmer's horizontal posture.

    Directory of Open Access Journals (Sweden)

    Yasunori Watanabe

    Full Text Available This study aims to investigate the effect of changes in buoyancy when a swimmer respires in a horizontal posture. We attempted to evaluate the levelness of swimmers' streamline posture by simultaneously measuring the lung capacity and buoyancy under water. The buoyancy was measured based on the changes in the vertical loads of the upper and lower limbs on the subjects' streamline posture under water. The horizontal x-axis as lung ventilation and the vertical y-axis as buoyancy forms a linear equation y = ax + b. The relation between hand (upper-limb buoyancy and lung ventilation is defined as y = a1x + b1 and that between foot (lower-limb buoyancy and lung ventilation as y = a2x + b2. Horizontal levelness was calculated as a ratio by dividing a2 by a1 using the inclination (a values from these formulas for an underwater streamline posture. We defined this ratio as the breathing-balance (BB ratio. Although the performance levels in the present study did not show any difference in the absolute quantity of air that humans can inhale in a streamline posture, the BB ratio was higher in a statistically significant manner in junior swimmers competing at international levels compared with the other groups of subjects (P < 0.001. This statistical difference in horizontal levelness, despite the absence of a noticeable difference in the absolute quantity of inhaled air, may be attributable to the way in which each person inhales and exhales air. Top-level junior swimmers that exhibited a high BB ratio might have inhaled in a way that would counteract the sinking of the lower limbs, for example, through abdominal respiration. When exhaling, on the other hand, they might have let out air gradually to mitigate the acceleration force involved in submerging the lower limbs.

  1. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  2. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  3. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    1995-01-01

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  4. Electroluminescence from completely horizontally oriented dye molecules

    Energy Technology Data Exchange (ETDEWEB)

    Komino, Takeshi [Education Center for Global Leaders in Molecular System for Devices, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Sagara, Yuta [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Tanaka, Hiroyuki [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Oki, Yuji [Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Department of Electronics, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Nakamura, Nozomi [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Fujimoto, Hiroshi [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Fukuoka i" 3-Center for Organic Photonics and Electronics Research (i3-OPERA), Fukuoka 819-0388 (Japan); and others

    2016-06-13

    A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d′] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimate orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (T{sub g}) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above T{sub g}.

  5. Rectifying Horizontal Inequalities: Lessons from African Conflict

    African Journals Online (AJOL)

    and demonstrate the link between horizontal inequalities and conflict. Section two will ... the US race riots in the 1960's and the 2005 Paris riots to the genocides that .... be seen as a combination of ethnic fighting between the black population.

  6. Flow mapping for ESS horizontal target

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.; Kikura, H.; Taishi, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Flow behaviour for ESS horizontal target is studied experimentally using two dimensional water model. A velocity field of stationary flow in reaction zone has been obtained. Three dimensional effect was also studied as a spanwise flow structure. (author) 3 figs., 3 refs.

  7. Determinants Of Vertical And Horizontal Export Diversification ...

    African Journals Online (AJOL)

    The study also reveals domestic investment plays an important role to enhance vertical as well as horizontal export diversification for East Asia, while it only ... resource-based industries and gradually shift production and exports from customary products to more dynamic ones by developing competitive advantage in the ...

  8. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  9. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  10. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  11. Cues for localization in the horizontal plane

    DEFF Research Database (Denmark)

    Jeppesen, Jakob; Møller, Henrik

    2005-01-01

    manipulated in HRTFs used for binaural synthesis of sound in the horizontal plane. The manipulation of cues resulted in HRTFs with cues ranging from correct combinations of spectral information and ITDs to combinations with severely conflicting cues. Both the ITD and the spectral information seem...

  12. Evaluation of horizontal magnification on panoramic images

    Directory of Open Access Journals (Sweden)

    Maryam Raoof

    2013-01-01

    Full Text Available Aims: This study evaluated the horizontal magnification of images taken from adults and pediatrics with PM 2002 CC Planmeca analogue machine. Materials and Methods: A series of 120 panoramic radiographs were obtained of 60 adults and 60 pediatrics. For all patients, negative impressions were used to make positive casts of the teeth. A caliper was used to measure the maximum mesiodistal length of the buccal surface of all teeth except canines on both casts and radiographs. The horizontal magnification factor was calculated for incisor, premolar, and molar regions by dividing the values obtained from the casts by the values obtained from the radiographs. Statistical Analysis: Independent t-test and one-way analysis of variance (ANOVA were used. Results: The results indicated that with regard to adults, maxillary and mandibular incisor regions, unlike the other two sessions, didn′t show significant difference of the mean magnification of horizontal dimension (P = 0.5. In pediatrics, the comparison between mean magnification factors of all subgroups showed significant difference (P < 0.0001. Despite the adults′ radiographs, the results of pediatrics′ radiographs showed significantly higher magnification than the index listed by the manufacturer of the radiographic machine used. Conclusion: The present study results point to the fact that PM 2002 CC Proline panoramic machine makes possible precise measurements on radiographs of adults′ jaws in the horizontal dimension.

  13. The use of horizontal wells for subsurface soil and aquifer remediation

    International Nuclear Information System (INIS)

    May, D.W.

    1994-01-01

    The use of directionally controlled horizontal drilling for environmental restoration had its genesis in 1988 when two horizontal remediation wells were drilled at the Savannah River Nuclear Facility near Aiken, South Carolina. Since that time, horizontal remediation wells have been drilled at several Department of Energy and Department of Defense sites as well as on several commercial sites across the country. Directional drilling technology applied to ''Near Surface Horizontal Environmental Drilling'' comes from the oil and gas industry, the utility/pipeline river crossing industry and to a lesser extent the mining industry. Rig designs vary from very small track or wheel mounted rigs using 10 feet (3 meters) drill pipe and having less than 2,500 ft. lb. (3,400 N-m) of torque and 15,000 lb. (67 kN) of push/pull force to extremely large trailer mounted rigs with torques exceeding 60,000 ft. lb. (81,400 N-m) and over 500,000 lb. (2,200 kN) of pull. Vertical depths of horizontal wells drilled to-date have exceeded 250 feet (75 m), but the great majority of contaminant plumes are located at depths of less than 50 feet (15 m). Horizontal well displacements have exceeded 1000 feet (300 m) but most of the projects cover less than 400 feet (120 m). Wells can be drilled ''blind'' (terminate in the earth) or exit back up the earth on the other side of the plume from the drill rig

  14. UMAPRM: Uniformly sampling the medial axis

    KAUST Repository

    Yeh, Hsin-Yi Cindy

    2014-05-01

    © 2014 IEEE. Maintaining clearance, or distance from obstacles, is a vital component of successful motion planning algorithms. Maintaining high clearance often creates safer paths for robots. Contemporary sampling-based planning algorithms That utilize The medial axis, or The set of all points equidistant To Two or more obstacles, produce higher clearance paths. However, They are biased heavily Toward certain portions of The medial axis, sometimes ignoring parts critical To planning, e.g., specific Types of narrow passages. We introduce Uniform Medial Axis Probabilistic RoadMap (UMAPRM), a novel planning variant That generates samples uniformly on The medial axis of The free portion of Cspace. We Theoretically analyze The distribution generated by UMAPRM and show its uniformity. Our results show That UMAPRM\\'s distribution of samples along The medial axis is not only uniform but also preferable To other medial axis samplers in certain planning problems. We demonstrate That UMAPRM has negligible computational overhead over other sampling Techniques and can solve problems The others could not, e.g., a bug Trap. Finally, we demonstrate UMAPRM successfully generates higher clearance paths in The examples.

  15. Process analysis and optimization of direct horizontal-row roughing filtration

    NARCIS (Netherlands)

    Ahsan, T.

    1995-01-01

    There is a growing demand for appropriate water treatment technology for towns and small cities in developing countries. This study developed a pretreatment technology for highly turbid river water, called direct horizontal-flow roughing filtration, by combining the principles of direct filtration

  16. Investigation of straitified and countercurrent flows in horizontal piping during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bourteele, J.P.

    1980-06-01

    The ECTHOR program consists in a loop having as objective to study the flow regimes in horizontal pipings (stratification, countercurrent flows) in conditions representative of small break transients within commercial PWR. The ECTHOR tests are in process. Experimental results are already available and are presented in this paper: scaling problem, U tube experiments, hot leg experiments, high pressure tests

  17. Diverse we stand: Horizontal inequality and ethno-communal conflict in Indonesia

    NARCIS (Netherlands)

    Kleine Deters, B.; Nimeh, Z.

    2014-01-01

    This paper aims to shed some light on the drivers of (relatively) small-scale ethno-communal violence within an ethnically diverse state, by quantitatively examining the relationship between horizontal inequalities and ethno-communal violence. Specifically it addresses the complexity in assessing

  18. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  19. Vertical axis wind turbines : past initiatives and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.; Fartaj, A.; Ting, D. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2003-08-01

    Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT) are the two categories of modern wind turbines used for producing electricity and pumping water. While their popularity declined in the 1970s and 1980s to more economical fossil fuel resources, many countries have expressed a renewed interest in wind power in response to environmental concerns and energy security. Renewable energy sources supply more than 14 per cent of the total global energy demand, and wind energy plays the biggest role. In 2002, more than $7 billion was invested in wind technology. Canada has been a leader in VAWT technology. In 1966, Engineers at the Low Speed Aerodynamics Laboratory of the National Research Council devised a VAWT configuration with non-adjustable hoop-shaped airfoils that had greater efficiency that conventional high-solidity VAWT. In the early 1980s, a multi-megawatt VAWT was built in Quebec under the auspices of the EOLE project. The EOLE is the largest VAWT in the world. In 1980, Canada's national Atlantic Wind Test Site was developed for the purpose of testing and developing wind technology. Research at this facility has focused on dynamically soft Darrieus rotors, a concept which can reduce structural loads. Early development has shown that although VAWT is slightly less efficient than HAWT, it can be built larger and more cost effectively. This paper presents the outstanding features of VAWT products including the Solwind SW 10/4800 series VAWT, the Chinook 2000 wind turbine, the Ropatec Windrotor, the Windside Turbine, the VAWTEX, the Windstar VAWT, and Windtec. 19 refs., 13 figs.

  20. Performance evaluation of small wind turbines for off grid applications in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Hadhrami, Luai M.

    2014-01-01

    Highlights: • Sixteen HAWT and 8 VAWT performance evaluations for s wind measurement site. • HAWT were found to be more efficient than VAWT. • Higher energy yields during high load demands. • PCF’s of up to 54% could be achieved. • Highest energy increase for hub height change from 20 to 30 m. - Abstract: The study evaluated the energy output and plant capacity factor (PCF) of small wind turbines in the category of 1–3 kW, 5–10 kW, 15–20 kW and 50–80 kW rated powers. Furthermore, the effect of hub height on energy output and the PCF has been studied to recommend suitable hub height for different type of applications and load requirements. To achieve the set objectives, hourly average wind speed data measured at 10, 20, 30, and 40 m and wind direction at 30 and 40 m above ground level during July 01, 2006 to July 10, 2008 has been utilized. Highest percentage change in annual energy yield (AEY) was obtained for an increase in hub height of 10 m from 20 to 30 m for both horizontal and vertical wind turbines chosen in the present study. The next best AEY was obtained while increasing hub height from 10 to 15 m. Horizontal axis wind turbines Fortis Passat with PCF of 44.4% at 15 m hub height, Aeolos-H 5 kW with PCF of 20% at 20 m hub height, and CF6e with PCF of 32.5% at 20 m hub height are recommended for different load requirements. Similarly, vertical axis wind turbines UGE Vision 2 kW with PCF of 8.9% at 15 m hub height, Aeolos-V-2 5 kW with PCF of 20.6% at 20 m hub height, and UGE-9M 10 kW with PCF of 14.2% at 30 m hub height are also recommended for various ranges of loads. Horizontal axis wind turbines were found generally more efficient than the vertical axis wind turbines in the present case

  1. Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal-axis (HPA-axis)

    OpenAIRE

    Lee, Richard; Sawa, Akira

    2014-01-01

    In this review, we provide a brief summary of several key studies that broaden our understanding of stress and its epigenetic control of the hypothalamic-pituitary-adrenal axis (HPA)-axis function and behavior. Clinical and animal studies suggest a link among exposure to stress, dysregulation of the HPA-axis, and susceptibility to neuropsychiatric illnesses. Recent studies have supported the notion that exposure to glucocorticoids and stress in various forms, duration, and intensity during di...

  2. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening...... and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions of the horizontal openings, were measured. A bi-directional airflow rate was measured using the constant...... quite well with the Epstein's formula ratio are presented. In some cases the measured airflow rates fit quite well with the Epstein's formula but in other cases the measured data show clear deviations from the Epstein's formula. Thus, revised formulas for natural ventilation are proposed....

  3. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening...... and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions of the horizontal openings, were measured. A bi-directional airflow rate was measured using the constant...... quite well with the Epstein's formula but in other cases the measured data show clear deviations from the Epstein's formula. Thus, revised formulas for natural ventilation are proposed....

  4. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  5. Improving horizontal completions on heterogeneous tight shales

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Rivera, Roberto; Deenadayalu, Chaitanya; Chertov, Maxim; Novalo Hartanto, Ricardo; Gathogo, Patrick [Schlumberger (United States); Kunjir, Rahul [University of Utah (United States)

    2011-07-01

    Evaluation of the two formation characteristics conducive to economic well production is important when tight shale formation characterization and completion design are being considered. This paper presents the basic understanding required to improve the efficiency of horizontal completions in oil and gas producing shales. Guidelines are defined for effective perforation and fracturing to improve the efficiency and sustainability of horizontal completions using extensive laboratory characterization of mechanical properties on core, core/log integration and continuous mapping of these properties by logging-while-drilling (LWD) methods. The objective is to improve completion design efficiency. This is accomplished by suitable selection of perforation intervals based on an understanding of the relevant physical processes and rock characterization. Conditions at two reservoir regions, the near-wellbore and the far-wellbore, are outlined and are essential to completion design. From the study, it can be concluded that tight shales are strongly anisotropic and cannot be approximated using isotropic models.

  6. Formation evaluation of a horizontal well

    International Nuclear Information System (INIS)

    Najia, W.K.; Habib, K.H.; Asada, J.

    1991-01-01

    In Upper Zakum Field, the interest in horizontal drilling has continued. A second horizontal well was drilled during the second half of 1989. This necessitated running logging tools for well control and to evaluate the reservoir characteristics. The logging tool selected for this well is that of Sperry-Sun. Tools configuration and tolerance were found to fulfil SADCO's requirements and specifications. This paper reports on the services produced which included Measurement While Drilling (MWD) directional services and RLL (Recorded Lithology Logging). The RLL services cover Dual Gamma Ray (DGR), Electromagnetic Wave Resistivity (EWR) and Compensated Neutron Porosity (CN porosity). All the RLL tools were an integrated part of the Bottom Hole Drilling Assembly. Data acquired while surveying was recorded in a recording sub down-hole and retrieved when the tools were up at the surface. A PC assisted quick look interpretation was carried out using Archie's equation in shale free limestone to calculate: Effective porosity, Water Saturation and, Bulk water volume

  7. Conservative management of displaced horizontal root fracture

    Directory of Open Access Journals (Sweden)

    Sanjeev Kunhappan

    2011-01-01

    Full Text Available Traumatic injuries of teeth are the main cause of emergency treatment in dental practice. Radicular fractures in permanent teeth are uncommon, being only 0.5-7% of the cases. Horizontal root fractures are more frequently observed in the maxillary anterior region of young male patients and vary in severity from enamel fractures to avulsions. Fracture occurs often in the middle-third of the root followed by apical and coronal third. The present case report describes a clinical case of a horizontal root fracture located at the middle third of a maxillary left-central incisor treated endodontically after approximating fracture segment with the help of orthodontic appliance. After 6 months follow-up, the tooth was asymptomatic with normal periodontal health.

  8. Active vibration suppression of helicopter horizontal stabilizers

    Science.gov (United States)

    Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio

    2017-04-01

    Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.

  9. Numerical investigation of SAGD process using a single horizontal well

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C. [imperial Oil of Canada, Calgary, AB (Canada)

    1998-12-31

    Numerical simulation studies have been pursued in an effort to evaluate some recent studies regarding the innovation and field application of the steam-assisted gravity drainage (SAGD) process using a single horizontal well to recover heavy oil. The simulation studies focused on (1) the possible counter-current fluid exchange pattern between reservoir and the well, (2) the means that could be exploited to promote the initiation of a steam chamber, and (3) the potential oil rates that could be expected under field operating conditions. Results showed that the presence of a small capillary pressure near the horizontal wellbore prevents counter-current exchange of steam and oil. However, vertical undulation in well-profile, or a certain level of formation dilution around the wellbore, have the potential to overcome the capillary pressure constraint and promote the initiation of a steam chamber under field conditions. Nevertheless, there remains considerable doubt about the effectiveness of the method. It is not considered to be economically feasible. 15 refs., 14 figs.

  10. Maximizing productivity of horizontal drilling and completion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services Company, Calgary, AB (Canada)

    2007-07-01

    There are currently 160 active drilling rigs in the Barnett shale play, and small early developments have now become large-scale operations. This presentation outlined methods currently used to improve the productivity of directional drilling and completion techniques in gas shale plays. Horizontal completions are used to control height growth and increase contact areas. A typical horizontal well casing program was described along with details of cement liner treatment programs. Charts of optimum and non-optimum azimuth wells were included. Increased reservoir contact has been achieved by using limited-entry designs and acid stages with ball-sealers and abrasive jet-cutters. Pump rates have been increased during various stages, and larger fluid and sand volumes were used. A mineralogy comparison was provided, as well as details of the general design criteria for vertical wells in the region. It was concluded that drilling in the Barnett shale play has been successful as a result of using 3-dimensional seismic mapping as well as by initiating multiple, simultaneous fracs. The presentation also included charts of the Arkoma-Woodford play, the Arkoma-Fayetteville play, and the Delaware Basin. tabs., figs.

  11. Surgical treatment for paralytic horizontal strabismus

    Directory of Open Access Journals (Sweden)

    Feng Zhou*

    2015-08-01

    Full Text Available AIM: To observe the effect of surgery for paralytic horizontal strabismus and the paralytic horizontal strabismus performed by Jensen procedure with antagonist muscle of paralytic muscle recession and medial or lateral rectus extra large resection/recession.METHODS: Fifteen cases(17 eyeswith complete or nearly complete paralytic horizontal strabismus from January 2005 to August. 2014 in our hospital were assessed retrospectively,7 eyes of 7 cases with treatment group A were performed Jensen procedure combined antagonist muscle of paralytic muscle recession, 10 eyes of 8 cases with treatment group B were performed medial or lateral rectus extra large resection/recession. seventeen eyes of 15 cases with an average of 21±8.71mo follow-up were observed.RESULTS: All 17 eyes of 15 cases after the operation obtained satisfied effects, 16 eyes of 14 cases obtained ideal long-term effect. One eye of a patient with a 6mo follow-up was undercorrected of 30△. We found a varying degree of postoperative improvement in visual function. There was a significant reduction in the strabismus angle for distance and near(t=28.71, Pt=36.21, Pt=17.96, Pt=9.20,PCONCLUSION: Jensen procedure combined antagonist muscle of paralytic muscle recession and medial or lateral rectus extra large resection/recession is a safe and successful method of treatment in complete or nearly complete paralysis horizontal strabismus. Patients achieve orthophoria, improvement of the motor ability, and larger field of binocular single vision for long time.

  12. Search for horizontal bosons at the SSC

    International Nuclear Information System (INIS)

    Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.

    1984-01-01

    The production process anti p p → l - l' + + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels

  13. Improving steamflood effectiveness by horizontal producers

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, B. [Wintershall AG, Barnstorf (Germany)

    2001-12-01

    The Emlichheim oilfield is located in North-West-Germany on the Dutch-German border being the Southern downdip part of the Schoonebeek anticline. The field was discovered in 1943 and came on production in 1944. Since production startup, Wintershall operates the field as owner of the concession (90% share of interest) in a joint venture with Mobil Erdgas-Erdoel GmbH (10%). For more than 50 years an average crude oil production of 150.000 t/year has been maintained. Starting with huff ''n'' puff and hot water flooding in the late 60's, the first steam flood project was implemented in 1981. Further steamflood projects started in 1989, 1992, 1993, 1994 and 1998 in different areas of the field. Until 1997, only vertical production wells were drilled in the field. Wellbore stability seemed to be a major problem for drilling horizontal wells in the unconsolidated sandstone reservoir at that time. In 1999 an innovative steamflood project was started with three newly drilled horizontal producers surrounding a vertical steam injector. First results are showing a significant improvement in the performance as compared to the earlier projects and offer new chances for further development of the field. Today, the field could no longer be operated without the steam projects as roughly 95% of the field production is coming from thermal EOR. This paper gives a brief overview of the field and its production history, the planning and realization of a current steamflood project using horizontal well technology as well as its performance compared to the earlier projects. It also describes the experience of drilling horizontal wells in the unconsolidated sandstone. A brief outlook to the future field development is given. (orig.)

  14. Horizontal infiltration and trace element measurements for ...

    African Journals Online (AJOL)

    Laboratory investigations of horizontal infiltration were carried out on three Zaria soils (Samaru, Tudun Wada and the Kubanni river basin Fadama wet-land soils) in Nigeria, which are principally alfisols. Diffusivity was found to be -77.5 x 10 -2 cm 2 s-1, -8.4 x 10 -2 cm 2 s-1 and -117.0 x 10 -2 cm 2 s-1 respectively for the ...

  15. Cues for localization in the horizontal plane

    DEFF Research Database (Denmark)

    Jeppesen, Jakob; Møller, Henrik

    2005-01-01

    Spatial localization of sound is often described as unconscious evaluation of cues given by the interaural time difference (ITD) and the spectral information of the sound that reaches the two ears. Our present knowledge suggests the hypothesis that the ITD roughly determines the cone of the perce...... independently in HRTFs used for binaural synthesis. The ITD seems to be dominant for localization in the horizontal plane even when the spectral information is severely degraded....

  16. Horizontal vibrations of piles in a centrifuge

    International Nuclear Information System (INIS)

    Bourdin, B.

    1987-01-01

    The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr

  17. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  18. Thermal transient analysis applied to horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2008-10-15

    Steam assisted gravity drainage (SAGD) is a thermal recovery process used to recover bitumen and heavy oil. This paper presented a newly developed model to estimate cooling time and formation thermal diffusivity by using a thermal transient analysis along the horizontal wellbore under a steam heating process. This radial conduction heating model provides information on the heat influx distribution along a horizontal wellbore or elongated steam chamber, and is therefore important for determining the effectiveness of the heating process in the start-up phase in SAGD. Net heat flux estimation in the target formation during start-up can be difficult to measure because of uncertainties regarding heat loss in the vertical section; steam quality along the horizontal segment; distribution of steam along the wellbore; operational conditions; and additional effects of convection heating. The newly presented model can be considered analogous to pressure transient analysis of a buildup after a constant pressure drawdown. The model is based on an assumption of an infinite-acting system. This paper also proposed a new concept of a heating ring to measure the heat storage in the heated bitumen at the time of testing. Field observations were used to demonstrate how the model can be used to save heat energy, conserve steam and enhance bitumen recovery. 18 refs., 14 figs., 2 appendices.

  19. Vertical and horizontal seismometric observations of tides

    Science.gov (United States)

    Lambotte, S.; Rivera, L.; Hinderer, J.

    2006-01-01

    Tidal signals have been largely studied with gravimeters, strainmeters and tiltmeters, but can also be retrieved from digital records of the output of long-period seismometers, such as STS-1, particularly if they are properly isolated. Horizontal components are often noisier than the vertical ones, due to sensitivity to tilt at long periods. Hence, horizontal components are often disturbed by local effects such as topography, geology and cavity effects, which imply a strain-tilt coupling. We use series of data (duration larger than 1 month) from several permanent broadband seismological stations to examine these disturbances. We search a minimal set of observable signals (tilts, horizontal and vertical displacements, strains, gravity) necessary to reconstruct the seismological record. Such analysis gives a set of coefficients (per component for each studied station), which are stable over years and then can be used systematically to correct data from these disturbances without needing heavy numerical computation. A special attention is devoted to ocean loading for stations close to oceans (e.g. Matsushiro station in Japon (MAJO)), and to pressure correction when barometric data are available. Interesting observations are made for vertical seismometric components; in particular, we found a pressure admittance between pressure and data 10 times larger than for gravimeters for periods larger than 1 day, while this admittance reaches the usual value of -3.5 nm/s 2/mbar for periods below 3 h. This observation may be due to instrumental noise, but the exact mechanism is not yet understood.

  20. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  1. Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator.

    Science.gov (United States)

    Liu, Yuxiao; Huang, Ran; Madsen, Christi K

    2014-10-20

    A two-axis tracking scheme designed for tracker and a translation stage is discussed. The translation stage is used for adjusting positions for seasonal sun movement. It has two-dimensional x-y tracking instead of horizontal movement x-only. This tracking method is compatible with planar waveguide solar concentrators. A prototype system with 50x concentration shows >75% optical efficiency throughout the year in simulation and >65% efficiency experimentally. This efficiency can be further improved by the use of anti-reflection layers and a larger waveguide refractive index.

  2. Improvement of detector system of the two-axis neutron powder diffractometer

    International Nuclear Information System (INIS)

    Xue Yanjie; Guo Liping; Chen Dongfeng; Zhang Baisheng; Chen Na; Zhang Li; Sun Kai; Xiao Hongwen; Zhang Lingfei; Wang Hongli; Li Junhong; Wu Erdong; Yuan Xuezhong

    2005-01-01

    The detector system of the two-axis neutron powder diffractometer at the Heavy Water Research Reactor of China Institute of Atomic Energy was improved by increasing the number of detectors from one to four and by installing the third Soller collimators with horizontal divergence of 20'. The measurements of Fe powder diffraction patterns show that the counting rate of the diffractometer is increased by a factor of 2.3 and the resolution is also improved at the lower and mediate scattering angle region. (author)

  3. An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

    Directory of Open Access Journals (Sweden)

    Oh Kyun Kwon

    2014-03-01

    Full Text Available In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D, reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150–360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

  4. Tunnel and thermal c-axis transport in BSCCO in the normal and pseudogap states

    International Nuclear Information System (INIS)

    Giura, M; Fastampa, R; Sarti, S; Pompeo, N; Silva, E

    2007-01-01

    We consider the problem of c-axis transport in double-layered cuprates, in particular with reference to Bi 2 Sr 2 CaCu 2 O 8+δ compounds. We exploit the effect of the two barriers on the thermal and tunnel transport. The resulting model is able to describe accurately the normal state c-axis resistivity in Bi 2 Sr 2 CaCu 2 O 8+δ , from the underdoped side up to the strongly overdoped. We extend the model, without introducing additional parameters, in order to allow for the decrease of the barrier when an external voltage bias is applied. The extended model is found to describe properly the c-axis resistivity for small voltage bias above the pseudogap temperature T * , the c-axis resistivity for large voltage bias even below T c , and the differential dI/dV curves taken in mesa structures

  5. Mechanical design for modification of a neutral beam for off-axis injection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: anderson@fusion.gat.com; Hong, R.-M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    DIII-D is planning to implement off-axis neutral beam current drive by neutral beam injection through a midplane port at angles up to 15 deg. from horizontal. To accommodate the beam-line tilting, the following modifications are planned: (1) move the beam line away from the tokamak by 0.39 m to allow for a 0.68 m inside diameter welded bellows of necessary length to provide 15 deg. of vertical motion between the vessel port and the beam line; (2) reduce the vertical height of the injected beam from 0.48 m to 0.43 m to provide clearance for the inclined beam as it passes through the length of the vessel port; (3) add a linkage system between the front of the beam line and the tokamak to restrain the NB against the vacuum loading from the bellows while maintaining zero roll about the axis of the beam line as it is moved about a virtual pivot axis; (4) add a forward and two rear vertical actuators for raising and lowering the beam line (These actuators require coordinated position control to rotate the NB about a virtual pivot axis.); (5) incorporate lateral restraint to comply with seismic requirements.

  6. Effects of the symmetry axis orientation of a TI overburden on seismic images

    Science.gov (United States)

    Chang, Chih-Hsiung; Chang, Young-Fo; Tseng, Cheng-Wei

    2017-07-01

    In active tectonic regions, the primary formations are often tilted and subjected to the processes of folding and/or faulting. Dipping formations may be categorised as tilted transverse isotropy (TTI). While carrying out hydrocarbon exploration in areas of orogenic structures, mispositioning and defocusing effects in apparent reflections are often caused by the tilted transverse isotropy of the overburden. In this study, scaled physical modelling was carried out to demonstrate the behaviours of seismic wave propagation and imaging problems incurred by transverse isotropic (TI) overburdens that possess different orientations of the symmetry axis. To facilitate our objectives, zero-offset reflections were acquired from four stratum-fault models to image the same structures that were overlain by a TI (phenolite) slab. The symmetry axis of the TI slab was vertical, tilted or horizontal. In response to the symmetry axis orientations, spatial shifts and asymmetrical diffraction patterns in apparent reflections were observed in the acquired profiles. Given the different orientations of the symmetry axis, numerical manipulations showed that the imaged events could be well described by theoretical ray paths computed by the trial-and-error ray method and Fermat's principle (TERF) method. In addition, outputs of image restoration show that the imaging problems, i.e. spatial shift in the apparent reflections, can be properly handled by the ray-based anisotropic 2D Kirchhoff time migration (RAKTM) method.

  7. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  8. Neutral axis as damage sensitive feature

    International Nuclear Information System (INIS)

    Sigurdardottir, D H; Glisic, B

    2013-01-01

    Structural health monitoring (SHM) is the process of continuously or periodically measuring structural parameters and the transformation of the collected data into information on real structural conditions. The centroid of stiffness is a universal parameter and its position in a cross-section can be evaluated for any load-carrying beam structure as the position of the neutral axis under conveniently chosen loads. Thus, a change in the position of the neutral axis within a cross-section can indicate a change in the position of the centroid of stiffness, i.e., unusual structural behaviors. This paper proposes a novel monitoring method based on deterministic and probabilistic determination of the position of the neutral axis under conveniently chosen conditions. Therefore, the method proposed in this paper is potentially applicable to a large variety of beam-like structures. Data from two existing structures were used to validate the method and assess its performance: Streicker Bridge at Princeton University and the US202/NJ23 highway overpass in Wayne, NJ. The results show that the neutral axis location is varying even when damage is not present. Reasons for this variation are determined and the accuracy in the evaluation assessed. This paper concludes that the position of the neutral axis can be evaluated with sufficient accuracy using static and dynamic strain measurements performed on appropriate time-scales and indicates its potential to be used as a damage sensitive feature. (paper)

  9. Neutral axis as damage sensitive feature

    Science.gov (United States)

    Sigurdardottir, D. H.; Glisic, B.

    2013-07-01

    Structural health monitoring (SHM) is the process of continuously or periodically measuring structural parameters and the transformation of the collected data into information on real structural conditions. The centroid of stiffness is a universal parameter and its position in a cross-section can be evaluated for any load-carrying beam structure as the position of the neutral axis under conveniently chosen loads. Thus, a change in the position of the neutral axis within a cross-section can indicate a change in the position of the centroid of stiffness, i.e., unusual structural behaviors. This paper proposes a novel monitoring method based on deterministic and probabilistic determination of the position of the neutral axis under conveniently chosen conditions. Therefore, the method proposed in this paper is potentially applicable to a large variety of beam-like structures. Data from two existing structures were used to validate the method and assess its performance: Streicker Bridge at Princeton University and the US202/NJ23 highway overpass in Wayne, NJ. The results show that the neutral axis location is varying even when damage is not present. Reasons for this variation are determined and the accuracy in the evaluation assessed. This paper concludes that the position of the neutral axis can be evaluated with sufficient accuracy using static and dynamic strain measurements performed on appropriate time-scales and indicates its potential to be used as a damage sensitive feature.

  10. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  11. Horizontal decomposition of data table for finding one reduct

    Science.gov (United States)

    Hońko, Piotr

    2018-04-01

    Attribute reduction, being one of the most essential tasks in rough set theory, is a challenge for data that does not fit in the available memory. This paper proposes new definitions of attribute reduction using horizontal data decomposition. Algorithms for computing superreduct and subsequently exact reducts of a data table are developed and experimentally verified. In the proposed approach, the size of subtables obtained during the decomposition can be arbitrarily small. Reducts of the subtables are computed independently from one another using any heuristic method for finding one reduct. Compared with standard attribute reduction methods, the proposed approach can produce superreducts that usually inconsiderably differ from an exact reduct. The approach needs comparable time and much less memory to reduce the attribute set. The method proposed for removing unnecessary attributes from superreducts executes relatively fast for bigger databases.

  12. Use of a bubble tiltmeter as a horizontal seismometer

    Science.gov (United States)

    Miller, W. F.; Geller, R. J.; Stein, S.

    1978-01-01

    A bubble tiltmeter has been used as a horizontal seismometer. With the appropriate filters, the bubble system has good response for displacement over the passband of conventional seismometers (from about 10 Hz to 200 s), and for tilt from about 1 Hz to DC. The accuracy of the response is confirmed by comparing the filtered bubble output to conventional seismic instruments. The agreement between the filtered bubble records and broad band and short period conventional records is extremely good in every case. The small size, broad-band response, and lack of moving parts make the bubble ideal as an instrument for remote environments. In particular, the instrument seems ideal for the ocean bottom, land and marine boreholes and planetary missions.

  13. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  14. Horizontal-view interferometer on TEXT-Upgrade

    International Nuclear Information System (INIS)

    Jiang, Y.; Brower, D.L.

    1994-01-01

    The first experimental results from the horizontal-view, multichannel, heterodyne FIR interferometer system on TEXT-Upgrade are reported. The system employs parabolic beam-expansion optics and a 15 cm array with minimum channel spacing of 1.5 cm. Profiles of the plasma electron density will be presented. In addition, small-amplitude density perturbations resulting from sawteeth and tearing modes are examined. Due to the double-pass of the laser beam through the plasma and the large distance of the detector array [2.5 m] from the plasma, refractive effects must be addressed for densities greater than 2 x 10 13 cm -3 . A ray tracing code is developed to correct the measured profiles

  15. Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine

    DEFF Research Database (Denmark)

    Rezaeiha, Abdolrahim; Arjomandi, Maziar; Kotsonis, Marios

    2015-01-01

    and the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind turbine....

  16. Experimental study of the wake characteristics of a two-blade horizontal axis wind turbine by time-resolved PIV

    Institute of Scientific and Technical Information of China (English)

    ZHANG LiRu; CEN KeFa; XING JiangKuan; WANG JianWen; YUAN RenYu; DONG XueQing; MA JianLong; LUO Kun; QIU KunZan; NI MingJiang

    2017-01-01

    Wind tunnel experiments of the wake characteristics of a two-blade wind turbine,in the downstream region of 0<x/R< 10,have been carried out.With the help of the time resolved particle image velocimetry (TRPIV),flow properties such as the vortex structure,average velocity,fluctuations velocities and Reynolds stresses are obtained at different tip speed ratios (TSR).It is found that the wind turbine wake flow can be divided into velocity deficit region,velocity remained region and velocity increased region,with generally higher velocity deficit compared with a three-blade wind turbine wake.Once a blade rotates to the reference 0° plane,the tip vortices generate,shed and move downstream with the intensity gradually decreased.The leapfrogging phenomenon of tip vortices caused by the force interaction of adjacent vortices is found and more apparent in the far wake region.The axial fluctuation velocity is larger than radial fluctuation velocity at the blade root region,and the turbulent kinetic energy shares the similar trend as the axial fluctuation velocity.The axial normalized Reynolds normal stress is much larger than the radial normalized Reynolds normal stress and Reynolds shear stress at the blade root region.As the TSR increases,the radial location where the peak axial normalized Reynolds normal stress u u / U2 and axial fluctuation velocity appear descends in the radial direction.

  17. Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Nejat, Amir

    2015-01-01

    Highlights: • The noise predictions are performed by Ffowcs Williams and Hawkings method. • There is a direct relation between the radiated noise and the wind speed. • The tonal peaks in the sound spectra match with the blade passing frequency. • The quadrupole noises have negligible effect on the low frequency noises. - Abstract: This paper presents the results of the aerodynamic and aero-acoustic prediction of the flow field around the National Renewable Energy Laboratory Phase VI wind turbine. The Improved Delayed Detached Eddy Simulation turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is carried out using the Ffowcs Williams and Hawkings acoustic analogy. Simulations are performed for three different inflow conditions, U = 7, 10, 15 m/s. The capability of the Improved Delayed Detached Eddy Simulation turbulence model in massive separation is verified with available experimental data for pressure coefficient. The broadband noises of the turbulent boundary layers and the tonal noises due to the blade passing frequency are predicted via flow field noise simulation. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicated that there is a direct relation between the strength of the radiated noise and the wind speed. Furthermore, the effect of the receiver location on the Overall Sound Pressure Level is investigated

  18. Study on torsion arc blade type horizontal axis wind turbine; Nejire enko yokugata suihei jiku fusha ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N; Kishimura, K [Meiji University, Tokyo (Japan)

    1996-10-27

    Discussing the rotor blades of the torsion arc blade type (TABT) wind turbine, difference in windmilling characteristics was determined between elliptic blades and rectangular blades by theoretical analysis and model experiment. Experimental generation of power was carried out using a test wind turbine in the natural wind. First, elliptic blades were bent into arcs and fixed to shaft. The action force was determined calculating the blade area and the wind velocity vertical thereto. Furthermore, the force in the direction to turn the rotor was determined with the effect of the part behind the blade taken into account. The rotation-curbing air resistance in the flank direction that a rotor experiences was subtracted to determine the torque generated. A formula was derived for the elliptic blade. Second, a formula was derived in the same way for the case of rectangular blades. In conclusion, in the case of 6-blade wind turbine, the rate of responsibility for wind turbine rotation of the part behind the blade was approximately 50% of the part in front of the blade. Shape coefficients were introduced into the theory, which resulted in values agreeing well with values obtained from experiments. Elliptic blades yielded more power than rectangular blades at the same wind velocity. High in durability, the TABT wind turbine is expected to be put into practical use as a compact auxiliary power generating device. 2 refs., 14 figs.

  19. Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Pereira, R.; Kotsonis, M.

    2017-01-01

    Unsteady loads are a major limiting factor for further upscaling of HAWTs considering the high costs associated to strict structural requirements. Alleviation of these unsteady loads on HAWT blades, e.g. using active flow control (AFC), is of high importance. In order to devise effective AFC

  20. Alternativa estructural de refuerzo horizontal en muros de mampostería Structural alternative of horizontal reinforcement in masonry walls

    Directory of Open Access Journals (Sweden)

    Diego Fernando Páez Moreno

    2009-01-01

    Full Text Available La implementación de refuerzo horizontal en muros de mampostería con ladrillo macizo de arcilla cocida es una técnica empleada en varios países. En este trabajo se propone un análisis para muros de mampostería representativos de la ciudad de Tunja con la implementación de grafiles de acero como alternativa de refuerzo horizontal. Este estudio involucra la definición de los tipos de materiales a emplear, las características de los muros a ensayar y las variables que se deben aplicar, tanto en los muros como en la ejecución del ensayo de compresión diagonal, que define tipos de muros con características propias de refuerzo. Los resultados del proceso de análisis del comportamiento individual y general de los muros de mampostería sometidos al ensayo de compresión diagonal permiten identificar la variación del esfuerzo cortante representativo para cada tipo de muro, en relación con el refuerzo empleado en los diferentes modelos y la tipología de falla.Implementation of horizontal reinforcement in masonry walls with solid cooked clay bricks is a commonly used technique in several countries. This article is intended to analyze masonry walls representatives of Tunja City, with implementation of small steel bars as an alternative of horizontal reinforcement. This study involves definition of types of materials to be used, characteristics of walls to be tested, and variables which should be applied in both walls and during the execution of the diagonal compression test which defines the types of walls with own characteristics of reinforcement. Results from individual and general behavior analysis process of masonry walls subject to diagonal compression tests allow identifying variation of shear stress for each kind of wall, in relation to reinforcement used in several models and failure typology.

  1. Horizontal Multinational Firms, Vertical Multinational Firms and Domestic Investment

    NARCIS (Netherlands)

    J. Emami Namini (Julian); H.P.G. Pennings (Enrico)

    2009-01-01

    textabstractWe build a dynamic general equilibrium model with 2 countries, horizontal and vertical multinational activity and endogenous domestic and foreign investment. It is found that horizontal multinational activity always leads to a complementary relationship between domestic and foreign

  2. Theoretical tool movement required to diamond turn an off-axis paraboloid on axis

    International Nuclear Information System (INIS)

    Thompson, D.C.

    1976-01-01

    Current techniques for manufacturing off-axis paraboloids are both expensive and insufficiently accurate. An alternative method, turning the workpiece about its axis on a diamond-turning machine, is presented, and the equations describing the necessary tool movement are derived. A discussion of a particular case suggests that the proposed technique is feasible

  3. Implications of Nash Bargaining for Horizontal Industry Integration

    OpenAIRE

    Richard E. Just; Siddhartha Mitra; Sinaia Netanyahu

    2005-01-01

    This article shows how horizontal industry integration can arise from transferable asymmetry of technologies and endowments. The Nash bargaining solution suggests that greater technological diversity among coordinating parties yields greater gains from horizontal integration. The framework fits the case where a firm with a superior technology franchises the technology by horizontal integration. The results appear to fit hog production where integration has been primarily horizontal and, in pa...

  4. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    Science.gov (United States)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  5. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.

    2016-06-01

    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  6. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects

    KAUST Repository

    Gonella, Elena

    2015-11-13

    Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.

  7. Hydrajet fracturing: an effective method for placing many fractures in openhole horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Surjaatmadja, J. B.; Grundmann, S. R.; McDaniel, B.; Deeg, W. F. J.; Brumley, J. L.; Swor, L. C.

    1998-12-31

    A new method for openhole horizontal well fracturing that combines hydrajetting and fracturing techniques, which was developed on the basis of Bernoulli`s theorem, is described. This theorem has been effectively proven in many applications such as jet pumps, additive injection systems and jet aircraft engines. By using this method, operators can position a jetting tool, without the use of sealing elements, at the exact point where fracture is required. The method also permits the use of multiple fractures in the same well, which can be spaced evenly or unevenly as prescribed by the fracturing program. Damage can be avoided by placing hundreds of small fractures in a long horizontal section, or operators can use acid and/or propped sand techniques to place a combination of two fracture types in the well. The paper describes the basic principles of horizontal hydrajet fracturing, and elements of a laboratory model which was developed to demonstrate the effectiveness of the method.

  8. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects.

    Science.gov (United States)

    Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto

    2015-11-13

    Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.

  9. The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland

    DEFF Research Database (Denmark)

    Wahr, John; Khan, Shfaqat Abbas; van Dam, Tonie

    2013-01-01

    of the horizontal motion, can help determine whether nearby loading is concentrated in a small region (for example, in a single lake or glacier), and where that region is. We illustrate this method by applying it to two specific cases: an analysis of GPS data from northern California to monitor the level of Lake......We describe how GPS measurements of horizontal crustal motion can be used to augment vertical crustal motion measurements, to improve and extend GPS studies of surface loading. We show that the ratio of the vertical displacement to the horizontal displacement, combined with the direction...... Shasta, and the analysis of data from a single GPS site in southeast Greenland to determine mass variability of two large, nearby outlet glaciers: Helheim Glacier and Midgaard Glacier. The California example serves largely as a proof-of-concept, where the results can be assessed by comparing...

  10. RITA: The reinvented triple axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.E. [Toronto Univ., ON (Canada). Dept. of Physics; Clausen, K.N.; Aeppli, G.; McMorrow, D.R.; Kjems, J.K. [Risoe National Lab., Roskilde (Denmark)

    1995-11-01

    Risoe National Laboratory was reported to be in the process of developing a new spectrometer design, RITA, based on the triple axis design. The spectrometer will attempt to incorporate more recent innovations such as multilayer supermirrors and microstrip proportional counters into a rethinking of the triple-axis spectrometer. By optimizing the beam optics, using supermirrors and extending the analyser to map regions of (Q, {omega}) space using an array of independently controllable pyrolytic graphite crystals focussed on an area detector, it was hoped that the efficiency of single-crystal inelastic experiments could be increased by as much as a factor of 20. 7 figs., 20 refs.

  11. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  12. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    Science.gov (United States)

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  13. GABA sensitivity of spectrally classified horizontal cells in goldfish retina

    NARCIS (Netherlands)

    Verweij, J.; Kamermans, M.; Negishi, K.; Spekreijse, H.

    1998-01-01

    We studied the GABA sensitivity of horizontal cells in the isolated goldfish retina. After the glutamatergic input to the horizontal cells was blocked with DNQX, GABA depolarized the monophasic and biphasic horizontal cells. The pharmacology of these GABA-induced depolarizations was tested with the

  14. Kinetic Analysis of Horizontal Plyometric Exercise Intensity.

    Science.gov (United States)

    Kossow, Andrew J; Ebben, William P

    2018-05-01

    Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.

  15. Horizontal well geosteering: planning, monitoring and geosteering

    Energy Technology Data Exchange (ETDEWEB)

    Mottahedeh, R.

    2008-11-15

    The geosteering process should not be seen as a process solely designated for the most expensive or highest profile horizontal wells. It can be regarded as another tool for improving the odds of success by remaining in the productive zone for longer periods of drilling. Also, it can be used to optimize the positioning of a horizontal wellbore in the sweet spots within the reservoir. The current process has been successfully applied to large infill drilling programs at over 40 wells for heavy oil, tight gas, conventional oil and gas plays and for Mannville coalbed methane (CBM) in Alberta. The service has been provided irrespective of location, as long as the Wellsite Information Transfer Standard Markup Language (WITSML)/Pason Satellite service is available. Exploration and production (E&P) companies are continuously being driven to reduce the cost per barrel of oil equivalent (BOE). E&P needs and technologies related to advanced and accurate directional drilling, communication of vital data in real-time through the internet, as well as reduced cycle time associated with advanced forward-looking 3D geo-modelling and visualization technologies, are currently converging. The motivation to reduce costs has been responsible for advancing the horizontal well geosteering process by incorporating the Measurement While Drilling (MWD) tool into mainstream drilling practices. The universal economic benefits gained can be found in all resource play types (conventional oil and gas, heavy oil, tight gas and coalbed methane). It is important to note that the process described here is essentially collaborative. For best results, there must be cooperation between the E&P operational geologist, wellsite geologist, directional driller and geo-modelling staff, as well as the engineering consultants involved in the project (i.e. the team as a whole).

  16. Decontamination of large horizontal concrete surfaces outdoors

    International Nuclear Information System (INIS)

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed

  17. Buoyancy Driven Natural Ventilation through Horizontal Openings

    OpenAIRE

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions...

  18. Sea water desalination by horizontal tubes evaporator

    International Nuclear Information System (INIS)

    Mohammadi, H.K.; Mohit, M.

    1986-01-01

    Desalinated water supplies are one of the problems of the nuclear power plants located by the seas. This paper explains saline water desalination by a Horizontal Tube Evaporator (HTE) and compares it with flash evaporation. A thermo compressor research project using HTE method has been designed, constructed, and operated at the Esfahan Nuclear Technology Center ENTC. The poject's ultimate goal is to obtain empirical formulae based on data gathered during operation of the unit and its subsequent development towards design and construction of desalination plants on an industrial scale

  19. Horizontal, floating, plastic hose oil skimmer

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    A horizontal, floating, plastic hose oil skimmer operates at -20/sup 0/ to +100/sup 0/C as a moving belt driven by a motor at 0.7 kw at 1400 rpm to pick up oil by adhesion from a surface such as that of used cooling water or cutting oil for subsequent stripping and collection by gravity flow. Two models provide collection rates of 10-45 l./hr for diesel oil, 35-115 l./hr for hydraulic oil, and 170-455 l./hr for gear oils and heavy heating oils.

  20. A horizontal multi-purpose microbeam system

    Science.gov (United States)

    Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.

    2018-04-01

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  1. Polarized proton target with horizontal spin orientation

    International Nuclear Information System (INIS)

    Bunyatova, Eh.I.; Kiselev, Yu.F.; Kozlenko, N.G.

    1988-01-01

    Proton target, the polarization vector of which may be arbitrary oriented in horizontal plane relatively to the beam, is developed and tested. 70% value of polarization is obtained. 0.6 K temperature is acquired through 3 He pumping out continuous cycle. 1.2-propylene glycol - Cr(V) was used as working medium. Magnetic system is made in the form of Helmholtz sperconducting coils with working curren close to critical one. Target polarization is measured by NMR technique using original system of proton signal processing

  2. Bifurcation in a buoyant horizontal laminar jet

    Science.gov (United States)

    Arakeri, Jaywant H.; Das, Debopam; Srinivasan, J.

    2000-06-01

    The trajectory of a laminar buoyant jet discharged horizontally has been studied. The experimental observations were based on the injection of pure water into a brine solution. Under certain conditions the jet has been found to undergo bifurcation. The bifurcation of the jet occurs in a limited domain of Grashof number and Reynolds number. The regions in which the bifurcation occurs has been mapped in the Reynolds number Grashof number plane. There are three regions where bifurcation does not occur. The various mechanisms that prevent bifurcation have been proposed.

  3. Pork consumer market in Belo Horizonte, Brazil

    OpenAIRE

    Faria, I.G.; Ferreira, J.M.; Garcia, S.K.

    2006-01-01

    Avaliou-se o comportamento do mercado consumidor de carne suína e seus derivados em Belo Horizonte. Foram entrevistados 401 consumidores, homens e mulheres, maiores de 19 anos de idade, mantendo-se a proporcionalidade observada no censo populacional. Além de sexo e faixa etária, escolaridade, ocupação e renda familiar foram levantadas para compor os fatores condicionantes da pesquisa. A carne suína in natura é consumida até três vezes por semana pela maioria da população (61,6%), em função de...

  4. Low Horizontal Beta Function In Long Straights Of The NSLS-II Lattice

    International Nuclear Information System (INIS)

    Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

    2011-01-01

    The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.

  5. Triple-axis spectrometer DruechaL

    International Nuclear Information System (INIS)

    Buehrer, W.; Keller, P.

    1996-01-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs

  6. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  7. The Trading Axis in Irkutsk Downtown

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available The article reveals a linear concentration of the trading function in the historical center of Irkutsk. It features historical prerequisites and continuation of the tradition in the post-Soviet period, given the conversion of plants and factories. The article analyses the current state and prospects of modernization of the trading axis with its transformation into a modern public space.

  8. Triple-axis spectrometer DruechaL

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W; Keller, P [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    DruechaL is a triple-axis spectrometer located at a cold guide. The characteristics of guide and instrument allow the use of a broad spectral range of neutrons. The resolution in momentum and energy transfer can be tuned to match the experimental requirements by using either collimators or focusing systems (monochromator, antitrumpet, analyser). (author) figs., tabs., refs.

  9. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  10. Horizontal Gene Transfers in Mycoplasmas (Mollicutes).

    Science.gov (United States)

    Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E

    2018-04-12

    The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.

  11. The development of Canadian leadership in horizontal drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, J R

    1989-01-01

    Horizontal wells are of increasing interest in the oil and gas industry, as is evident from the increase in the numbers of such wells being drilled. Horizontal well technology is used to improve production rates, notably in low permeability formations; to capture reserves if a reservoir is not economic using non-horizontal wells; to manage breakthrough of sweep fluids and increase sweep efficiency; and to extend the areal reach from a single surface location, especially in offshore production. The types of horizontal wells, differentiated on the basis of how quickly the well becomes horizontal, are briefly outlined and a short history of horizontal wells is presented. Canadian accomplishments in this field are then described, including steerable drilling systems, measurement-while-drilling systems, management of hole drag and torque, and well completion techniques. About 25 horizontal wells are forecast to be drilled in Canada in 1989, indicating the favorable future of this technology. 2 figs., 5 tabs.

  12. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  13. Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Montazeri, H.; Blocken, B.J.E.

    2017-01-01

    The central shaft is an inseparable part of a vertical axis wind turbine (VAWT). For small turbines such as those typically used in urban environments, the shaft could operate in the subcritical regime, resulting in large drag and considerable aerodynamic power loss. The current study aims to (i)

  14. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  15. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    Science.gov (United States)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  16. NUMERICAL DETERMINATION OF HORIZONTAL SETTLERS PERFORMANCE

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2015-08-01

    Full Text Available Purpose.Horizontal settlers are one of the most important elements in the technological scheme of water purification. Their use is associated with the possibility to pass a sufficiently large volume of water. The important task at the stage of their designing is evaluating of their effectiveness. Calculation of the efficiency of the settler can be made by mathematical modeling. Empirical, analytical models and techniques that are currently used to solve the problem, do not allow to take into account the shape of the sump and various design features that significantly affects the loyalty to a decision on the choice of the size of the settling tank and its design features. The use of analytical models is limited only to one-dimensional solutions, does not allow accounting for nonuniform velocity field of the flow in the settler. The use of advanced turbulence models for the calculation of the hydrodynamics in the settler complex forms now requires very powerful computers. In addition, the calculation of one variant of the settler may last for dozens of hours. The aim of the paper is to build a numerical model to evaluate the effectiveness of horizontal settling tank modified design. Methodology. Numerical models are based on: 1 equation of potential flow; 2 equation of inviscid fluid vortex flow; 3 equation of viscous fluid dynamics; 4 mass transfer equation. For numerical simulation the finite difference schemes are used. The numerical calculation is carried out on a rectangular grid. For the formation of the computational domain markers are used. Findings.The models allow calculating the clarification process in the settler with different form and different configuration of baffles. Originality. A new approach to investigate the mass transfer process in horizontal settler was proposed. This approach is based on the developed CFD models. Three fluid dynamics models were used for the numerical investigation of flows and waste waters purification

  17. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  18. UARS PEM Level 2 AXIS 2 V001 (UARPE2AXIS2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  19. UARS PEM Level 2 AXIS 1 V001 (UARPE2AXIS1) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  20. Modelling the horizontal steam generator with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Ylijoki, J. [VTT Energy, Espoo (Finland); Palsinajaervi, C.; Porkholm, K. [IVO International Ltd, Vantaa (Finland)

    1995-12-31

    In this paper the capability of the five- and six-equation models of the simulation code APROS to simulate the behaviour of the horizontal steam generator is discussed. Different nodalizations are used in the modelling and the results of the stationary state runs are compared. Exactly the same nodalizations have been created for the five- and six-equation models. The main simulation results studied in this paper are void fraction and mass flow distributions in the secondary side of the steam generator. It was found that quite a large number of simulation volumes is required to simulate the distributions with a reasonable accuracy. The simulation results of the different models are presented and their validity is discussed. (orig.). 4 refs.

  1. Automating horizontal boring and milling machine

    International Nuclear Information System (INIS)

    Naqvi, S.A.R.; Mahmood, T.; Choudhry, M.A.; Hanif, A.

    2012-01-01

    Aiming at the requirements of modification for many old import machine tools in industry, the schemes suited to the renovation are presented in this paper. A horizontal boring and milling machine (HBM) involved in machining of tank Al-Khalid has been modified using Mitsubishi FX-1N and FX-2N PLC. The developed software is for control of all the functions of the said machine. These functions include power on/off oil pump, spindle rotation and machine movement in all axes. All the decisions required by the machine for actuation of instructions are based on the data acquired from the control panel, timers and limit switches. Also the developed software minimize the down time, safety of operator and error free actuation of instructions. (author)

  2. Modelling the horizontal steam generator with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Ylijoki, J [VTT Energy, Espoo (Finland); Palsinajaervi, C; Porkholm, K [IVO International Ltd, Vantaa (Finland)

    1996-12-31

    In this paper the capability of the five- and six-equation models of the simulation code APROS to simulate the behaviour of the horizontal steam generator is discussed. Different nodalizations are used in the modelling and the results of the stationary state runs are compared. Exactly the same nodalizations have been created for the five- and six-equation models. The main simulation results studied in this paper are void fraction and mass flow distributions in the secondary side of the steam generator. It was found that quite a large number of simulation volumes is required to simulate the distributions with a reasonable accuracy. The simulation results of the different models are presented and their validity is discussed. (orig.). 4 refs.

  3. Horizontal beam tubes in FRM-II

    International Nuclear Information System (INIS)

    Coors, D.; Vanvor, D.

    2001-01-01

    The new research reactor in Garching FRM-II is equipped with 10 leak tight horizontal beam tubes (BT1 - BT10), each of them consisting of a beam tube structure taking an insert with neutron channels. The design of all beam tube structures is similar whereas the inserts are adapted to the special requirements of the using of each beam tube. Inside the reflector tank the beam tube structures are shaped by the inner cones which are made of Al-alloy with circular and rectangular cross sections. They are located in the region of maximum neutron flux (exception BT10), they are directly connected to the flanges of the reflector tank, their lengths are about 1.5 m (exception BT10) and their axes are directed tagentially to the core centre thus contributing to a low γ-noise at the experiments. (orig.)

  4. A horizontal dilution refrigerator for polarized target

    International Nuclear Information System (INIS)

    Isagawa, S.; Ishimoto, S.; Masaike, A.; Morimoto, K.

    1978-01-01

    A horizontal dilution refrigerator was constructed with a view to the spin frozen target and the deuteron polarized target. High cooling power at high temperature such as 3.7 mW at 400 mK serves for overcoming a heat load of microwave to polarize the nuclear spins in the target material. The cooling power at 50 mK was 50 μW, which is sufficient to hold the high nuclear polarization for long time. The lowest temperature reached was 26 mK. The refrigerator has rather simple heat exchangers, a long stainless steel double tube heat exchanger and two coaxial type heat exchangers with sintered copper. The mixing chamber is made of polytetrafluoroethylene (TFE) and demountable so that the target material can be easily put into it. (Auth.)

  5. In situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Dougherty, J.M.; Wear, J.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    The test consisted of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well. This configuration has the advantage of simultaneously stimulating methanotrophic activity in both the groundwater and vadose zone, and inhibiting spread of the contaminant plume. Groundwater was monitored biweekly from 13 wells for a variety of chemical and microbiological parameters. Groundwater from wells in affected areas showed increases in methanotrophs of more than 1 order of magnitude every 2 weeks for several weeks after 1% methane-in-air injection was started. Some wells had increases as much as 7 orders of magnitude. Simultaneous with the increase in methanotrophs was a decrease in water and soil gas concentrations of trichloroethylene (TCE) and tetrachloroethane (PCE). Two wells declined in TCE/PCE concentration in the water by more than 90% to below 2 ppb. All of the wells in the affected zone showed significant decreases in contaminants in less than one month. Chloride concentrations in the water were inversely correlated with TCE/PCE concentration. Four of five vadose zone piezometers declined from concentration as high as 10,000 ppm to less than 5 ppm in less than 6 weeks. The fifth cluster also declined by more than 95%. After only three months on injection, a decline in TCE/PCE in the sediment of more than 30% was also observed, with TCE/PCE being undetectable in most sediments at the end of the 14-month test. Gene probes and direct isolation from the water and sediment revealed that the right types of methanotrophs were being stimulated and that isolates could degrade TCE at a high rate

  6. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players.

    Science.gov (United States)

    Ramírez-Campillo, Rodrigo; Gallardo, Francisco; Henriquez-Olguín, Carlos; Meylan, Cesar M P; Martínez, Cristian; Álvarez, Cristian; Caniuqueo, Alexis; Cadore, Eduardo L; Izquierdo, Mikel

    2015-07-01

    The aim of this study was to compare the effects of 6 weeks of vertical, horizontal, or combined vertical and horizontal plyometric training on muscle explosive, endurance, and balance performance. Forty young soccer players aged between 10 and 14 years were randomly divided into control (CG; n = 10), vertical plyometric group (VG; n = 10), horizontal plyometric group (HG; n = 10), and combined vertical and horizontal plyometric group (VHG; n = 10). Players performance in the vertical and horizontal countermovement jump with arms, 5 multiple bounds test (MB5), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), sprint, change of direction speed (CODS), Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1), and balance was measured. No significant or meaningful changes in the CG, apart from small change in the Yo-Yo IR1, were observed while all training programs resulted in meaningful changes in explosive, endurance, and balance performance. However, only VHG showed a statistically significant (p ≤ 0.05) increase in all performance test and most meaningful training effect difference with the CG across tests. Although no significant differences in performance changes were observed between experimental groups, the VHG program was more effective compared with VG (i.e., jumps, MKV, sprint, CODS, and balance performance) and HG (i.e., sprint, CODS, and balance performance) to small effect. The study demonstrated that vertical, horizontal, and combined vertical and horizontal jumps induced meaningful improvement in explosive actions, balance, and intermittent endurance capacity. However, combining vertical and horizontal drills seems more advantageous to induce greater performance improvements.

  7. Resolution of a triple axis spectrometer

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1969-01-01

    A new method for obtaining the resolution function for a triple-axis neutron spectrometer is described, involving a combination of direct measurement and analytical calculation. All factors which contribute to the finite resolution of the instrument may be taken into account, and Gaussian...... or experimentally determined probability distributions may be used. The application to the study of the dispersion relation for excitations in a crystal is outlined...

  8. Interplay between tilted and principal axis rotation

    International Nuclear Information System (INIS)

    Datta, Pradip; Roy, Santosh; Chattopadhyay, S.

    2014-01-01

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely 109,110 Ag and 108,110 Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay

  9. Interplay between tilted and principal axis rotation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradip [Ananda Mohan College, 102/1 Raja Rammohan Sarani, Kolkata 700 009 (India); Roy, Santosh; Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2014-08-14

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely {sup 109,110}Ag and {sup 108,110}Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay.

  10. Columnar interactions determine horizontal propagation of recurrent network activity in neocortex

    Science.gov (United States)

    Wester, Jason C.; Contreras, Diego

    2012-01-01

    The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential L4→L2/3→L5 sequence, followed by horizontal propagation with a leading front in supra and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supra and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supra and infragranular circuits with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo. PMID:22514308

  11. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    International Nuclear Information System (INIS)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  12. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  13. Six-axis force–torque sensor with a large range for biomechanical applications

    International Nuclear Information System (INIS)

    + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Brookhuis, R A; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Droogendijk, H; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >De Boer, M J; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Sanders, R G P; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Lammerink, T S J; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Wiegerink, R J; + Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" data-affiliation=" (MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands))" >Krijnen, G J M

    2014-01-01

    A silicon six-axis force–torque sensor is designed and realized to be used for measurement of the power transfer between the human body and the environment. Capacitive read-out is used to detect all axial force components and all torque components simultaneously. Small electrode gaps in combination with mechanical amplification by the sensor structure result in a high sensitivity. The miniature sensor has a wide force range of up to 50 N in normal direction, 10 N in shear direction and 25 N mm of maximum torque around each axis. (paper)

  14. Intra-Wellbore Head Losses in a Horizontal Well with both Kinematic and Frictional Effects in an Anisotropic Confined Aquifer between Two Streams

    Science.gov (United States)

    Wang, Q.; Zhan, H.

    2017-12-01

    Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while

  15. Open critical area model and extraction algorithm based on the net flow-axis

    International Nuclear Information System (INIS)

    Wang Le; Wang Jun-Ping; Gao Yan-Hong; Xu Dan; Li Bo-Bo; Liu Shi-Gang

    2013-01-01

    In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area. (interdisciplinary physics and related areas of science and technology)

  16. Effect of the horizontal branch on the colours of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sil' chenko, O K [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' '

    1963-05-01

    The influence of the horizontal branch (HB) on the integral UBV colours of globular clusters is studied by means of statistical analysis of the colour-magnitude diagram catalogue for globular clusters of our Galaxy. The colour correction for HB is shown to be always negative. It turns out to be small for m. tal-rich globular clusters ((Fe/H)>-1.1) and independent on the HB shape for metal-poor ones.

  17. Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry

    International Nuclear Information System (INIS)

    Dhar, Jyoti; Dev, S.

    1992-01-01

    A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig

  18. Effect of the horizontal branch on the colours of globular clusters

    International Nuclear Information System (INIS)

    Sil'chenko, O.K.

    1963-01-01

    The influence of the horizontal branch (HB) on the integral UBV colours of globular clusters is studied by means of statistical analysis of the colour-magnitude diagram catalogue for globular clusters of our Galaxy. The colour correction for HB is shown to be always negative. It turns out to be small for m. tal-rich globular clusters ([Fe/H]>-1.1) and independent on the HB shape for metal-poor ones

  19. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  20. Topological properties of the limited penetrable horizontal visibility graph family

    Science.gov (United States)

    Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene

    2018-05-01

    The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.

  1. Parametric study of single-axis acoustic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, W. J.; Wei, B.

    2001-08-06

    Remarkable enhancement of the single-axis acoustic levitation force is achieved by properly curving the surface and enlarging the section of the reflector so as to levitate high density material like tungsten ({rho}{sub s}=18.92g/cm{sup 3}). A two-cylinder model incorporating the boundary element method simulations is presented for systematic study of the relationship between levitation capabilities and geometric parameters. The model proves to be successful in predicting resonant modes and explaining deviation of the levitated samples near the reflector and driver. The dependence of levitation force on resonant mode, reflector section radius R{sub b} and curvature radius R is revealed and summarized, which agrees with the experiment in principle and suggests that a reflector with large R{sub b} and small R (when R{sub b}/{lambda}{>=}0.982) working under mode 1 assures better levitation capabilities. {copyright} 2001 American Institute of Physics.

  2. Parametric study of single-axis acoustic levitation

    International Nuclear Information System (INIS)

    Xie, W. J.; Wei, B.

    2001-01-01

    Remarkable enhancement of the single-axis acoustic levitation force is achieved by properly curving the surface and enlarging the section of the reflector so as to levitate high density material like tungsten (ρ s =18.92g/cm 3 ). A two-cylinder model incorporating the boundary element method simulations is presented for systematic study of the relationship between levitation capabilities and geometric parameters. The model proves to be successful in predicting resonant modes and explaining deviation of the levitated samples near the reflector and driver. The dependence of levitation force on resonant mode, reflector section radius R b and curvature radius R is revealed and summarized, which agrees with the experiment in principle and suggests that a reflector with large R b and small R (when R b /λ≥0.982) working under mode 1 assures better levitation capabilities. Copyright 2001 American Institute of Physics

  3. GRIN planar waveguide concentrator used with a single axis tracker.

    Science.gov (United States)

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  4. The Minimal Model of the Hypothalamic-Pituitary-Adrenal Axis

    DEFF Research Database (Denmark)

    Vinther, Frank; Andersen, Morten; Ottesen, Johnny T.

    2011-01-01

    -physiological values of the parameters are needed in order to achieve local instability of the fixed point. Small changes inphysiologically relevant parameters cause the system to be globally stable using the analytical criteria. All simulations show a globally stable fixed point, ruling out periodic solutions even...... are modeled as a system of three coupled, nonlinear differential equations. Experimental data shows the circadian as well as the ultradian rhythm. This paper focuses on the ultradian rhythm. The ultradian rhythm can mathematically be explained by oscillating solutions. Oscillating solutions to an ODE emerges...... from an unstable fixed point with complex eigenvalues with a positive real parts and a non-zero imaginary parts. The first part of the paper describes the general considerations to be obeyed for a mathematical model of the HPA axis. In this paper we only include the most widely accepted mechanisms...

  5. Nonlinear characterization of a single-axis acoustic levitator

    International Nuclear Information System (INIS)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-01-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed

  6. Nonlinear characterization of a single-axis acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  7. Nonlinear characterization of a single-axis acoustic levitator.

    Science.gov (United States)

    Andrade, Marco A B; Ramos, Tiago S; Okina, Fábio T A; Adamowski, Julio C

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  8. Effectiveness of Horizontal Rebar on Concrete Block Retaining Wall Strength

    OpenAIRE

    Krishpersad Manohar; Rikhi Ramkissoon

    2016-01-01

    The effectiveness of including a horizontal rebar compared to only a vertical rebar in concrete filled core interlocking concrete block retaining wall sections was investigated with respect to the horizontal retaining force. Experimental results for three specimens of interlocking blocks with vertical rebar and concrete filled cores showed an average horizontal retaining force of 24546 N ± 5.7% at an average wall deflection of 13.3 mm. Experimental results for three wall specimens of interloc...

  9. Horizontal and Vertical Rule Bases Method in Fuzzy Controllers

    OpenAIRE

    Aminifar, Sadegh; bin Marzuki, Arjuna

    2013-01-01

    Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal...

  10. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  11. Spondylolysis and the sacro-horizontal angle in athletes

    International Nuclear Information System (INIS)

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L.; Sahlgrenska Sjukhuset, Goeteborg; King Faisal Specialist Hospital and Research Centre, Riyadh

    1989-01-01

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.)

  12. Spondylolysis and the sacro-horizontal angle in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L. (Oestra Sjukhuset, Goeteborg (Sweden). Dept. of Orthopaedics; Sahlgrenska Sjukhuset, Goeteborg (Sweden). Dept. of Diagnostic Radiology; King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Radiology)

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.).

  13. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    International Nuclear Information System (INIS)

    1992-01-01

    The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch reg-sign) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion

  14. Research of z-axis geometric dose efficiency in multi-detector computed tomography

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Moon Chan

    2006-01-01

    With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for

  15. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Shiotsu, M.; Takeuchi, Y. [Institute of Atomic Energy, Kyoto Univ. (Japan)] [and others

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  16. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    Science.gov (United States)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  17. Horizontal gene transfer in silkworm, Bombyx mori

    Science.gov (United States)

    2011-01-01

    Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes. PMID:21595916

  18. Fusion reactor horizontal versus vertical maintenance approach

    International Nuclear Information System (INIS)

    Charruyer, Ph.; Djerassi, H.; Leger, D.; Maupou, M.; Rouillard, J.; Salpietro, E.; Holloway, C.; Suppan, A.

    1987-01-01

    This paper concerns the comparison of horizontal versus vertical maintenance options of internal components (blanket and segment) of fusion reactors NET (Next European Torus) and INTOR Design. The described mechanical options are taken to ensure the handling of internals with the required precision, taking into account the problems raised by the safety and confinement requirements. Handling is obviously performed remotely. The option comparisons are performed according to the criteria of feasibility, building size, duration of maintenance operations, safety, flexibility, availability and cost. The first conclusions point on that the vertical handling option offers advantages, as regards the ease of handling and confinement possibilities. From the building size point of view, the two solutions are almost equivalent, while other criteria do not provide a basis for choice. It is emphasized that the confinement option C.T.U. (Containment Transfer Unit) or T.I.C. (Tight Intermediate Confinement) should be the major factor in determining the best options. In additions, a cost comparative analysis emphasizes the best cost/benefit ratio for the different options studied

  19. Implications of horizontal symmetries on baryon number violation in supersymmetric models

    International Nuclear Information System (INIS)

    Ben-Hamo, V.; Nir, Y.

    1994-08-01

    The smallness of the quark and lepton parameters and the hierarchy between them could be the result of selection rules due to a horizontal symmetry broken by a small parameter. The same selection rules apply to baryon number violating terms. Consequently, the problem of baryon number violation in supersymmetry may be solved naturally, without invoking any especially-designed extra symmetry. This mechanism is efficient enough even for low-scale flavor physics. Proton decay is likely to be dominated by the modes K + ν-bar i or K o μ + (e + ), and may proceed at observable rates. (authors). 15 refs

  20. The Triple Axis and SPINS Spectrometers.

    Science.gov (United States)

    Trevino, S F

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  1. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  2. Three-axis asymmetric radiation detector system

    Science.gov (United States)

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  3. Thermal analysis of the horizontal disposal for HLW

    International Nuclear Information System (INIS)

    Zhao Honggang

    2012-01-01

    The temperature on the canister surface is set to be not more than 100 in the repository, a criterion which dictates the dimension of the repository. The factors that affect the highest temperature on the canister surface include the initial power of the canister, the material thermal properties of the engineered barrier system (EBS), the gaps around the canister in the EBS, the initial ground temperature and thermal properties of the host rock, the repository layout, etc. The article examines the material thermal properties of the host rock and the EBS, the thermal conductivity properties of the different gaps in the EBS, the temperature evolution around the single canister by using the analysis method and the numerical method for horizontal disposal concept. The findings are as follows: 1) The most important and the most sensitive parameter is the initial disposal power of the canister; 2) The two key factors that affect the highest temperature on the canister surface are the material parameter's uncertainty and nature variability of the host rock and the EBS, and the gaps around the canister in the EBS; 3) The temperature offsets between the canister and bentonite is not more than 10, and the bigger the inner gaps, the bigger temperature offsets between the canister and bentonite; When the gap between the bentonite and the host rock is filled with water, the gap's temperature offsets is small, but it will be 1∼3 higher when the gaps between the bentonite and the host rock is filled with air. (author)

  4. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    Science.gov (United States)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  5. Horizontally viscous effects in a tidal basin: extending Taylor's problem

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, H.M.

    2009-01-01

    The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model

  6. The Interplay of Different Types of Governance in Horizontal Cooperations

    DEFF Research Database (Denmark)

    Raue, Jan Simon; Wieland, Andreas

    2015-01-01

    Purpose – Over the last decades, horizontal cooperations between logistics service providers (LSPs) have become a well-established organizational form and their use is expected to grow even further in the future. In spite of this increasing importance of horizontal LSP cooperations, little research...

  7. Horizontal biases in rats’ use of three-dimensional space

    Science.gov (United States)

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  8. Vertical vs. Horizontal Integration: Pre-emptive Merging.

    OpenAIRE

    Colangelo, Giuseppe

    1995-01-01

    Preemption plays a crucial role in arms merger decisions. The author studies whether and under which circumstances preemptive merging occurs in vertically related industries. He finds that vertical mergers often preempt horizontal mergers and are dominant outcomes. Preempting the threat of a detrimental horizontal integration may be the main reason for vertically integrating. Copyright 1995 by Blackwell Publishing Ltd.

  9. Horizontal and vertical seismic isolation of a nuclear power plant

    International Nuclear Information System (INIS)

    Ikonomou, A.S.

    1983-01-01

    This paper presents a study for the horizontal and vertical seismic isolation of a nuclear power plant with a base isolation system, developed by the author, called the Alexisismon. This system -- which comprises different schemes for horizontal or vertical or both horizontal and vertical isolation -- is a linear system based on the principle of separation of functions. That is, horizontal and vertical isolation are realized through different components and act independently from each other. As far as horizontal isolation is concerned, the role of transmitting vertical loads is uncoupled from the role of inducing horizontal restoring forces so that both functions can be performed without instability. It is possible either to provide both horizontal and vertical isolation to the whole nuclear plant or to isolate the whole plant horizontally and to provide vertical isolation to sensitive and costly equipment only. When the fundamental period of the plant or equipment is 2 seconds and when the vertical displacements are of the order of + or - 20 inches, the structure or equipment are protected against earthquakes up to 1.10 and 1.30 g for actual and 0.60 and 1.50 g for artificial accelerograms. In both cases all the isolation elements behave elastically up to these acceleration limits as well as the superstructure and equipment

  10. Preserved otolith organ function in caspase-3-deficient mice with impaired horizontal semicircular canal function.

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-06-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: (1) horizontal angular vestibulo-ocular reflex (hVOR) to evaluate semicircular canal function and (2) otolith-ocular reflex (OOR) to evaluate otolith organ function and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo off-vertical axis rotation to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow-phase eye velocity and vertical eye position were evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 (-/-) mice had severely impaired hVOR gain, while Casp3 (+/-) mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low-to-mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ-related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function.

  11. Preserved otolith organ function in caspase-3 deficient mice with impaired horizontal semicircular canal function

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-01-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: 1) horizontal angular vestibular-ocular reflex (hVOR) to evaluate semicircular canal function, and 2) otolith-ocular reflex (OOR) to evaluate otolith organ function, and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo-off vertical axis rotation (pOVAR) to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow phase eye velocity (HEV) and vertical eye position (VEP) was evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 −/− mice had severely impaired hVOR gain, while Casp3 +/− mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low to mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function. PMID:25827332

  12. Extracellular matrix dynamics during vertebrate axis formation.

    Science.gov (United States)

    Czirók, András; Rongish, Brenda J; Little, Charles D

    2004-04-01

    The first evidence for the dynamics of in vivo extracellular matrix (ECM) pattern formation during embryogenesis is presented below. Fibrillin 2 filaments were tracked for 12 h throughout the avian intraembryonic mesoderm using automated light microscopy and algorithms of our design. The data show that these ECM filaments have a reproducible morphogenic destiny that is characterized by directed transport. Fibrillin 2 particles initially deposited in the segmental plate mesoderm are translocated along an unexpected trajectory where they eventually polymerize into an intricate scaffold of cables parallel to the anterior-posterior axis. The cables coalesce near the midline before the appearance of the next-formed somite. Moreover, the ECM filaments define global tissue movements with high precision because the filaments act as passive motion tracers. Quantification of individual and collective filament "behaviors" establish fate maps, trajectories, and velocities. These data reveal a caudally propagating traveling wave pattern in the morphogenetic movements of early axis formation. We conjecture that within vertebrate embryos, long-range mechanical tension fields are coupled to both large-scale patterning and local organization of the ECM. Thus, physical forces or stress fields are essential requirements for executing an emergent developmental pattern-in this case, paraxial fibrillin cable assembly.

  13. Benefits of a horizontal well in sandstone waterflood

    International Nuclear Information System (INIS)

    Hansen, K.L.

    1992-01-01

    This is a case study which describes the planning and results of a horizontal well in a shallow Wilcox sandstone waterflood unit in central Louisiana. The Tremont H-13-1 was OXY USA Inc.'s first horizontal well. Analysis will include examination of the selection criteria, planning, execution, completion, and production. A variety of well and field data is presented and reviewed to access the value of this information as it applies towards other applications. The Cruse Waterflood Unit is a 2100 ft. Wilcox formation in central Louisiana. Production improvements have been 500% or greater for the horizontal well versus adjacent vertical wells. The horizontal well paid out in less than 4 months Results from this well indicate that not only was this project an economic success, but that other fields will similar conditions can be produced in a more profitable manner with horizontal wells

  14. A horizontal well analysis from a view of its productivity

    Directory of Open Access Journals (Sweden)

    Lucia Sciranková

    2006-10-01

    Full Text Available The 1990s may become known in the oil field as the decade of the horizontal well. Horizontal wells can increase the production rate and the ultimate recovery, and can reduce the number of platforms on wells required to develop a reservoir.An empirical equation to calculate the inflow performance of two-phase flow for a vertical and a horizontal well in regime of dissolved gas presented by Vogel in 1968. His equation was based on the results of reservoir simulation. The created model whore result (output is the ratio of the productivity of a horizontal well to the productivity of a vertical well for a given area expressed by anumber of vertical wells the replaced by one horizontal well. The model is applied for a concrete ideological model.

  15. Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Li, Zhigang

    through horizontal openings. Two cases of full-scale measurements of buoyancy driven natural ventilation through horizontal openings are performed: one horizontal opening and one horizontal opening combined with one vertical opening. For the case of one horizontal opening, the measurements are made....... Computational fluid dynamics (CFD) are used to study these two air flow cases. The air flow rate and air flow pattern are predicted and compared with the full-scale measurements. The measurement data are used to compare two CFD models: standard k- ε model and large eddy simulation (LES) model. The cases...... transient, unstable and complex, and the air flow rates oscillate with time. Correlations between the Froude number Fr and the opening ratio L/D are obtained, which is reasonable agreement with Epstein's formula derived from brine-water measurements, but the obtained Fr values show considerable deviations...

  16. Experimental Study on Natural Convection Heat Transfer From two Parallel Horizontal Cylinders in Horizontal Cylindrical Enclosure

    Directory of Open Access Journals (Sweden)

    Ahmed T. Ahmed

    2013-05-01

    Full Text Available  An experimental study on natural convection heat transfer from two parallel horizontal cylinders in horizontal cylindrical enclosure was carried out under condition of constant surfaces temperature for two cylinders and cylindrical enclosure. The study included the effect of Rayleigh number, rotation angle that represent the confined angle between the passing horizontal plane in cylindrical enclosure center and passing line in two cylinders centers, and the spaces between two cylinders on their heat loss ability.39An experimental set-up was used for this purpose which consist watercontainer, test section which is formed of plastic cylinder that represent the cylindrical enclosure, and two heating elements which are formed of two copper cylinders with (19 mm in diameters heated internally by electrical sources that represents transfer and heat loss elements through this set-up.      The experiments were done at the range of Rayleigh number between ( , cylinders rotation angle at ( , and spacing ratio at ( .     The study showed that the ability of heat loss from two cylinders is a function of Rayleigh number, cylinders rotation angle, and the spaces between them. This ability is increased by increasing of Rayleigh number and it was showed that this ability reaches maximum value at the first cylinder ( and minimum value at the second cylinder ( at spacing ratio (S/D=3 and rotation angle ( for the first and ( for the second cylinder respectively.      The effective variables on natural convection heat transfer from the above two cylinders are related by two correlating equations, each one explains dimensionless relation of heat transfer from each cylinder that represented by Nusselt number against Rayleigh number, rotation angle, and the spacing ratio between two cylinders. 

  17. Refined discrete and empirical horizontal gradients in VLBI analysis

    Science.gov (United States)

    Landskron, Daniel; Böhm, Johannes

    2018-02-01

    Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these

  18. Optical performance of inclined south-north axis three-positions tracked solar panels

    International Nuclear Information System (INIS)

    Zhong, Hao; Li, Guihua; Tang, Runsheng; Dong, Wenli

    2011-01-01

    In this work, the optical performance of solar panels with a new sun-tracking technique was theoretically investigated based on the proposed mathematical method and monthly horizontal radiation. The mechanism of the investigated sun-tracking is that the attitude angle of solar panels is daily adjusted three times at three fixed positions: eastward, southward, and westward in the morning, noon, and afternoon, respectively, by rotating solar panels about the inclined south-north axis (ISNA-3P sun-tracking). Calculation results showed that, for ISNA-3P tracked solar panels with a yearly fixed tilt-angle of the ISNA, the maximum annual collectible radiation on ISNA-3P tracked solar panels was about 93% of that on a solar panel with 2-axis sun-tracking; whereas for those with the ISNA being yearly adjusted four times at three fixed tilt-angles, it was about 96%. Results also indicated that the attempt to further increase the annual solar gain on ISNA-3P tracked solar panels by seasonally optimizing design of the sun-tracking system for maximizing solar gain in each of four seasons was not efficient, and thus not advisable in practical applications. Optimal parametric designs of such sun-tracking system for maximizing the annual solar gain on solar panels in different cases were also presented. -- Research highlights: → The paper presented a new sun-tracking technique (ISNA-3P) for possible applications in PV generating systems. → Algorithms to estimate daily collectible radiation on the fixed, 2-axis and ISNA-3P tracked solar panels were proposed based on solar geometry and monthly horizontal radiation. → A detailed theoretical study on the optical performance of such tracked solar panels in terms of R 3P-0 and R 3P-2 , the ratios of maximum annual solar gain to that on fixed and 2-axis tracked solar panels; optimal parameters affecting the optical performance of the systems were presented in the different cases. → Results showed that such sun-tracking system

  19. Comparison and Analysis of Instruments Measuring Plane-of-Array Irradiance for One-Axis Tracking Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vignola, Frank [University of Oregon; Chiu, Chun-Yun [University of Oregon; Peterson, Josh [University of Oregon

    2018-04-12

    A variety of sensors are studied on a one-axis tracking surface and a horizontal surface in Golden, Colorado, and Eugene, Oregon. This is the first year of a long-term study that will look at not only a comparison between the instruments but also the longer-term degradation in calibration and/or performance. Initially, results from each location will be analyzed, and then results will be compared and contrasted between the two locations. A quick comparison at Eugene indicates that reference solar cells seem to compare better against a secondary standard pyranometer on a one-axis tracker than photodiode-based pyranometers. More study is needed to characterize and confirm this finding.

  20. A Device to Measure Magnetic and Mechanical Axis of Superconducting Magnets for the Large Hadron Collider at CERN

    CERN Document Server

    Buzio, M; García-Pérez, J; Laface, E; Pauletta, S

    2007-01-01

    The LHC will be composed of 1232 horizontally curved, 15 meter long, cryodipoles and 474 Short Straight Sections, being assembled by different manufacturers. Magnetic axis alignment is an essential part of the magnets quality for two reasons: first, to be able to install correctly the magnets in the tunnel w.r.t. the reference beam orbit; secondly, to assess the relative alignment between the magnets composing the assembly, i.e. spool pieces for the dipoles and larger correctors for the SSS. A system called AC mole is being used extensively to measure magnetic and geometric axis, as well as roll angle, for every single magnet composing all the SSS. This paper describes its performance, its first years of operation, as well as the improvements that have made it very powerful, versatile and easy to use.

  1. Three-dimensional Frankfort horizontal plane for 3D cephalometry: a comparative assessment of conventional versus novel landmarks and horizontal planes.

    Science.gov (United States)

    Pittayapat, Pisha; Jacobs, Reinhilde; Bornstein, Michael M; Odri, Guillaume A; Lambrichts, Ivo; Willems, Guy; Politis, Constantinus; Olszewski, Raphael

    2018-05-25

    To assess the reproducibility of landmarks in three dimensions that determine the Frankfort horizontal plane (FH) as well as two new landmarks, and to evaluate the angular differences of newly introduced planes to the FH. Three-dimensional (3D) surface models were created from CBCT scans of 26 dry human skulls. Porion (Po), orbitale (Or), internal acoustic foramen (IAF), and zygomatico-maxillary suture (ZyMS) were indicated in the software by three observers twice with a 4-week interval. Angles between two FHs (FH 1: Or-R, Or-L, mid-Po; FH 2: Po-R, Po-L, mid-Or) and between FHs and new planes (Plane 1-6) were measured. Coordinates were exported to a spreadsheet. A statistical analysis was performed to define the landmark reproducibility and 3D angles. Intra- and inter-observer landmark reproducibility showed mean difference more than 1 mm for x-coordinates of all landmarks except IAF. IAF showed significantly better reproducibility than other landmarks (P Plane 3, connecting Or-R, Or-L and mid-IAF, and Plane 4, connecting Po-R, Po-L and mid-ZyMS, both showed an angular difference of less than 1 degree when compared to FHs. This study revealed poor reproducibility of the traditional FH landmarks on the x-axis and good reproducibility of a new landmark tested to replace Po, the IAF. Yet, Or showed superior results compared to ZyMS. The potential of using new horizontal planes was demonstrated. Future studies should focus on identification of a valid alternative for Or and ZyMS and on clinical implementation of the findings.

  2. Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints

    Science.gov (United States)

    Biehl, D.; Heinze, J.; Winter, W.

    2018-05-01

    We compute the expected neutrino fluence from SGRB 170817A, associated with the gravitational wave event GW 170817, directly based on Fermi observations in two scenarios: structured jet and off-axis (observed) top-hat jet. While the expected neutrino fluence for the structured jet case is very small, large off-axis angles imply high radiation densities in the jet, which can enhance the neutrino production efficiency. In the most optimistic allowed scenario, the neutrino fluence can reach only 10-4 of the sensitivity of the neutrino telescopes. We furthermore demonstrate that the fact that gamma-rays can escape limits the baryonic loading (energy in protons versus photons) and the off-axis angle for the internal shock scenario. In particular, for a baryonic loading of 10, the off-axis angle is more strongly constrained by the baryonic loading than by the time delay between the gravitational wave event and the onset of the gamma-ray emission.

  3. Tip displacement variance of manipulator to simultaneous horizontal and vertical stochastic base excitations

    International Nuclear Information System (INIS)

    Rahi, A.; Bahrami, M.; Rastegar, J.

    2002-01-01

    The tip displacement variance of an articulated robotic manipulator to simultaneous horizontal and vertical stochastic base excitation is studied. The dynamic equations for an n-links manipulator subjected to both horizontal and vertical stochastic excitations are derived by Lagrangian method and decoupled for small displacement of joints. The dynamic response covariance of the manipulator links is computed in the coordinate frame attached to the base and then the principal variance of tip displacement is determined. Finally, simulation for a two-link planner robotic manipulator under base excitation is developed. Then sensitivity of the principal variance of tip displacement and tip velocity to manipulator configuration, damping, excitation parameters and manipulator links length are investigated

  4. Horizontal career changes as an alternative to premature exit from work.

    Science.gov (United States)

    Aleksandrowicz, Paula; Zieschang, Hanna; Bräunig, Dietmar; Jahn, Frauke

    2014-01-01

    Certain workplaces are called jobs with limited tenure. Due to physical or psychosocial risk factors, often coupled with qualification mismatches, workers cannot grow old in them. That may lead to premature exit into retirement, to a period of drawing a work incapacity pension or to a long spell of unemployment. A horizontal career change, which enables the worker to move on to a less burdening workplace while preserving social status, is a possible solution. The objective of the "Horizontal career change-a new job opportunity for older employees" project is to develop a model of career changes for workers employed in jobs with limited tenure and to implement it in the form of an information- and communication technology-based tool. Possible applications range from individual career planning, through institutionalized vocational reintegration, to personnel development in small and medium-sized enterprises.

  5. Shear horizontal wave excitation and reception with shear horizontal piezoelectric wafer active sensor (SH-PWAS)

    International Nuclear Information System (INIS)

    Kamal, A; Giurgiutiu, V

    2014-01-01

    This article discusses shear horizontal (SH) guided-waves that can be excited with shear type piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the art SH waves modelling and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-mechanical coupling coefficient d 35 are reviewed. Multiphysics finite element modelling (MP-FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure are presented. The structural resonances are compared with experimental measurements and showed good agreement. Analytical prediction of SH waves was performed. SH wave propagation experimental study was conducted between different combinations of SH-PWAS and regular in-plane PWAS transducers. Experimental results were compared with analytical predictions for aluminium plates and showed good agreement. 2D wave propagation effects were studied by MP-FEM. An analytical model was developed for SH wave power and energy. The normal mode expansion (NME) method was used to account for superpositioning multimodal SH waves. Modal participation factors were presented to show the contribution of every mode. Power and energy transfer between SH-PWAS and the structure was analyzed. Finally, we present simulations of our developed wave power and energy analytical models. (paper)

  6. Horizontal versus familial transmission of Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    2008-10-01

    Full Text Available Transmission of Helicobacter pylori is thought to occur mainly during childhood, and predominantly within families. However, due to the difficulty of obtaining H. pylori isolates from large population samples and to the extensive genetic diversity between isolates, the transmission and spread of H. pylori remain poorly understood. We studied the genetic relationships of H. pylori isolated from 52 individuals of two large families living in a rural community in South Africa and from 43 individuals of 11 families living in urban settings in the United Kingdom, the United States, Korea, and Colombia. A 3,406 bp multilocus sequence haplotype was determined for a total of 142 H. pylori isolates. Isolates were assigned to biogeographic populations, and recent transmission was measured as the occurrence of non-unique isolates, i.e., isolates whose sequences were identical to those of other isolates. Members of urban families were almost always infected with isolates from the biogeographic population that is common in their location. Non-unique isolates were frequent in urban families, consistent with familial transmission between parents and children or between siblings. In contrast, the diversity of H. pylori in the South African families was much more extensive, and four distinct biogeographic populations circulated in this area. Non-unique isolates were less frequent in South African families, and there was no significant correlation between kinship and similarity of H. pylori sequences. However, individuals who lived in the same household did have an increased probability of carrying the same non-unique isolates of H. pylori, independent of kinship. We conclude that patterns of spread of H. pylori under conditions of high prevalence, such as the rural South African families, differ from those in developed countries. Horizontal transmission occurs frequently between persons who do not belong to a core family, blurring the pattern of familial

  7. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    Science.gov (United States)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  8. Study of large-scale vertical axis wind turbine wake through numerical modelling and fullscale experiments

    DEFF Research Database (Denmark)

    Immas, Alexandre; Kluczewska-Bordier, Joanna; Beneditti, Pascal

    Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One k...... horizontal axis wind turbine wind farm....... improvement that could make offshore wind more attractive is the reduction of the wake effect [1]. The latter corresponds to the velocity deficit generated by each wind turbine wake which affects the production of the others. This effect accounts for approximately 10% of the energy losses for a typical......Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One key...

  9. Horizontal drilling in Miocene thin sand of Lake Maracaibo

    Energy Technology Data Exchange (ETDEWEB)

    Partidas, C. [PDVSA Exploration and Production (Venezuela)

    1998-12-31

    Horizontal drilling in the mature Lake Maracaibo field in Venezuela as a means of stimulating production are discussed. The Miocene sand where the horizontal well technology was applied, presented a number of intervals of unconsolidated sand of varied continuity, pay intervals at ten to twenty feet thickness, and reservoir pressures mostly at hydrostatic or below hydrostatic values. This paper evaluates a horizontal drilling program in the Lagunallis Lago Production Unit of Maracaibo, involving 91 wells to date (since 1995). When assessed in economic terms, results indicate that horizontal wells are a better economic alternative than vertical wells. The same results also showed that drainage from thin sand reservoirs resulted in better production with horizontal well technology than production from vertical wells. Payout was less than two years for 50 per cent of the horizontal wells while 40 per cent had payouts of between two and four years. Profit to investment ratio was greater than two in the case of about 70 per cent of the horizontal wells drilled in 1996. 2 tabs., 10 figs.

  10. On the validity of localized approximation for an on-axis zeroth-order Bessel beam

    International Nuclear Information System (INIS)

    Gouesbet, Gérard; Lock, J.A.; Ambrosio, L.A.; Wang, J.J.

    2017-01-01

    Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles. - Highlights: • The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams. • The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam. • It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles. • It is easily argued that this result must remain true for any kind of Bessel beams.

  11. The Proline Regulatory Axis and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Phang, James Ming; Liu, Wei; Hancock, Chad; Christian, Kyle J., E-mail: phangj@mail.nih.gov [Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD (United States)

    2012-06-21

    Studies in metabolism and cancer have characterized changes in core pathways involving glucose and glutamine, emphasizing the provision of substrates for building cell mass. But recent findings suggest that pathways previously considered peripheral may play a critical role providing mechanisms for cell regulation. Several of these mechanisms involve the metabolism of non-essential amino acids, for example, the channeling of glycolytic intermediates into the serine pathway for one-carbon transfers. Historically, we proposed that the proline biosynthetic pathway participated in a metabolic interlock with glucose metabolism. The discovery that proline degradation is activated by p53 directed our attention to the initiation of apoptosis by proline oxidase/dehydrogenase. Now, however, we find that the biosynthetic mechanisms and the metabolic interlock may depend on the pathway from glutamine to proline, and it is markedly activated by the oncogene MYC. These findings add a new dimension to the proline regulatory axis in cancer and present attractive potential targets for cancer treatment.

  12. Polarized triple-axis spectrometer TASP

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P; Keller, P [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The polarized triple-axis spectrometer TASP at SINQ has been optimized for measuring magnetic cross sections in condensed matter. The neutrons are polarized or analyzed either by means of benders or Heusler monochromators. The beam divergence, i.e. the intensity, and the spectral range of the neutrons is rather large because of the supermirror coatings of the feeding neutron guide. The intensity can be further increased at the sample position by means of a focussing monochromator and a focussing anti-trumpet. The end position of TASP allows the tailoring of the neutron beam already before the monochromator and to scatter neutrons over very wide ranges of angles. (author) 6 figs., 1 tab., 8 refs.

  13. A Portable Single Axis Magnetic Gradiometer

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Petersen, Jan Raagaard; Nielsen, Otto V

    2001-01-01

    not provide vector information about the magnetic field. Secondly, one of the sensors measures the ambient magnetic field and is used to compensate for the main field at both sensors. Several methods have been developed for characterization of the 2 gradiometer, and the calibration of the gradient......The single axis magnetic gradiometer based on two compact detector compensation (CDC) fluxgate ringcore sensors separated 20 cm is described. Despite its high stability and precision better than 1 nT, the calibration procedures are not straightforward. Firstly, the mono-axial measurement does...... measurements is achieved by using a magnetic dipole of strength 2 mAm(2). In a coil facility, the gradient can be determined with an accuracy of 0.3 nT/m(RMS)....

  14. RITA-type triple axis spectrometers

    International Nuclear Information System (INIS)

    Roennow, H.M.

    2001-01-01

    The RITA spectrometer at Risoe National Laboratory was the first to incorporate a complete re-thinking of the neutron-path from source, through detector to analysis. Since then, other RITA-type spectrometers such as SPINS at NIST, RITA-II at PSI have been built, and several new spectrometers around the world are adapting the same philosophy. The main novelty of RITA was the introduction of a single back-end tank featuring both an analyser block with multiple individually turnable analyser blades and a 2D position sensitive detector. Several new triple-axis spectrometers are presently being built at existing and future sources, and almost all of them have learnt from the experience with RITA. (R.P.)

  15. Comparison of five-axis milling and rapid prototyping for implant surgical templates.

    Science.gov (United States)

    Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo

    2014-01-01

    This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety

  16. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    Science.gov (United States)

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  17. Selectively placing many fractures in openhole horizontal wells improves production

    Energy Technology Data Exchange (ETDEWEB)

    Love, T. G.; McCarty, R. A. [Chevron USA Inc (United States); Suraatmadja, J. B.; Chambers, R. W.; Grundmann, S. R.

    1998-12-31

    Result of a simulation of an openhole horizontal well that was treated with hydrajet fracturing, a new fracturing process wherein fractures are placed at different locations in a horizontal well without using sectional isolation techniques, are discussed. The process uses high-pressure jetting to concentrate fracturing energy at a precise fracture location, and data is obtained by means of surface and downhole pressure recorders, flow recorders, and tracers. This technique was used in a substantially depleted horizontal well in New Mexico with good results. The new process is reported to be expensive to implement which prevents widespread application at the present time. 7 refs., 9 figs.

  18. Vertical-horizontal wells for depletion and sweep

    Energy Technology Data Exchange (ETDEWEB)

    Muraikhi, A. J.; Pham, T. R.; Liu, J. S.; Khatib, M. R.; Muhaish, A. S. [Saudi Aramco (Saudi Arabia)

    1998-12-31

    A well completion scheme currently in use in a thick, large, elongated carbonate anticline Middle-East oil reservoir is described. This method of well completion calls for a combination of an open hole horizontal section penetrating the top 10 feet of the reservoir and a cased or undisturbed vertical segment through the thick formation. The horizontal section is used for producing and the vertical segment is used for monitoring purposes. Field experience and supported reservoir simulation exercises have shown that the horizontal application is superior to conventional vertical completion both from the economic and from the sweep point of view. 4 refs., 12 figs.

  19. Remediation of a contaminated thin aquifer by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J.; Hoetzl, H. [Univ. of Karlsruhe (Germany); Frank, K. [GEO-Service GmbH, Rheinmuenster (Germany)

    1997-12-31

    At an industrial site in Bruchsal (Germany) a huge trichloroethene contamination was found. After common remedial actions proved to be widely ineffective, new investigations led to a highly contaminated thin aquifer above the main aquifer. The investigation and the beginning of the remediation of the thin aquifer by two horizontal wells is described in this paper. Special attention was given to the dependence between precipitation and the flow direction in the thin aquifer and to hydraulic connections between the thin and the main aquifer. Also a short introduction into a new remedial technique by horizontal wells and first results of the test phase of the horizontal wells are given.

  20. Determination of performance parameters of vertical axis wind turbines in wind tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Van Bang

    2017-01-01

    Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.

  1. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  2. Analysis and design of a vertical axis wind turbine

    OpenAIRE

    Goyena Iriso, Joseba

    2011-01-01

    The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...

  3. Self-starting aerodynamics analysis of vertical axis wind turbine

    OpenAIRE

    Jianyang Zhu; Hailin Huang; Hao Shen

    2015-01-01

    Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter defi...

  4. Rare occurrence of the left maxillary horizontal third molar impaction ...

    African Journals Online (AJOL)

    Rare occurrence of the left maxillary horizontal third molar impaction, the right maxillary third molar vertical impaction and the left mandibular third molar vertical impaction with inferior alveolar nerve proximity in a 30 year old female: a case report.

  5. Horizontal transfer of facultative endosymbionts is limited by host relatedness

    NARCIS (Netherlands)

    Lukasik, P.; Guo, H.; van Asch, M.; Henry, L.; Godfray, H.C.J.; Ferrari, J.

    2015-01-01

    Heritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by

  6. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water

    International Nuclear Information System (INIS)

    Li Jun; Li Zheng-Lin; Ren Yun; Li Wen; Zhang Ren-He

    2015-01-01

    The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experimental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coefficients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results. (paper)

  7. Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)

  8. Horizontal Curve Virtual Peer Exchange : an RSPCB Peer Exchange

    Science.gov (United States)

    2014-06-01

    This report summarizes the Horizontal Curve Virtual Peer Exchange sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professional Capacity Building Program on June 17, 2014. This virtual peer exchange was the f...

  9. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  10. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    Science.gov (United States)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  11. Horizontal well drilled to intersect existing vertical well

    International Nuclear Information System (INIS)

    Price, C.; Reynolds, J.

    1991-01-01

    Morse oilfield, in eastern Gray County of the Texas Panhandle, was originally developed between 1928 and 1937. It is but a very small part of the huge Texas Pandhandle field, which covers over 200,000 productive acres, containing 12,500 active wells with a cumulative production of one billion barrels of oil. The field produces from Permian age dolomites and the Pennsylvanian Granite Wash. This paper reports on multiple production techniques that have been used over the years with varying levels of success. Acidizing techniques in the late 1930s increased development, but the advent of hydraulic fracturing resulted in extensive development. The primary drive mechanism was solution-gas drive. Approximately one-fourth of Panhandle field has been subjected to gas injection, resulting in an estimated 50 million barrels of additional oil production. In 1955, waterflooding appeared to offer the most economical possibility of increasing ultimate recovery from the Brown Dolomite reservoir. The Morse Brown Dolomite pilot flood in Gray County and another Brown Dolomite pilot flood in Hutchinson County were the first two successful pilot floods in Panhandle field. The Morse flood has a total of 40 oil and 27 water injection wells on 500 flood acres. Morse field has a cumulative production of 15.7 million barrels of oil. The operating company, Future Petroleum Corp., a Dallas-based independent, believes that a third alternative using horizontal drilling has the potential to increase production. And it appears that the Brown Dolomite formation of Morse field offers the right combination of factors to attempt this type of venture

  12. Two-phase flow patterns in horizontal rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Ron’shin Fedor

    2016-01-01

    Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.

  13. A method for evaluating horizontal well pumping tests.

    Science.gov (United States)

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  14. Horizontal gaze palsy with progressive scoliosis: CT and MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Bomfim, Rodrigo C.; Tavora, Daniel G.F.; Nakayama, Mauro; Gama, Romulo L. [Sarah Network of Rehabilitation Hospitals, Department of Radiology, Ceara (Brazil)

    2009-02-15

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare congenital disorder characterized by absence of conjugate horizontal eye movements and progressive scoliosis developing in childhood and adolescence. We present a child with clinical and neuroimaging findings typical of HGPPS. CT and MRI of the brain demonstrated pons hypoplasia, absence of the facial colliculi, butterfly configuration of the medulla and a deep midline pontine cleft. We briefly discuss the imaging aspects of this rare entity in light of the current literature. (orig.)

  15. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  16. The role of vertical shear on the horizontal oceanic dispersion

    OpenAIRE

    A. S. Lanotte; R. Corrado; G. Lacorata; L. Palatella; C. Pizzigalli; I. Schipa; R. Santoleri

    2015-01-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispers...

  17. Concept of a Programmable Fixture for 3-Axis CNC

    Directory of Open Access Journals (Sweden)

    Ahmad Dalloul

    2017-09-01

    Full Text Available CNC machine is the one of the major reasons for industrial advancement in recent decades for its ability of producing accurate parts. The most commen CNC machines are of 3-axis and adopted widely in the industrial sector. However, for producing more complicated parts 5-axis CNC machines are required. Although the introduction of the 5-axis machine came after the 3-axis CNC machine has established itself and many manufacturers did not make the move toward the newer model and its high pricing compared to the 3-axis model did not help either. In this time the development of a fixture or a platform to help transfer the 3-axis to a 5-axis to some degree. This paper discusses the concept of a programmable fixture that gives 3-axis CNC machine the freedom to act in similar manner as the 5-axis. The paper describes the mechanism with some initial results of the testing. Result showed that the platform moves in translation manner with an average error of 5.58 % and 7.303% average error for rotation movement.

  18. Performance study on the east-west oriented single-axis tracked panel

    International Nuclear Information System (INIS)

    Chang, Tian Pau

    2009-01-01

    A theoretical study on the performance of an east-west oriented single-axis tracked panel was originally proposed in this paper. Mathematic expressions applicable for calculating the angle that the tracked panel should rotate by to follow the Sun are derived. The incident angle of sunlight upon the panel as well as the instantaneous increments of solar energy captured by the panel relative to a fixed horizontal surface are then demonstrated graphically. To simulate different operation environments, three kinds of radiation sources will be considered, i.e. the extraterrestrial radiation, global radiation predicted by empirical models under clear sky situation and global radiation observed in Taiwan. Simulation results show that the yearly gains correlate positively with the radiation level, i.e. 21.2%, 13.5% and 7.4% for the extraterrestrial, predicted and observed radiations, respectively, which are far less than those obtained from a north-south oriented single-axis tracked panel. The irradiation increases with the maximum rotation angle of the panel, the benefit of increasing the rotation in overcast environment is not as good as in clear sky, for annual energy collection 45 o is recommended. The irradiation received decreases with latitude, but it has a greater gain in higher latitude zone.

  19. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  20. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.