WorldWideScience

Sample records for small geothermal systems

  1. The Economics of Connecting of Small Buildings to Geothermal District Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2003-03-01

    Many of the communities co-located with geothermal resources are very small and as a result the buildings they contain tend to be small as well. Generally, small buildings (10,000 ft2) use heating systems which are not hot water based. Since geothermal district heating systems deliver hot water, the costs associated with the conversion of small building heating systems to use hot water for heating is an issue of great influence in terms of the potential development of such systems. This paper examines the typical retrofit costs associated with conversion of small buildings and the level of savings necessary to attract the interest of owners. In general, the prospects for connection of such buildings based only on energy savings is not positive.

  2. The economics of connecting of small buildings to geothermal district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-01-01

    Many of the communities co-located with geothermal resources are very small and as a result the buildings they contain tend to be small as well. Generally, small buildings (10,000 ft2) use heating systems which are not hot water based. Since geothermal district heating systems deliver hot water, the costs associated with the conversion of small building heating systems to use hot water for heating is an issue of great influence in terms of the potential development of such systems. This paper examines the typical retrofit costs associated with conversion of small buildings and the level of savings necessary to attract the interest of owners. In general, the prospects for connection of such buildings based only on energy savings is not positive.

  3. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  4. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  5. Energy efficiency model for small/medium geothermal heat pump systems

    Directory of Open Access Journals (Sweden)

    Staiger Robert

    2015-06-01

    Full Text Available Heating application efficiency is a crucial point for saving energy and reducing greenhouse gas emissions. Today, EU legal framework conditions clearly define how heating systems should perform, how buildings should be designed in an energy efficient manner and how renewable energy sources should be used. Using heat pumps (HP as an alternative “Renewable Energy System” could be one solution for increasing efficiency, using less energy, reducing the energy dependency and reducing greenhouse gas emissions. This scientific article will take a closer look at the different efficiency dependencies of such geothermal HP (GHP systems for domestic buildings (small/medium HP. Manufacturers of HP appliances must document the efficiency, so called COP (Coefficient of Performance in the EU under certain standards. In technical datasheets of HP appliances, these COP parameters give a clear indication of the performance quality of a HP device. HP efficiency (COP and the efficiency of a working HP system can vary significantly. For this reason, an annual efficiency statistic named “Seasonal Performance Factor” (SPF has been defined to get an overall efficiency for comparing HP Systems. With this indicator, conclusions can be made from an installation, economy, environmental, performance and a risk point of view. A technical and economic HP model shows the dependence of energy efficiency problems in HP systems. To reduce the complexity of the HP model, only the important factors for efficiency dependencies are used. Dynamic and static situations with HP´s and their efficiency are considered. With the latest data from field tests of HP Systems and the practical experience over the last 10 years, this information will be compared with one of the latest simulation programs with the help of two practical geothermal HP system calculations. With the result of the gathered empirical data, it allows for a better estimate of the HP system efficiency, their

  6. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  7. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  8. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  9. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  10. Fiscal 1995 survey of promotion of the geothermal development. Report on a usage feasibility test of a small scale geothermal binary cycle power generation system; 1995 nendo chinetsu kaihatsu sokushin chosa. Chusho chinetsu binary hatsuden system jissho shiken hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In this survey, studies for popularization and practical utilization of small and medium size geothermal binary cycle power systems which assesses low and medium temperature geothermal resources were conducted, and studies for development of the system to be introduced for practical use and for promotion of the popularization were made. A study was carried out of preconditions and various conditions of a demonstrative test plant (100kW class, 500kW class) in view of the initial cost of the actual plant, and an analysis was made of the power generation cost. Acceptability of the demonstrative test plant (100kW class) was examined to analyze problems on the introduction. A thermodynamic analysis was made of the output of geothermal binary cycle power generation. Analysis/evaluation of the results of the 100kW demonstrative test plant were carried out in view of the operation results of the plant of the same kind, and checks/reviews were conducted of performance and reliability of the system, equipment simplification, etc. Inspection of the system was made in the stage of design/manufacture of the 500kW demonstrative test plant. Concerning the spread/expansion of the system, studied were multiple stage geothermal utilization and PR promotion method. 14 refs., 62 figs., 55 tabs.

  11. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  12. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    International Nuclear Information System (INIS)

    Vimmerstedt, L.

    1998-01-01

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market

  13. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  14. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  15. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  16. Reinjection of geothermal water-imperative of geothermal system Geoterma - Kochani

    International Nuclear Information System (INIS)

    Naunov, Jordan

    2007-01-01

    Geothermal locality 'Podlog-Banja' - Kochani, Republic of Macedonia, represent one of the more significant aquifers of geothermal water, not only in local frames but also in world scale, especially if we have in mind the possible capacity of exploitation of 300 l, with average temperature of 75° C. Many years of exploitation was escorted with constant irreversible drop down of piezo metric level of underground waters and because of this reason, there was a necessary of installation of reinjection system of used geothermal water, especially for two factors: Keeping of balance conditions in the underground from one side and reduction of thermal pollution to the environment especially from energetic and ecological aspect. In this written effort beside the basic information for geothermal system 'Geoterma' will be present all significant phases and elements of the system for reinjection, it's exploration, implementation, construction and of course the effects from the same one. (Author)

  17. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  18. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  19. Potential of geothermal systems in Picardy

    OpenAIRE

    Dourlat, Estelle

    2017-01-01

    Geothermal systems are not only about electrical plants or urban heating networks, but also concerned with geothermal energy assisted with a heat pump. In the former region of Picardy (North of France), 97% of the territory is suitable for very low temperature geothermal power. The French Agency for the Environment and Energy Management and the Picardy Region decided in 2016 to finance a facilitator to encourage geothermal use. To carry out this aim, it is important to consider the geothermal...

  20. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  1. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  2. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  3. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  4. Computational modeling of shallow geothermal systems

    CERN Document Server

    Al-Khoury, Rafid

    2011-01-01

    A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with

  5. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  6. Energy efficiency comparison between geothermal power systems

    Directory of Open Access Journals (Sweden)

    Luo Chao

    2017-01-01

    Full Text Available The geothermal water which can be considered for generating electricity with the temperature ranging from 80℃ to 150℃ in China because of shortage of electricity and fossil energy. There are four basic types of geothermal power systems: single flash, double flash, binary cycle, and flash-binary system, which can be adapted to geothermal energy utilization in China. The paper discussed the performance indices and applicable conditions of different power system. Based on physical and mathematical models, simulation result shows that, when geofluid temperature ranges from 100℃ to 130℃, the net power output of double flash power is bigger than flash-binary system. When the geothermal resource temperature is between 130℃ and 150℃, the net power output of flash-binary geothermal power system is higher than double flash system by the maximum value 5.5%. However, the sum water steam amount of double flash power system is 2 to 3 times larger than flash-binary power system, which will cause the bigger volume of equipment of power system. Based on the economy and power capacity, it is better to use flash-binary power system when the geofluid temperature is between 100℃ and 150℃.

  7. Performance of deep geothermal energy systems

    Science.gov (United States)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  8. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  9. Hydrogeology of the Krafla geothermal system, northeast Iceland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, D. K.; Arnórsson, S.

    2016-01-01

    The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two-phase at higher depths, and sub-boiling at the shallowest depths. Hydrogen isotope ratios...... of geothermal fluids range from -87‰, equivalent to local meteoric water, to -94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5-3.2‰. Calculated vapor fractions of the fluids are 0.0-0.5 wt% (~0-16% by volume) in the northwestern portion of the geothermal system and increase...... the benefits of combining phase segregation effects in two-phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano-hosted geothermal systems....

  10. Operation strategy analysis of a geothermal step utilization heating system

    International Nuclear Information System (INIS)

    Zheng, Guozhong; Li, Feng; Tian, Zhe; Zhu, Neng; Li, Qianru; Zhu, Han

    2012-01-01

    Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.

  11. A proposal to investigate higher enthalpy geothermal systems in the USA

    Science.gov (United States)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  12. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  13. Development of geothermal-well-completion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.B.

    1979-01-01

    Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

  14. A novel design approach for small scale low enthalpy binary geothermal power plants

    International Nuclear Information System (INIS)

    Gabbrielli, Roberto

    2012-01-01

    Highlights: ► Off-design analysis of ORC geothermal power plants through the years and the days. ► Thermal degradation of the geothermal source reduces largely the plant performances. ► The plant capacity factor is low if the brine temperature is far from the design value. ► The performances through the life are more important than those at the design point. ► ORC geothermal power plants should be designed with the end-life brine temperature. - Abstract: In this paper a novel design approach for small scale low enthalpy binary geothermal power plants is proposed. After the suction, the hot water (brine) superheats an organic fluid (R134a) in a Rankine cycle and, then, is injected back underground. This fact causes the well-known thermal degradation of the geothermal resource during the years. Hence, the binary geothermal power plants have to operate with conditions that largely vary during their life and, consequently, the most part of their functioning is executed in off-design conditions. So, as the novel approach here proposed, the design temperature of the geothermal resource is selected between its highest and lowest values, that correspond to the beginning and the end of the operative life of the geothermal power plant, respectively. Hence, using a detailed off-design performance model, the optimal design point of the geothermal power plant is evaluated maximizing the total actualized cash flow from the incentives for renewable power generation. Under different renewable energy incentive scenarios, the power plant that is designed using the lowest temperature of the geothermal resource always results the best option.

  15. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Patten, Kim [Arizona Geological Survey

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  16. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    NARCIS (Netherlands)

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  17. Calc-silicate mineralization in active geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  18. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  19. Swiss geothermal energy update 1985 - 1990

    International Nuclear Information System (INIS)

    Rybach, L.; Hauber, L.

    1990-01-01

    Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described

  20. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  1. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  2. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase 2. Volume 3: Systems description

    Science.gov (United States)

    Matthews, H. B.

    The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  3. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical

  4. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  5. Hydrogeochemistry of high-temperature geothermal systems in China: A review

    International Nuclear Information System (INIS)

    Guo, Qinghai

    2012-01-01

    As an important part of the Mediterranean-Himalayas geothermal belt, southern Tibet and western Yunnan are the regions of China where high-temperature hydrothermal systems are intensively distributed, of which Rehai, Yangbajing and Yangyi have been investigated systematically during the past several decades. Although much work has been undertaken at Rehai, Yangbajing and Yangyi to study the regional geology, hydrogeology, geothermal geology and geophysics, the emphasis of this review is on hydrogeochemical studies carried out in these geothermal fields. Understanding the geochemistry of geothermal fluids and their environmental impact is critical for sustainable exploitation of high-temperature hydrothermal resources in China. For comparison, the hydrogeochemistry of several similar high-temperature hydrothermal systems in other parts of the world are also included in this review. It has been confirmed by studies on Cl − and stable isotope geochemistry that magma degassing makes an important contribution to the geothermal fluids from Rehai, Yangbajing and Yangyi, though meteoric water is still the major source of recharge for these hydrothermal systems. However, the mechanisms of magma heat sources appear to be quite different in the three systems, as recorded by the 3 He/ 4 He ratios of escaping geothermal gases. A mantle-derived magma intrusion to shallow crust is present below Rehai, although the intruding magma has been heavily hybridized by crustal material. By contrast, the heat sources below Yangbajing and Yangyi are inferred to be remelted continental crust. Besides original sources, the geochemistry of characteristic constituents in the geothermal fluids have also been affected by temperature-dependent fluid–rock interactions, boiling and redox condition changes occurring in the upper part of hydrothermal systems, and mixing with cold near-surface waters. The geothermal fluids from Rehai, Yangbajing and Yangyi contain very high concentrations of some

  6. The use of petrology in Philippine geothermal system

    International Nuclear Information System (INIS)

    Reyes, A.G.

    1992-01-01

    Petrology is used in the various stages of exploration, development and exploitation of a geothermal area, often in conjunction with other fields of study. It is an effective operations tool for predicting syn- and post-drilling conditions in a well, for field and well maintenance, and to a small extent for monitoring fluids passing through the pipelines and steam turbines. Petrological data and interpretations are important in assessing an exploration area, and in formulating and developing strategy of a geothermal field. (auth.). 11 figs

  7. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  8. Potential for enhanced geothermal systems in Alberta, Canada

    International Nuclear Information System (INIS)

    Hofmann, Hannes; Weides, Simon; Babadagli, Tayfun; Zimmermann, Günter; Moeck, Inga; Majorowicz, Jacek; Unsworth, Martyn

    2014-01-01

    The province of Alberta has a high demand of thermal energy for both industrial and residential applications. Currently, the vast majority of the heat used in these applications is obtained by burning natural gas. Geothermal energy production from deep aquifer systems in the sedimentary basin could provide an alternative sustainable source of heat that would significantly reduce greenhouse gas emissions. To date there has been no geothermal field development in Alberta because the average geothermal gradient was considered to be too low for economic geothermal energy generation. However, with new technologies for Enhanced Geothermal Systems (EGS), it may be possible to develop geothermal resources from the sedimentary rocks in the Western Canadian Sedimentary Basin (WCSB). A numerical feasibility study based on a regional geological model and existing and newly gained data was conducted to identify scenarios for geothermal energy production in the region. In central Alberta, three Devonian carbonate formations (Cooking Lake, Nisku, Wabamun) and the Cambrian Basal Sandstone Unit were identified as the highest geothermal potential zones. Thermal-hydraulic reservoir simulations for a 5 km × 5 km site in the city of Edmonton were performed to evaluate reservoir development concepts for these four potential target formations; therefore, hydraulic fracturing treatments were also simulated. Different utilization concepts are presented for possible applications of geothermal energy generation in residential, industrial and agricultural areas. The Cooking Lake formation and the Basal Sandstone Unit are potentially the most promising reservoirs because the most heat can be extracted and the applications for the heat are widespread although the costs are higher than utilizing the shallower formations. Reservoir stimulation considerably improves the economics in all formations

  9. IKEA Geothermal System Could Inform Others | News | NREL

    Science.gov (United States)

    0 » IKEA Geothermal System Could Inform Others IKEA Geothermal System Could Inform Others August 500 feet under the IKEA store construction site in Centennial, Colo. Credit: Pat Corkery It will take less energy and money to make the IKEA store opening next year in suburban Denver feel pleasant when

  10. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  11. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    Science.gov (United States)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  12. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  13. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    Science.gov (United States)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  14. Borehole heat exchangers: Longterm operational characteristics of a decentral geothermal heating system

    International Nuclear Information System (INIS)

    Rybach, L.; Eugster, W.J.; Hopkirk, R.J.; Kaelin, B.

    1992-01-01

    The heat pump-coupled borehole heat exchanger (BHE) is an efficient and small geothermal energy system for supplying heat typically to a single dwelling house. The long-term performance characteristics have been investigated by computer simulations. The numerical models were validated by measurements at instrumented BHE facilities. The results show the development of a new thermal equilibrium state after the first few years of BHE operation. The thermal influence is limited to the first few meters of the ground surrounding the BHE. The BHE could be scaled up in order to be installed in deep 'failed' holes (e.g. dry geothermal or hydrocarbon exploration holes)

  15. Companion Study Guide to Short Course on Geothermal Corrosion and Mitigation in Low Temperature Geothermal Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, II, P F

    1985-04-24

    The economic utilization of geothermal resources with temperatures less than 220 degrees Fahrenheit for purposes other than electric power generation (direct utilization) requires creation of systems with long plant life and minimum operation and maintenance costs. Development of such systems requires careful corrosion engineering if the most cost effective material selections and design choices are to be made. This study guide presents guidelines for materials selection for low-temperature geothermal systems (120 - 200 degrees Fahrenheit), as well as guidance in materials design of heat pump systems for very-lowtemperature geothermal resources (less than 120 degrees Fahrenheit). This guideline is divided into five sections and an Appendix.

  16. Effective Geothermal Utilisation close to the surface by the TT-Geothermal Radial Drilling (GRD-Method

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Bayer

    2007-01-01

    Full Text Available In the late 1970-Years, Tracto-Technik developped a very effective radial-shaped percussion system for a geothermal heating, the ECOtherm-System, which was very well accepted by customers. Nowadays, a radial-shaped drilling system, operating some decameters below the surface, was developped by Tracto-Technik, which offers the chance of a very effective drilling for the use of geothermal energy. The main advantage of this development is the reduction of drilling costs by new constructions and new handling possibilities. Drilling processes like the rod connecting or the drill-hole enlargement were solved in other ways as usual, by very time-shortening and effective ways, which are presented in the paper. The new TT-Geothermal radial drilling methods need only a very small but highly effective drilling unit, which reduces the operational drilling cost in a enormous way. All operational drilling steps are reduced to less than a half time as usual. By these GRD-methods, the use of surface-close geothermal energy is simplified and less expansive.

  17. Phase 1 Feasibility Study, Canby Cascaded Geothermal Project, April 2, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Merrick, Dale E [CanbyGeo, LLC

    2013-04-02

    A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.

  18. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  19. Control methodologies based on geothermal recirculating aquaculture system

    International Nuclear Information System (INIS)

    Farghally, Hanaa M.; Atia, Doaa M.; El-madany, Hanaa T.; Fahmy, Faten H.

    2014-01-01

    One of the most common uses of geothermal heat is in RAS (recirculation aquaculture systems) where the water temperature is accurately controlled for optimum growing conditions for sustainable and intensive rearing of marine and freshwater fish. This paper presents a design for RAS rearing tank and plate type heat exchanger to be used with geothermal energy as a source of heating water. A well at Umm Huweitat on the Red Sea is used as a source of geothermal energy. The heat losses from the RAS tank are calculated using Geo Heat Center Software. Then a plate type heat exchanger is designed using the epsilon–NTU (number of transfer units) analysis method. For optimal growth and abundance of production, a different techniques of control system are applied to control the water temperature. The total system is built in MATLAB/SIMULINK to study the overall performance of control unit. Finally, a comparison between PI, Fuzzy-PID, and Fuzzy Logic Control has been done. - Highlights: • Design recirculating aquaculture system using geothermal energy. • Design a PI controller for water temperature control. • Design a Fuzzy logic controller for water temperature control. • Design a Fuzzy-PID controller for water temperature control. • Comparison between different control systems

  20. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  1. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  2. The geothermal potentials for electric development in Maluku Province

    Directory of Open Access Journals (Sweden)

    Vijaya Isnaniawardhani

    2018-03-01

    Full Text Available The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the nature of the generation is small to medium and the locations are dispersed. The geological condition of Maluku Province is conducive for the formation of geothermal resources. The advanced utilization of geothermal energy in Maluku Province is in Tulehu located about 8 kilometers NE of Ambon. It is expected that 60 MW electric will be produced at the first stage in 2019. A total of 100 MW resources were estimated. Other places of geothermal potentials are Lauke and Tawen both located in Ambon Island with the potentials of 25 MW respectively. In Oma Haruku, Saparua and Nusa Laut the geothermal potentials were estimated to be 25 MW each. The total amount of geothermal energy in Maluku Province is thus, 225 MW which will contribute significantly to the needs of projected 184 MW in the year 2025.

  3. Geothermal District Heating System City of Klamath Falls

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J; Rafferty, Kevin

    1991-12-01

    The city of Klamath Falls became interested in the possibility of a establishing geothermal district heating system for downtown government buildings in January 1977. Since that time, the project has undergone some controversial and interesting developments that may be of educational value to other communities contemplating such a project. The purpose and content of this article is to identify the historical development of the project; including the design of the system, well owner objections to the project, aquifer testing, piping failure, and future expansion and marketing incentives. The shallow geothermal reservoir in Klamath falls extends for at least 6.8 miles in a northwest-southeast direction, as shown on Figure 1, with a width of about 2 miles. More than 550 thermal wells ranging in depth from about 10 to 2,000 ft, and obtaining or contacting water from 70 to 230oF, have been drilled into the reservoir. The system is not geologically homogeneous. Great variations in horizontal permeability and many vertical discontinuities exist because of stratigraphy and structure of the area. Basalt flows, eruptive centers, fluvial and lacustrine deposits, diatomite and pyroclastic materials alternate in the rock column. Normal faults with large throw (estimated up to 1,700 ft) are spaced less than 3,300 ft apart and appear to be the main avenue of vertical movement of hot fluids. In order to more effectively utilize this resource, the city of Klamath Falls decided in 1978 to apply for a federal grant (Program Opportunity Notice to cost share field experiment projects) to construct a geothermal district heating system that would deliver geothermal fluids to areas not located on the resource. In 1977, several Geo-Heat Center staff members visited Reykjavik, Iceland, to study the design of their geothermal district heating systems. This was in part the basis for the conceptual design and feasibility study (Lund, 1979) of a downtown commercial district. The main difference

  4. NEDO geothermal energy subcommittee. 18th project report meeting; NEDO chinetsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Reporting on geothermal energy-related efforts, Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, explains the promotion of researches on geothermal energy exploitation, researches on small and medium scale geothermal binary power system utilization, researches on geothermal exploration technology verification, and joint researches on small scale geothermal exploration on remote islands. Achievement reports are delivered concerning geothermal survey technology verification involving the development of reservoir fluctuation probing technology, deep-seated geothermal resources survey, and international joint projects. Concerning the research cooperation promotion project, a joint research program is reported involving a comprehensive geothermal resources analysis system for a remote island in the eastern part of Indonesia. In relation with the development of thermal water power plants, reports are delivered on the development of a 10MW class demonstration plant, development of technologies (study of elements) for a hot dry rock power system, development of a hole bottom data detection system for drilling in thermal water, and the development of deep-seated geothermal resources sampling technologies. (NEDO)

  5. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2008-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  6. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2007-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  7. Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zurmuhl, David P. [Cornell University; Lukawski, Maciej Z. [Cornell University; Aguirre, Gloria A. [Cornell University; Schnaars, George P. [Cornell University; Anderson, C. Lindsay [Cornell University; Tester, Jefferson W. [Cornell University

    2018-02-14

    The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime and compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.

  8. Implementing Geothermal Plants in the Copenhagen District Heating System

    DEFF Research Database (Denmark)

    Jensen, Louise Overvad; Hallgreen, Christine Erikstrup; Larsen, Esben

    2003-01-01

    of geothermal energy in Denmark as well as the Danish potential, which, in former investigations, has been found to be around 100.000 PJ annually, and the economical potential is less, about 15 PJ/year. Since a considerable amount of the Danish power supply is tied to weather and the demand for heating......The possibility of implementing geothermal heating in the Copenhagen district-heating system is assessed. This is done by building up general knowledge on the geological factors that influence the development of useable geothermal resources, factors concerning the exploration and utilization......, an increasing demand for flexibility has been raised. Implementing geothermal heating would improve the flexibility in the Eastern Danish power system. Based on this information, as well as, on the hourly values of the expected production and consumption in 2010 and 2020, a model of the Copenhagen power...

  9. Optimization of the exploitation system of a low enthalpy geothermal aquifer with zones of different transmissivities and temperatures

    International Nuclear Information System (INIS)

    Tselepidou, K.; Katsifarakis, K.L.

    2010-01-01

    Market penetration of renewable energy sources, such as geothermal energy, could be promoted even by small cost reductions, achieved through improved development design. This paper deals with optimization of the exploitation system of a low enthalpy geothermal aquifer, by means of the method of genetic algorithms, which has been successfully used in similar problems of groundwater resources management. With respect to water flow, the aquifer consists of two zones of different transmissivities, while from the thermal point of view it may bear any number of zones with different temperatures. The optimization process comprises the annual pumping cost of the required flow and the amortization cost of the pipe network, which carries the hot water from the wells to a central water tank, situated at the border of the geothermal field. Results show that application of the proposed methodology allows better planning of low enthalpy geothermal heating systems, which may be crucial in cases of marginal financial viability. (author)

  10. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    Science.gov (United States)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  11. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    Science.gov (United States)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  12. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  13. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    Science.gov (United States)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  14. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    Science.gov (United States)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  15. Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources

    International Nuclear Information System (INIS)

    Liu, Qiang; Shang, Linlin; Duan, Yuanyuan

    2016-01-01

    Highlights: • Geothermal energy is used to preheat the feedwater in a coal-fired power unit. • The performance of a hybrid geothermal–fossil power generation system is analyzed. • Models for both parallel and serial geothermal preheating schemes are presented. • Effects of geothermal source temperatures, distances and heat losses are analyzed. • Power increase of the hybrid system over an ORC and tipping distance are discussed. - Abstract: Low-enthalpy geothermal heat can be efficiently utilized for feedwater preheating in coal-fired power plants by replacing some of the high-grade steam that can then be used to generate more power. This study analyzes a hybrid geothermal–fossil power generation system including a supercritical 1000 MW power unit and a geothermal feedwater preheating system. This study models for parallel and serial geothermal preheating schemes and analyzes the thermodynamic performance of the hybrid geothermal–fossil power generation system for various geothermal resource temperatures. The models are used to analyze the effects of the temperature matching between the geothermal water and the feedwater, the heat losses and pumping power during the geothermal water transport and the resource distance and temperature on the power increase to improve the power generation. The serial geothermal preheating (SGP) scheme generally generates more additional power than the parallel geothermal preheating (PGP) scheme for geothermal resource temperatures of 100–130 °C, but the SGP scheme generates slightly less additional power than the PGP scheme when the feedwater is preheated to as high a temperature as possible before entering the deaerator for geothermal resource temperatures higher than 140 °C. The additional power decreases as the geothermal source distance increases since the pipeline pumping power increases and the geothermal water temperature decreases due to heat losses. More than 50% of the power decrease is due to geothermal

  16. National Geothermal Data System: an Exemplar of Open Access to Data

    Science.gov (United States)

    Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.

    2013-12-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational

  17. Induced seismicity associated with enhanced geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  18. Synthetic Modeling of A Geothermal System Using Audio-magnetotelluric (AMT) and Magnetotelluric (MT)

    Science.gov (United States)

    Mega Saputra, Rifki; Widodo

    2017-04-01

    Indonesia has 40% of the world’s potential geothermal resources with estimated capacity of 28,910 MW. Generally, the characteristic of the geothermal system in Indonesia is liquid-dominated systems, which driven by volcanic activities. In geothermal exploration, electromagnetic methods are used to map structures that could host potential reservoirs and source rocks. We want to know the responses of a geothermal system using synthetic data of Audio-magnetotelluric (AMT) and Magnetotelluric (MT). Due to frequency range, AMT and MT data can resolve the shallow and deeper structure, respectively. 1-D models have been performed using AMT and MT data. The results indicate that AMT and MT data give detailed conductivity distribution of geothermal structure.

  19. Applicability of `GREATEM' system in mapping geothermal regions in volcanic areas

    Science.gov (United States)

    Verma, S. K.; Mogi, T.; Abd Allah, S.

    2010-12-01

    The ‘GREATEM’ helicopter borne TEM system employs a long grounded cable as transmitter while a light weight receiver coil is flown below a helicopter. This arrangement greatly simplifies the flying logistics and speed of the survey. Also there is very little reduction in the anomaly amplitude when the survey altitude is increased. This is a great advantage particularly in volcanic regions usually having rough topography, as the ‘GREATEM’ survey can be done with helicopter flying at a safe height. Many volcanic areas have anomalous geothermal regions containing hydrothermal fluids. Eruption of volcanoes may cause changes in the thermal character and spatial distribution of these regions. Mapping of these regions is important as they may be associated with hazards. Sometimes, if the temperature is high and volume of the geothermal region is large, they can provide a good source of geothermal energy. Applicability of ‘GREATEM’ system in mapping geothermal regions in volcanic areas is studied by numerical modeling. We have considered a 3D conductor at a shallow depth (50 t0 100m), representing the anomalous geothermal region with dimensions of 500m X 500m X 500m. Different types of geological host environment are considered by varying their resistivities from 10 Ohm.m to 2000 Ohm.m. The ‘GREATEM’ response is analyzed as ‘Percentage Difference (PD)’ over the response produced by the host environment. It is found that the “GREATEM’ system can delineate the geothermal region well. Many geothermal regions are associated with a deeper (> 1 km) reservoir of much larger dimensions. In this situation also it is found that the ‘GREATEM’ system can pick up the response of the shallower geothermal region against the background response of different types of geological host environment containing the deeper reservoir (Figure 1).

  20. Recommendations of the workshop on advanced geothermal drilling systems

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  1. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  2. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    International Nuclear Information System (INIS)

    Zhou Wenbin; Li Xueli; Shi Weijun; Sun Zhanxue

    1999-01-01

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  3. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  4. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    Energy Technology Data Exchange (ETDEWEB)

    Caudill, Christy [Executive Office of the State of Arizona (Arizona Geological Survey)

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  5. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Conventional vs. unconventional enhanced (or engineered) geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dzebisashvili, K.; Breede, K.; Liu, X.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Enhanced (or Engineered) Geothermal Systems (EGS) have evolved from the Hot Dry Rock (HDR) concept, implemented for the first time at Fenton Hill in 1977, and subsequently through the Stimulated Geothermal System, the Deep Heat Mining and finally the Deep Earth Geothermal. All of these systems usually imply petro-thermal processes. The term EGS has evolved to include conduction dominated, low permeability resources in sedimentary and basement formations, as well as geopressured, magma, and low-grade, unproductive hydrothermal resources. Co-produced hot water from hydrocarbon wells has also been included by some in the definition of EGS, which constitutes a considerable divergence from the original concept. Four decades on from the first EGS implementation, this paper highlights the lessons learned from 'conventional' systems and contrasts the 'unconventional' solutions that have been proposed. Examples of unconventional EGS include single-well solutions, downhole heat exchangers, engineered well profiles and using circulation fluids other than water. Perhaps some of the ideas proposed in the past, which would be considered unconventional, have remained dormant or never made it to a commercial stage for field implementation, but they may yet open doors to the future generations of EGS. (orig.)

  7. Environmental impact directory system: preliminary implementation for geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Hess, F.D.; Hall, R.T.; Fullenwider, E.D.

    1976-07-01

    An Environmental Impact Directory System (EIDS) was proposed as a method for a computerized search of the widely distributed data files and models pertaining to energy-related environmental effects. To define the scope and content of the system, an example was prepared for the case of geothermal energy. The resulting sub-directory is known as GEIDs (Geothermal Environmental Impact Directory System). In preparing or reviewing an Environmental Impact Statement (EIS), the user may employ GEIDS as an extensive checklist to make sure he has taken into account all predictable impacts at any level of severity.

  8. An overview of the Awibengkok geothermal system, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, James; Nordquist, Gregg; Suminar, Aquardi; Sirad-Azwar, Lutfhie [Chevron Geothermal Salak, Ltd., 11th Floor Sentral Senayan I, Jl. Asia Afrika No. 8, Jakarta 10270 (Indonesia)

    2008-06-15

    The Awibengkok (Salak) geothermal system is a liquid-dominated, fracture-controlled reservoir with benign chemistry and low-to-moderate non-condensable gas content. The geothermal system is hosted mainly by andesitic-to-rhyodacitic rocks, and floored by Miocene marine sedimentary rocks cut by igneous intrusions. The volcanic sequence is capped by an 8400-year-old phreatic explosion breccia, rhyolite fallout tuff (>8400 years and <40,000 years), rhyolite lavas, domes and related tuffs ({>=}40-120 ka), and dacite-to-rhyodate lavas and domes (185-280 ka) that were erupted across the eastern part of the field from NNE-trending vents controlled by a major fault. More regionally extensive basaltic-andesite to andesite volcanic centers are mostly between 180 and 1610 ka old. Surface and subsurface fault patterns, formation image logs and tracer studies indicate strongly anisotropic permeability aligned with the dominant N to NE fracture trend, dividing the field into a number of subcompartments that are locally connected by fractured aquifers and NW- and E-W-trending fractures. Shallow argillic alteration gives way with increasing depth and temperature to argillic-phyllic and propylitic zones, with the latter accounting for the bulk of the fluid produced from the geothermal system. The commercial Awibengkok reservoir is a moderate-to-high temperature (240-312 C) geothermal resource with high fracture permeability, moderate porosity (mean = 10.6%) and moderate-to-low matrix permeability (geometric mean = 0.026 md). The principal deep upflow zone, with fluid temperatures in the 275-312 C range, is located in the western part of the field. The ascending fluids move up along N- or NNE-trending structures that breach low-permeability tuff layers in the central and east-central parts of the field. Fluids in the central part of the reservoir are uniform in composition and temperature, representing the mixing of upflow and convective reflux. Fluids ascend and flow laterally to

  9. Geothermal and Trigeneration Systems as Innovative and EnvironmentallyFriendly Solutions for Telecommunication Plant Cooling

    Directory of Open Access Journals (Sweden)

    Paolo Trotta

    2016-12-01

    Full Text Available The paper deals with a model-based analysis of innovative cooling systems, to be deployed in telecommunication (TLC plants in consideration of their size, geographical location and typology (e.g. central Offices or data-centers. Environmentally friendly systems, such as geothermal heat pumps and trigeneration plants, were considered. The trade-off between the investment and operating costs was first analyzed, followed by a comparative evaluation of economic savings achievable via each candidate solution with respect to reference benchmarks, here represented by traditional air-water heat pump and conventional interaction with electrical grid. In this way, a preliminary macroscopic assessment of the best solutions was accomplished, according to the different scenarios (i.e. small or big TLC plant under investigation. A more detailed analysis, concerning the comparison between traditional and geothermal systems, was specifically carried out to evaluate savings as a function of the external temperature and, consequently, of geographical location.

  10. Geothermal energy control system and method

    Science.gov (United States)

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  11. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ziagos, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Phillips, Benjamin R. [SRA International, Inc. and Geothermal Technologies Office, Washington, DC (United States); Boyd, Lauren [Geothermal Technologies Office, Washington, DC (United States); Jelacic, Allan [SRA International, Inc., Washington, DC (United States); Stillman, Greg [Geothermal Technologies Office, Washington, DC (United States); Hass, Eric [U.S. DOE, Golden, CO (United States)

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  12. Stable isotope studies of some low enthalpy geothermal systems in Kenya

    Science.gov (United States)

    Tole, Mwakio P.

    Oxygen and hydrogen isotope compositions of some low enthalpy geothermal systems in Kenya have been determined. Plots on δ 18O versus δD diagrams show that the compositions do not deviate appreciably from local meteoric water values. This would indicate that local meteoric waters are heated at depth and rise to the surface without much interaction with the country rocks. This is interpreted to be the case for the geothermal systems at Majimoto and Narosura, which have salinities of less than 350 ppm TDS and calculated reservoir temperatures of less than 110°C. The geothermal systems at Kapedo and Homa mountain which have high salinities (> 2 000 ppm TDS) and relatively higher calculated reservoir temperatures (> 150° C) are interpreted to have been operating for long periods of time, such that the rocks through which the present day geothermal waters are circulating have attained isotopic equilibrium with local meteoric waters.

  13. Geothermal regimes of the Clearlake region, northern California

    Energy Technology Data Exchange (ETDEWEB)

    Amador, M. [ed.; Burns, K.L.; Potter, R.M.

    1998-06-01

    The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.

  14. Active geothermal systems as natural analogs of HLW repositories

    International Nuclear Information System (INIS)

    Elders, W.A.; Williams, A.E.; Cohen, L.H.

    1988-01-01

    Geologic analogs of long-lived processes in high-level waste (HLW) repositories have been much studied in recent years. However, most of these occurrences either involve natural processes going on today at 25 degree C, or, if they are concerned with behavior at temperatures similar to the peak temperatures anticipated near HLW canisters, have long since ended. This paper points out the usefulness of studying modern geothermal systems as natural analogs, and to illustrate the concept with a dramatic example, the Salton Sea geothermal system (SSGS)

  15. Enthalpy restoration in geothermal energy processing system

    Science.gov (United States)

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  16. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  17. Modeling of a deep-seated geothermal system near Tianjin, China.

    Science.gov (United States)

    Xun, Z; Mingyou, C; Weiming, Z; Minglang, L

    2001-01-01

    A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area.

  18. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  19. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  20. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  1. Fluids in volcanic and geothermal systems

    Science.gov (United States)

    Sigvaldason, Gudmundur E.

    -rift volcanism is accordingly not fed directly by mantle derived liquids. The model predicts that all volcanic fluids, with the exception of those which are associated with the most primitive olivine tholeiites, are partly or wholly recycled through all stages of hydrothermal and metamorphic reactions. In that sense associated volcanic and geothermal systems are a part of the same chemical fractionation column. It is concluded that the chemistry of fluids in volcanic and geothermal systems can be viewed in the perspective of predictable crustal fractionation processes before any conclusion need be drawn concerning more deep seated causes for chemical anomalies.

  2. Conventional heating systems is heating with geothermal water, v. 15(60)

    International Nuclear Information System (INIS)

    Hadzhimishev, Dimitar; Gashteovski, Ljupcho; Shami, Jotso

    2007-01-01

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  3. Conventional heating systems is heating with geothermal water, v. 15(59)

    International Nuclear Information System (INIS)

    Hadzhimishev, Dimitar; Gashteovski, Ljupcho; Shami, Jotso

    2007-01-01

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  4. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  5. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  6. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  7. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  8. Design of a novel geothermal heating and cooling system: Energy and economic analysis

    International Nuclear Information System (INIS)

    Angrisani, G.; Diglio, G.; Sasso, M.; Calise, F.; Dentice d’Accadia, M.

    2016-01-01

    Highlights: • A desiccant-based air handling unit is coupled with a geothermal source. • A TRNSYS model is developed to simulate both winter and summer period. • Sensitivity analysis is carried out in order to evaluate the effects of the design parameters. • Pay back period about 1.2 years and Primary Energy Savings higher than 90% were founded. • Economic and energetic performance increase with to the use of Domestic Hot Water. - Abstract: A dynamic simulation study in TRNSYS environment has been carried out to evaluate energy and economic performance of a novel heating and cooling system based on the coupling between a low or medium-enthalpy geothermal source and an Air Handling Unit, including a Desiccant Wheel. During summer season, a Downhole Heat Exchanger supplies heat to regenerate the desiccant material, while a certain amount of geothermal fluid is continuously extracted by the well in order to maintain high operating temperatures. Simultaneously, the extracted geothermal fluid drives an absorption chiller, producing chilled water to the cooling coil of the Air Handling Unit. Conversely, during the winter season, geothermal energy is used to cover a certain amount of the space heating demand. In both summer and winter operation modes, a geothermal energy is also used to supply Domestic Hot Water. A case study was analyzed, in which an existing low-enthalpy geothermal well (96 °C), located in Ischia (an island close to Naples, Southern Italy), is used to drive the geothermal system. Results showed that the performance of the proposed system is significantly affected by the utilization factor of Domestic Hot Water. In fact, considering a range of variation of such parameter between 5% and 100%, Primary Energy Saving increase from 77% to 95% and Pay-Back Period decreases from 14 years to 1.2 years, respectively. The simulations proved the technical and economic viability of the proposed system. In fact, a comparison with similar systems available

  9. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    Science.gov (United States)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  10. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  11. National Geothermal Data System (USA): an Exemplar of Open Access to Data

    Science.gov (United States)

    Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim

    2014-05-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in April, 2014 will provide open access to millions of data records, sharing -relevant geoscience and longer term to land use data to propel geothermal development and production. NGDS serves information from all of the U.S. Department of Energy's sponsored development and research projects and geologic data from all 50 states, using free and open source software. This interactive online system is opening new exploration opportunities and potentially shortening project development by making data easily discoverable, accessible, and interoperable. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 6 million records online, including 1.72 million well headers (oil and gas, water, geothermal), 670,000 well logs, and 497,000 borehole temperatures and is growing rapidly. There are over 312 interoperable Web services and another 106 WMS (Web Map Services) registered in the system as of January, 2014. Companion projects run by Southern Methodist University and U.S. Geological Survey (USGS) are adding millions of additional data records. The DOE Geothermal Data Repository, currently hosted on OpenEI, is a system node and clearinghouse for data from hundreds of U.S. DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS complies with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with support from the US

  12. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    OpenAIRE

    Sumintadireja, Prihadi; Saepuloh, Asep; Irawan, Dasapta E.; Irawan, Diky; Fadillah, Ahmad

    2014-01-01

    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at p...

  13. Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study

    Science.gov (United States)

    Krol, M.; Daemi, N.

    2017-12-01

    Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.

  14. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  15. Engineered Geothermal Systems Energy Return On Energy Investment

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use efficiency when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the minimum EROI an energy production system should have to be an asset rather than a liability.

  16. Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

    2000-09-29

    This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

  17. The role of boron-chloride and noble gas isotope ratios in TVZ geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO 2 in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems. (author). 17 refs., 4 figs

  18. Geothermal Power Supply Systems around the World and in Russia: State of the Art and Future Prospects

    Science.gov (United States)

    Butuzov, V. A.; Amerkhanov, R. A.; Grigorash, O. V.

    2018-05-01

    Solar and geothermal energy systems are shown to have received the widest use among all kinds of renewable sources of energy for heat supply purposes around the world. The power capacities and amounts of thermal energy generated by solar and geothermal heat supply systems around the world are presented by way of comparison. The thermal power capacity of solar heat supply systems installed around the world as of 2015 totaled 268.1 GW, and the thermal energy generated by them amounted to 225 TW h/year. The thermal power capacity of geothermal heat supply systems installed around the world totaled 70.3 GW, and the thermal energy generated by them amounted to 163 TW h/year. Information on the geothermal heat supply systems in the leading countries around the world based on the data reported at the World Geothermal Congress held in 2015 is presented. It is shown that China, with the installed thermal power capacities of its geothermal heat supply stations totaling 17.87 GW and the amount of thermal energy generated per annum equal to 48.435 TW h/year, is the world's leader in this respect. The structures of geothermal heat supply systems by the kinds of heat consumption used around the world are presented. The systems equipped with geothermal heat pumps accounted for 70.95% in the total installed capacity and for 55.3% in the total amount of generated heat. For systems that do not use heat pumps, those serving for pools account for the largest share amounting to 44.74% in installed capacity and to 45.43% in generated heat. A total of 2218 geothermal wells with the total length equal to 9534 km (with 38.7% of them for heat supply purposes) were drilled in 42 countries in the period from 2010 to 2014. In Russia, geothermal heat supply systems are in operation mainly in Dagestan, in Krasnodar krai, and in Kamchatka. The majority of these systems have been made without breaking the stream after the well outlet. A cyclic control arrangement is also used. The combined

  19. University Campus Bielefeld. Geothermal systems built-up points; Hochschulcampus Bielefeld. Erdwaermesysteme in Bebauungsschwerpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Kohlsch, Oliver; Heske, Claus [CDM Smith, Bochum (Germany); Bussmann, Werner [MEDIAfrac, Geeste (Germany)

    2012-07-01

    Three new buildings with greater geothermal plants are established on the area of the University Campus Bielefeld (Federal Republic of Germany). Due to the more than 100 geothermal probes as well as due to more than 400 energy piles within a radius of only 500 meter, extremely high demands are made on the planning of geothermal energy systems. The mutual interference of the different systems, the impacts on the surrounding buildings as well as the official requirements and the obligations on the later monitoring had to be considered.

  20. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  1. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Elzie Lynn [Surprise Valley Electrification Corp., Alturas, CA (United States)

    2016-01-12

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges a small rural electric cooperative encountered and managed to develop a geothermal generating plant.

  2. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  3. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  4. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  5. Long-term Sustainability of Fracture Conductivity in Geothermal Systems using Proppants

    Energy Technology Data Exchange (ETDEWEB)

    Earl D Mattson; Ghanashyam Neupane; Mitchell Plummer; Clay Jones; Joe Moore

    2016-02-01

    Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examine the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.

  6. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m"2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m"2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m"2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  7. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  8. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory; Richards, Maria C. [SMU Geothermal Laboratory

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and

  9. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  10. State of the art of heating greenhouses with geothermal energy in Yugoslavia

    International Nuclear Information System (INIS)

    Milivojevic, M.; Martinovic, M.; Vidovic, S.

    2000-01-01

    The surface of Yugoslavia is relatively small (about 80.000 km 2 ) but its geological and tectonic structure are very complex. Because of that, geothermal characteristics of its territory are interesting. On two thirds of Yugoslav territory values of the heat flow density are greater than average values for the continental part of Europe and on the half of the territory they are around 100 MW/m 2 (Milivojevic, 1989). Consequently, on the territory of Yugoslavia there are more than 60 hydro-geo-thermal low-temperature connective systems (T o C) as well as enormous hydrothermal conductive system in the Yugoslav part of Pannonic basin. In the last three years a lot of effort is put into continuing geothermal researches but the progress is very small. Thus, since the UN embargo was rescinded in 1995 not a single well has been bored yet. The reasons for this are: economic crisis, the beginning of the transition process, energetic focus on the import of oil and gas as well as the fact that people are not conscious about the necessity of increasing energy efficiency and energy rationalisation. Nowadays, geothermal energy is used for the heating of greenhouses and plastic houses here in Yugoslavia. Although that surfaces of geothermal greenhouses and plastic buildings are very small, just about 8 ha on three locations, their owners want to enlarge them since economic indicators show that the production of flowers and vegetables in geothermal greenhouses is better than in those heated on gas or liquid fuel. However, the lack of money for building new and modem complexes of greenhouses as well as for the revitalisation of existing ones prevents the development and enlarging of these buildings. Because of the fact that geothermal resources can be immediately used if the financial problem could be solved, the surfaces of geothermal greenhouses and plastic buildings in Yugoslavia could be several hectares larger. (Authors)

  11. Base-line data analysis of a developing geothermal system, Boise, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Waag, C.J.; Wood, S.H.

    1985-09-01

    The report covers a geothermal system and calculated aquifer transmissivities in the Boise Warm Springs Water District portion of the geothermal system range from 3500-25,000 gals/day/ft. Withdrawals during the 1984-1985 heating season stabilized drawdown at the pumpbowls, and water levels approached stability in observation wells as distant as 1675 ft (507.6m). In the near steady-state condition, recharge, and water from storage beyond the observation wells provided a maximum Q of 840 gpm.

  12. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  13. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  14. Geothermal energy systems plan for Boise City

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

  15. The application of unmanned aerial systems (UAS) in geophysical investigations of geothermal systems

    Science.gov (United States)

    Glen, J. M.; Egger, A. E.; Ippolito, C.; Phelps, G. A.; Berthold, R.; Lee, R.; Spritzer, J. M.; Tchernychev, M.

    2012-12-01

    Investigations of geothermal systems typically involve ground-based geological and geophysical studies in order to map structures that control and facilitate fluid flow. The spatial extent of ground-based investigations can be limited, however, by surficial hot springs, dense foliage, and roadless or private lands. This can result in data gaps in key areas, particularly around active hydrothermal springs. Manned aircraft can provide access to these areas and can yield broad and uniform data coverage, but high-resolution surveys are costly and relatively inflexible to changes in the survey specifications that may arise as data are collected. Unmanned aerial systems (UAS) are well suited for conducting these surveys, but until recently, various factors (scientific instrumentation requirements, platform limitations, and size of the survey area) have required the use of large UAS platforms, rendering unmanned aerial surveys unsuitable for most investigations. We have developed and tested a new cesium magnetometer system to collect magnetic data using two different small-platform UAS that overcomes many of the challenges described above. We are deploying this new system in Surprise Valley, CA, to study the area's active geothermal field. Surprise Valley is ideally suited to testing UAS due to its low population density, accessible airspace, and broad playa that provides ample opportunity to safely land the aircraft. In combination with gravity and topographic data, magnetic data are particularly useful for identifying buried, intra-basin structures, especially in areas such as Surprise Valley where highly magnetic, dense mafic volcanic rocks are interbedded with and faulted against less magnetic, less dense sedimentary rock. While high-resolution gravity data must be collected at point locations on the ground, high-resolution magnetic data can be obtained by UAS that provide continuous coverage. Once acquired, the magnetic data obtained by the UAS will be combined with

  16. Evaluation of state taxes and tax incentives and their impact on the development of geothermal energy in western states

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, L.D.; Meyer, R.T.

    1981-01-01

    The economic impact of existing and prospective state taxes and tax incentives on direct thermal applications of geothermal energy are evaluated. Study area is twelve western states which have existing and potential geothermal activities. Economic models representing the geothermal producer and business enterprise phases of four industrial/commercial uses of geothermal energy are synthesized and then placed in the existing tax structures of each state for evaluation. The four enterprises are a commercial greenhouse (low temperature process heat), apartment complex (low temperature space heat), food processor (moderate temperature process heat), and small scale energy system (electrical and direct thermal energy for a small industrial park). The effects of the state taxations on net profits and tax revenues are determined. Tax incentives to accelerate geothermal development are also examined. The magnitudes of total state and local tax collections vary considerably from state to state, which implies that geothermal producers and energy-using businesses may be selective in expanding or locating their geothermal operations.

  17. Geothermal ORC Systems Using Large Screw Expanders

    OpenAIRE

    Biederman, Tim R.; Brasz, Joost J.

    2014-01-01

    Geothermal ORC Systems using Large Screw Expanders Tim Biederman Cyrq Energy Abstract This paper describes a low-temperature Organic Rankine Cycle Power Recovery system with a screw expander a derivative of developed of Kaishan's line of screw compressors, as its power unit. The screw expander design is a modified version of its existing refrigeration compressor used on water-cooled chillers. Starting the ORC development program with existing refrigeration screw compre...

  18. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  19. The Role of Boron Chloride and noble gas isotope ratios in Taupo Volcanic Zone geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater con noble gases, at air saturated water concentrations, mixes with hot fluids of man origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks 'en route' the surface. It is demonstrated that this interaction is responsible for most of CO/sub 2/ in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed th the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks like to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems a hence the sustainability of these systems. (author). 17 refs., 4 figs

  20. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  1. Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Thomas M. [ElectraTherm Inc., Reno, NV (United States); Erlach, Celeste [ElectraTherm Inc., Reno, NV (United States)

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  2. Geothermal power production in future electricity markets-A scenario analysis for Germany

    International Nuclear Information System (INIS)

    Purkus, Alexandra; Barth, Volker

    2011-01-01

    Development and diffusion of new renewable energy technologies play a central role in mitigating climate change. In this context, small-scale deep geothermal power has seen growing interest in recent years as an environmentally friendly, non-intermittent energy source with large technical potential. Following the first successful demonstration projects, the German geothermal industry is currently experiencing an internationally unparalleled growth. In this study we explore the factors driving this development, and the role geothermal power production could play in the future of the German electricity market. For this, we apply the scenario technique, based on literature analysis and interviews with companies operating actively in the field. Our findings highlight the importance of political support and framework conditions in the electricity market, with the best prospects in a decentralised energy system based on renewable energy sources, where high investment costs and the risk of discovery failure are balanced by the benefits of low-carbon base load power. - Research highlights: → Small scale geothermal plants could provide base load for RES based power systems. → New technologies allow its use even in geologically inactive regions like Germany. → Key factors for growth are political support and power market framework conditions. → Main investment barriers are comparatively high investment costs and discovery risks. → Scale of use depends on technological evolution and energy system structure.

  3. Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ryan B [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Faulds, James E [Nevada Bureau of Mines and Geology, University of Nevada, Reno

    2012-09-30

    We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.

  4. Development of an Internet based geothermal information system for Germany; Aufbau eines geothermischen Informationssystems fuer Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.; Agemar, T.; Alten, J.A.; Kuehne, K.; Maul, A.A.; Pester, S.; Wirth, W. [Inst. fuer Geowissenschaftliche Gemeinschaftsaufgaben (GGA), Hannover (Germany)

    2007-02-15

    The Leibniz Institute for Applied Geosciences (GGA-Institut) is setting up an internet based information system on geothermal resources in close collaboration with partners. For a start, the geothermal information system will contain data about hydrogeothermal resources only. The project aims at an improvement of quality in the planning of geothermal plants and at a minimization of exploration risks. The key parameters for this purpose are production rate (Q) and temperature (T). The basis for the estimation of subsurface hydraulic properties comes from the information system on hydrocarbons. This information system provides permeability and porosity values derived from the analyses of drilling cores. The IT targets will be realised by a relational database providing all data relevant to the project. A 3D model of the ground provides the basis for visualisation and calculation of geothermal resources. As a prototype, a data-recall facility of geothermal sites in Germany is available online. (orig.)

  5. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  6. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  7. Geothermal heat; Energie aus der Tiefe. Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Karl

    2012-09-15

    The temperature in the interior of the earth increases with the depth. But for a long time, the geothermal energy only could be used at selected locations. Therefore, almost all major geothermal power plants are located at volcanic regions. The potential of the geothermal energy is not exhausted. Currently, many new power plants are developed. Although there is no volcanic activity in Germany, also some pilot plants develop the hot surface. The deep geothermal energy sometimes is difficult to be controlled. Before drilling experts rarely know how productive the subsoil is. Also, the drillings may trigger small earthquakes.

  8. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  9. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  10. Choosing a Geothermal as an HVAC System.

    Science.gov (United States)

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  11. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    Directory of Open Access Journals (Sweden)

    D. K. Djavatov

    2017-01-01

    Full Text Available Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS. There is the problem of the right choice of technological parameters for geothermal systems to ensure their effective functioning.Methods. We consider the development of geothermal energy technology based on geothermal circulatory system, as this technology solves the dumping of the waste water containing environmentally harmful substances. In addition to the environmental issues, this technology makes it possible to intensify the process of production and the degree of extraction of thermal resources, which significantly increases the potential for geothermal heat resources in terms of the fuel and energy balance.Findings. Were carried out optimization calculations for Ternairsky deposits of thermal waters. In the calculations, was taken into account the temperature dependence of important characteristics, such as the density and heat capacity of the coolant.Conclusions. There is the critical temperature of the coolant injected, depending on the flow rate and the diameter of the well, ensuring the effective functioning of the geothermal circulatory systems

  12. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  13. The economics of Plowshare geothermal power

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, J B; Stewart, D H [Battelle-Northwest (United States)

    1970-05-15

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application.

  14. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  15. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    Science.gov (United States)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.

  16. 2015 Annual Report - Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    Over the past year, the U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office (GTO) supported a number of exciting initiatives and research and development (R&D)activities! The GTO budget was increased in Fiscal Years (FY) 2015-2016, providing the opportunity to invest in new technologies and initiatives, such as the DOE-wide Subsurface Crosscut Initiative, and the Small Business Vouchers (SBV)Program, which is focused on growing our small business and national laboratory partnerships. These efforts will continue to advance geothermal as an economically competitive renewable energy.

  17. Origin of sulphur compounds and application of isotope geothermometry in selected geothermal systems of China

    International Nuclear Information System (INIS)

    Pang Zhonghe

    2005-01-01

    Geothermal and groundwater samples from East of Heber (EH) Province in the North China Basin and South of Fujian (SF) Province in Southeast of China were studied using sulphur and water isotopes. EH is located in a Mesozoic-Cenozoic sedimentary basin while SF is composed of small fault-block basins formed in Quaternary period. These systems belong to non-volcanic geothermal environments. Samples were collected from exploratory and production geothermal wells: 11 wells in EH and 17 wells in SF. The samples were analyzed for oxygen-18 (δ 18 O) and deuterium (δ 2 H) in water, sulfur-34 (δ 34 S) and oxygen-18 ((δ 18 O) in aqueous sulphate (SO 4 ). Chemical composition of the water samples was also determined. Results show that aqueous sulphate in the saline thermal waters of SF is of marine origin. The aqueous sulphate in EH waters is of non-marine origin. Reservoir temperature estimated using the oxygen isotope geothermometer is not compatible to those by chemical geothermometers or by down-hole measurements in the sedimentary environment for EH, different from that for the SF samples where aqueous sulphate seems to have reached equilibrium with thermal waters in the main up-flow zone. (author)

  18. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  19. Exergoeconomic optimization of integrated geothermal system in Simav, Kutahya

    International Nuclear Information System (INIS)

    Arslan, Oguz; Kose, Ramazan

    2010-01-01

    The aim of this study is to investigate the integrated use of the geothermal resources in the Kutahya-Simav region, Turkey. Although geothermal energy has been in use for years in the others countries, the integrated use of the geothermal fluid is new in Turkey. The high temperature level of the geothermal fluid in the Simav field makes it possible to utilize it for electricity generation, space heating and balneology. In this regard, a multiple complex has been proposed there in order to use the energy of the geothermal fluid more efficiently. Therefore, the possibility of electricity generation by a binary cycle has been preliminarily researched. After the electricity generation process, the waste geothermal fluid has been conducted to residences and greenhouses later for heating purpose in the field. In this regard, twenty one different models have been formed and analyzed using exergy and LCC methods. As a conclusion, the pre-feasibility study indicates that utilization of this geothermal capacity for multiple uses would be an attractive investment for Simav region.

  20. A combined energetic and economic approach for the sustainable design of geothermal plants

    International Nuclear Information System (INIS)

    Franco, Alessandro; Vaccaro, Maurizio

    2014-01-01

    Highlights: • Exploitation of medium to low temperature geothermal sources: ORC power plants. • Integrated energetic and economic approach for the analysis of geothermal power plants. • A brief overview of the cost items of geothermal power plants. • Analysis of specific cost of geothermal power plants based on the method proposed. • Analysis of sustainability of geothermal energy systems based on resource durability. - Abstract: The perspectives of future development of geothermal power plants, mainly of small size for the exploitation of medium–low temperature reservoirs, are discussed and analyzed in the present paper. Even if there is a general interest in new power plants and investments in this sector are recognized, the new installations are reduced; the apparent advantage of null cost of the energy source is negatively balanced by the high drilling and installation costs. A key element for the design of a geothermal plant for medium temperature geothermal source is the definition of the power of the plant (size): this is important in order to define not only the economic plan but also the durability of the reservoir. Considering that it is not possible that the development of geothermal industry could be driven only by an economic perspective, the authors propose a method for joining energetic and economic approaches. The result of the combined energetic and economic analysis is interesting particularly in case of Organic Rankine Cycle (ORC) power plants in order to define a suitable and optimal size and to maximize the resource durability. The method is illustrated with reference to some particular case studies, showing that the sustainability of small size geothermal plants will be approached only if the research for more economic solutions will be combined with efforts in direction of efficiency increase

  1. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    Science.gov (United States)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal

  2. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  3. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  4. Dynamic Modeling and Simulation of Deep Geothermal Electric Submersible Pumping Systems

    Directory of Open Access Journals (Sweden)

    Julian Kullick

    2017-10-01

    Full Text Available Deep geothermal energy systems employ electric submersible pumps (ESPs in order to lift geothermal fluid from the production well to the surface. However, rough downhole conditions and high flow rates impose heavy strain on the components, leading to frequent failures of the pump system. As downhole sensor data is limited and often unrealible, a detailed and dynamical model system will serve as basis for deeper understanding and analysis of the overall system behavior. Furthermore, it allows to design model-based condition monitoring and fault detection systems, and to improve controls leading to a more robust and efficient operation. In this paper, a detailed state-space model of the complete ESP system is derived, covering the electrical, mechanical and hydraulic subsystems. Based on the derived model, the start-up phase of an exemplary yet realistic ESP system in the Megawatt range—located at a setting depth of 950 m and producing geothermal fluid of 140 ∘ C temperature at a rate of 0.145 m 3 s − 1 —is simulated in MATLAB/Simulink. The simulation results show that the system reaches a stable operating point with realistic values. Furthermore, the effect of self-excitation between the filter capacitor and the motor inductor can clearly be observed. A full set of parameters is provided, allowing for direct model implementation and reproduction of the presented results.

  5. Can Geothermal Power Replace Fossil Fuels?

    Science.gov (United States)

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    Development of geothermal energy in any capacity is a positive step toward a sustainable energy future. The resource is enormous and has the capacity to supply most future demand for electrical power if technology can meet some substantial challenges. Electrical power from geothermal energy has several compelling characteristics: a small footprint, low emissions, continuous availability, and sustainability. However, a common perception of geothermal energy is that it is available only in a few isolated localities and thus cannot contribute significantly to future electrical power needs. This perception neglects the stored thermal energy available everywhere in the upper 10 km of Earth’s crust. We are investigating the potential for power production in oil-producing sedimentary basins where subsurface temperatures are sufficient for intermediate geothermal resources (90 °C -150 °C) at depths greater than 3 km. Existing estimates of geothermal energy stored at depth in sedimentary formations in the U.S. have been based only on a few aquifers and have not included the greater volume of fluids in oil-bearing formations. We reevaluated the accessible geothermal resource base for the north central US and found that including geothermal fluids in oil-producing formations increased the resource estimate by a factor of eight. Preliminary analysis of other basins indicates that the current estimate of thermal energy in the U.S. (100,000 EJ) may be of the order of 400,000 EJ. This is particularly significant due to recent technological advances leading to commercialization of scalable organic Rankine cycle (ORC) engines. Until recently, ORC systems were available only on an at large scale, i.e., 10s of MW, and had efficiencies of about 10 percent. Currently there are at least five manufacturers making scalable ORC systems in the 50 kW to 1 MW range, and at least one system has an efficiency of about 17 percent and is expected to attain an efficiency in the low 20s as it

  6. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    Science.gov (United States)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  7. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Arizona Geological Survey; Chickering, Cathy [Southern Methodist University; Anderson, Arlene [U. S. Department of Energy, Geothermal Technologies Office; Richard, Stephen M. [Arizona Geological Survey

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, the invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts

  8. Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system

    International Nuclear Information System (INIS)

    Zhao, L.

    2004-01-01

    Geothermal energy resources are found in many countries. A reasonable and efficient utilization of these resources has been a worldwide concern. The application of geothermal heat pump systems (GHPS) can help increase the efficiency of using geothermal energy and reduce the thermal pollution to the earth surface. However, this is only possible with a proper working fluid. In this paper, a non-azeotropic working fluid (R290/R600a/R123) is presented for a GHPS where geothermal water at 40-45 deg. C and heating network water at 70-80 deg. C serve as the low and high temperature heat sources. Experimental results show that the coefficient of performance (COP) of a GHPS using the working fluid is above 3.5 with the condensation temperature above 80 deg. C and the condensation pressure below 18 bar, while the temperature of the geothermal water is reduced from 40-46 deg. C to 31-36 deg. C

  9. White paper on geothermal sustainability; Grundlagenpapier 'Geothermal sustainability - A review with identified research needs'

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive appendix contained in a comprehensive annual report 2006 for the Swiss Federal Office of Energy (SFOE) reviews research needs identified in connection with the topic of geothermal sustainability. It is noted that excessive production often pursued - mostly for economical reasons - can lead to the depletion of heat reservoirs. Sustainable production can be achieved with lower production rates and still provide similar total energy yields. The regeneration of geothermal resources following exploitation is discussed. The need for further research into geothermal production sustainability is noted. A doublet system realised in Riehen, Switzerland, is discussed, as is an Enhanced Geothermal System EGS using circulation in fractured rock layers. Research still needed is noted.

  10. Exergoenvironmental analysis for a geothermal district heating system: An application

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2016-01-01

    Energy sources are of great importance in relation to pollution of the world. The use of renewable energy resources and the creation of more efficient energy systems make great contributions to the prevention of greenhouse gases. Recently, many studies indicate that the energy conversion systems have many advantages in terms of technical and economic point of view. In near future, environmental impact is going to play an important role in the selection/design of such energy resources and systems. In this study, the Afyon GDHS (geothermal district heating system) having actual operating conditions is investigated at the component level in terms of environmental impact by using exergoenvironmental analysis. Moreover, the effects of ambient and wellhead temperatures on the environmental impacts of the system are discussed. The results show that a great part of total environmental impact of the system occurs from the exergy destructions of the components. Therefore, the environmental impacts can be reduced by improving their exergetic efficiencies instead of design changes of the system components. The environmental impacts of the system are reduced when the ambient temperature decreases and the wellhead temperature increases. Thus, it might not be necessary to conduct separately the exergoenvironmental analysis for different ambient temperatures. - Highlights: • Using exergoenvironmental analysis in a geothermal district heating for the first time. • Evaluating environmental impact of a geothermal district heating system. • Discussing the effects of ambient and wellhead temperatures on the environmental impact. • Total environmental impact of the system occurs from exergy destructions of components. • The exergoenvironmental analysis can be done only once for all the ambient temperatures.

  11. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  12. An evaluation of interferences in heat production from low enthalpy geothermal doublets systems

    DEFF Research Database (Denmark)

    Willems, Cees J. L.; Nick, Hamidreza M.; Weltje, Gert Jan

    2017-01-01

    Required distance between doublet systems in low enthalpy geothermal heat exploitation is often not fully elucidated. The required distance aims to prevent negative interference influencing the utilisation efficiency of doublet systems. Currently production licence areas are often issued based...... and minimal required production temperature. The results of this study can be used to minimize negative interference or optimise positive interference aiming at improving geothermal doublet deployment efficiency. (C) 2017 The Authors. Published by Elsevier Ltd....

  13. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  14. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    Science.gov (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  15. Economic impacts of geothermal development in Malheur County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance

  16. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China)

    Science.gov (United States)

    Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong

    2016-06-01

    Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.

  17. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Guo, T.; Wang, H.X.; Zhang, S.J.

    2011-01-01

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller T P value, higher η t value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔT P (pinch temperature difference in heat exchangers) and η t (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔT P , η t and η rp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔT P value, higher η t value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  18. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M. Lee [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).; Richard, Stephen M. [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  19. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  20. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Daud Yunus

    2018-01-01

    Full Text Available Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  1. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Science.gov (United States)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  2. Sensitivity analysis of system parameters on the performance of the Organic Rankine Cycle system for binary-cycle geothermal power plants

    International Nuclear Information System (INIS)

    Liu, Xiaomin; Wang, Xing; Zhang, Chuhua

    2014-01-01

    The main purpose of this paper is to analyze the sensitivity of system parameters to the performance of the Organic Rankine Cycle (ORC) system quantitatively. A thermodynamic model of the ORC system for binary-cycle geothermal power plants has been developed and verified. The system parameters, such as working fluid, superheat temperature, pinch temperature difference in evaporator and condenser, evaporating temperature, the isentropic efficiencies of the cycle pump and radial inflow turbine are selected as six factors for orthogonal design. The order of factors sensitivity on performance indices of the net power output of the ORC system, the thermal efficiency, the size parameter of radial inflow turbine, the power decrease factor of the pump and the total heat transfer capacity are determined by the range obtained from the orthogonal design. At different geothermal temperatures, the ranges of the six factors corresponding to performance indices are analyzed respectively. The results show that the geothermal temperature influences the range of the factors to the net power output, SP factor of radial inflow turbine, and the total heat transfer capacity, but it has no effect for the range of the factors for the thermal efficiency and the power decrease factor of the pump. The evaporating temperature is always the primary or secondary factor that influence the thermodynamic and economic performance of the ORC system. This study would provide useful references for determining the proper design variables in the performance optimization of the ORC system at different geothermal temperatures. - Highlights: • Evaporating temperature has significant effect on performance of ORC system. • Order of system parameters' sensitivity to the performance of ORC is revealed. • Effect of system parameters on performance indices vary with geothermal temperature. • Geothermal temperature has no effect on range of six factors to the size of turbine

  3. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  4. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  5. ThermoGIS - An integrated web-based information system for geothermal exploration and governmental decision support for M

    NARCIS (Netherlands)

    Kramers, L.; Wees, J.D.A.M. van; Mijnlieff, H.F.; Kronimus, R.A.

    2010-01-01

    The use of geothermal energy through implementation of low enthalpy geothermal production systems for both electricity and heating has been growing rapidly in Europe. Geothermal activities can take considerable advantage of a wealth of existing oil and gas data. It is a major challenge to put this

  6. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    Science.gov (United States)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  7. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  8. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    International Nuclear Information System (INIS)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-01-01

    The 36 Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The 36 Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field

  9. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  10. Enhanced Geothermal Systems (EGS) R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Entingh, Daniel J.

    1999-08-18

    The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report

  11. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    Science.gov (United States)

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  12. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  13. Exergoeconomic analysis of geothermal district heating systems: A case study

    International Nuclear Information System (INIS)

    Ozgener, Leyla; Hepbasli, Arif; Dincer, Ibrahim; Rosen, Marc A.

    2007-01-01

    An exergoeconomic study of geothermal district heating systems through mass, energy, exergy and cost accounting analyses is reported and a case study is presented for the Salihli geothermal district heating system (SGDHS) in Turkey to illustrate the present method. The relations between capital costs and thermodynamic losses for the system components are also investigated. Thermodynamic loss rate-to-capital cost ratios are used to show that, for the devices and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. Furthermore, a parametric study is conducted to determine how the ratio of thermodynamic loss rate to capital cost changes with reference temperature and to develop a correlation that can be used for practical analyses. The correlations may imply that devices in successful district heating systems such as the SGDHS are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic (cost) characteristics of the overall systems and their devices

  14. Performance and Feasibility Study of a Standing Column Well (SCW System Using a Deep Geothermal Well

    Directory of Open Access Journals (Sweden)

    Jeong-Heum Cho

    2016-02-01

    Full Text Available Deep geothermal heat pump systems have considerable energy saving potential for heating and cooling systems that use stable ground temperature and groundwater as their heat sources. However, deep geothermal systems have several limitations for real applications such as a very high installation cost and a lack of recognition as heating and cooling systems. In this study, we performed a feasibility assessment of a Standing Column Well (SCW system using a deep geothermal well, based on a real-scale experiment in Korea. The results showed that the temperature of the heat source increased up to 42.04 °C in the borehole after the heating experiment, which is about 30 °C higher than that of normal shallow geothermal wells. Furthermore, the coefficient of performance (COP of the heat pump during 3 months of operation was 5.8, but the system COP was only 3.6 due to the relatively high electric consumption of the pump. Moreover, the payback period of the system using a deep well for controlled horticulture in a glass greenhouse was calculated as 6 years compared with using a diesel boiler system.

  15. Recent trends in the development of heat exchangers for geothermal systems

    Science.gov (United States)

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  16. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  17. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  18. Simulation-economic model of using the geothermal energy of Uzbekistan

    International Nuclear Information System (INIS)

    Mukhamedov, R.S.; Yuksel, B.

    1990-01-01

    Although a wide range of estimates with different authors have the common view that Soviet Central Asia is a region ranking among the first in the USSR in terms of geothermal resources which are economically feasible for exploitation. Uzbekistan has the highest potential in the region. The areas inside the republic's territory which have particularly high geothermal energy potential are: the Fergana fracture, specifically the Adrusman-Chust anomaly, the Ustyurt plateau, the southern coast of the Aral Sea, and a group of small artesian basins in the heart of the Kyzyl Kum desert. The ultimate goal of this paper is to construct a simulation-economic model with the following characteristics: minimum effect on the ecological situation in the republic; minimum cost; heat and mass transfer in geological and geothermal structures; economic parameters for different technological systems

  19. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  20. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley; FINAL

    International Nuclear Information System (INIS)

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-01-01

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project

  1. Use of Geothermal Energy for Aquaculture Purposes - Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W C; Smith, K C

    1981-09-01

    This project, financed by the Pacific Northwest Regional Commission (PNRC), was designed to provide information to evaluate the best methods to use for intensive aquaculture of freshwater prawns, Macrobrachium rosenbergii, using geothermal energy. The freshwater prawn is a tropical organism and is native to southeast Asia. Earlier projects at Oregon Institute of Technology have shown the feasibility of culturing this aquatic animal in geothermal water. This phase of the project was designed to investigate intensive culture of this animal as well as the advantages of growing rainbow trout, ornamental tropical fin fish, and mosquito fish, Gambusia affnis, for vector control using geothermal energy. The research data collected on the prawns was obtained from the stocking and sampling of two 0.2- ha (half-acre) ponds constructed as a part of the project. The ponds are equipped with recording monitors for temperature and flow. The geothermal energy used is the geothermal effluent from the Oregon Institute of Technology heating system. This water is of potable quality and ranges in temperature from 50 to 70oC. The geothermal water used in the ponds is controlled at 27oC, ± 2oC, by using thermostats and solenoid valves. A small building next to the ponds contains facilities for hatching larvae prawns and tanks for growing post-larvae prawns. The hatchery facility makes the project self-sustaining. The hatchery was obtained as part of an earlier PNRC project.

  2. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  3. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  4. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  5. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  6. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy

    International Nuclear Information System (INIS)

    Akrami, Ehsan; Chitsaz, Ata; Nami, Hossein; Mahmoudi, S.M.S.

    2017-01-01

    In this paper, a geothermal based multi-generation energy system, including organic Rankine cycle, domestic water heater, absorption refrigeration cycle and proton exchange membrane electrolyzer, is developed to generate electricity, heating, cooling and hydrogen. For this purpose, energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. Also, the effects of some important variables, i.e. geothermal water temperature, turbine inlet temperature and pressure, generator temperature, geothermal water mass flow rate and electrolyzer current density on the several parameters such as energy and exergy efficiencies of the proposed system, heating and cooling load, net electrical output power, hydrogen production, unit cost of each system products and total unit cost of the products are investigated. For specified conditions, the results show that energy and exergy efficiencies of the proposed multi-generation system are calculated about 34.98% and 49.17%, respectively. The highest and lowest total unit cost of the products estimated approximately 23.18 and 22.73 $/GJ, respectively, by considering that geothermal water temperature increases from 185 °C to 215 °C. - Highlights: • A multigeneration energy system based on geothermal energy is developed. • The energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. • The influences of several significant parameters are investigated. • The energy and exergy efficiencies of the entire system are calculated around 34.98% and 49.17%.

  7. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  8. Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2011

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A.J.

    2011-12-31

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. The embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished plant. Also critical are the system boundaries and value of the energy - heat is not as valuable as electrical energy.

  9. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  10. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  11. A complementary geothermal application

    International Nuclear Information System (INIS)

    Bedard, R.

    1998-01-01

    A geothermal project for air conditioning and heating at four health centres in Quebec was presented. The four health centres are: le centre Dominique-Tremblay, le centre Cardinal-Villeneuve, le centre Louis-Hebert, et le centre Francois-Charon. The investment made to install the geothermal heating and cooling system, the cost of operating the system, and energy savings resulting from the investment were discussed

  12. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  13. Quantifying the undiscovered geothermal resources of the United States

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  14. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  15. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  16. Techno-economic assessment for the integration into a multi-product plant based on cascade utilization of geothermal energy

    International Nuclear Information System (INIS)

    Rubio-Maya, Carlos; Pastor Martínez, Edgar; Romero, Carlos E.; Ambriz Díaz, Víctor M.; Pacheco-Ibarra, J. Jesús

    2016-01-01

    Highlights: • Cascade utilization of low- and mid-temperature geothermal energy is presented. • The system consists of three thermal levels producing power, ice and useful heat. • A techno-economic analysis is performed evaluating energy and economic benefits. • A simple optimization algorithm was developed to optimize system benefits. • Inconvenience of low thermal efficiency and high capital cost of ORC were overcome. - Abstract: The Organic Rankine Cycle (ORC) is a technology that has reached maturity in cogeneration or waste heat applications. However, due to low thermal efficiency and high capital cost of ORC machines, geothermal-based ORC applications represent only a small percent sharing of the geothermal power capacity worldwide. Several countries have reported a great potential of low- and mid-temperature geothermal energy, representing an opportunity to explore a more efficient ORC integration into non-conventional applications of geothermal energy. One alternative, resembling the polygeneration concept, is known as cascade utilization of geothermal energy, where different energy outputs or products can be obtained at the same time, while improving thermal and economic performance. In this paper, a techno-economic analysis for the selection of small capacity ORC machines and absorption chillers (for ice production), to be integrated into a polygeneration plant that makes use of geothermal energy in a cascade arrangement, is presented. A simple cascade system that consists of three sequential thermal levels, producing simultaneously power, ice and useful heat is proposed, considering typical temperatures of geothermal zones in Mexico. A simple optimization algorithm, based on energy and economic models, including binary variables and manufacturer’s data, was developed to evaluate and determine optimal ORC and absorption chiller units. Results show, firstly, that inconvenience of low thermal efficiency and high capital cost of ORC machines can

  17. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    OpenAIRE

    D. K. Djavatov; A. A. Azizov

    2017-01-01

    Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS). There i...

  18. A geothermal recycling system for cooling and heating in deep mines

    International Nuclear Information System (INIS)

    Guo, Pingye; He, Manchao; Zheng, Liange; Zhang, Na

    2017-01-01

    Highlights: • A geothermal recycling system for cooling and heating was presented in coal mines. • The COP of this cooling subsystem is 30% higher than that of others. • The COP is 20% higher with the parallel running of cooling and heating systems. - Abstract: In the operation of deep coal mines, cooling systems must be built (in most cases) because of the high-temperature working environment within such mines. Once the coal is mined, it is often used to supply heat for buildings and domestic hot water. In either instance, the energy consumed can create environmental pollution. As a potential solution to this problem, we present a geothermal recycling system for mines (GRSM) for parallel mine cooling and surface heating. The performance of this system is investigated based on the observed data. Compared with traditional cooling systems, the most obvious feature of this system is the removal of a cooling tower, which contributes to a 30% increase in performance. Moreover, the parallel running of cooling and heating systems can effectively recover waste heat, improving energy efficiency by 20%.

  19. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  20. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  1. Systems and methods for multi-fluid geothermal energy systems

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  2. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    OpenAIRE

    Imal, Muharrem; Yılmaz, Koray; Pınarbaşı, Ahmet

    2015-01-01

    Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP) and a mechanical compression water chiller system (ACHP) to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in ...

  3. Geothermal cooling of EDP systems; Geothermische Kuehlung von EDV-Servern

    Energy Technology Data Exchange (ETDEWEB)

    Ganzer, Christoph; Wietfeldt, Dirk; Schulz, Lars [celler brunnenbau gmbh und co. kg, Celle (Germany)

    2011-07-01

    Renewable energies are the future. And, sometimes a clever idea is enough in order to explore new fields of application. In Celle (Federal Republic of Germany), four technology partners have come together and developed a solution for the cooling of server cabinets by means of geothermal energy. The geothermal probe system is filled with a coolant which circulates in a closed circuit. The coolant acts as a cold heat-transport medium so that the resulting temperature differences can be used to generate heat (or coldness). Thus, a PUE value of lower than 1.10 can be realized. More than 90 % of the saved energy reaches the server. In a traditional data center, this ratio only amounts 50 %.

  4. Energy balance and economic feasibility of shallow geothermal systems for winery industry

    Science.gov (United States)

    Ruiz-Mazarrón, F.; Almoguera-Millán, J.; García-Llaneza, J.; Perdigones, A.

    2012-04-01

    The search of energy efficient solutions has not yet been accomplished in agro-food constructions, for which technical studies and orientations are needed to find energy efficient solutions adapted to the environment. The main objective of this investigation is to evaluate the effectiveness of using shallow geothermal energy for the winery industry. World wine production in 2009 stood at 27100 millions of litres [1]. World spends 320 billion Euros on wine a year, according to industry insiders. On average, it is estimated that producing 1 litre of wine sold in a 75 cl glass bottle costs around 0.5-1.2 Euros /litre [2]. The process of ageing the wine could substantially increase production costs. Considering the time required for the aging of wine (months or years) and the size of the constructions, the use of an air conditioning system implies a considerable increase in energy consumption. Underground wine cellars have been in use for centuries for making and ageing wine. Ground thermal inertia provides protection from outdoor temperature oscillation and maintains thermal stability without energy consumption [3]. Since the last century, production of wine has moved to buildings above ground that have several advantages: lower construction cost, more space, etc. Nevertheless, these constructions require a large energy consumption to maintain suitable conditions for the ageing and conservation of wine. This change of construction techniques is the cause of an increase in energy consumption in modern wineries. The use of shallow geothermal energy can be a good alternative to take advantage of the benefits of aboveground buildings and underground constructions simultaneously. Shallow geothermal systems can meet the needs of heating and cooling using a single installation, maintaining low energy consumption. Therefore, it could be a good alternative to conventional HVAC systems. The main disadvantage of geothermal systems is the high cost of investment required. This

  5. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  6. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  7. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  8. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  9. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  10. The geological framework of the Wairakei-Tauhara Geothermal System, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael D.; Bignall, Greg; Rae, Andrew J. [GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo (New Zealand)

    2009-03-15

    The geology of the Wairakei-Tauhara geothermal system has been revealed in increments over more than 50 years of field development. Only two major reviews of geo-scientific information have been completed; the first was made more than 40 years ago, the second (unpublished) was completed more than 25 years ago. This paper is an overview and update of the stratigraphic and structural framework of the system and its controls on fluid flow and hydrothermal alteration. We provide information on new areas of drilling exploration in the west of the Wairakei Geothermal Field and on the first production-focused drilling in 40 years at the Tauhara Geothermal Field. The lithology, thickness and extent of several units have been refined, while new units have been discovered by recent deep wells; five new members of the Waiora Formation are proposed. Nomenclature of formations and members is also updated. We review controls on fluid flow in the system and find that fault zones are likely up-flow channels, but their correlation with well feed points is equivocal, whereas intra- and inter-formational permeable zones are directly located by drilling and well completion data. New mineralogy data confirms an earlier known prograde trend of increasing hydrothermal alteration rank and intensity with depth. In the west of the Wairakei-Tauhara system thermal and chemical evolution has created a lower temperature and/or pH overprint on the older propylitic assemblage. Conditions at the eastern boundary of the system appear to have long-term stability. (author)

  11. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  12. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-09-01

    Full Text Available Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP and a mechanical compression water chiller system (ACHP to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in experimental working areas of the office buildings in a cigarette factory in Mersin, Turkey. The heating and cooling loads of the cigarette factory building were calculated, and actual thermal data were collected and analyzed. To calculate these loads, the cooling load temperature difference method was used. It was concluded that the geothermal heating and cooling system was more useful and productive and provides substantial economic benefits.

  13. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  14. Federal Geothermal Research Program Update Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  15. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  16. Seal of quality for planners of geothermal energy installations, prize for geothermal installations; Guetesiegel fuer Planer von Geothermieanlagen, Geothermiepreis Phase I (2002)

    Energy Technology Data Exchange (ETDEWEB)

    Eugster, W. J. [Polydynamics Engineering Zuerich, Zuerich (Switzerland); Eberhard, M. [Eberhard and Partner AG, Aarau (Switzerland); Koschenz, M. [EMPA, Duebendorf (Switzerland); Morath, M. [Lippuner and Partner AG, Grabs (Switzerland); Rohner, E. [Engeo AG, Arnegg (Switzerland)

    2003-07-01

    This final report for the Swiss Federal Office for Energy describes a project that aimed to improve the awareness of planners and installers involved in geothermal energy projects for the problems encountered when dimensioning both large and small geothermal installations, and to provide the basic knowledge necessary for a correct sizing of such plants. The report's main emphasis is placed on three types of geothermal plant, bore-hole heat exchangers, groundwater use and energy pile installations. The concept of the training programme involved is described, which is to issue certificates and labels for the attainment of three levels of ability. These three levels (Labels A, B and C) cover simple, small plants for heating operation, medium sized plants within a heating capacity range of 30 to approximately 100 kW and large plants for heating and cooling operation with heat capacities greater than 100 kW, respectively. The report also includes details of the time-line aimed for and costs. Also, the idea of an annual prize for geothermal installations is briefly discussed.

  17. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  18. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  19. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  20. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2013-01-01

    Full Text Available Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital investments for building of geothermal power installations. In the East Ciscaucasian Artesian basin there are a lot of promising areas with idle wells which can be converted for production of thermal water. The purpose of work is substantiation possibility of efficient development of geothermal resources of the Northern Caucasus region using idle oil and gas wells.Methods. The schematic diagram is submitted for binary geothermal power plant (GPP with use of idle gas-oil wells where the primary heat carrier in a loop of geothermal circulation system is used for heating and evaporation of the low-boiling working agent circulating in a secondary contour of steam-power unit. Calculations are carried out for selection of the optimum parameters of geothermal circulation system for obtaining the maximum useful power of GPP. The thermodynamic analysis of low-boiling working agents is made. Development of medial enthalpy thermal waters in the combined geothermal-steam-gas power installations is offered where exhaust gases of gas-turbine installation are used for evaporation and overheat of the working agent circulating in a contour of GPP. Heating of the working agent in GPP up to the temperature of evaporation is carried out by thermal water.Results. The possibility of efficient development of geothermal resources of the Northern Caucasus region by construction of binary geothermal power plants using idle oil and gas wells is substantiated. The capacities and the basic

  1. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura

    2016-01-01

    Highlights: • Exergetic and exergoeconomic analysis of hybrid renewable system is presented. • The system provides electric, thermal and cooling energy and desalinated water. • Exergy efficiency varies between 40–50% in the winter and 16–20% in the summer. • Electricity and fresh water costs vary between 15–17 and 57–60 c€/kW h_e_x. • Chilled and hot water costs vary between 18.6–18.9 and 1.6–1.7 c€/kW h_e_x. - Abstract: A dynamic simulation model of a novel solar–geothermal polygeneration system and the related exergetic and exergoeconomic analyses are presented in this paper. The plant is designed in order to supply electrical, thermal and cooling energy and fresh water for a small community, connected to a district heating and cooling network. The hybrid system is equipped with an Organic Rankine Cycle fueled by medium-enthalpy geothermal energy and by a Parabolic Trough Collector solar field. Geothermal brine is also used for space heating and cooling purposes. Finally, geothermal fluid supplies heat to a Multi-Effect Distillation unit, producing also desalinized water from seawater. Dynamic simulations were performed in order to design the system. The overall simulation model, implemented in TRNSYS environment, includes detailed algorithms for the simulation of system components. Detailed control strategies were included in the model in order to properly manage the system. An exergetic and exergoeconomic analysis is also implemented. The exergetic analysis allows to identify all the aspects that affect the global exergy efficiency, in order to suggest possible system enhancements. The accounting of exergoeconomic costs aims at establishing a monetary value to all material and energy flows, then providing a reasonable basis for price allocation. The analysis is applied to integral values of energy and a comparison of results between summer and winter season is performed. Results are analyzed on different time bases presenting

  2. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  3. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas

    International Nuclear Information System (INIS)

    Guo, Qi; Pang, Zhonghe; Wang, Yingchun; Tian, Jiao

    2017-01-01

    High-temperature geothermal systems hold an enormous capacity for generating geothermal energy. The Kangding area is a typical high-temperature geothermal field in the Himalayan Geothermal Belt. Hydrogeochemical, gas geochemical and isotopic investigations were performed to identify and qualify the main hydrogeochemical processes affecting thermal water composition, including mixing and degassing, and then to estimate a reliable reservoir temperature. Nine water samples and four geothermal gas samples were collected and analysed for chemical and isotopic components. The results demonstrate the alkaline deep geothermal water is the mixtures of approximately 75% snow-melt water and 25% magmatic water. It is enriched in Na, K, F, Li and other trace elements, indicating the granite reservoir nature. The shallow geothermal water is the mixtures of approximately 30% upward flow of deep geothermal water and 70% meteoric cold water. High concentrations of Ca, Mg and HCO_3 indicate the limestone reservoir nature. There is no remarkable oxygen isotope shift in the geothermal water since the rapid circulation is difficult to trigger off strong water-rock interaction. CO_2 is the predominant geothermal gas, accounting for more than 97% of total gases in volume percentage. The concentration of CO_2 degassing ranged from 0.4 mol L"−"1 to 0.8 mol L"−"1 via geothermometrical modelling. As a result, the geothermal water pH increased from 6.0 to 9.0, and approximately 36% of the total SiO_2 re-precipitate. The sources of CO_2 are the metamorphism of limestone and magmatic degassing based on the composition of carbon isotope. The appropriate geothermometers of Na-K and Na-Li yield reservoir temperature of 280 °C. The geothermometrical modelling, developed to eliminate the effects of CO_2 degassing, yields temperature of 250 °C. The silica-enthalpy mixing model yields temperature of 270 °C with no steam separation before mixing. - Highlights: • Water and gas

  4. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  5. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  6. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  8. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies, Tulsa, OK (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Parick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mohan, Ram [Univ. of Tulsa, OK (United States); Shoham, Ovadia [Univ. of Tulsa, OK (United States); Felber, Betty [Impact Technologies, Tulsa, OK (United States); Rychel, Dwight [Impact Technologies, Tulsa, OK (United States)

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  9. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  10. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  11. Update on Geothermal Direct-Use Installations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snyder, Diana M. [Georgia State University

    2017-02-15

    Direct-use of geothermal energy currently has limited penetration in the United States, with an estimated installed capacity of about 500 MWth, supplying on the order of 0.01% of the total annual U.S. heat demand (about 30 EJ). We see higher penetration levels in other countries such as Iceland (about 90%) and Hungary (2.5%). An updated database of geothermal direct-use systems in the U.S. has been compiled and analyzed, building upon the Oregon Institute of Technology (OIT) Geo-Heat Center direct-use database. Types of directuse applications examined include hot springs resorts and pools, aquaculture farms, greenhouses, and district heating systems, among others; power-generating facilities and ground-source heat pumps were excluded. Where possible, the current operation status, open and close dates, well data, and other technical data were obtained for each entry. The database contains 545 installations, of which 407 are open, 108 are closed, and 30 have an unknown status. Spas are the most common type of installation, accounting for 50% of installations by number. Aquaculture installations (46 out of 407 open installations) account for the largest percentage (26%) of installed capacity in operation (129 MWth out of 501 MWth). Historical deployment curves show the installed capacity significantly increased in the 1970s and 1980s mainly due to development of geothermal district heating, aquaculture, and greenhouse systems. Since the 2000s, geothermal direct-use development appears to have slowed, and the number of sites in operation decreased due to closures. Case studies reveal multiple barriers to geothermal direct-use implementation and operation, including 1) existence of an information gap among stakeholders, developers, and the general public, 2) competition from cheap natural gas, and 3) the family-owned, small-scale nature of businesses might result in discontinuation among generations.

  12. Guidelines for Provision and Interchange of Geothermal Data Assets

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-03

    The US Department of Energy Office of Geothermal Technologies (OGT) is funding and overseeing the development of the National Geothermal Data System (NGDS), a distributed information system providing access to integrated data in support of, and generated in, all phases of geothermal development. NGDS is being built in an open paradigm and will employ state-of-the-art informatics approaches and capabilities to advance the state of geothermal knowledge in the US. This document presents guidelines related to provision and interchange of data assets in the context of the National Geothermal Data System. It identifies general specifications for NGDS catalog metadata and data content, and provides specific instructions for preparation and submission of data assets by OGT-funded projects.

  13. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  14. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  15. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  16. Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP Field, Lake Manasarovar, Southwestern Tibet

    Directory of Open Access Journals (Sweden)

    Lanfang He

    2016-10-01

    Full Text Available Southwestern Tibet plays a crucial role in the protection of the ecological environment and biodiversity of Southern Asia but lacks energy in terms of both power and fuel. The widely distributed geothermal resources in this region could be considered as potential alternative sources of power and heat. However, most of the known geothermal fields in Southwestern Tibet are poorly prospected and currently almost no geothermal energy is exploited. Here we present a case study mapping the Mapamyum (QP geothermal field of Southwestern Tibet using audio magnetotellurics (AMT and magnetotellurics (MT methods. AMT in the frequency range 11.5–11,500 Hz was used to map the upper part of this geothermal reservoir to a depth of 1000 m, and MT in the frequency range 0.001–320 Hz was used to map the heat source, thermal fluid path, and lower part of the geothermal reservoir to a depth greater than 1000 m. Data from 1300 MT and 680 AMT stations were acquired around the geothermal field. Bostick conversion with electromagnetic array profiling (EMAP filtering and nonlinear conjugate gradient inversion (NLCGI was used for data inversion. The AMT and MT results presented here elucidate the geoelectric structure of the QP geothermal field, and provide a background for understanding the reservoir, the thermal fluid path, and the heat source of the geothermal system. We identified a low resistivity anomaly characterized by resistivity in the range of 1–8 Ω∙m at a depth greater than 7 km. This feature was interpreted as a potential reflection of the partially melted magma in the upper crust, which might correlate to mantle upwelling along the Karakorum fault. It is likely that the magma is the heat source of the QP geothermal system, and potentially provides new geophysical evidence to understand the occurrence of the partially melted magmas in the upper crust in Southwestern Tibet.

  17. Microearthquakes in the ahuachapan geothermal field, el salvador, central america.

    Science.gov (United States)

    Ward, P L; Jacob, K H

    1971-07-23

    Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.

  18. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Cuprak, Greg [West Chester Univ. of Pennsylvania, PA (United States)

    2016-11-02

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  19. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, James [West Chester Univ., West Chester (PA)

    2016-08-05

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  20. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  1. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  2. Heat Recovery from Multiple-Fracture Enhanced Geothermal Systems: The Effect of Thermoelastic Fracture Interactions

    DEFF Research Database (Denmark)

    Vik, Hedda Slatlem; Salimzadeh, Saeed; Nick, Hamid

    2018-01-01

    This study investigates the effect of thermoelastic interactions between multiple parallel fractures on energy production from a multiple-fracture enhanced geothermal system. A coupled thermo-hydro-mechanical finite element model has been developed that accounts for non-isothermal fluid flow within...... increased to maximise the net energy production from the system. Otherwise, the multiple-fracture system fails to improve the energy recovery from the geothermal reservoir, as initially intended....... aperture in the adjacent fracture, and facilitates the creation of favourable flow pathways between the injection and production wells. These flow paths reduce the energy production from the system. The effects of fracture spacing, reservoir temperature gradient and mechanical properties of the rock matrix...

  3. NEDO Forum 2001. Session on development of geothermal energy (Prospect of geothermal energy); NEDO Forum 2001. Chinetsu kaihatsu session (chinetsu energy no tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Director Noda of Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, delivered a lecture entitled 'Future course of geothermal technology development,' and Executive Director Iikura of Tokyo Toshi Kaihatsu, Inc., a lecture entitled 'Thinking of geothermal energy.' Described in an achievement report entitled 'Present state and future trend of geothermal development' were the present state of geothermal power generation and characteristics of geothermal energy, signification of the introduction of binary cycle power generation, and the promotion of the introduction of ground heat utilizing heat pump systems. Stated in a lecture entitled 'Geothermal development promotion survey' were the geothermal development promotion survey and its result and how to implement such surveys in the future. Reported in a lecture entitled 'Verification survey of geothermal energy probing technology and the like and the development of geothermal water utilizing power plant and the like' were reservoir fluctuation probing, deep-seated thermal resource probing and collecting, 10-MW class demonstration plant, Measurement While Drilling System, and a hot rock power generation system. (NEDO)

  4. A Study on the Efficiency Improvement of Multi-Geothermal Heat Pump Systems in Korea Using Coefficient of Performance

    Directory of Open Access Journals (Sweden)

    Young-Ju Jung

    2016-05-01

    Full Text Available The Korean government is fostering a renewable energy industry as a means of handling the energy crisis. Among the renewable energy systems available, geothermal energy has been highlighted as highly efficient, safely operable and relatively unaffected by outdoors air conditions. Despite the increasing use of renewable energy, the devices using renewables may not be operating appropriately. This study examined current problems in the operation of a geothermal heat pump (GHP system. The efficiency of a geothermal heat pump system to studied to maximize the operation plan. Our study modelled the target building and analyzed the energy using TRNSYS, which is a dynamic energy simulation tool, to apply the coefficient of performance (COP and evaluate the operation method. As a result, the GHP total energy consumption from the COP control method was reduced by 46% compared to the current operation. The proposed control method was evaluated after applying the system to a building. The results showed that efficient operation of a geothermal heat pump system is possible.

  5. The USGS national geothermal resource assessment: An update

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  7. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  8. Geologic and preliminary reservoir data on the Los Humeros Geothermal System, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferriz, H.

    1982-01-01

    Exploratory drilling has confirmed the existence of a geothermal system in the Los Humeros volcanic center, located 180 km east of Mexico City. Volcanic activity in the area began with the eruption of andesites, followed by two major caldera-forming pyroclastic eruptions. The younger Los Potreros caldera is nested inside the older Los Humeros caldera. At later stages, basaltic andesite, dacite, and olivine basalt lavas erupted along the ring-fracture zones of both calderas. Geologic interpretation of structural, geophysical, and drilling data suggests that: (1) the water-dominated geothermal reservoir is hosted by the earliest andesitic volcanic pile, is bounded by the ring-fracture zone of the Los Potreros caldera, and is capped by the products of the oldest caldera-forming eruption; (2) permeability within the andesitic pile is provided by faults and fractures related to intracaldera uplift; (3) the geothermal system has potential for a large influx of meteoric water through portions of the ring-fracture zones of both calderas; and (4) volcanic centers with similar magmatic and structural conditions can be found in the eastern Cascades, USA.

  9. Assessment of geothermal resources of the United States, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L.J.P. (ed.)

    1979-01-01

    The geothermal resource assessment presented is a refinement and updating of USGS Circular 726. Nonproprietary information available in June 1978 is used to assess geothermal energy in the ground and, when possible, to evaluate the fraction that might be recovered at the surface. Five categories of geothermal energy are discussed: conduction-dominated regimes, igneous-related geothermal systems, high-temperature (> 150/sup 0/C) and intermediate-temperature (90 to 150/sup 0/C) hydrothermal convection systems, low-temperature (< 90/sup 0/C) geothermal waters, and geopressured-geothermal energy (both thermal energy and energy from dissolved methane). Assessment data are presented on three colored maps prepared in cooperation with the National Oceanic and Atmospheric Administration. Separate abstracts were prepared for papers on these five categories.

  10. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  12. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  13. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  14. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  15. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  16. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  17. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    International Nuclear Information System (INIS)

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite

  18. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  19. Federal Geothermal Research Program Update Fiscal Year 2000; ANNUAL

    International Nuclear Information System (INIS)

    Renner, J.L.

    2001-01-01

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research

  20. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  1. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    DEFF Research Database (Denmark)

    Battistel, Maria; Hurwitz, Shaul; Evans, William C.

    2016-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city...... and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the reservoir. Overall data from this study is consistent with previous studies that concluded that the geothermal system has a large energy potential....... of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (

  2. Igneous-related geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R L; Shaw, H R

    1976-01-01

    A preliminary survey of the geothermal resource base associated with igneous-derived thermal anomalies in the upper 10 km of the crust is presented. The approach to numerical estimates of igneous-related heat contents rests on estimates of the probable volumes of high-level magma chambers and determinations of the radiometric ages of the youngest volcanism from those chambers combined with simple thermal calculations based on these values. (MHR)

  3. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  4. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  5. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  6. DEVELOPING DIRECT USE OF GEOTHERMAL ENERGY IN ORADEA CITY

    Directory of Open Access Journals (Sweden)

    VASIU I.

    2015-09-01

    Full Text Available Thermal energy demand for district heating in the city of Oradea is supplied at present, almost at whole, by the Cogeneration Thermal Power Plant, based on classical fuels, mainly consisting of low grade coal and natural gas, with a small contribution of the geothermal energy. Geothermal resource at low enthalpy, located within the city area of Oradea, available at an estimated level of 250 GWh/year, exploited at present by 12 production wells, can provide a share of 55 GWh/year for district heating, representing at present about 7 % from the overall thermal demand at the end users inlet. Geothermal energy is delivered by means of 3 main thermal stations, in order to prepare, especially household warm water, but sometimes also secondary agent for space heating, using additionally heat, based on natural gas. At present, in the city area of Oradea, more than 7,000 dwellings are supplied by geothermal stations with warm water and in addition for about 3,400 dwellings is assured simultaneously warm water and space heating. Even if the geothermal energy provides at present only a small part of the overall heating requirement at the city level, nevertheless by increased financial support, in the near future is expected its much more contribution, as an alternative to polluting energy of coal and natural gas.

  7. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  8. Geothermal energy utilized in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schulz, R.

    1990-01-01

    This paper reports on the geothermal resources and reserves that have been estimated for selected aquifers in the Northwest German Basin, the Upper Rhine Graben and the South German Molasse Basin. The highest reserves (31 · 10 18 J) are located in the Malm aquifer in the Molasse Basin. Geothermal energy is utilized in 15 localities using low enthalpy water. The total installed capacity is about 8 MW t . Two small new installations (Waldsee, Weiden) have been realized in the last years. In another project (Bruchsal) the doublet, which is necessary because of the high saline water, is now in a working order. A prefeasibility study for a Hot Dry Rock system has been performed by a German-French group. The HDR test site is located in the Upper Rhine Graben

  9. Geopressured-geothermal well activities in Louisiana

    International Nuclear Information System (INIS)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing

  10. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  11. Technology and economics of near-surface geothermal resources exploitation

    Directory of Open Access Journals (Sweden)

    Э. И. Богуславский

    2017-04-01

    Full Text Available The paper presents economic justification for applicability of near-surface geothermal installations in Luga region, based on results of techno-economic calculations as well as integrated technical and economic comparison of different prediction scenarios of heat supply, both conventional and using geothermal heat pumps (GHP. Construction costs of a near-surface geothermal system can exceed the costs of central heating by 50-100 %. However, operation and maintenance (O&M costs of heat production for geothermal systems are 50-70 % lower than for conventional sources of heating. Currently this technology is very important, it is applied in various countries (USA, Germany, Japan, China etc., and depending on the region both near-surface and deep boreholes are being used. World practice of near-surface geothermal systems application is reviewed in the paper.

  12. ThermoGIS: An integrated web-based information system for geothermal exploration and governmental decision support for mature oil and gas basins

    NARCIS (Netherlands)

    Wees, J.-D. van; Juez-Larre, J.; Mijnlieff, H.; Kronimus, A.; Gessel, S. van; Kramers, L.; Obdam, A.; Verweij, H.; Bonté, D.

    2009-01-01

    In the recent years the use of geothermal energy through implementation of low enthalpy geothermal production systems for both electricity and heating have been growing rapidly in north-western Europe. Geothermal exploration and production takes largely place in sedimentary basins at depths from 2

  13. Assessing the prospective resource base for enhanced geothermal systems in Europe

    NARCIS (Netherlands)

    Limberger, Jon; Calcagno, Philippe; Manzella, Adelle; Trumpy, Eugenio; Boxem, Thijs; Pluymaekers, Maarten; van Wees, Jan-Diederik

    2014-01-01

    In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the

  14. The The geothermal potentials for electric development in Maluku Province

    OpenAIRE

    Isnaniawardhani, Vijaya; Sukiyah, Emi; Sudradjat, Adjat; Nanlohy, Martha Magdalena

    2018-01-01

    The characteristic of small to medium size islands is the limited amount of natural resources for electric generation. Presently the needs of energy in Maluku Province are supplied by the diesel generation units. The electricity distributes through an isolated grid system of each island. There are 10 separate systems in Maluku Province, namely Ambon, Namlea, Tual, Saumlaki, Mako, Piru, Bula, Masohi, Dobo and Langgur. From the geothermal point of view, this condition is suitable because the na...

  15. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    Science.gov (United States)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  16. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    Science.gov (United States)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  17. Deep geothermal resources in Quebec and in Colombia: an area that may develop based on French experience on geothermal power plants

    International Nuclear Information System (INIS)

    Blessent, D.; Raymond, J.; Dezayes, C.

    2016-01-01

    Because of an increasing demand in electricity and a necessity of reducing greenhouse gas emissions, several countries envisage the development of the renewable energies. The geothermal energy is a particularly interesting alternative because it allows a production of electricity which is not influenced by weather conditions and it requires relatively restricted surface areas compared, for example, to the area required by a hydroelectric power plant. The literature review presented here summarizes the main characteristics of the geothermal potential in Quebec, in sedimentary basins, and in Colombia, in the area of the Nevado del Ruiz volcanic complex. Currently, in these two regions, the hydro-electric power dominates the electricity production, but there is a similar interest to the development of geothermal power plants. The French sites of Soultz-sous-Forets in Alsace and Boiling in Guadeloupe are respectively presented as an example of exploitation of geothermal improved systems (Enhanced Geothermal System; EGS) and geothermal resources in volcanic regions. The first site constitutes a model for the future development of the deep geothermal exploitation in Quebec, whereas the second is an example for Colombia. A description of environmental impacts related to the exploitation of deep geothermal resources is presented at the end of this paper. (authors)

  18. The role of helium and other noble gases in the modelling of geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1994-01-01

    A model of the geothermal system in which deep circulating groundwater containing noble gases at air saturated water concentrations mixes with hot fluids of mantle origin at depth is described. It is proposed that the 3 He/heat ratio should be similar to that observed in mid-ocean ridge systems, in which case the 3 He to atmospheric argon ratio in geothermal discharges would be an indicator o the likely heat content of a system. As a first test of this hypothesis the noble gas results of Mazor et al. (1990) have been presented as the 3 He/heat ratios for Wairakei and early Mokai wells and fumaroles. Their simplified boiling model has been used to correct for the effects of gas-water separation which occurs in underground boiling. At Wairakei, the resultant range of 3 He/heat values is 140-8500 atoms 3 He mW -1 s -1 , similar (except for the lowest values) to the range measured in mid ocean ridges. Further work is needed, but the available data show that the technique has promise for the modelling of deep geothermal systems and providing input to simulation models currently being used in reservoir engineering. The technique has potential to distinguish between stored heat systems and renewing systems. (author). 8 refs., 2 figs., 1 tab

  19. The decree of the 8 January 2015 related to geothermal industry: a determining step for the development of this sector

    International Nuclear Information System (INIS)

    Lormeteau, Blanche

    2015-01-01

    In order to favour the use of small-scale geothermal energy, this decree has simplified the regulatory framework by substituting an on-line work declaration to the previous authorization-based regime. This article analyses and discusses the content of this decree which makes the distinction between small-scale geothermal energy, low temperature geothermal energy, and high temperature geothermal energy. The decree modifies the mining title regime, simplifies procedures of exploitation of small scale geothermal sites. The author outlines that this new regime will be more precisely defined by other decrees which are to be published during the summer 2015, and will be completed by arrangements which are part of the bill on energy transition

  20. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and

  1. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    Science.gov (United States)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  2. Geothermal pump down-hole energy regeneration system

    Science.gov (United States)

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  3. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  4. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  5. Environmental considerations for geothermal energy as a source for district heating

    International Nuclear Information System (INIS)

    Rafferty, K.D.

    1996-01-01

    Geothermal energy currently provides a stable and environmentally attractive heat source for approximately 20 district heating (DH) systems in the US. The use of this resource eliminates nearly 100% of the conventional fuel consumption (and, hence, the emissions) of the loads served by these systems. As a result, geothermal DH systems can rightfully claim the title of the most fuel-efficient DH systems in operation today. The cost of producing heat from a geothermal resource (including capitalization of the production facility and cost for pumping) amounts to an average of $1.00 per million Btu (0.0034 $/kWh). The major environmental challenge for geothermal systems is proper management of the producing aquifer. Many systems are moving toward injection of the geothermal fluids to ensure long-term production

  6. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  7. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  8. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  9. Lithium Isotopes in Geothermal Fluids from Iceland

    Science.gov (United States)

    Millot, R.; Asmundsson, R.; Sanjuan, B.

    2008-12-01

    One of the main objectives of the HITI project (HIgh Temperature Instruments for supercritical geothermal reservoir characterization and exploitation), partially funded by the European Union, is to develop methods to characterize the reservoir and fluids of deep and very high temperature geothermal systems. The chemical composition of geothermal waters in terms of major and trace elements is related to the temperature, the degree of water/rock interaction and the mineralogical assemblage of the bedrock. Traditional geothermometers, such as silica, Na-K, Na-K-Ca or K-Mg applied to geothermal waters, make it possible to estimate the temperature at depth of the reservoir from which the waters are derived. However, the values estimated for deep temperature are not always concordant. The chemical geothermometer Na/Li which presents the singularity of associating two chemical elements, one a major element (sodium) and the other a trace element (Li), can be also used and gives an additional temperature estimation. The primary objective of this work was to better understand the behavior of this last geothermometer using the isotopic systematics of Li in order to apply it at very high temperature Icelandic geothermal systems. One particularly important aspect was to establish the nature, extent and mechanism of Li isotope fractionation between 100 and 350°C during water/rock interaction. For that purpose, we measured Li isotopes of about 25 geothermal waters from Iceland by using a Neptune MC-ICP-MS that enabled the analysis of Li isotopic ratios in geothermal waters with a level of precision of ±0.5‰ (2 standard deviations) on quantities of 10-50 ng of Li. Geothermal waters from Reykjanes, Svartsengi, Nesjavellir, Hveragerdi, Namafjall and Krafla geothermal systems were studied and particular emphasis was placed on the characterization of the behavior of Li isotopes in this volcanic context at high temperature with or without the presence of seawater during water

  10. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  11. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  12. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  13. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  14. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  15. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  16. Surface-near geothermal energy. Ground coupled heat pumps and underground thermal energy storage; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the eleventh International User Forum at 27th/28th September, 2011 in Regensburg (Federal Republic of Germany) the following lectures were held: (1) Ecologic evaluation of heat pumps - a question of approach (Roland Koenigsdorff); (2) An actual general comment to WHG, the preparations for the new VAUwS and possible consequences on the surface-near geothermal energy (Walker-Hertkorn); (3) Field-test experiences: Ground source heat pumps in small residential buildings (Jeannette Wapler); (4) GeoT*SOL basic - Program for the evaluation and simulation of heat pump systems (Bernhard Gatzka); (5) Monitoring and modelling of geothermal heat exchanger systems (Fabian Ochs); (6) Thermal response tests for the quality assurance of geothermal heat probes (Markus Proell); (7) Process of determining an untroubled soil temperature in comparison (Andreas Koehler); (8) Borehole resistance - Is the TRT measured value also the planning value? (Roland Koenigsdorff); (9) Consideration of the heat transport in geothermal probes (Martin Konrad); (10) Process of evaluation the sealing of geothermal probes with backfilling materials (Manfred Reuss); (11) Quality assessment of geothermal probes in real standard (Mathieu Riegger); (12) Comparison of flat collectors salt water and direct evaporation, design, impacs, consequences (Bernhard Wenzel); (13) Non-covered photovoltaic thermal collectors in heat pump systems (Erik Bertram); (14) Seasonal geothermal probe-heat storage - Heat supply concepts for objects with overbalancing heating level of more than 100 kW (Volker Liebel); (15) Application of geothermal probe fields as a cold storage (Rolf Wagner); (16) Geothermal energy and waste water warmth: State of the art and new technologies for a combined utilization (Wolfram Stodtmeister); (17) Integration of a heat pump into a solar supported local heat supply in Neckarsulm (Janet Nussbicker-Lux); (18) Regenerative heating with photovoltaics and geothermal energy (Christoph Rosinski

  17. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    Science.gov (United States)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  18. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Paul [Gas Equipment Engineering Corp., Milford, CT (United States); Selman, Nancy [Gas Equipment Engineering Corp., Milford, CT (United States); Volpe, Anthony Della [Gas Equipment Engineering Corp., Milford, CT (United States); Moss, Deborah [Gas Equipment Engineering Corp., Milford, CT (United States); Mobley, Rick [Plasma Energy Services, LLC, Putnam, CT (United States); Dickey, Halley [Turbine Air Systems, Houston, TX (United States); Unruh, Jeffery [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Hitchcock, Chris [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Tanguay, Jasmine [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Larsen, Walker [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Sanyal, Sabir [GeothermEx, Inc., San Pablo, CA (United States); Butler, Steven [GeothermEx, Inc., San Pablo, CA (United States); Stacey, Robert [GeothermEx, Inc., San Pablo, CA (United States); Robertson-Tait, Ann [GeothermEx, Inc., San Pablo, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gutoski, Greg [Fairbanks Morse Engines (FME), Beloit, WI (United States); Fay, Jamie M. [Fort Point Associates, Boston, MA (United States); Stitzer, John T. [Fort Point Associates, Boston, MA (United States); Oglesby, Ken [Impact Technologies LLC, Tulsa, OK (United States)

    2012-04-30

    Substantial unexploited opportunity exists for the US, and the world, in Enhanced Geothermal Systems (EGS). As a result of US DOE investment, new drilling technology, new power generation equipment and cycles enable meaningful power production, in a compact and modular fashion; at lower and lower top side EGS working fluid temperatures and in a broader range of geologies and geographies. This cost analysis effort supports the expansion of Enhanced Geothermal Systems (EGS), furthering DOE strategic themes of energy security and sub goal of energy diversity; reducing the Nation's dependence on foreign oil while improving the environment.

  19. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  20. Geothermal applications on the Madison (Pahasapa) aquifer system in South Dakota. Final report, October 1, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Gries, J.P.

    1977-09-01

    Pertinent geologic, hydrologic, and chemical data for the Madison Formation underlying western South Dakota are presented in text and in graphic form. A temperature anomaly in west central South Dakota makes 130 to 160/sup 0/F water available at depths of less than 3500 ft. A central geothermal space heating system designed for Midland, South Dakota indicates that by 1980 geothermal heat will be competitive with existing energy sources. Preliminary tests indicate the superiority of 304 or 316 stainless steel for fabrication of equipment to utilize the warm, corrosive Madison water. South Dakota has no statutes governing geothermal resources; under existing water law, geothermal water would be classified as a top priority domestic use. Suggestions are made for state legislation pertaining to the development of geothermal energy.

  1. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  2. Revisiting the Euganean Geothermal System (NE Italy) - insights from large scale hydrothermal modelling

    Science.gov (United States)

    Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico

    2017-04-01

    As one of the largest and most extensive utilized geothermal system in northern Italy, the Euganean Geothermal System (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. Hydrothermal waters feeding the system are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault system (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual hydrothermal model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially

  3. Aqueous systems and geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Significant unpublished results reported include: osmotic coefficients of KCl solutions vs. molality at 109 to 201 0 C; cadmium ion diffusivities in CaCl 2 hydrous melts; a x-ray diffraction study of the uranyl complex in water; solubility of amorphous silica in aqueous NaNO 3 solutions at 100 to 300 0 C; and corrosion of carbon steel by geothermal brine

  4. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2014-07-01

    Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.

  5. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  6. Realizing the geothermal electricity potential—water use and consequences

    Science.gov (United States)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  7. Realizing the geothermal electricity potential-water use and consequences

    International Nuclear Information System (INIS)

    Mishra, Gouri Shankar; Yeh, Sonia; Glassley, William E

    2011-01-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh -1 ) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  8. On geothermal resources of India. Geotectonic aspects and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M L [National Geophysical Research Inst., Hyderabad (India)

    1988-11-10

    Research programs launched for exploration and development of the geothermal energy in India, since the 1973-1974 oil embargo, have led to the identification of many potential areas for geothermal resources. Resources comprise high/intermediate/low temperature hydrothermal convection and hot water aquifer systems, geopressured geothermal system and conduction-dominated regimes. Location and properties of these geothermal systems are controlled by the geodynamic and tectonic characteristics of the Indian continental lithosphere Main sectors for the utilization of India's proved and identified geothermal resources are the power generation, space heating, green house cultivation, aquaculture, poultry, sheep breeding, mineral processing, mushroom raising, processing of farm and forest produce, refrigeration, tourism, health-resorts and mineral water bottling. The R and D efforts have given some encouraging results. Geothermal resources of India, although primarily are of medium to low grade, could supplement, to a great extent, direct heat energy needs and may also provide electricity to some of the remote hilly areas. Development of geothermal energy sources in India is likely to get some more attention, with the setting up of separate departments and agencies, by various Provincial Governments, for R and D backing toward the alternate sources of energy.

  9. A review on energetic, exergetic and exergoeconomic aspects of geothermal district heating systems (GDHSs)

    International Nuclear Information System (INIS)

    Hepbasli, Arif

    2010-01-01

    Geothermal is a reliable and promising renewable energy. In 1892 the first geothermal district heating system (GDHS) began operations in Boise, Idaho, USA. Since then, a number of GDHSs installations have been made worldwide. Various investigations on the efficient utilization of geothermal energy resources have also been conducted to attain sustainable development. There is a link between exergy and sustainable development. In recent years, exergy analysis has been widely used in the design, simulation and performance assessment of thermal systems. Exergoeconomic analysis, which is a combination of exergy and economics, is nowadays considered a powerful tool to study and optimize various types of energy-related systems. The present study comprehensively reviews GDHSs in terms of three aspects, namely energetic, exergetic and exergoeconomic analyses and assessments, for the first time to the best of the author's knowledge. A brief historical development of the studies on GDHSs was given on the base of these three aspects first. Next, GDHSs analyzed were schematically presented and shortly described. The previously conducted studies on GDHSs were then reviewed and classified. Finally, the conclusions were presented. It is expected that this comprehensive study will be very beneficial to everyone involved or interested in the energetic, exergetic and exergoeconomic design, analysis and performance evaluation of GDHSs.

  10. Modeling research in low-medium temperature geothermal field, Tianjin

    Institute of Scientific and Technical Information of China (English)

    WANG; Kun(王坤); LI; Chunhua(李春华)

    2002-01-01

    The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.

  11. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  12. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  13. Federal Geothermal Research Program Update Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  14. National Geothermal Data System State Contributions by Data Type (Appendix A1-b)

    Energy Technology Data Exchange (ETDEWEB)

    Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey)

    2015-12-20

    Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.

  15. Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand

    International Nuclear Information System (INIS)

    Werner, Cynthia; Cardellini, Carlo

    2006-01-01

    During 2002 and 2003, carbon dioxide fluxes were measured across the Rotorua geothermal system in the Taupo Volcanic Zone (TVZ), New Zealand. The results of a 956-measurement survey and of modeling studies show that CO 2 fluxes could be used to determine the main hot fluid upflow areas in Rotorua, and perhaps in undeveloped geothermal regions. Elevated degassing was observed along inferred fault traces and structures, lending confidence to their existence at depth. Degassing was also observed along lineaments that were consistent with the alignment of basement faulting in the TVZ. Areas where elevated degassing was spatially extensive typically overlapped with known regions of hot ground; however, elevated CO 2 fluxes were also observed in isolated patches of non-thermal ground. The total emission rate calculated from sequential Gaussian simulation modeling of CO 2 fluxes across the geothermal system was 620td -1 from an 8.9-km 2 area. However, because approximately one-third of the geothermal system is known to extend beneath Lake Rotorua, we expect the emissions could be minimally on the order of 1000td -1 . Comparing the emission rate with geochemical analyses of geothermal fluids and estimated upflows suggests that the majority of deep carbon reaches the surface in the form of carbon dioxide gas, and that less than one tenth of the CO 2 emissions is dissolved in, or released from, the fluids at depth. Thus, the geothermal reservoir exerts very little control on deep degassing of CO 2 . Carbon isotopic analyses of soil gases suggest a primarily magmatic source for the origin of the CO 2 . The total Rotorua emission rate is comparable to those from active volcanoes such as at White Island, New Zealand, and, when normalized by geothermal area, is comparable to other volcanic and hydrothermal regions worldwide. (author)

  16. Quantitative Analysis of Existing Conditions and Production Strategies for the Baca Geothermal System, New Mexico

    Science.gov (United States)

    Faust, Charles R.; Mercer, James W.; Thomas, Stephen D.; Balleau, W. Pete

    1984-05-01

    The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximations is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

  17. Outline of geothermal power generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Y

    1960-01-01

    The utilization of geothermal energy in electrical power generation throughout the world is described. Details of generating capacity and cost are given for Larderello, Italy; Wairakei, New Zealand: and the Geysers, USA. In Japan three types of conversion systems are used. These include the direct use of steam, direct use of hot water and binary fluid type systems. The history of Japanese investigation and exploitation of geothermal energy is reviewed and the status of the Matsukawa, Hakone, Otake and Takenoyu geothermal power plants is discussed. It is recommended that laws be enacted in Japan to encourage the development of this form of energy conversion.

  18. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  19. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  20. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  1. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  2. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  3. Geothermal GW cogeneration system GEOCOGEN

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Gustav R

    2010-09-15

    GEOCOGEN is the GW zero pollution, no risk solution to replace nuclear and fossil fuelled power plants. It can be built near the energy consumption centers, is invisible and produces electricity and heat at a fraction of the cost of any other the energy mix options. It is a break through deep well geothermal energy technology lasting forever driving also millions of electric vehicles.

  4. Possibilities for electricity production from geothermal energy in Slovenia in the next decade

    Directory of Open Access Journals (Sweden)

    Dušan Rajver

    2012-06-01

    Full Text Available This article is intended to raise awareness of the public, with the aim that anyone can judge reality and accuracyof records that appear in the media on the exploitation of geothermal energy. It provides a comprehensive overviewof geothermal systems, potential of hydrothermal and enhanced geothermal systems, of mechanisms and characteristicsof middle and high enthalpy geothermal resources. It also deals with a mode of their conversion into electricity.Featured are the main factors affecting the decision on effectiveness of conversion of geothermal energy intoelectricity. Given are the review of the research necessary to establish the geothermal potential and assessment oftechnological and economic possibilities of installing geothermal power plants in Slovenia. The paper also describesthe state of knowledge of middle- and high temperature geothermal resources in Slovenia with initial conditions forconstructing geothermal power plants. In addition, we present theoretical calculations of the conversion efficiencyof geothermal energy into electricity with conventional turbines and present some problems for the exploitationof geothermal energy, which are associated with additional costs and further reduce the efficiency of investment.Described are the characteristics and performance of binary geothermal power plants and foreign experience inobtaining electricity from the EGS (Enhanced Geothermal System. We also address the overlapping of the oil andgas industry with the operation of the EGS and the possibility of exploiting oil and gas wells for producing thegeothermal electricity.

  5. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.

    1991-01-01

    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  6. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    Science.gov (United States)

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  7. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  8. Sustainable geothermal utilization - Case histories; definitions; research issues and modelling

    International Nuclear Information System (INIS)

    Axelsson, Gudni

    2010-01-01

    Sustainable development by definition meets the needs of the present without compromising the ability of future generations to meet their own needs. The Earth's enormous geothermal resources have the potential to contribute significantly to sustainable energy use worldwide as well as to help mitigate climate change. Experience from the use of numerous geothermal systems worldwide lasting several decades demonstrates that by maintaining production below a certain limit the systems reach a balance between net energy discharge and recharge that may be maintained for a long time (100-300 years). Modelling studies indicate that the effect of heavy utilization is often reversible on a time-scale comparable to the period of utilization. Thus, geothermal resources can be used in a sustainable manner either through (1) constant production below the sustainable limit, (2) step-wise increase in production, (3) intermittent excessive production with breaks, and (4) reduced production after a shorter period of heavy production. The long production histories that are available for low-temperature as well as high-temperature geothermal systems distributed throughout the world, provide the most valuable data available for studying sustainable management of geothermal resources, and reservoir modelling is the most powerful tool available for this purpose. The paper presents sustainability modelling studies for the Hamar and Nesjavellir geothermal systems in Iceland, the Beijing Urban system in China and the Olkaria system in Kenya as examples. Several relevant research issues have also been identified, such as the relevance of system boundary conditions during long-term utilization, how far reaching interference from utilization is, how effectively geothermal systems recover after heavy utilization and the reliability of long-term (more than 100 years) model predictions. (author)

  9. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    OpenAIRE

    Lun-Tao Tong; Shoung Ouyang; Tai-Rong Guo; Ching-Ray Lee; Kou-Hsin Hu; Chun-Li Lee; Chun-Jao Wang

    2008-01-01

    The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive t...

  10. 3D Geothermal Modelling of the Mount Amiata Hydrothermal System in Italy

    Directory of Open Access Journals (Sweden)

    Paolo Fulignati

    2014-11-01

    Full Text Available In this paper we build a subsurface model that helps in visualizing and understanding the structural framework, geology and their interactions with the Mt. Amiata geothermal system. Modelling in 3D provides the possibility to interpolate the geometry of structures and is an effective way of understanding geological features. The 3D modelling approach appears to be crucial for further progress in the reconstruction of the assessment of the geothermal model of Mt. Amiata. Furthermore, this model is used as the basis of a 3D numerical thermo-fluid-dynamic model of the existing reservoir(s. The integration between borehole data and numerical modelling results allows reconstructing the temperature distribution in the subsoil of the Mt. Amiata area.

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  12. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  13. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  14. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  15. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  16. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  17. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  18. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  19. Geothermal energy in the world energy scenario

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    This paper reports on the world energy consumption between 1960 and 1984 from primary energy sources (coal, natural gas, oil, hydropower, nuclear energy) and the same in percentages from 1925. This highlights the diminishing role of coal and the increased consumption of gas and oil. The latter has stabilized around 42% of the total after the drop in demand resulting from the oil crisis of 1973. The world energy consumption has then been divided into industrialized and developing countries. It appears that the latter, with a population equal to 68% of the total world population, consumed 23% of the world energy in 1982. Furthermore, the consumption figures show that the demand for domestic energy is much smaller in developing countries, and it is well-known that domestic energy consumed is one of the parameters used to assess standard of living. The total installed electric capacity throughout the world is then reported, divided between developed and developing countries, showing that the latter consumed 11% of all the electricity generated in the world in 1981. The world installed electric power of geothermal origin at the end of 1985 is shown, along with estimates for 1990. Geothermal energy represents 0.2% of the world electric power. This is obviously a small figure and indicates that geothermal energy plays a minor role on the world energy scene. However, if we distinguish between industrialized and developing countries, we can observe that, with their currently limited electrical consumption but good geothermal prospects, the developing countries could achieve quite a significant contribution to their total electric energy from that of geothermal origin, increasing at the moment from 3 to 19%. Finally, a comparison is made between electricity generating costs of different sources, showing that geothermal energy is competitive. A table illustrates the world evolution in installed geothermal capacity from 1950 to 1985. The non-electric uses of geothermal energy

  20. Ground source geothermal heat. Ground source heat pumps and underground thermal energy storage systems. Proceedings; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the ninth international user forum on shallow geothermal heat on 28th and 29th April, 2009, at BadStaffelstein (Federal Republic of Germany), the following lectures were held: (1) Information system on shallow geothermal heat for Bavaria (Marcellus Schulze); (2) Calculation of the spreading of temperature anomalies in groundwater as an instrument of planning of heat pump systems (Wolfgang Rauch); (3) Comparison of models for simulation of deep geothermal probes (Markus Proell); (4) Impact of the geometry of boreholes and probes on heat transport (Manfred Reuss); (5) Thermal respond tests and temperature depth profiles - Experience from research and practice (Markus Kuebert); (6) A model of simulation for the investigation of the impact of different heat transfer fluids on the efficiency of ground source heat pump devices (Roland Koenigsdorff); (7) The research project EWSplus - Investigations for quality assurance of geothermal probes (Mathieu Riegger); (8) Quality management of plants for the utilization of shallow geothermal heat with geothermal probes - the example of Baden-Wuerttemberg (Bruno Lorinser, Ingrid Stober); (9) Not every heat pump contributes to climate protection (Falk Auer); (10) Field measurements of heat pumps in residential buildings with modern standard and in older buildings (Marek Miara); (11) System technology for a great annual performance factor (Werner Schenk); (12) Modification of older geothermal heat probe devices for use with modern heat pumps (Klaus Friedrich Staerk); (13) Energy-efficient modernisation of a pensioners' condominium from the 1970s with solar-geothermal-air (Michael Guigas); (14) Evaluation and optimization of operation of seasonal storage systems in the foundations of office buildings (Herdis Kipry); (15) Evaluation of an innovative heating and cooling concept with rain water vessels, thermo-active building components and phase change materials in a residential building (Doreen Kalz); (16) Contracts for ground

  1. Novel approaches for an enhanced geothermal development of residential sites

    Science.gov (United States)

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  2. Synopsis of Past Stimulation Methods in Enhanced (Engineered) Geothermal Systems, Boreholes, and Existing Hydrothermal Systems with Success Analysis and Recommendations for Future Projects

    Science.gov (United States)

    Broadhurst, T.; Mattson, E.

    2017-12-01

    Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.

  3. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    Science.gov (United States)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  4. Geothermal power plants around the world. A sourcebook on the production of electricity from geothermal energy, draft of Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1979-02-01

    This report constitutes a consolidation and a condensation of several individual topical reports dealing with the geothermal electric power stations around the world. An introduction is given to various types of energy conversion systems for use with geothermal resouces. Power plant performance and operating factors are defined and discussed. Existing geothermal plants in the following countries are covered: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, the Philippines, Turkey, the Union of Soviet Socialist Republics, and the United States. In each case, the geological setting is outlined, the geothermal fluid characteristics are given, the gathering system, energy conversion system, and fluid disposal method are described, and the environmental impact is discussed. In some cases the economics of power generation are also presented. Plans for future usage of geothermal energy are described for the above-mentioned countries and the following additional ones: the Azores (Portugal), Chile, Costa Rica, Guatemala, Honduras, Indonesia, Kenya, Nicaragua, and Panama. Technical data is presented in twenty-two tables; forty-one figures, including eleven photographs, are also included to illustrate the text. A comprehensive list of references is provided for the reader who wishes to make an in-depth study of any of the topics mentioned.

  5. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  6. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  7. District heating systems - the necessary infrastructure for geothermal energy; Fern- und Nahwaermesysteme - notwendige Infrastruktur fuer die Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, I [Inst. fuer Umwelt-, Sicherheits- und Energietechnik e.V. (UMSICHT), Oberhausen (Germany)

    1997-12-01

    The contribution discusses the future chances of geothermal energy use with cost-optimized systems of geothermal energy + cogeneration + district heating and with the focus on innovation instead of state funding. (orig./AKF) [Deutsch] Der Beitrag bezieht sich auf die zukuenftigen Chancen der Geothermie, die eine kostenoptimierte Systemloesung Geothermie + KWK + Nah-/Fernwaerme sowie durch Mut zur Innovation und nicht durch Foerderung bestimmt werden. (orig./AKF)

  8. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    Science.gov (United States)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2018-01-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  9. A Selection Method for Power Generation Plants Used for Enhanced Geothermal Systems (EGS

    Directory of Open Access Journals (Sweden)

    Kaiyong Hu

    2016-07-01

    Full Text Available As a promising and advanced technology, enhanced geothermal systems (EGS can be used to generate electricity using deep geothermal energy. In order to better utilize the EGS to produce electricity, power cycles’ selection maps are generated for people to choose the best system based on the geofluids’ temperature and dryness conditions. Optimizations on double-flash system (DF, flash-organic Rankine cycle system (FORC, and double-flash-organic Rankine cycle system (DFORC are carried out, and the single-flash (SF system is set as a reference system. The results indicate that each upgraded system (DF, FORC, and DFORC can produce more net power output compared with the SF system and can reach a maximum net power output under a given geofluid condition. For an organic Rankine cycle (ORC using R245fa as working fluid, the generated selection maps indicate that using the FORC system can produce more power than using other power cycles when the heat source temperature is below 170 °C. Either DF or DFORC systems could be an option if the heat source temperature is above 170 °C, but the DF system is more attractive under a relatively lower geofluid’s dryness and a higher temperature condition.

  10. An Information Survival Kit for the Prospective Geothermal Heat Pump Owner

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-02-01

    The fact that you are considering a geothermal (or ground-source) heat pump system, places you among the best informed and most innovative homeowners in the country. Geothermal heat pumps (GHPs), although not a new technology, remain a small (but growing) player in the residential heating/cooling sector. Although somewhat higher in first cost, this technology can, in the right application, quickly repay this cost premium through savings in energy costs. Despite all the positive publicity on GHPs, they are not for everyone. Like any other heating and cooling system, GHPs tend to fit well in certain circumstances and poorly in others. Familiarizing yourself with the factors that effect the feasibility of GHPs will assist you in making an informed decision as to their suitability for your home. It is the intention of this package to provide that information and to address some of the commonly asked questions regarding the technology. Please feel free to contact us if you have questions not covered in this package.

  11. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  12. Study on scale formation and suppression in heat-exchange systems for simulated geothermal brines. Final report, January 12, 1976-March 5, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; King, J.E.; Bullard, G.R.

    1978-01-01

    Control of scale formation in heat exchangers using simulated geothermal waters can be achieved by lowering the pH of the water to pH 6 or lower. This does not, however, appear to be an economic approach for highly buffered geothermal brines and would lead to severe corrosion problems. Two commercial scale control agents, Calgon CL-165 and Monsanto Dequest 2060, showed promise of effecting scaling in a minor way and should be tested further on actual geothermal waters. Other scale control methods tested were unsuccessful. These included seeding experiments, turbulence promotin and electostatic and electromagnetic devices reputated to modify scale formation. The experiments were performed with tube-in-shell heat exchangers using simulated geothermal waters prepared from a salt dome solution based brine. The scale formed was primarily silica with a small percent of calcium carbonate and traces of magnesium and iron. Physically it was a hydrous soft solid adhering only lightly to the heat exchange surface. This is not typical of geothermal water scales encountered in high temperature brine operations and the results of the scale control expeirments should be evaluated with that in mind.

  13. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  14. Work for the International Energy Agency's Geothermal Implementing Agreement (GIA) in 2006; Arbeiten fuer das IEA Geothermal Implementing Agreement (GIA) 2006 - Jahresbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) discusses work done in 2006 within the framework of the International Energy Agency's Geothermal Implementing Agreement (GIA). Information exchange with representatives of countries where geothermal energy is used is discussed as are the contributions made in this area by Swiss representatives. In particular, comprehensive appendices to the report present the Swiss Country Report, a basic paper on geothermal sustainability, comments on the environmental impact of geothermal energy development and risks posed by fluid injection in enhanced geothermal systems.

  15. Geothermal resources in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Micevski, Eftim; Georgieva, Mirjana; Petrovski, Kiro; Lonchar, Ilija

    1995-01-01

    The Republic of Macedonia is situated in the central part of the Balcan Peninsula and covers a surface of 25. 713 km 2 Its territory is found in one of the most significant geothermal zones in this part of Balkans. The earths crust in this region suffers poli phase structural deformations, which as a result gives different structural features. The geothermal explorations in the Republic of Macedonia intensively started to conduct after 1970, after the first effects of the energy crisis. As a result of these explorations, more than 50 springs of mineral and thermo mineral waters with a total yield of more than 1.400 I./sec. And proved exploitation reservoirs of more than 1.000 I./sec. with temperatures higher than the medium year seasons hesitations for this part of the Earth in the boundaries of 20-75 o C with significant quantities of geothermal energy. This paper will shortly present the available geothermal resources and classification, according the type of geothermal energy, hydro geothermal, lithogeothermal and according the way of transport of the geothermal energy, convective and conductive systems. The next will present short descriptions of the resources, the degree of exploitation and the prognosis dimensions of the reservoirs. (Original)

  16. Mechanism of Fiscal and Taxation Policies in the Geothermal Industry in China

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2016-09-01

    Full Text Available Geothermal energy is one of the cleanest sources of energy which is gaining importance as an alternative to hydrocarbons. Geothermal energy reserves in China are enormous and it has a huge potential for exploitation and utilization. However, the development of the geothermal industry in China lags far behind other renewable energy sources because of the lack of fiscal and taxation policy support. In this paper, we adopt the system dynamics method and use the causal loop diagram to explore the development mechanism of fiscal and taxation policies in the geothermal industry. The effect of the fiscal and taxation policy on the development of the geothermal industry is analyzed. In order to promote sustainable development of the geothermal industry in China, the government should pay more attention to subsidies for the geothermal industry in the life-cycle stage of the geothermal industry. Furthermore, a plan is necessary to provide a reasonable system of fiscal and taxation policies.

  17. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    International Nuclear Information System (INIS)

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  18. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  19. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  20. Studies of geothermal background and isotopic geochemistry of thermal waters in Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Wenbin; Sun Zhanxue; Li Xueli; Shi Weijun

    1996-10-01

    The terrestrial heat flow measurement, isotope and geochemical techniques have been systematically applied to the geothermal systems in Jiangxi Province. Results show that the thermal waters in the study area all belong to the low-medium temperature convective geothermal system, which essentially differs from high temperature geothermal systems with deep magmatic heat sources. It has been proven that the isotope and geochemical techniques are very useful and effective in geothermal exploration. (13 refs., 14 tabs., 8 figs.)

  1. Characterisation of induced fracture networks within an enhanced geothermal system using anisotropic electromagnetic modelling

    Czech Academy of Sciences Publication Activity Database

    MacFarlane, J.; Thiel, S.; Pek, Josef; Peacock, J.; Heinson, G.

    2014-01-01

    Roč. 288, November (2014), s. 1-7 ISSN 0377-0273 Institutional support: RVO:67985530 Keywords : geothermal systems * magnetotellurics * fluid injection Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.543, year: 2014

  2. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  3. Geothermal energy, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    A survey is presented in order to determine the technology status, gaps, and needs for research and development programs in the environment and safety areas of this resource. The information gathered from a survey of geothermal energy development undertaken to provide background for an environment and safety overview program is summarized. A technology assessment for resource development is presented. The three specific environmental problems identified as most potentially limiting to geothermal development; hydrogen sulfide control, brine disposal, and subsidence, are discussed. Current laws, regulations, and standards applying to geothermal systems are summarized. The elements of the environment, health, and safety program considered to be intrinsically related to the development of geothermal energy systems are discussed. Interagency interfaces are touched on briefly. (MHR)

  4. Geothermal heat pumps - Trends and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1989-01-01

    Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 deg. F. Conventional geothermal heating (and cooling) systems are not economically efficient at these temperatures. Heat pumps, at these temperatures, can provide space heating and cooling, and with a desuperheater, domestic hot water. Two basic heat pump systems are available, air-source and water- or ground-source. Water- and ground-coupled heat pumps, referred to as geothermal heat pumps (GHP), have several advantages over air-source heat pumps. These are: (1) they consume about 33% less annual energy, (2) they tap the earth or groundwater, a more stable energy source than air, (3) they do not require supplemental heat during extreme high or low outside temperatures, (4) they use less refrigerant (freon), and (5) they have a simpler design and consequently less maintenance.

  5. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  6. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, John W. [Leidos, Inc., San Diego, CA (United States)

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  7. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  8. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  9. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  10. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  11. The history and significance of the Hawaii geothermal project

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    This paper reports that the Hawaii Geothermal Project, since its initiation in 1972, has not only demonstrated that there is a viable geothermal resource present on the Kilauea East Rift Zone, it has also produced a wealth of information about the characteristics of the resource and the operational requirements that must be met to generate electrical power on a long term reliable basis. The HGP-A well demonstrated that a high-temperature hydrothermal system was present on the East Rift Zone; the HGP-A Wellhead Generator Facility showed that electrical power could be generated on a long-term basis from the geothermal reservoir with an availability factor of more than 90%; and research at the facility tested several types of systems for control of hydrogen sulfide and scale deposition. The results of the Hawaii Geothermal Project have helped resolve many uncertainties about the reservoir and will provide guidance to private and regulatory interests as a commercial geothermal development comes on line in Hawaii

  12. Modelling geothermal conditions in part of the Szczecin Trough - the Chociwel area

    Science.gov (United States)

    Miecznik, Maciej; Sowiżdżał, Anna; Tomaszewska, Barbara; Pająk, Leszek

    2015-09-01

    The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years' time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

  13. US National Geothermal Data System: Web feature services and system operations

    Science.gov (United States)

    Richard, Stephen; Clark, Ryan; Allison, M. Lee; Anderson, Arlene

    2013-04-01

    The US National Geothermal Data System is being developed with support from the US Department of Energy to reduce risk in geothermal energy development by providing online access to the body of geothermal data available in the US. The system is being implemented using Open Geospatial Consortium web services for catalog search (CSW), map browsing (WMS), and data access (WFS). The catalog now includes 2427 registered resources, mostly individual documents accessible via URL. 173 WMS and WFS services are registered, hosted by 4 NGDS system nodes, as well as 6 other state geological surveys. Simple feature schema for interchange formats have been developed by an informal community process in which draft content models are developed based on the information actually available in most data provider's internal datasets. A template pattern is used for the content models so that commonly used content items have the same name and data type across models. Models are documented in Excel workbooks and posted for community review with a deadline for comment; at the end of the comment period a technical working group reviews and discusses comments and votes on adoption. When adopted, an XML schema is implemented for the content model. Our approach has been to keep the focus of each interchange schema narrow, such that simple-feature (flat file) XML schema are sufficient to implement the content model. Keeping individual interchange formats simple, and allowing flexibility to introduce new content models as needed have both assisted in adoption of the service architecture. One problem that remains to be solved is that off-the-shelf server packages (GeoServer, ArcGIS server) do not permit configuration of a normative schema location to be bound with XML namespaces in instance documents. Such configuration is possible with GeoServer using a more complex deployment process. XML interchange format schema versions are indicated by the namespace URI; because of the schema location

  14. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  15. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  16. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  17. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  18. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  19. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Michelle; Gleason, Michael; Reber, Tim; McCabe, Kevin; Mooney, Meghan; Young, Katherine R.

    2017-05-01

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources in the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.

  20. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  1. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  2. A comparison of economic evaluation models as applied to geothermal energy technology

    Science.gov (United States)

    Ziman, G. M.; Rosenberg, L. S.

    1983-01-01

    Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.

  3. GEOTHERM programme supports geothermal energy world-wide. Geothermal energy, a chance for East African countries; GEOTHERM: BGR foerdert weltweit Nutzung geothermischer Energie. Geothermie - eine Chance fuer ostafrikanische Laender

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, M.; Kessels, K.; Kalberkamp, U.; Ochmann, N.; Stadtler, C. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2007-02-15

    The high geothermal potential of East Africa, especially of the Eastern Rift, is known for a long time. Since these pioneer studies, geothermal plants have been constructed at three sites in East Africa. Nevertheless, up to now geothermal has been a success story only in Kenya. The steam power plant Olkaria I in Kenya is running reliability since 25 years. Today, the country produces more than 12% of its electricity from geothermal. Now, Eritrea, Djibouti, Uganda, Tanzania and Ethiopia which are also situated along the East African Rift, are planning similar projects. The countries need to develop new energy sources because oil prices have reached a critical level. In the past, hydro power was regarded to be a reliable source of energy, but increased droughts changed the situation. Thus, the african states are searching for alternatives to be able to stabilise their energy supply and to cover the growing energy demand. There is much hope that the success of the Kenyan geothermal power plants will be repeated in the neighbouring countries. The East African countries have joined their forces to give impetus to the use of the regional geothermal resources. On behalf of the Federal Ministry for Economic Cooperation and Development, the Federal Institute for Geosciences and Natural Resources supports the countries in realising their plans as part of the GEOTHERM Programme. Together with further donors (Iceland, France, USA, Global Environment Facility) the path will be paved for geothermal power plants in the above mentioned six East African countries. The following main steps are necessary: - Awareness raising of political decision makers about the advantages of including geothermal into the national power plans - Improvement of knowledge about potentials geothermal sites - Development of a regional equipment pool including the necessary geophysical equipment, laboratories, etc. - Training in geothermal exploration and plant maintenance, to minimise risks of site

  4. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  5. Geothermal training at the International Institute of Geothermal Research in Pisa, Italy

    International Nuclear Information System (INIS)

    Dickson, M.H.; Fanelli, M.

    1990-01-01

    Between 1985 and 1990 the International School of Geothermics of Pisa has held 5 long-term courses, attended by 93 trainees. This paper reports that since 1970, when it began its activity, the Italian geothermal training center has prepared a total of 293 goethermists from 64 countries. Under its present structure the International School of Geothermics organizes short courses and seminars, along with the long-term courses directed mainly at geothermal exploration

  6. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  7. Geothermal district heating system in Tanggu, Tianjin, China

    International Nuclear Information System (INIS)

    Jinrong, C.

    1992-01-01

    Tanggu is a harbor and industrial area and is the location of Tianjin Harbor, Tianjin Bonded Area and Tianjin Economic Development Area. It covers an area of 859 km 2 and has a population of 430,000. Tanggu Geothermal Field is located at the western coast of Bohai Sea. This area belongs to the depression area of North China geologically. Neogene strata of Guantao Group is distributed widely in this region. Good permeability, large thickness, and high conductivity make it form a regional low-temperature porous reservoir. The reservoir is buried to a depth of 1,600 - 2,100 m. The total thickness of about 500 m can be divided into upper and lower sections including three aquifers. Geothermal space heating tests of Tanggu started in 1980. Up to the present, there are a total of 16 geothermal wells in Tanggu. Thirteen of them were drilled in the shallower aquifer. The total production rate of thermal water is 3.636 x 10 6 m 3 annually. The net production rate used for space heating is 3.10 x 10 6 m 3 from 11 wells. It has heated an area of 620 x 10 3 m 2 and has solved winter heating for 100 thousand people

  8. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Greg Cuprak

    2011-08-31

    West Chester University is launching a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution is in the process of designing and implementing this project to build well fields, a pumping station and install connecting piping to provide the geothermal heat/cooling source for campus buildings. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply. For this grant, WCU will extend piping for its geo-exchange system. The work involves excavation of a trench approximately 8 feet wide and 10-12 feet deep located about 30 feet north of the curb along the north side of West Rosedale for a distance of approximately 1,300 feet. The trench will then turn north for the remaining distance (60 feet) to connect into the mechanical room in the basement of the Francis Harvey Green Library. This project will include crossing South Church Street near its intersection with West Rosedale, which will involve coordination with the Borough of West Chester. After installation of the piping, the trench will be backfilled and the surface restored to grass as it is now. Because the trench will run along a heavily-used portion of the campus, it will be accomplished in sections to minimize disruption to the campus as much as possible.

  9. A suite of benchmark and challenge problems for enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark; Fu, Pengcheng; McClure, Mark; Danko, George; Elsworth, Derek; Sonnenthal, Eric; Kelkar, Sharad; Podgorney, Robert

    2017-11-06

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of

  10. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  11. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid

  12. Design of a geothermal monitoring network in a coastal area and the evaluation system

    Science.gov (United States)

    Ohan Shim, Byoung; Lee, Chulwoo; Park, Chanhee

    2016-04-01

    In Seockmodo Island (area of 48.2 km2) located at the northwest of South Korea, a renewable energy development project to install photovoltaic 136 kW and geothermal 516.3 kW is initiated. Since the 1990s, more than 20 deep geothermal wells for hot springs, greenhouse and aquaculture have been developed along coastal areas. The outflow water of each site has the pumping capacity between 300 and 4,800 m3/day with the salinity higher than 20,000 mg/l, and the maximum temperature shows 70 ?C. Because of the required additional well drillings, the increased discharge rate can cause serious seawater intrusion into freshwater aquifers, which supply groundwater for drinking and living purposes from 210 wells. In order to manage the situation, advanced management skills are required to maintain the balance between geothermal energy development and water resources protection. We designed real-time monitoring networks with monitoring stations for the sustainable monitoring of the temperature and salinity. Construction of borehole temperature monitoring for deep and shallow aquifer consists with the installation of automated temperature logging system and cellular telemetry for real-time data acquisition. The DTS (distributed temperature sensing) system and fiber optic cables will be installed for the logging system, which has enough temperature resolution and accuracy. The spatial distribution and the monitoring points can be determined by geological and hydrological situations associated with the locations of current use and planned facilities. The evaluation of the temperature and salinity variation will be conducted by the web-based monitoring system. The evaluation system will be helpful to manage the balance between the hot water development and the fresh water resources conservation.

  13. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  14. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    Science.gov (United States)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  15. Possibilities for electricity production from geothermal energy in Slovenia in the next decade

    OpenAIRE

    Dušan Rajver; Andrej Lapanje; Nina Rman

    2012-01-01

    This article is intended to raise awareness of the public, with the aim that anyone can judge reality and accuracyof records that appear in the media on the exploitation of geothermal energy. It provides a comprehensive overviewof geothermal systems, potential of hydrothermal and enhanced geothermal systems, of mechanisms and characteristicsof middle and high enthalpy geothermal resources. It also deals with a mode of their conversion into electricity.Featured are the main factors affecting t...

  16. Cooling performance and energy saving of a compression-absorption refrigeration system assisted by geothermal energy

    International Nuclear Information System (INIS)

    Kairouani, L.; Nehdi, E.

    2006-01-01

    The objectives of this paper are to develop a novel combined refrigeration system, and to discuss the thermodynamic analysis of the cycle and the feasibility of its practical development. The aim of this work was to study the possibility of using geothermal energy to supply vapour absorption system cascaded with conventional compression system. Three working fluids (R717, R22, and R134a) are selected for the conventional compression system and the ammonia-water pair for the absorption system. The geothermal temperature source in the range 343-349 K supplies a generator operating at 335 K. Results show that the COP of a combined system is significantly higher than that of a single stage refrigeration system. It is found that the COP can be improved by 37-54%, compared with the conventional cycle, under the same operating conditions, that is an evaporation temperature at 263 K and a condensation temperature of 308 K. For industrial refrigeration, the proposed system constitutes an alternative solution for reducing energy consumption and greenhouse gas emissions

  17. Investigations on the improvement of the energy output of a Closed Loop Geothermal System (CLGS)

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Sven-Uwe

    2008-08-04

    The scope of this study are the development of an integrated simulation model for the estimation of the energy output of a deep Closed Loop Geothermal System (CLGS) and the discussion of several approaches to the enhancement of this output. Due to its closed character this kind of geothermal installation provides the opportunity of heat utilization even in dry and impermeable geological zones without any stimulation effort and the usage of external fluids. After a short introduction of the system itself and the limitations of other geothermal systems that are available, the investigations start with the description of the state-of-the-art with regard to the energy output analyses of the CLGS that have been done in the past. These are evaluated and their shortcomings are identified. The newly developed and introduced 3-dimensional approach of this study is a capable tool for the pre-feasibility phase of the project development of a CLGS. A geological/geothermal model summarizes selected relevant data and information about the project area in the form of a spatial data distribution. Thereby the formation boundaries are modelled as well as local in-homogeneities. The lithology can be modelled as well as the distribution of the thermal and physical properties of the rocks. The temperature distribution can be modelled using map or drill log data and be interpolated using geostatistical methods. After the combination of the geological/geothermal model and the technical model of the CLGS containing all relevant data with regard to the drill hole design, dimensions, casings and thermal properties of the installed materials, incl. the annuli, the thermal behaviour of the heat bearing fluid (HBF) flowing within the pipe system is simulated over time in connection with the simulation of the thermal behaviour of the surrounding rock mass. This core simulation is added by the afterwards processed scenario based energy supply simulation that calculates the amounts of energy

  18. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    Science.gov (United States)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  19. The geothermal conditions in the Rhine Graben - a summary

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.

    2007-07-15

    This article takes a look at the situation in the upper Rhine valley with respect to its geothermal potential. The Rhine Graben, being part of the European Mid-Continental Rift System is characterised by thinned crust and therefore higher heat flow rates. According to the author, the Rhine Graben presents generally favourable conditions for geothermal energy development and utilisation. This illustrated article presents information on the geological structures to be found and figures obtained from the geothermal exploration project at Soulz-sous-Forets, France, and a number of other geothermal investigation and production projects in Germany.

  20. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  1. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  2. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    International Nuclear Information System (INIS)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-01-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  3. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-11-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  4. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  5. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  6. Geothermal district heating in Turkey: The Gonen case study

    International Nuclear Information System (INIS)

    Oktay, Zuhal; Aslan, Asiye

    2007-01-01

    The status of geothermal district heating in Turkey and its future prospects are reviewed. A description is given of the Gonen project in Balikesir province, the first system to begin citywide operation in the country. The geology and geothermal resources of the area, the history of the project's development, the problems encountered, its economic aspects and environmental contributions are all discussed. The results of this and other such systems installed in Turkey have confirmed that, in this country, heating an entire city based on geothermal energy is a significantly cleaner, cheaper option than using fossil fuels or other renewable energy resources. (author)

  7. Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field

    Directory of Open Access Journals (Sweden)

    Yuchao Zeng

    2017-12-01

    Full Text Available The main conditions affecting electricity generation performance of an enhanced geothermal system (EGS include reservoir porosity, reservoir permeability, rock heat conductivity, water production rate and injection temperature. Presently there is lack of systematic research the relative importance of the five aforementioned conditions. The orthogonal test method is a statistical approach to analyze multi-factor and multi-level influence on system performance. In this work, based on the geological data at Yangbajing geothermal field, we analyzed the five conditions affecting the electricity generation performance of EGS, and ranked the relative importance of the five factors. The results show that the order of the relative importance of the conditions on electric power is water production rate > injection temperature > reservoir porosity > rock heat conductivity > reservoir permeability; the order of the relative importance of the conditions on reservoir impedance is reservoir permeability > injection temperature > water production rate > reservoir porosity > rock heat conductivity; the order of the relative importance of the conditions on pump power is water production rate > reservoir permeability > injection temperature > reservoir porosity > rock heat conductivity, and; the order of the relative importance of the conditions on energy efficiency is water production rate > reservoir permeability > reservoir porosity > injection temperature > rock heat conductivity. The construction of an EGS reservoir should be located at a formation with higher reservoir porosity or rock heat conductivity, while the determination of reservoir permeability, water production rate and injection temperature should be based on the comprehensive target.

  8. New Mexico Geothermal Data Base

    International Nuclear Information System (INIS)

    Witcher, J.C.; Whittier, J.; Morgan, R.

    1990-01-01

    This paper reports on the New Mexico Geothermal Data Base (NMGDB) which is a comprehensive public-domain data base of low-temperature geothermal resource information for New Mexico that is designed to assist researchers and developers. A broad range of geoscience, engineering, climatic, economic, and land status information are complied in the dBASE III PLUS data base management system for use on an IBM or IBM-compatible personal computer. A user friendly menu format with on-screen prompts allows easy and convenient use

  9. Rock geochemistry related to mineralization processes in geothermal areas

    Science.gov (United States)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  10. Prospects of increasing the power of a two-circuit geothermal power plant

    International Nuclear Information System (INIS)

    Alkhasov, A.B.

    2001-01-01

    The results of analysis of the thermodynamical cycle of the geothermal NPPs secondary circuit with various versions of the geothermal circulation system are presented. It is shown, that the technological scheme with horizontal well is the optimal one. The conclusion is made that by further assimilation of thermal power with application of the experience, accumulated by petroleum specialist, it is necessary to built up geothermal circulation systems with horizontal wells. This will sharply increase the indices of the geothermal branch, its efficiency and competivity as compared to the traditional power engineering [ru

  11. FY 1992 report on the survey of geothermal development promotion. Geochemical survey (Survey of geothermal water) (No.36 - Hongu area); 1992 nendo chinetsu kaihatsu sokushin chosa. Chikagaku chosa (Nessui no chosa) hokokusho (No.36 Hongu chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The test on jetting of geothermal water by the induced jetting, sampling of geothermal water and analysis/survey were carried out in the structure drilling well of N4-HG-2 in the Hongu area, Wakayama Prefecture. The induced jetting of the well was conducted by the Swabbing method up to the total pumping amount of 459.9m{sup 3} that is equal to about 24 times as much as the inner quantity of the well, but it did not result in jetting. The maximum temperature of geothermal water was 65.6 degrees C, pH was 6.6-7.5, electric conductivity was 2,800-2,900 {mu}S/cm, and Cl concentration was 500-700ppm. The geothermal water was classified into the HCO{sub 3} type that is neutral, and the spring quality and liquidity were the same as those of existing hot springs in this area. In the Hongu area, the distribution of new volcanic rocks has not known. The K-Ar age of quartz porphyry intrusive rocks was made about 13Ma, and it was considered that a possibility was low of the rocks being heat sources of geothermal activities. It was also considered that the geothermal water/hot spring water in this area, which originate in the surface water, were heated in heat transfer by magma activities in the deep underground and were flowing forming a small scale of hydrothermal convection system. (NEDO)

  12. Geothermal power plants principles, applications, case studies and environmental impact

    CERN Document Server

    DiPippo, Ronald

    2012-01-01

    Now in its 3e, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Important new chapters cover Hot Dry Rock, Enhanced Geothermal Systems, and Deep Hydrothermal Systems. New, international case studies provide practical, hands-on knowledge.

  13. Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G.W.

    1978-09-18

    Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

  14. Modelling geothermal conditions in part of the Szczecin Trough – the Chociwel area

    Directory of Open Access Journals (Sweden)

    Miecznik Maciej

    2015-09-01

    Full Text Available The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method. An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

  15. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  16. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China

    Science.gov (United States)

    Li, Yiman; Pang, Zhonghe; Yang, Fengtian; Yuan, Lijuan; Tang, Pinghui

    2017-11-01

    High-temperature geothermal systems in China, such as those found in Tenchong and Tibet, are common. A similar system without obvious manifestations found in the Tashkorgan basin in the western Xinjiang Autonomous Region, however, was not expected. The results from borehole measurements and predictions with geothermometers, such as quartz, Na-K and Na-K-Mg, indicate that the reservoir temperature is approximately 250-260 °C. Geothermal water is high in Total Dissolved Solids (>2.5 g/L) and SiO2 content (>273 mg/L), and the water type is Cl·SO4-Na, likely resulting from water-rock interactions in the granodiorite reservoirs. Based on isotope analysis, it appears to be recharged by local precipitation and river water. Evidence from the relationships between major ions and the Cl and molar Na/Cl ratio suggests mixing between deep geothermal water and shallow cold groundwater during the upwelling process. Mixing ratios calculated by the relationship between Cl and SiO2 show that the proportion from cold end-members are 96-99% and 40-90% for riparian zone springs and geothermal water from boreholes, respectively. Active regional tectonic and Neo-tectonic movements in the Pamir syntax as well as radioactive elements in the granodiorite reservoir of the Himalayan stage provide basis for the high heat flow background (150-350 mW/m2). NNW trending fault systems intersecting with overlying NE faults provide circulation conduits with high permeability for geothermal water.

  17. A Materials and Equipment Review of Selected U.S. Geothermal District Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K D [P.E.

    0000-12-30

    Geothermal district heating systems are now quite common in the western U.S. A recent survey identified a total of 17 such systems. The performance of materials and equipment in 13 of these systems is reviewed in this paper. Specific areas covered include: production facilities, central plants, distribution, customer connection, metering and disposal. Those areas: characterized by the highest incidence of problems include: production well pumps, customer branch piping and energy metering.

  18. Economic viability of geothermal energy usage in comparison to renewable and conventional energy systems

    International Nuclear Information System (INIS)

    Schaumann, G.

    2002-01-01

    This comprehensive lecture given by Prof. Dr. Gunter Schaumann in Bad Duerkheim, Germany, discusses the use of geothermal energy in relationship to other forms of renewable energy sources and conventional energy technologies used to provide heat, power and motive force. The characteristics of geothermal energy from various sources and examples of its possible use are discussed. In particular, the paper deals with deep geothermal energy, which can provide heating energy for district heating schemes, if necessary with the help of heat pumps. The prospects of such a use of geothermal energy in the next 50 years in various suitable regions in Germany is discussed and the associated prerequisites are listed. The present situation concerning the use of geothermal energy in Germany is examined. An example of a geothermal heating power station that also features a gas-fired combined heat and power installation, a heat pump and a peak-load boiler is given. Also, the generation of electrical power using the Organic Rankine Cycle is discussed. The factors influencing the economic viability of geothermal power stations are discussed in detail and the resulting energy prices are compared with conventional plants. The paper gives details of the calculation of investment and energy costs for heat and power generation and presents figures based on exemplary installations

  19. Polymer-cement geothermal-well-completion materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.N.; Kukacka, L.E.

    1980-07-01

    A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

  20. Preliminary study of Songa-Wayaua geothermal prospect area using volcanostratigraphy and remote sensing analysis

    Science.gov (United States)

    Asokawaty, Ribka; Nugroho, Indra; Satriana, Joshua; Hafidz, Muhamad; Suryantini

    2017-12-01

    Songa-Wayaua geothermal prospect area is located on Bacan Island, Northern Molluca Province. Geothermal systems in this area associated with three Quartenary volcanoes, such as Mt. Pele-pele, Mt. Lansa, and Mt. Bibinoi. Based on literature study, five surface manifestations such as hot springs and alteration occurred within this area. The active manifestations indicate that Songa-Wayaua area has potential geothermal resource. This study objective is to evaluate Songa-Wayaua geothermal system on preliminary study stage by using volcanostratigraphy and remote sensing analysis to delineate the boundary of geothermal system area. The result of this study showed that Songa-Wayaua prospect area has four heat sources potential (e.g. Pele-pele Hummock, Lansa Hummock, Songa Hummock, and Bibinoi Hummock), controlled by geological structure presented by Pele-pele Normal Fault, and had three places as the recharge and discharge area which are very fulfilling as a geothermal system.

  1. Analysis of historical and current drawdown and production data from the Boise geothermal system. Research technical completion report

    Energy Technology Data Exchange (ETDEWEB)

    Waag, C.J.; Wood, S.H.

    1987-08-01

    Since 1982 withdrawals from the Boise Geothermal aquifer system have increased from less than 300 million to over 600 million gals/yr. Prior to 1983 the system appears to have been in or near equilibrium. Current production levels exceed the ability of the system to recover on an annual basis. Potentiometric levels within the aquifer are declining at increasing rates and a new equilibrium level is not evident. Thus, exploitation of the geothermal aquifer is currently outstripping knowledge and understanding of the aquifer. It is time to give serious consideration to placing a temporary moratorium on further development and production from the system until a better understanding of its capacity is achieved.

  2. Water use in the development and operation of geothermal power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology

  3. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    Science.gov (United States)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  4. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  5. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Michelle; Gleason, Michael; McCabe, Kevin; Mooney, Meghan; Reber, Timothy; Young, Katherine R.

    2016-10-01

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources in the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.

  6. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  7. Present status of geothermal power development in Kyushu; Kyushu ni okeru chinetsu hatsuden no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyoshi, M. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-10-20

    The present situation was introduced of the geothermal power generation in Kyushu. In Kyushu, where there are lots of volcanos and abundant geothermal resources, the geothermal exploration has been made since long ago. Three non-utility use units at three geothermal power generation points and six commercial use units at five points are now in operation in Kyushu. The total output is approximately 210 MW, about 40% of the domestic geothermal power generation. At Otake and Hacchobaru geothermal power plants, the Kyushu Electric Power Company made the geothermal resource exploration through the installation/operation of power generation facilities. At the Otake power plant, a geothermal water type single flashing system was adopted first in the country because of its steam mixed with geothermal water. At the Hacchobaru power plant, adopted were a two-phase flow transportation system and a double flashing system in which the geothermal water separated from primary steam by separator is more reduced in pressure to take out secondary steam. Yamakawa, Ogiri and Takigami power plants are all for the joint exploration. Geothermal developers drill steam wells and generate steam, and the Kyushu Electric Power Company buys the steam and uses it for power generation. 5 figs., 1 tab.

  8. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  9. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle [Clean Tech Innovations, Bartlesville, OK (United States)

    2017-08-08

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mud losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability for use in

  10. Geothermal power plants principles, applications, case studies and environmental impact

    CERN Document Server

    DiPippo, Ronald

    2008-01-01

    Ron DiPippo, Professor Emeritus at the University of Massachusetts Dartmouth, is a world-regarded geothermal expert. This single resource covers all aspects of the utilization of geothermal energy for power generation from fundamental scientific and engineering principles. The thermodynamic basis for the design of geothermal power plants is at the heart of the book and readers are clearly guided on the process of designing and analysing the key types of geothermal energy conversion systems. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader'

  11. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  12. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  13. Economic performances optimization of the transcritical Rankine cycle systems in geothermal application

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2015-01-01

    Highlights: • The optimal economic performance of the TRC system are investigated. • In economic evaluations, R125 performs the most satisfactorily, followed by R41 and CO 2 . • The TRC system with CO 2 has the largest averaged temperature difference. • Economic optimized pressures are always lower than thermodynamic optimized operating pressures. - Abstract: The aim of this study is to investigate the economic optimization of a TRC system for the application of geothermal energy. An economic parameter of net power output index, which is the ratio of net power output to the total cost, is applied to optimize the TRC system using CO 2 , R41 and R125 as working fluids. The maximum net power output index and the corresponding optimal operating pressures are obtained and evaluated for the TRC system. Furthermore, the analyses of the corresponding averaged temperature differences in the heat exchangers on the optimal economic performances of the TRC system are carried out. The effects of geothermal temperatures on the thermodynamic and economic optimizations are also revealed. In both optimal economic and thermodynamic evaluations, R125 performs the most satisfactorily, followed by R41 and CO 2 in the TRC system. In addition, the TRC system operated with CO 2 has the largest averaged temperature difference in the heat exchangers and thus has potential in future application for lower-temperature heat resources. The highest working pressures obtained from economic optimization are always lower than those from thermodynamic optimization for CO 2 , R41, and R125 in the TRC system

  14. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  15. Towards a de-carbonized energy system in North-Eastern Morocco: Prospective Geothermal Resource

    OpenAIRE

    Rimi, Abdelkrim; Zarhloule, Yassine; Barkaoui, Alae Eddine; Correia, António; Carneiro, Júlio; Verdoya, Massimo; Lucazeau, Francis

    2012-01-01

    Geothermal data has been indicating promising potentialities in the north-eastern Morocco. This paper presents new temperature data, recently recorded in water boreholes located in the Berkane and Oujda areas. Generally, the observed temperature gradients are rather high. One hole near Berkane, revealed an average geothermal gradient of more than 110 °C/km at depths greater than 300 m. This result confirms the geothermal gradient estimated in a mining borehole located about 30 km west of the ...

  16. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    Science.gov (United States)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy

  17. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  18. The smectite to chlorite transition in the Chipilapa geothermal system, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D. [Univ. of Bristol (United Kingdom). Dept. of Earth Sciences; Santana de Zamora, A. [Comision Ejecutiva Hidroelectrica del Rio Lempa (El Salvador)

    1999-04-01

    Clay mineralogical, X-ray diffraction and electron microprobe studies have been carried out on separated <2 {micro}m fractions from cutting and core material from three wells in the Chipilapa geothermal system in El Salvador. The data indicate that the smectite to chlorite transition is prevalent, but a secondary smectite to illite transition is also present. At depths approximately <750 m, smectite with very minor chlorite mixed-layers (approximately <15%) is dominant, and has a composition midway between a di- and tri-smectite. At {approximately}750 m there is a very clear distinction and sharp transition into discrete chlorite with very minor smectite mixed-layers (approximately <10%). Corrensite is recorded only as a rare and minor phase. Smectite occurs in abundance at temperatures up to {approximately}200 C, and the transition from a smectite-dominant to chlorite-dominant assemblage takes place over a narrow temperature range ({approximately}150 to 200 C). The stability range of smectite is very similar to that recorded in other geothermal systems, whereas the smectite to chlorite transition differs greatly from that recorded in other systems. The transition does not involve continuous chlorite/smectite mixed-layering but a marked step: It is the sharpest and most discontinuous stepped sequence of this mineralogical transition recorded.

  19. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  20. The concept of geothermal exploration in west Java based on geophysical data

    Science.gov (United States)

    Gaffar, Eddy Z.

    2018-02-01

    Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.

  1. An in-depth assessment of hybrid solar–geothermal power generation

    International Nuclear Information System (INIS)

    Zhou, Cheng; Doroodchi, Elham; Moghtaderi, Behdad

    2013-01-01

    Highlights: • We model hybrid solar thermal and geothermal energy conversion system in the Australian context. • Solar thermal and geothermal energy can be effectively hybridised. • Thermodynamic advantages and economic benefits are realised. • Hybrid system overcomes adverse effects of diurnal temperature change on power generation. • Cost of electricity of an Enhanced Geothermal System can drop by more than 20% if hybridised with solar energy. - Abstract: A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed

  2. An in-depth assessment of hybrid solar–geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Doroodchi, Elham [Priority Research Centre for Advanced Particle Processing and Transport, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Moghtaderi, Behdad [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2013-10-15

    Highlights: • We model hybrid solar thermal and geothermal energy conversion system in the Australian context. • Solar thermal and geothermal energy can be effectively hybridised. • Thermodynamic advantages and economic benefits are realised. • Hybrid system overcomes adverse effects of diurnal temperature change on power generation. • Cost of electricity of an Enhanced Geothermal System can drop by more than 20% if hybridised with solar energy. - Abstract: A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed

  3. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  4. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  5. Heat flow and geothermal processes in Iceland

    Science.gov (United States)

    Flóvenz, Ólafur G.; Saemundsson, Kristján

    1993-09-01

    have been confirmed by 1000-2000 m deep boreholes. By extrapolating the temperature gradient down and assuming a slight increase in the thermal conductivity with depth, partially molten material can be expected at 10-30 km depth. Geothermal reservoirs are quite common in Iceland. They are primarily convective systems associated with young tectonic fractures, carrying heat from several kilometers depth towards the surface. Within the volcanic rift zone the heat sources seem to be hot intrusions; away from it, the heat is mined from the underlying crust. The highest values of the near-surface temperature gradient are found above the geothermal systems. Drilling of 30-60 m deep boreholes is therefore a powerful tool for geothermal prospecting outside the volcanic rift zone. In the deeper parts of the geothermal systems, a gentle temperature gradient is observed and the temperature is lower than would be expected from the regional temperature gradient. This is due to geothermal convection which has removed heat from the deeper parts of the geothermal systems. Convective geothermal systems must have a downflow part, where cold water is flowing down into the deeper parts of the geothermal systems along fractures. Such downflow areas have been observed and appear as areas with an anomalously low temperature gradient.

  6. Seasonal patterns of seismicity and deformation at the Alutu geothermal reservoir, Ethiopia, induced by hydrological loading

    Science.gov (United States)

    Birhanu, Yelebe; Wilks, Matthew; Biggs, Juliet; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias

    2018-05-01

    Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrological cycle. Here, we focus on the Aluto-Langano geothermal system, Ethiopia, where the climate is monsoonal and there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2-3 months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is commonly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsidence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.

  7. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    Science.gov (United States)

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well

  8. Geothermal hydrogen - a vision? Paper

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, W.; Weindorf, W.; Wurster, R.; Bussmann, W.

    2001-07-01

    With the progresses in geothermal electricity production by means of the hot-dry-rock (HDR) method electricity might be produced at cost of between 0.07 - 0.09 ECU/kWh, depending on systems sizes of between 5 - 20 MW{sub e}. The electricity can be used to produce hydrogen from electrolysis and water. This method of electricity production offers high availability with operating hour of between 7,600 - 8,000 hours per year. The 40 GWh electricity production per year from one 5 MW{sub e} geothermal plant are sufficient to produce enough hydrogen for the operation of an average fueling station with about 400 refuelings per day at cost of about 20 - 30 percent higher than today's gasoline (including taxes). In this contribution some details of the analysis are presented as well as a general discussion of geothermal hydrogen production as a future energy vector. (orig.)

  9. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  10. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toksoz, M. Nafi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  11. Financing and regulation for the new and renewable energy sources: the geothermal case

    International Nuclear Information System (INIS)

    Coviello, M.

    1998-01-01

    The development and rational utilization of energy sources promotes economic growth and alleviates the environmental worries. Within the first frame, the use of new and renewable energy sources - wind, solar, photovoltaic, biomass, small hydroelectrical and geothermal - progressively reaches the highest priority in the context of the energy reforms that have been undertaken in the countries of the region. Among renewable energies, besides those of the hydraulic origin, geothermal is the one with the highest grade of safety as was demonstrated by its technical and economical reliability. If the estimation that the geothermal electricity potential of the Latin American region will reach more than 6000 MWe is correct, this is only indicative of its nature. The enormous financial resources of the Andean geothermal systems have to this date been ignored, while in Central America there exits a large number of financial resources still untouched. The rationale and the problems connected with this that remain - in all of Latin America, with the exception of Mexico - are of different natures. Most importantly, in first place, the economical difficulties; in effect, the fault of the ad-hoc economic initiatives have very much obstructed the sustained geothermal development and support. Other relevant obstacles for the use of this type of resource have been the lacking of specific and reliable legal aspects. Last but not least, the financial obstacles of the projects, under private or mixed schemes, should be emphasized. Because of the crucial role that these problems are asked to play in the implementation and development of geothermal projects in Latin America, it has been decided to prepare this document which is a part of the global view about the subject (making comparisons with experiences of other countries), and tries to identify possible solutions for the future

  12. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  13. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  14. Geothermal district heating applications in Turkey: a case study of Izmir-Balcova

    Energy Technology Data Exchange (ETDEWEB)

    Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey); Canakci, C. [Izmir-Balcova Geothermal Energy Inc., Izmir (Turkey)

    2003-05-01

    Turkey is located on the Mediterranean sector of the Alpine-Himalayan Tectonic Belt and is among the first seven countries in abundance of geothermal resources around the world. However, the share of its potential used is only about 2%. This means that considerable studies on geothermal energy could be conducted in order to increase the energy supply and to reduce atmospheric pollution in Turkey. The main objective in doing the present study is twofold, namely: (a) to overview the status and future aspects of geothermal district heating applications in Turkey and (b) to present the Izmir-Balcova geothermal district heating system, which is one example of the high temperature district heating applications in Turkey. The first geothermal heating application was applied in 1981 to the Izmir-Balcova thermal facilities, where the downhole heat exchanger was also used for the first time. Besides this, the first city based geothermal district heating system has been operated in Balikesir-Gonen since 1987. Recently, the total installed capacity has reached 820 MW{sub t} for direct use. An annual average growth of 23% of the residences connected to geothermal district heating systems has been achieved since 1983 in the country, representing a decrease of 5% in the last three years. Present applications have shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and can make a significant contribution towards reducing the emission of greenhouse gases. (Author)

  15. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  16. BRGM and geothermal power: research at the service of energy transition

    International Nuclear Information System (INIS)

    Vernier, Romain

    2014-01-01

    Putting the finishing touches to a low cost geothermal System for use in buildings, linking geothermal energy with solar panels, seeking new viable sources in France and overseas... moving from very low intensity geothermal energy to high intensity, these are a few examples of research currently being undertaken at BRGM (France's national Bureau for Geological and Mining Research). (author)

  17. Possibilities for the efficient utilisation of spent geothermal waters.

    Science.gov (United States)

    Tomaszewska, Barbara; Szczepański, Andrzej

    2014-10-01

    Waters located at greater depths usually exhibit high mineral content, which necessitates the use of closed systems, i.e. re-injecting them into the formation after recovering the heat. This significantly reduces investment efficiency owing to the need to drill absorption wells and to perform anti-corrosion and anti-clogging procedures. In this paper, possibilities for the efficient utilisation of cooled geothermal waters are considered, particularly with respect to open or mixed geothermal water installations. Where cooled water desalination technologies are used, this allows the water to be demineralised and used to meet local needs (as drinking water and for leisure purposes). The retentate left as a by-product of the process contains valuable ingredients that can be used for balneological and/or leisure purposes. Thus, the technology for desalinating spent geothermal waters with high mineral content allows improved water management on a local scale and makes it possible to minimise the environmental threat resulting from the need to dump these waters into waterways or surface water bodies and/or inject them into the formation. The paper is concerned with Polish geothermal system and provides information about the parameters of Polish geothermal waters.

  18. Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.

    1977-09-01

    The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.

  19. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    Science.gov (United States)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze

  20. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  1. Optimal Management of Geothermal Heat Extraction

    Science.gov (United States)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  2. Geothermal progress monitor: Report No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

  3. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  4. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  5. The use of Geothermal Energy Resources in the Tourism Industry of Vojvodina (Northern Serbia

    Directory of Open Access Journals (Sweden)

    Nemanja Tomić

    2013-01-01

    Full Text Available Exploitation of geothermal energy in Vojvodina is still at an unjustly low level taking into account the abundance of resource locations, some of which are ranked among the most affluent in Europe. Moreover, development of geothermal exploitation started in Serbia at about the same time as in other countries whose geothermal energy facilities are now at the highest technological level and which are leaders in this field. The largest use of geothermal energy in Vojvodina is present in the non-energetic area, especially in spas and sports–recreational centers. Other, seasonal consumers of geothermal energy are from the field of industry and agricultural production where the energy is used for heating of cattle and poultry farms, greenhouses and other facilities. However these consumers use only a small portion of available geothermal resources. The main users are those from the tourism industry. The goal of this paper is to give an overview and an analysis of the use of geothermal energy resources, mainly geothermal waters, in the tourism industry of Vojvodina. It shows how these resources are used and also for what are they used by the tourism industry. The paper covers only geothermal resources that are currently being used by the tourism industry. The potential for future usage in this area is also briefly discussed

  6. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  7. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Varun; Hogue, Michael

    2015-07-17

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positive economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.

  8. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  9. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  10. Report on the geothermal development promotion survey. No.C-2. Wasabizawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No.C-2 Wasabizawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper summed up the results of the survey of the geothermal development promotion survey - Wasabizawa area which was carried out in Yuzawa City and Ogachi Town, Akita Prefecture, from FY 1993 to FY 1996. In the survey, the following were conducted: surface survey such as geological alteration zone survey, fluid geochemical survey, gravity survey and electromagnetic exploration, temperature log by drilling 9 exploration wells, short-term/long-term jetting test, etc. Further, using the data obtained from these, analysis was made of geology/reservoir structure, thermal structure, geothermal water/hydraulic structure, geothermal system models, etc. As a result, a high-temperature (about 300 degrees C) zone promising as the geothermal development area was picked out, and the existence was confirmed of a dominant geothermal reservoir around the fault. In the jetting test, a total steam amount of 111.6 t/h was confirmed, and from the reservoir simulation, the result was obtained that there was a high possibility of 30-year power generation of 30MW/y. As a result of studying 'a power generation system by small-scale unit serial development' considering regional characteristics in the Wasabizawa area, the power generation cost (sending end, 15-year average) was estimated at approximately 9-10 yen/kWh. (NEDO)

  11. Report on the geothermal development promotion survey. No.C-2. Wasabizawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No.C-2 Wasabizawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper summed up the results of the survey of the geothermal development promotion survey - Wasabizawa area which was carried out in Yuzawa City and Ogachi Town, Akita Prefecture, from FY 1993 to FY 1996. In the survey, the following were conducted: surface survey such as geological alteration zone survey, fluid geochemical survey, gravity survey and electromagnetic exploration, temperature log by drilling 9 exploration wells, short-term/long-term jetting test, etc. Further, using the data obtained from these, analysis was made of geology/reservoir structure, thermal structure, geothermal water/hydraulic structure, geothermal system models, etc. As a result, a high-temperature (about 300 degrees C) zone promising as the geothermal development area was picked out, and the existence was confirmed of a dominant geothermal reservoir around the fault. In the jetting test, a total steam amount of 111.6 t/h was confirmed, and from the reservoir simulation, the result was obtained that there was a high possibility of 30-year power generation of 30MW/y. As a result of studying 'a power generation system by small-scale unit serial development' considering regional characteristics in the Wasabizawa area, the power generation cost (sending end, 15-year average) was estimated at approximately 9-10 yen/kWh. (NEDO)

  12. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  13. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    Science.gov (United States)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  14. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  15. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  16. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhiyao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jan-Mou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproduced water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.

  17. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  18. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  19. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  20. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-01-01

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems