WorldWideScience

Sample records for small erythromycin resistance

  1. Molecular screening for erythromycin resistance genes in ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-15

    Jul 15, 2015 ... in Streptococcus pyogenes isolated from Iraqi patients with tonsilo-pharyngites. Hassan .... is an automated colorimetric method used for identification of bacteria and for .... counter medicines in private pharmacies against the regulations. ... Effect of telithromycin on erythromycin resistant S. pyogenes. In this ...

  2. Erythromycin

    Science.gov (United States)

    ... is in a class of medications called macrolide antibiotics. It works by stopping the growth of bacteria.Antibiotics such as erythromycin will not work for colds, flu, or other viral infections. Taking ...

  3. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2009-12-01

    Full Text Available The postantibiotic effects (PAEs and postantibiotic sub-MIC effects (PA SMEs of tilmicosin, erythromycin and tiamulin on erythromycin-susceptible and erythromycin-resistant strains of Streptococcus suis (M phenotype were investigated in vitro. Tilmicosin and tiamulin induced significantly longer PAE and PA SME against both erythromycin-susceptible and erythromycin-resistant strains than did erythromycin. The durations of PAE and PA SMEs were proportional to the concentrations of drugs used for exposure. The PA SMEs were substantially longer than PAEs on S. suis (P<0.05 regardless of the antimicrobial used for exposure. The results indicated that the PAE and PA SME could help in the design of efficient control strategies for infection especially caused by erythromycin-resistant S. suis and that they may provide additional valuable information for the rational drug use in clinical practice.

  4. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis.

    Science.gov (United States)

    Wang, Liping; Zhang, Yuanshu

    2009-10-01

    The postantibiotic effects (PAEs) and postantibiotic sub-MIC effects (PA SMEs) of tilmicosin, erythromycin and tiamulin on erythromycin-susceptible and erythromycin-resistant strains of Streptococcus suis (M phenotype) were investigated in vitro. Tilmicosin and tiamulin induced significantly longer PAE and PA SME against both erythromycin-susceptible and erythromycin-resistant strains than did erythromycin. The durations of PAE and PA SMEs were proportional to the concentrations of drugs used for exposure. The PA SMEs were substantially longer than PAEs on S. suis (P<0.05) regardless of the antimicrobial used for exposure. The results indicated that the PAE and PA SME could help in the design of efficient control strategies for infection especially caused by erythromycin-resistant S. suis and that they may provide additional valuable information for the rational drug use in clinical practice.

  5. Different Erythromycin Resistance Mechanisms in Group C and Group G Streptococci

    OpenAIRE

    Kataja, Janne; Seppälä, Helena; Skurnik, Mikael; Sarkkinen, Hannu; Huovinen, Pentti

    1998-01-01

    Different mechanisms of erythromycin resistance predominate in group C and G streptococcus (GCS and GGS, respectively) isolates collected from 1992 to 1995 in Finland. Of the 21 erythromycin-resistant GCS and 32 erythromycin-resistant GGS isolates, 95% had the mefA or mefE drug efflux gene and 94% had the ermTR methylase gene, respectively.

  6. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci.

    Directory of Open Access Journals (Sweden)

    Gloria eMagi

    2015-03-01

    Full Text Available In the present study, we have evaluated the in vitro antibacterial activity of essential oils from Origanum vulgare, Thymus vulgaris, Lavandula angustifolia, Mentha piperita, and Melaleuca alternifolia against 32 erythromycin-resistant [MIC ≥1 µg/mL; inducible, constitutive, and efflux-mediated resistance phenotype; erm(TR, erm(B, and mef(A genes] and cell-invasive Group A streptococci (GAS isolated from children with pharyngotonsillitis in Italy. Over the past decades erythromycin resistance in GAS has emerged in several countries; strains combining erythromycin resistance and cell invasiveness may escape β-lactams because of intracellular location and macrolides because of resistance, resulting in difficulty of eradication and recurrent pharyngitis. Thyme and origanum essential oils demonstrated the highest antimicrobial activity with MICs ranging from 256 to 512 µg/mL. The phenolic monoterpene carvacrol [2-Methyl-5-(1-methylethyl phenol] is a major component of the essential oils of Origanum and Thymus plants. MICs of carvacrol ranged from 64 to 256 µg/mL. In the live/dead assay several dead cells were detected as early as 1 h after incubation with carvacrol at the MIC. In single-step resistance selection studies no resistant mutants were obtained. A synergistic action of carvacrol and erythromycin was detected by the checkerboard assay and calculation of the FIC Index. A 2- to 2048-fold reduction of the erythromycin MIC was documented in checkerboard assays. Synergy (FIC Index ≤0.5 was found in 21/32 strains and was highly significant (p <0.01 in strains where resistance is expressed only in presence of erythromycin. Synergy was confirmed in 17/23 strains using 24-h time-kill curves in presence of carvacrol and erythromycin. Our findings demonstrated that carvacrol acts either alone or in combination with erythromycin against erythromycin-resistant GAS and could potentially serve as a novel therapeutic tool.

  7. Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance

    DEFF Research Database (Denmark)

    Dam, M; Douthwaite, S; Tenson, T

    1996-01-01

    Mutations in domain II of Escherichia coli 23 S rRNA that cause resistance to erythromycin do so in a manner fundamentally different from mutations at the drug binding site in domain V of the 23 S rRNA. The domain II mutations are located in a hairpin structure between nucleotides 1198 and 1247...... this hypothesis, a range of point mutations was generated in domain II of 23 S rRNA in the vicinity of the E-peptide open reading frame. We find a correlation between erythromycin resistance of the mutant clones and increased accessibility of the ribosome binding site of the E-peptide gene. Furthermore......, the erythromycin resistance determinant in the mutants was shown to be confined to a small 23 S rRNA segment containing the coding region and the ribosome binding site of the E-peptide open reading frame. It thus appears that the domain II mutations mediate erythromycin resistance by increasing expression...

  8. Erythromycine resistance in streptococcus pyogenes group a throat isolates in sukkur city

    International Nuclear Information System (INIS)

    Memon, B.

    2007-01-01

    To examine and evaluate the predominant and common etiologic agent(s) of pharyngitis in Sukkur city and to determine their current antibiotic susceptibility/resistance trends. Out of 257 throat samples, 149 positive for Streptococcus pyogenes Group A between November 2001 and May 2003 from adult population of Sukkur city were tested for their susceptibility to erythromycin, clindamycin, azithromycin and clairithromycin. The throat samples (swabs) were examined by Gram-stain, API system, and for presence of a hemolysis. Samples were further cultured on Muller Hinton agar for determination of antibiotic sensitivity patterns. The sensitivity was performed on only those samples which were positive for S. pyogenes. Of all throat isolates, 95% were predominantly resistant to erythromycin. Their sensitivity towards clindamycin was 30%, azithromycin 44% and clairithromycin 76% respectively. The current pharyngeal isolates of S. pyogenes exhibited frequent and alarmingly high erythromycin resistance which may be due to both intrinsic and acquired mechanisms. (author)

  9. Erythromycin-resistant genes in group A β-haemolytic Streptococci in Chengdu, Southwestern China

    Directory of Open Access Journals (Sweden)

    W Zhou

    2014-01-01

    Full Text Available Context: The management of Group A β-haemolytic Streptococci (Streptococcus pyogenes or GAS infection include the use of penicillins, cephalosporins or macrolides for treatment. A general increase in macrolides resistance in GAS has been observed in recent years. Differences in rates of resistance to these agents have existed according to geographical location and investigators. Aims: To investigate the antibiotic pattern and erythromycin-resistant genes of GAS isolates associated with acute tonsillitis and scarlet fever in Chengdu, southwestern China. Settings and Design: To assess the macrolide resistance, phenotype, and genotypic characterization of GAS isolated from throat swabs of children suffering from different acute tonsillitis or scarlet fever between 2004 and 2011 in the city of Chengdu, located in the southwestern region of China. Materials and Methods: Minimal inhibitory concentration with seven antibiotics was performed on 127 GAS isolates. Resistance phenotypes of erythromycin-resistant GAS isolates were determined by the double-disk test. Their macrolide-resistant genes (mefA, ermB and ermTR were amplified by PCR. Results: A total of 98.4% (125/127 of the isolates exhibited resistance to erythromycin, clindamycin and tetracycline. All isolates were sensitive to penicillin G and cefotaxime. Moreover, 113 ermB-positive isolates demonstrating the cMLS phenotype of erythromycin resistance were predominant (90.4% and these isolates showed high-level resistance to both erythromycin and clindamycin (MIC 90 > 256 μg/ml; 12 (9.6% isolates demonstrating the MLS phenotype of erythromycin resistance carried the mefA gene, which showed low-level resistance to both erythromycin (MIC 90 = 8 μg/ml and clindamycin (MIC 90 = 0.5 μg/ml; and none of the isolates exhibited the M phenotype. Conclusions: The main phenotype is cMLS, and the ermB gene code is the main resistance mechanism against macrolides in GAS. Penicillin is the most beneficial

  10. Multi-drug resistance and molecular pattern of erythromycin and ...

    African Journals Online (AJOL)

    The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional ...

  11. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance

    DEFF Research Database (Denmark)

    Douthwaite, S; Powers, T; Lee, J Y

    1989-01-01

    The helix spanning nucleotides 1198 to 1247 (helix 1200-1250) in Escherichia coli 23 S ribosomal RNA (rRNA) is functionally important in protein synthesis, and deletions in this region confer erythromycin resistance. In order to define the structural requirements for resistance, we have dissected...... deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function....... However, removal of either these or non-conserved nucleotides from helix 1200-1250 measurably reduces the efficiency of 23 S RNA in forming functional ribosomes. We have used chemical probing and a modified primer extension method to investigate erythromycin binding to wild-type and resistant ribosomes...

  12. Evaluation the mechanisms of erythromycin and penicillin resistance ...

    African Journals Online (AJOL)

    user

    2012-01-12

    Jan 12, 2012 ... primer (Table 1) and 10 µl of DNA templates (Fukushima et al.,. 2008). PCR amplification was carried with the cycling parameters as follows: after an initial denaturation .... isolated from children in Japan. Mutations in pbp2x were observed in several strains presenting intermediate resistance to penicillin.

  13. A prospective randomized controlled study of erythromycin on gastric and small intestinal distention: Implications for MR enterography

    Energy Technology Data Exchange (ETDEWEB)

    Bharucha, Adil E., E-mail: bharucha.adil@mayo.edu [Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) Program, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Fidler, Jeff L., E-mail: fidler.jeff@mayo.edu [Department of Radiology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Huprich, James E., E-mail: huprich@mayo.edu [Department of Radiology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Ratuapli, Shiva K., E-mail: ratuapli.shiva@mayo.edu [Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) Program, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Holmes, David R., E-mail: holmes.david3@mayo.edu [Biomedical Imaging Resource, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Riederer, Stephen J., E-mail: riederer@mayo.edu [MR Research Laboratory, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States); Zinsmeister, Alan R., E-mail: zinsmeis@mayo.edu [Division of Biomedical Statistics and Informatics, College of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905 (United States)

    2014-11-15

    Highlights: • Suboptimal small intestinal distention limits jejunal visualization during MRI. • In this controlled study, erythromycin increased gastric emptying measured with MRI. • However, effects on small intestinal dimensions were variable. - Abstract: Objectives: To assess if erythromycin increases gastric emptying and hence improves small intestinal distention during MR enterography. Methods: Gastric, small intestinal, and large intestinal volumes were assessed with MR after neutral oral contrast (1350 ml in 45 min) and balanced randomization to erythromycin (200 mg i.v., age 31 ± 3y, 13 females), or placebo (37 ± 3y, 13 females) in 40 healthy asymptomatic volunteers. Fat-suppressed T2-weighted MR images of the abdomen were acquired on a 1.5 T magnet at standard delay times for enterography. Gastric, small, and large intestinal volumes were measured by specialized software. In addition, two radiologists manually measured diameters and percentage distention of jejunal and ileal loops. Treatment effects were evaluated by an ITT analysis based on ANCOVA models. Results: All subjects tolerated erythromycin. MRI scans of the stomach and intestine were obtained at 62 ± 2 (mean ± SEM) and 74 ± 2 min respectively after starting oral contrast. Gastric volumes were lower (P < 0.0001) after erythromycin (260 ± 49 ml) than placebo (688 ± 63 ml) but jejunal, ileal, and colonic volumes were not significantly different. However, maximum (76–100%) jejunal distention was more frequently observed (P = 0.03) after erythromycin (8/20 subjects [40%]) than placebo (2/20 subjects [10%]). The diameter of a representative ileal loop was greater (P = 0.001) after erythromycin (18.8 ± 4.3 mm) than placebo (17.3 ± 2.8 mm) infusion. Conclusions: After ingestion of oral contrast, erythromycin accelerated gastric emptying but effects on small intestinal dimensions were variable. In balance, erythromycin did not substantially enhance small intestinal distention during

  14. A prospective randomized controlled study of erythromycin on gastric and small intestinal distention: Implications for MR enterography

    International Nuclear Information System (INIS)

    Bharucha, Adil E.; Fidler, Jeff L.; Huprich, James E.; Ratuapli, Shiva K.; Holmes, David R.; Riederer, Stephen J.; Zinsmeister, Alan R.

    2014-01-01

    Highlights: • Suboptimal small intestinal distention limits jejunal visualization during MRI. • In this controlled study, erythromycin increased gastric emptying measured with MRI. • However, effects on small intestinal dimensions were variable. - Abstract: Objectives: To assess if erythromycin increases gastric emptying and hence improves small intestinal distention during MR enterography. Methods: Gastric, small intestinal, and large intestinal volumes were assessed with MR after neutral oral contrast (1350 ml in 45 min) and balanced randomization to erythromycin (200 mg i.v., age 31 ± 3y, 13 females), or placebo (37 ± 3y, 13 females) in 40 healthy asymptomatic volunteers. Fat-suppressed T2-weighted MR images of the abdomen were acquired on a 1.5 T magnet at standard delay times for enterography. Gastric, small, and large intestinal volumes were measured by specialized software. In addition, two radiologists manually measured diameters and percentage distention of jejunal and ileal loops. Treatment effects were evaluated by an ITT analysis based on ANCOVA models. Results: All subjects tolerated erythromycin. MRI scans of the stomach and intestine were obtained at 62 ± 2 (mean ± SEM) and 74 ± 2 min respectively after starting oral contrast. Gastric volumes were lower (P < 0.0001) after erythromycin (260 ± 49 ml) than placebo (688 ± 63 ml) but jejunal, ileal, and colonic volumes were not significantly different. However, maximum (76–100%) jejunal distention was more frequently observed (P = 0.03) after erythromycin (8/20 subjects [40%]) than placebo (2/20 subjects [10%]). The diameter of a representative ileal loop was greater (P = 0.001) after erythromycin (18.8 ± 4.3 mm) than placebo (17.3 ± 2.8 mm) infusion. Conclusions: After ingestion of oral contrast, erythromycin accelerated gastric emptying but effects on small intestinal dimensions were variable. In balance, erythromycin did not substantially enhance small intestinal distention during

  15. Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses

    Directory of Open Access Journals (Sweden)

    Ana Belén Flórez

    2014-01-01

    Full Text Available Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR, and denaturing gradient gel electrophoresis (DGGE. The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K, tet(L, tet(M, tet(O, tet(S, and tet(W, and two with respect to erythromycin, that is, erm(B and erm(F. The most common resistance genes in the analysed cheeses were tet(S, tet(W, tet(M, and erm(B. The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log⁡10/g. DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W-carrying cheeses, though the similarity of the sequences suggests this tet(W to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.

  16. Transient erythromycin resistance phenotype associated with peptidyl-tRNA drop-off on early UGG and GGG codons

    DEFF Research Database (Denmark)

    Macvanin, Mirjana; Gonzalez de Valdivia, Ernesto I; Ardell, David H

    2007-01-01

    -peptide-encoding sequence, we asked whether the codons UGG and GGG, which are known to promote peptidyl-tRNA drop-off at early positions in mRNA, would result in a phenotype of erythromycin resistance if located after this sequence. We find that UGG or GGG, at either position +4 or +5, without a following stop codon......, is associated with an erythromycin resistance phenotype upon gene induction. Our results suggest that, while a stop codon at +4 gives a tripeptide product (MIL) and erythromycin sensitivity, UGG or GGG codons at the same position give a tetrapeptide product (MILW or MILG) and phenotype of erythromycin...... resistance. Thus, the drop-off event on GGG or UGG codons occurs after incorporation of the corresponding amino acid into the growing peptide chain. Drop-off gives rise to a peptidyl-tRNA where the peptide moiety functionally mimics a minigene peptide product of the type previously associated...

  17. In vitro development of resistance to enrofloxacin, erythromycin, tylosin, tiamulin and oxytetracycline in Mycoplasma gallisepticum, Mycoplasma iowae and Mycoplasma synoviae.

    Science.gov (United States)

    Gautier-Bouchardon, A V; Reinhardt, A K; Kobisch, M; Kempf, I

    2002-08-02

    The in vitro emergence of resistance to enrofloxacin, erythromycin, tylosin, tiamulin, and oxytetracycline in three avian Mycoplasma species, Mycoplasma gallisepticum, Mycoplasma synoviae and Mycoplasma iowae was studied. Mutants were selected stepwise and their MICs were determined after 10 passages in subinhibitory concentrations of antibiotic. High-level resistance to erythromycin and tylosin developed within 2-6 passages in the three Mycoplasma species. Resistance to enrofloxacin developed more gradually. No resistance to tiamulin or oxytetracycline could be evidenced in M. gallisepticum or M. synoviae after 10 passages whereas, resistant mutants were obtained with M. iowae. Cross-sensitivity tests performed on mutants demonstrated that mycoplasmas made resistant to tylosin were also resistant to erythromycin, whereas mutants made resistant to erythromycin were not always resistant to tylosin. Some M. iowae tiamulin-resistant mutants were also resistant to both macrolide antibiotics. Enrofloxacin and oxytetracycline did not induce any cross-resistance to the other antibiotics tested. These results show that Mycoplasma resistance to macrolides can be quickly selected in vitro, and thus, providing that similar results could be obtained under field conditions, that development of resistance to these antibiotics in vivo might also be a relatively frequent event.

  18. Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant

    DEFF Research Database (Denmark)

    Douthwaite, S; Prince, J B; Noller, H F

    1985-01-01

    A mutation affording low levels of erythromycin resistance has been obtained by in vitro hydroxylamine mutagenesis of a cloned ribosomal RNA operon from Escherichia coli. The site of the mutational event responsible for antibiotic resistance was localized to the gene region encoding domain II of ...

  19. Frequency of resistance to penicillin and erythromycin of pneumococcal strains that caused ottis media

    Directory of Open Access Journals (Sweden)

    Jovanović Luka

    2017-01-01

    Full Text Available Introduction: Streptococcus pneumoniae is an important human pathogen and the most common cause of acute otitis media (AOM, especially in children. It is also a common cause of community acquired pneumonia, sepsis and bacterial meningitis. Drug of choice in the treatment of these disease are beta lactam antibiotics, and the first alternative are macrolides. The increasing prevalence of resistance to penicillin and macrolides, among pneumococci, has considerably complicated the treatment. Aim: The aim of this study was to determine susceptibility of pneumococcal isolates from pediatric AOM in Serbia to antibiotics. Material and methods: Antimicrobial susceptibility testing of 61 pneumococcal AOM was performed, collected from December 2014 to December 2015, using disk diffusion method and E test. Macrolide resistance profile was determined by double disk diffusion test. Results: In our study, 40 strains (65.6% showed reduced sensitivity to penicillin and erythromycin. There were 9 (14.8% high resistant isolates to penicillin, while 31 (50.8% showed reduced susceptibility. The most frequent resistance phenotype was cMLS. Co-resistance to penicillin and macrolides was found in 14.8% strains. Conclusion: Our results showed high resistance rate of S. pneumoniae, which causes AOM among children, to penicillin and macrolides. Further active surveillance of pneumococcal susceptibility to antibiotics is necessary, and use of these medications in empirical therapy should be limited.

  20. Genome Comparison of Erythromycin Resistant Campylobacter from Turkeys Identifies Hosts and Pathways for Horizontal Spread of erm(B Genes

    Directory of Open Access Journals (Sweden)

    Diego Florez-Cuadrado

    2017-11-01

    Full Text Available Pathogens in the genus Campylobacter are the most common cause of food-borne bacterial gastro-enteritis. Campylobacteriosis, caused principally by Campylobacter jejuni and Campylobacter coli, is transmitted to humans by food of animal origin, especially poultry. As for many pathogens, antimicrobial resistance in Campylobacter is increasing at an alarming rate. Erythromycin prescription is the treatment of choice for clinical cases requiring antimicrobial therapy but this is compromised by mobility of the erythromycin resistance gene erm(B between strains. Here, we evaluate resistance to six antimicrobials in 170 Campylobacter isolates (133 C. coli and 37 C. jejuni from turkeys. Erythromycin resistant isolates (n = 85; 81 C. coli and 4 C. jejuni were screened for the presence of the erm(B gene, that has not previously been identified in isolates from turkeys. The genomes of two positive C. coli isolates were sequenced and in both isolates the erm(B gene clustered with resistance determinants against aminoglycosides plus tetracycline, including aad9, aadE, aph(2″-IIIa, aph(3′-IIIa, and tet(O genes. Comparative genomic analysis identified identical erm(B sequences among Campylobacter from turkeys, Streptococcus suis from pigs and Enterococcus faecium and Clostridium difficile from humans. This is consistent with multiple horizontal transfer events among different bacterial species colonizing turkeys. This example highlights the potential for dissemination of antimicrobial resistance across bacterial species boundaries which may compromise their effectiveness in antimicrobial therapy.

  1. The effects of erythromycin in small-bowel follow-through

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyun Yong; Lee, Young Hwan; Jung, Kyung Jae; Chung, Duck Soo; Kim, Ok Dong; Hwang, Jin Bok [Catholic Univ. School of Medicine, Daegu (Korea, Republic of)

    2001-05-01

    To evaluate the efficacy of erythromycin(EM), known to accelerate gastric emptying, in modified small-bowel follow-through(SBFT). We evaluated 32 normal patients who underwent modified SBFT by oral administration of methylcellulose. In the EM injection group(n=20), 500 mg EM (3 mg/kg in pediatric patients) in 100 ml saline was infused intravenously over a 15-minute period prior to the administration of a barium meal, while in the control group(n=12), EM was not infused. Gastric emptying time(GET), small-bowel transit time(SBTT) for barium and methylcellulose, small-bowel transit(SBT) during the first 15 minutes, luminal diameter and quality of image were compared between the two groups. SBT was assigned 1, 2, 3, or 4 points, depending on the extent to which the barium head reached the proximal or distal jejunum, and the proximal or distal ileum during the initial 15-minute. Three radiologists reached a consensus as to image quality. Mean GET was significantly faster in the EM injection group (18.5 mins for 150 ml barium suspension and 25.8 mins for 600 ml methylcellulose). The SBT score during the initial 15 minutes was significantly higher in the EM injection group (3.3 points) than in the control group (2.4points), but mean SBTT was not significantly different between the two groups. Luminal diameter and image quality were also higher in the EM injection group. EM does not decrease SBTT but is highly effective for shortening gastric emptying time, helping to increase the range of fluoroscopic examination and improve image quality in modified small-bowel follow-through, especially in patients with delayed gastric emptying.

  2. Effect of Periodontal Therapy With Amoxicillin-Metronidazole on Pharyngeal Carriage of Penicillin- and Erythromycin-Resistant Viridans Streptococci.

    Science.gov (United States)

    Mombelli, Andrea; Cionca, Norbert; Almaghlouth, Adnan; Cherkaoui, Abdessalam; Schrenzel, Jacques; Giannopoulou, Catherine

    2016-05-01

    Previous studies have focused on antibiotic resistance of Gram-negative bacteria before and after periodontal therapy. The purpose of this analysis is to assess changes in resistance patterns of the commensal Gram-positive microbiota. The viridans group streptococci (VGS) have been suggested to serve as reservoirs of resistance genes for more pathogenic streptococci and may be implicated in some non-oral infections. In this randomized clinical trial, 80 patients with periodontitis are distributed randomly into two groups. In group A, patients received 375 mg amoxicillin and 500 mg metronidazole three times per day for 7 days during the non-surgical treatment phase (T1). In group B, the antibiotics were administered during the surgical phase (T2). Resistance of VGS to penicillin and erythromycin was determined by the epsilometer test. At baseline, VGS from 12.5% (group A) and 11.8% (group B) of patients had a minimum inhibitory concentration (MIC) >2 μg/mL to penicillin. Three months after T1, VGS from 15.6% and 16.7% of patients had an MIC >2 μg/mL, respectively. Six months after T2 VGS from 5.9% and 5.9% and 12 months after T2 VGS from 6.1% and 6.3% patients had an MIC >2 μg/mL. There was no effect of therapy with antibiotics, administered either in T1 or T2, on the carriage of penicillin-resistant VGS. Erythromycin resistance was high at baseline and remained unchanged throughout the study. MICs for penicillin and erythromycin were correlated (P penicillin or erythromycin.

  3. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  4. Antimicrobial and anti-virulence activity of capsaicin against erythromycin-resistant, cell-invasive Group A streptococci

    Directory of Open Access Journals (Sweden)

    Emanuela eMarini

    2015-11-01

    Full Text Available Capsaicin (8-methyl-N-vanillyl-6-nonenamide is the active component of Capsicum plants (chilli peppers, which are grown as food and for medicinal purposes since ancient times, and is responsible for the pungency of their fruit. Besides its multiple pharmacological and physiological properties (pain relief, cancer prevention, and beneficial cardiovascular, and gastrointestinal effects capsaicin has recently attracted considerable attention because of its antimicrobial and anti-virulence activity. This is the first study of its in vitro antibacterial and anti-virulence activity against Streptococcus pyogenes [Group A streptococci (GAS], a major human pathogen. The test strains were previously characterized, erythromycin-susceptible (n=5 and erythromycin-resistant (n=27, cell-invasive pharyngeal isolates. The MICs of capsaicin were 64-128 μg/mL (the most common MIC was 128 µg/mL. The action of capsaicin was bactericidal, as suggested by MBC values that were equal or close to the MICs, and by early detection of dead cells in the live/dead assay. No capsaicin-resistant mutants were obtained in single-step resistance selection studies. Interestingly, growth in presence of sublethal capsaicin concentrations induced an increase in biofilm production (p ≤ 0.05 and in the number of bacteria adhering to A549 monolayers, and a reduction in cell-invasiveness and haemolytic activity (both p ≤ 0.05. Cell invasiveness fell so dramatically that a highly invasive strain became non-invasive. The dose-response relationship, characterized by opposite effects of low and high capsaicin doses, suggests a hormetic response. The present study documents that capsaicin has promising bactericidal activity against erythromycin-resistant, cell-invasive pharyngeal GAS isolates. The fact that sublethal concentrations inhibited cell invasion and reduced haemolytic activity, two important virulence traits of GAS, is also interesting, considering that cell

  5. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains isolated from invasive and non-invasive infections from Mexico and the USA during 1999–2010

    Science.gov (United States)

    Villaseñor-Sierra, Alberto; Katahira, Eva; Jaramillo-Valdivia, Abril N.; de los Angeles Barajas-García, María; Bryant, Amy; Morfín-Otero, Rayo; Márquez-Díaz, Francisco; Tinoco, Juan Carlos; Sánchez-Corona, José; Stevens, Dennis L.

    2012-01-01

    Summary Objective To compare the prevalence, phenotypes, and genes responsible for erythromycin resistance among Streptococcus pyogenes isolates from Mexico and the USA. Methods Eighty-nine invasive and 378 non-invasive isolates from Mexico, plus 148 invasive, 21 non-invasive, and five unclassified isolates from the USA were studied. Susceptibilities to penicillin, erythromycin, clindamycin, ceftriaxone, and vancomycin were evaluated according to Clinical and Laboratory Standards Institute (CLSI) standards. Phenotypes of erythromycin resistance were identified by triple disk test, and screening for mefA, ermTR, and ermB genes was carried out by PCR. Results All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Erythromycin resistance was found in 4.9% of Mexican strains and 5.2% of USA strains. Phenotypes in Mexican strains were 95% M and 5% cMLS; in strains from the USA, phenotypes were 33.3% iMLS, 33.3% iMLS-D, and 33.3% M. Erythromycin resistance genes in strains from Mexico were mefA (95%) and ermB (5%); USA strains harbored ermTR (56%), mefA (33%), and none (11%). In Mexico, all erythromycin-resistant strains were non-invasive, whereas 89% of strains from the USA were invasive. Conclusions Erythromycin resistance continues to exist at low levels in both Mexico and the USA, although the genetic mechanisms responsible differ between the two nations. These genetic differences may be related to the invasive character of the S. pyogenes isolated. PMID:22217469

  6. Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals

    DEFF Research Database (Denmark)

    Bagcigil, Funda A.; Moodley, Arshnee; Baptiste, Keith E.

    2007-01-01

    beta-Lactams and macrolides are important antibiotics for treatment of staphylococcal infections in both humans and animals. The aim of the study was to investigate the occurrence, species distribution and clonality of methicillin and erythromycin-resistant staphylococci in the nasal cavity of dogs......, horses, pigs, and cattle in Denmark. Nasal swabs were collected from a total of 400 animals, including 100 individuals of each species. Methicillin and erythromycin-resistant staphylococci were isolated on selective media, identified by 16S rDNA sequencing, and typed by pulsed field gel electrophoresis...... (PFGE). Methicillin-resistant coagulase-negative staphylococci (MRCoNS) harbouring mecA were isolated from horses (50%) and dogs (13%), but not from food animals. The species identified were S. haemolyticus (n = 21), S. vitulinus (n = 19), S. sciuri (n = 13), S. epidermidis (n = 8), and S. warneri (n...

  7. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Charles W., E-mail: charles.knapp@strath.ac.u [David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, 50 Richmond Street, Glasgow, G1 1XN (United Kingdom); School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Zhang, Wen; Sturm, Belinda S.M. [Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Graham, David W. [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States)

    2010-05-15

    The attenuation and fate of erythromycin-resistance-methylase (erm) and extended-spectrum beta-lactamse (bla) genes were quantified over time in aquatic systems by adding 20-L swine waste to 11,300-L outdoor mesocosms that simulated receiving water conditions below intensive agricultural operations. The units were prepared with two different light-exposure scenarios and included artificial substrates to assess gene movement into biofilms. Of eleven genes tested, only erm(B), erm(F), bla{sub SHV} and bla{sub TEM} were found in sufficient quantity for monitoring. The genes disappeared rapidly from the water column and first-order water-column disappearance coefficients were calculated. However, detected gene levels became elevated in the biofilms within 2 days, but then disappeared over time. Differences were observed between sunlight and dark treatments and among individual genes, suggesting that ecological and gene-specific factors play roles in the fate of these genes after release into the environment. Ultimately, this information will aid in generating better predictive models for gene fate. - The disappearance and fate of erythromycin-resistance-methylase and beta-lactamase genes were monitored in outdoor mesocosms under different light conditions.

  8. Molecular epidemiology, antimicrobial susceptibilities and resistance mechanisms of Streptococcus pyogenes isolates resistant to erythromycin and tetracycline in Spain (1994–2006

    Directory of Open Access Journals (Sweden)

    Rubio-López Virginia

    2012-09-01

    Full Text Available Abstract Background Group A Streptococcus (GAS causes human diseases ranging in severity from uncomplicated pharyngitis to life-threatening necrotizing fasciitis and shows high rates of macrolide resistance in several countries. Our goal is to identify antimicrobial resistance in Spanish GAS isolates collected between 1994 and 2006 and to determine the molecular epidemiology (emm/T typing and PFGE and resistance mechanisms of those resistant to erythromycin and tetracycline. Results Two hundred ninety-five out of 898 isolates (32.8% were erythromycin resistant, with the predominance of emm4T4, emm75T25, and emm28T28, accounting the 67.1% of the 21 emm/T types. Spread of emm4T4, emm75T25 and emm28T28 resistant clones caused high rates of macrolide resistance. The distribution of the phenotypes was M (76.9%, cMLSB (20.3%, iMLSB (2.7% with the involvement of the erythromycin resistance genes mef(A (89.5%, msr(D (81.7%, erm(B (37.3% and erm(A (35.9%. Sixty-one isolates were tetracycline resistant, with the main representation of the emm77T28 among 20 emm/T types. To note, the combination of tet(M and tet(O tetracycline resistance genes were similar to tet(M alone reaching values close to 40%. Resistance to both antibiotics was detected in 19 isolates of 7 emm/T types, being emm11T11 and the cMLSB phenotype the most frequent ones. erm(B and tet(M were present in almost all the strains, while erm(A, mef(A, msr(D and tet(O appeared in less than half of them. Conclusions Spanish GAS were highly resistant to macrolides meanwhile showed minor resistance rate to tetracycline. A remarkable correlation between antimicrobial resistance and emm/T type was noticed. Clonal spread of emm4T4, emm75T25 and emm28T28 was the main responsable for macrolide resistance where as that emm77T28 clones were it to tetraclycline resistance. A wide variety of macrolide resistance genes were responsible for three macrolide resistance phenotypes.

  9. Analysis of phenotype, genotype and serotype distribution in erythromycin-resistant group B streptococci isolated from vaginal flora in Southern Ireland.

    LENUS (Irish Health Repository)

    Kiely, R A

    2010-02-01

    The screening of 2000 women of childbearing age in Cork between 2004 and 2006 produced 37 erythromycin-resistant group B streptococcus (GBS) isolates. PCR analysis was performed to determine the basis for erythromycin resistance. The ermTR gene was most frequently expressed (n = 19), followed by the ermB gene (n = 8). Four isolates harboured the mefA gene. Six isolates yielded no PCR products. Some phenotype-genotype correlation was observed. All isolates expressing the mefA gene displayed the M phenotype whilst all those expressing ermB displayed the constitutive macrolide resistance (cMLS(B)) phenotype. Of 19 isolates that expressed the ermTR gene, 16 displayed the inducible macrolide resistance (iMLS(B)) phenotype. Serotype analysis revealed that serotypes III and V predominated in these isolates. The identification of two erythromycin-resistant serotype VIII isolates among this collection represents the first reported finding of erythromycin resistance in this serotype. A single isolate was non-typable using two latex agglutination serotyping kits.

  10. Frequency of resistance to penicillin and erythromycin of pneumococcal strains that caused ottis media

    OpenAIRE

    Jovanović Luka; Isailović Katarina; Opavski Nataša

    2017-01-01

    Introduction: Streptococcus pneumoniae is an important human pathogen and the most common cause of acute otitis media (AOM), especially in children. It is also a common cause of community acquired pneumonia, sepsis and bacterial meningitis. Drug of choice in the treatment of these disease are beta lactam antibiotics, and the first alternative are macrolides. The increasing prevalence of resistance to penicillin and macrolides, among pneumococci, has considerably complicated the treatment. Aim...

  11. Fitness and proteome changes accompanying the development of erythromycin resistance in a population of Escherichia coli grown in continuous culture

    Czech Academy of Sciences Publication Activity Database

    Petráčková, Denisa; Janeček, Jiří; Bezoušková, Silvia; Kalachová, Ladislava; Techniková, Zuzana; Buriánková, Karolína; Halada, Petr; Haladová, Kateřina; Weiser, Jaroslav

    2013-01-01

    Roč. 2, č. 5 (2013), s. 841-852 ISSN 2045-8827 R&D Projects: GA AV ČR IAA500200913 Institutional support: RVO:61388971 Keywords : Continuous cultivation system * Escherichia coli * erythromycin Subject RIV: EE - Microbiology, Virology

  12. Combating against methicillin-resistant Staphylococcus aureus - two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin.

    Science.gov (United States)

    Chan, Ben C L; Han, X Q; Lui, Sau Lai; Wong, C W; Wang, Tina B Y; Cheung, David W S; Cheng, Sau Wan; Ip, Margaret; Han, Simon Q B; Yang, Xiao-Sheng; Jolivalt, Claude; Lau, Clara B S; Leung, Ping Chung; Fung, Kwok Pui

    2015-01-01

    The aims of this study were to identify the active ingredients from Portulaca oleracea L. (PO) that could provide synergism with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) and their possible mechanisms of resistance inhibition. High-speed counter-current chromatography (HSCCC) coupled with gas chromatography-mass spectrometry and a panel of laboratory MRSA strains were used for checkerboard and efflux inhibitory assays. Linoleic and oleic acids were identified from HSCCC fraction 18 of PO with synergistic antibacterial activity when combined with erythromycin against RN4220/pUL5054. Ethidium bromide efflux inhibitory studies revealed that linoleic and oleic acids may interfere the activity of MsrA pump. By comparing among a panel of linoleic and oleic acids analogues, unsaturated fatty acids in salt form with cis configuration and an increase in number of double bonds were found to further increase the antibacterial activity when used alone or in combination with antibiotics. This study reported for the first time that two active ingredients, namely linoleic and oleic acids, were identified from PO with synergistic antibacterial activity when combined with erythromycin against MRSA RN4220/pUL5054 and possibly act by inhibiting the efflux pumps of the bacteria cells. © 2014 Royal Pharmaceutical Society.

  13. SYNERGISTIC EFFECTS OF ETHANOL MEDICINAL PLANT EXTRACTS WITH ERYTHROMYCIN AGAINST SKIN STRAINS OF STAPHYLOCOCCI WITH INDUCIBLE PHENOTYPE OF MLS-RESISTANCE

    Directory of Open Access Journals (Sweden)

    Yurchyshyn O.I.

    2017-10-01

    Full Text Available Introduction. One of the main ways to control microorganisms’ resistance to antibiotics is to find substances that are able to overcome it and potentiate antibiotics action, in particular to neutralize the antibiotic-inactivating enzymes or block the active efflux of antibiotic from microbial cells. Every year there is a growing interest in the therapeutic potential of herbal active compounds as modifiers of antibiotic resistance including MLS-resistance (macrolide-lincosamide-streptoramin B. It should be emphasized that a number of biologically active substances of plant origin can potentiate antimicrobial activity of erythromycin (ERY against MLS-resistant staphylococci. The present study was designed to investigate the antibacterial and synergistic effects of eight Ukrainian ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Material & methods. S. aureus and S. epidermidis strains were tested for susceptibility to antibiotics of MLS-group by disk diffusion test. Effective antimicrobial concentrations of plant extracts and erythromycin were determined by two-fold serial dilution in nutrient agar and broth. Combinatory effects between organic extracts and ERY were assessed using the checkerboard assay against tested strains to evaluate culture growth in the presence of two antimicrobials with different concentrations. Results & discussion. The Alnus incana L. fruits extract was the most potent inhibitor against tested strains (MIC 40.625-162.5 µg/mL; while Geranium pratense L. rhizomes extract exhibited the least antimicrobial activity (MIC 650-2,600 µg/mL. The Alnus incana L. fruits extract and the Geranium pratense L. rhizomes extract showed synergistic effect with erythromycin against 100% strains of staphylococci (average FICI 0.028 – 0.057; p<0.001. In the presence of 1/4 MIC of ERY Alnus incana L. fruits extract antimicrobial concentration was

  14. Prevalence of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae isolates reported by laboratories in the southern and eastern Mediterranean region.

    Science.gov (United States)

    Borg, M A; Tiemersma, E; Scicluna, E; van de Sande-Bruinsma, N; de Kraker, M; Monen, J; Grundmann, H

    2009-03-01

    Information about the epidemiology of resistance in Streptococcus pneumoniae within southern and eastern countries of the Mediterranean region is incomplete, as reports have been sporadic and difficult to compare. Over a 36-month period, from 2003 to 2005, the ARMed project collected 1298 susceptibility test results of invasive isolates of S. pneumoniae from blood and spinal fluid cultures routinely processed within 59 participating laboratories situated in Algeria, Cyprus, Egypt, Jordan, Lebanon, Malta, Morocco, Tunisia and Turkey. Overall, 26% (335) of isolates were reported as non-susceptible to penicillin, with the highest proportions being reported from Algeria (44%) and Lebanon (40%). During the same time period, the highest proportions of pneumococci that were not susceptible to erythromycin were reported from Malta (46%) and Tunisia (39%). Proportions of dual non-susceptibility in excess of 5% were found in laboratories in Algeria, Tunisia, Lebanon, Jordan and Turkey. ARMed data on the antimicrobial resistance epidemiology of S. pneumoniae in the southern and eastern Mediterranean region provided evidence of high rates of resistance, especially to penicillin. This evidence calls for a greater focus on the identification of relevant drivers of resistance and on the implemention of effective practices in order to address the problem of resistence.

  15. Tannic acid affects the phenotype of Staphylococcus aureus resistant to tetracycline and erythromycin by inhibition of efflux pumps.

    Science.gov (United States)

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Costa, Maria do S; Menezes, Irwin R A; de Matos, Yedda Maria L S; Calixto-Júnior, João T; Pereira, Pedro S; Siqueira-Junior, José P; Leal-Balbino, Teresa C; Coutinho, Henrique D M; Balbino, Valdir Q

    2017-10-01

    The widespread use of antibiotics created selective pressure for the emergence of strains that would persist despite antibiotic toxicity. The bacterial resistance mechanisms are several, with efflux pumps being one of the main ones. These pumps are membrane proteins with the function of removing antibiotics from the cell cytoplasm. Due to this importance, the aim of this work was to evaluate the inhibitory effect of tannic acid against efflux pumps expressed by the Staphylococcus aureus RN4220 and IS-58 strains. The efflux pump inhibition was assayed using a sub-inhibitory concentration of efflux pump standard inhibitors and tannic acid (MIC/8), observing their capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due the possible inhibitory effect of these substances. The MICs of EtBr and antibiotics were significantly different in the presence of tannic acid, indicating the inhibitory effect of this product against efflux pumps of both strains. These results indicate the possible usage of tannic acid asan inhibitor and an adjuvant in the antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms

    International Nuclear Information System (INIS)

    Kim, Yong-Hak; Cerniglia, Carl E.

    2005-01-01

    Degradation of erythromycin A was studied using two sediment samples obtained from the salmon and trout hatchery sites at Hupp Springs (HS) and Goldendale (GD), Washington, United States. The former site had been treated for 3 years with erythromycin-medicated feed prior to the experiments, and the latter site had not been treated with any antibiotic for at least 6 years. The two sediment microcosms treated with either N-[methyl- 14 C]erythromycin A or [1,3,5,7,9,11,13- 14 C]erythromycin A showed S-curves for erythromycin A mineralization with a prolonged lag time of 120 days, except for GD microcosms treated with [1,3,5,7,9,11,13- 14 C]erythromycin A. We proposed a simplified logistic model to interpret the mineralization curves under the assumption of the low densities of initial populations metabolizing erythromycin A. The model was helpful for knowing the biological potential for erythromycin A degradation in sediments. Although erythromycin A added to the two sediment microcosms did not significantly alter the numbers of total viable aerobic bacteria or erythromycin-resistant bacteria, it affected the bacterial composition. The influence on the bacterial composition appeared to be greater in GD microcosms without pre-exposure to antibiotics. PCR-RFLP and DNA sequence analyses of the 16S ribosomal RNA gene and the erythromycin esterase (ere) gene revealed that ereA type 2 (ereA2) was present in potentially erythromycin-degrading Pseudomonas spp. strains GD100, GD200, HS100, HS200 and HS300, isolated from erythromycin-treated and non-treated GD and HS microcosms. Erythromycin A appeared to influence the development and proliferation of strain GD200, possibly via the lateral gene transfer of ereA2

  17. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Hak [Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)]. E-mail: yhkim660628@hotmail.com; Cerniglia, Carl E. [Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)]. E-mail: ccerniglia@nctr.fda.gov

    2005-07-01

    Degradation of erythromycin A was studied using two sediment samples obtained from the salmon and trout hatchery sites at Hupp Springs (HS) and Goldendale (GD), Washington, United States. The former site had been treated for 3 years with erythromycin-medicated feed prior to the experiments, and the latter site had not been treated with any antibiotic for at least 6 years. The two sediment microcosms treated with either N-[methyl-{sup 14}C]erythromycin A or [1,3,5,7,9,11,13-{sup 14}C]erythromycin A showed S-curves for erythromycin A mineralization with a prolonged lag time of 120 days, except for GD microcosms treated with [1,3,5,7,9,11,13-{sup 14}C]erythromycin A. We proposed a simplified logistic model to interpret the mineralization curves under the assumption of the low densities of initial populations metabolizing erythromycin A. The model was helpful for knowing the biological potential for erythromycin A degradation in sediments. Although erythromycin A added to the two sediment microcosms did not significantly alter the numbers of total viable aerobic bacteria or erythromycin-resistant bacteria, it affected the bacterial composition. The influence on the bacterial composition appeared to be greater in GD microcosms without pre-exposure to antibiotics. PCR-RFLP and DNA sequence analyses of the 16S ribosomal RNA gene and the erythromycin esterase (ere) gene revealed that ereA type 2 (ereA2) was present in potentially erythromycin-degrading Pseudomonas spp. strains GD100, GD200, HS100, HS200 and HS300, isolated from erythromycin-treated and non-treated GD and HS microcosms. Erythromycin A appeared to influence the development and proliferation of strain GD200, possibly via the lateral gene transfer of ereA2.

  18. Characterization of a small erythromycin resistance plasmid pLFE1 from the food-isolate Lactobacillus plantarum M345

    DEFF Research Database (Denmark)

    Feld, Louise; Bielak, Eliza; Hammer, Karin

    2009-01-01

    found. A putative replication initiation site including a single-strand origin (sso) -like region succeeded by a characteristic pMV158 family double-strand origin (dso) was located upstream of the replication region. An open reading frame following a typical origin of transfer (oriT) site and coding...

  19. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea.

    Science.gov (United States)

    Wu, Panpan; Pan, Hui; Zhang, Congming; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhou, Ying; Ye, Bang-ce; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2014-07-01

    Erythromycin, a medically important antibiotic, is produced by Saccharopolyspora erythraea. Unusually, the erythromycin biosynthetic gene cluster lacks a regulatory gene, and the regulation of its biosynthesis remains largely unknown. In this study, through gene deletion, complementation and overexpression experiments, we identified a novel TetR family transcriptional regulator SACE_3986 negatively regulating erythromycin biosynthesis in S. erythraea A226. When SACE_3986 was further inactivated in an industrial strain WB, erythromycin A yield of the mutant was increased by 54.2 % in average compared with that of its parent strain, displaying the universality of SACE_3986 as a repressor for erythromycin production in S. erythraea. qRT-PCR analysis indicated that SACE_3986 repressed the transcription of its adjacent gene SACE_3985 (which encodes a short-chain dehydrogenase/reductase), erythromycin biosynthetic gene eryAI and the resistance gene ermE. As determined by EMSA analysis, purified SACE_3986 protein specifically bound to the intergenic region between SACE_3985 and SACE_3986, whereas it did not bind to the promoter regions of eryAI and ermE. Furthermore, overexpression of SACE_3985 in A226 led to enhanced erythromycin A yield by at least 32.6 %. These findings indicate that SACE_3986 is a negative regulator of erythromycin biosynthesis, and the adjacent gene SACE_3985 is one of its target genes. The present study provides a basis to increase erythromycin production by engineering of SACE_3986 and SACE_3985 in S. erythraea.

  20. Severe Urticaria Following Erythromycin Therapy

    Directory of Open Access Journals (Sweden)

    Anada S. Prasad

    1960-01-01

    Full Text Available Enythromycin is believed to cause no serlous reactions after large doses, nausea, rarely vomiting and occasionally abdominal pain and diarrhea may occur, (Herrell, 1954. According to' Kagan and Faller (1955 no allergic reaction to' erythromycin has been reported. Phlebitis and thrombosis have been observed, (Shoe maker & Yow, 1954. In a report by Solomon and Johnson, (1955 toxic reactions were recorded as being uncommon. In a large series of cases, only one patient had a rash, another had fever possibly due to the drug, nne had nausea and vomiting and 4 had loose bowel movements while under therapy. Among the 122 patients treated with erythromcin, therapy was stopped owing to side effects in only one. My patient had severe urticaria within 24 hours of beginning therapy with erythromycin and a positive skin test was observed. It was believed to be an allergic reaction caused by the drug.

  1. A seventeen-year observation of the antimicrobial susceptibility of clinical Campylobacter jejuni and the molecular mechanisms of erythromycin-resistant isolates in Beijing, China

    Directory of Open Access Journals (Sweden)

    Jiyuan Zhou

    2016-01-01

    Conclusions: This is the first comprehensive study on the recent trend in antimicrobial resistance and the molecular mechanisms of macrolide resistance in clinical C. jejuni strains isolated in China. More stringent monitoring and regulation of human and animal antimicrobial use are warranted.

  2. Combination of Erythromycin and Curcumin Alleviates Staphylococcus aureus Induced Osteomyelitis in Rats

    Directory of Open Access Journals (Sweden)

    Zubin Zhou

    2017-08-01

    Full Text Available Osteomyelitis is commonly caused by Staphylococcus aureus. Both erythromycin and curcumin can suppress S. aureus growth, but their roles in osteomyelitis are barely studied. We aim to explore the activities of erythromycin and curcumin against chronical osteomyelitis induced by methicillin-resistant S. aureus (MRSA. Chronicle implant-induced osteomyelitis was established by MRSA infection in male Wistar rats. Four weeks after bacterial inoculation, rats received no treatment, erythromycin monotherapy, curcumin monotherapy, or erythromycin plus curcumin twice daily for 2 weeks. Bacterial levels, bone infection status, inflammatory signals and side effects were evaluated. Rats tolerated all treatments well, with no death or side effects such as, diarrhea and weight loss. Two days after treatment completion, erythromycin monotherapy did not suppress bacterial growth and had no effect in bone infection, although it reduced serum pro-inflammatory cytokines tumor necrosis factor (TNF-α and interleukin (IL-6. Curcumin monotherapy slightly suppressed bacterial growth, alleviated bone infection and reduced TNF-α and IL-6. Erythromycin and curcumin combined treatment markedly suppressed bacterial growth, substantially alleviated bone infection and reduced TNF-α and IL-6. Combination of erythromycin and curcumin lead a much stronger efficiency against MRSA induced osteomyelitis in rats than monotherapy. Our study suggests that erythromycin and curcumin could be a new combination for treating MRSA induced osteomyelitis.

  3. Low cost earthquake resistant ferrocement small house

    International Nuclear Information System (INIS)

    Saleem, M.A.; Ashraf, M.; Ashraf, M.

    2008-01-01

    The greatest humanitarian challenge faced even today after one year of Kashmir Hazara earthquake is that of providing shelter. Currently on the globe one in seven people live in a slum or refugee camp. The earthquake of October 2005 resulted in a great loss of life and property. This research work is mainly focused on developing a design of small size, low cost and earthquake resistant house. Ferrocement panels are recommended as the main structural elements with lightweight truss roofing system. Earthquake resistance is ensured by analyzing the structure on ETABS for a seismic activity of zone 4. The behavior of structure is found satisfactory under the earthquake loading. An estimate of cost is also presented which shows that it is an economical solution. (author)

  4. Repeated maternal intramuscular or intraamniotic erythromycin incompletely resolves intrauterine Ureaplasma parvum infection in a sheep model of pregnancy.

    Science.gov (United States)

    Kemp, Matthew W; Miura, Yuichiro; Payne, Matthew S; Watts, Rory; Megharaj, Smruthi; Jobe, Alan H; Kallapur, Suhas G; Saito, Masatoshi; Spiller, O Brad; Keelan, Jeffrey A; Newnham, John P

    2014-08-01

    Ureaplasma spp are the most commonly isolated microorganisms in association with preterm birth. Maternal erythromycin administration is a standard treatment for preterm prelabor rupture of membranes. There is little evidence of its effectiveness in eradicating Ureaplasma spp from the intrauterine cavity and fetus. We used a sheep model of intrauterine Ureaplasma spp infection to investigate the efficacy of repeated maternal intramuscular and intraamniotic erythromycin treatment to eradicate such an infection. Thirty ewes with singleton pregnancies received an intraamniotic injection of 10(7) color change units of erythromycin-sensitive Ureaplasma parvum serovar 3 at 55 days' gestation. At 116 days' gestation, 28 ewes with viable fetuses were randomized to receive (1) intraamniotic and maternal intramuscular saline solution treatment (n = 8), (2) single intraamniotic and repeated maternal intramuscular erythromycin treatment (n = 10), or (3) single maternal intramuscular and repeated intraamniotic erythromycin treatment (n = 10). Fetuses were surgically delivered at 125 days' gestation. Treatment efficacy was assessed by culture, quantitative polymerase chain reaction, and histopathologic evaluation. Animals treated with intraamniotic erythromycin had significantly less viable U parvum serovar 3 in the amniotic fluid at delivery. However, neither combination of maternal intramuscular and intraamniotic erythromycin treatment successfully cleared U parvum serovar 3 from the amniotic fluid or fetal tissues. Three de novo erythromycin-resistant U parvum isolates were identified in erythromycin-treated animals. Erythromycin treatment, given both to the ewe and into the amniotic cavity, fails to eradicate intrauterine and fetal U parvum serovar 3 infection and may lead to development of erythromycin resistant U parvum. Copyright © 2014 Mosby, Inc. All rights reserved.

  5. Proliferation resistance of small modular reactors fuels

    Energy Technology Data Exchange (ETDEWEB)

    Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  6. A randomized, double-blind, multicenter, parallel group study to compare relative efficacies of the topical gels 3% erythromycin/5% benzoyl peroxide and 0.025% tretinoin/erythromycin 4% in the treatment of moderate acne vulgaris of the face.

    Science.gov (United States)

    Gupta, Aditya K; Lynde, Charles W; Kunynetz, Rod A W; Amin, Smita; Choi, Ken; Goldstein, Eric

    2003-01-01

    Combination treatments for acne vulgaris, such as Benzamycin (3% erythromycin/5% benzoyl peroxide) and Stievamycin (0.025% tretinoin/erythromycin 4%), reduce bacterial growth, which contributes to the inflammatory lesions typical of adolescent acne, and also decrease the epidermal cell compaction which may form the characteristic noninflammatory comedone. Both agents contain erythromycin to reduce the growth of Propionibacterium acnes in skin. Benzoyl peroxide has antibiotic activity as well as anticomedogenic properties. Tretinoin may increase the turnover of epidermal cells and loosen the cells compacted to form comedones. A combination preparation containing the two antibiotics may reduce the development of resistance; the combination preparation containing tretinoin and erythromycin will have an antibiotic effect as well as acting on differentiation. This multicenter, randomized, double-blind, parallel group study compared the effectiveness of 3% erythromycin/5% benzoyl peroxide and 0.025% tretinoin/erythromycin 4%, each applied twice daily in patients with moderate acne vulgaris. Overall physician and patient ratings of severity of acne symptoms were performed at baseline and at weeks 2, 4, 8, and 12. At baseline the two treatment groups had similar disease severity. The number of papules, pustules, and comedones was reduced in both treatment groups at week 12, and the reductions were not significantly different between the two comparators. Global physician rating of improvement was significantly higher in the 3% erythromycin/5% benzoyl peroxide group compared with the 0.025% tretinoin/erythromycin 4% group; however, there was no significant difference in global patient ratings between the two treatment groups. An aggregate score was produced, for both physician rating and patient rating, by adding up individual symptom severity ratings. Compared with 0.025% tretinoin/erythromycin 4%, 3% erythromycin/5% benzoyl peroxide provided significantly greater reduction

  7. A yigP mutant strain is a small colony variant of E. coli and shows pleiotropic antibiotic resistance.

    Science.gov (United States)

    Xia, Hui; Tang, Qiongwei; Song, Jie; Ye, Jiang; Wu, Haizhen; Zhang, Huizhan

    2017-12-01

    Small colony variants (SCVs) are a commonly observed subpopulation of bacteria that have a small colony size and distinctive biochemical characteristics. SCVs are more resistant than the wild type to some antibiotics and usually cause persistent infections in the clinic. SCV studies have been very active during the past 2 decades, especially Staphylococcus aureus SCVs. However, fewer studies on Escherichia coli SCVs exist, so we studied an E. coli SCV during an experiment involving the deletion of the yigP locus. PCR and DNA sequencing revealed that the SCV was attributable to a defect in the yigP function. Furthermore, we investigated the antibiotic resistance profile of the E. coli SCV and it showed increased erythromycin, kanamycin, and d-cycloserine resistance, but collateral sensitivity to ampicillin, polymyxin, chloramphenicol, tetracycline, rifampin, and nalidixic acid. We tried to determine the association between yigP and the pleiotropic antibiotic resistance of the SCV by analyzing biofilm formation, cellular morphology, and coenzyme Q (Q 8 ) production. Our results indicated that impaired Q 8 biosynthesis was the primary factor that contributed to the increased resistance and collateral sensitivity of the SCV. This study offers a novel genetic basis for E. coli SCVs and an insight into the development of alternative antimicrobial strategies for clinical therapy.

  8. Isolation of methicillin-resistant Staphylococcus aureus from small ruminants and their meat at slaughter and retail level in Greece.

    Science.gov (United States)

    Sergelidis, D; Papadopoulos, T; Komodromos, D; Sergelidou, E; Lazou, T; Papagianni, M; Zdragas, A; Papa, A

    2015-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) presents major health risk for humans causing serious nosocomial and community-acquired infections. Asymptomatic food-producing animal carriers and their meat may represent potential reservoirs for human infections. The aim of this study was to investigate the prevalence of MRSA in small ruminants raised under free-range conditions and their meat at slaughter and retail level in Northern Greece. Staphylococcus aureus was isolated from 9·6% of the examined samples. All isolates were resistant at least to one antibiotic, whereas 59·3% of them were multidrug resistant (MDR) exhibiting resistance to three or more antibiotic classes. The higher resistance rates were observed against penicillin (100%), tetracycline (74%), clindamycin (59·3%) and erythromycin (51·9%). Resistance to cefoxitin was exhibited by 22·2% of the isolates, but only one isolate was found to carry the mecA gene and belonged to spa type t127. This is the first time this type of Staph. aureus is isolated in Greece from the surface of a small ruminant's carcass. The presence of multidrug resistant Staph. aureus, and especially MRSA, in small ruminants and their meat, represents a potential threat for the spread of this pathogen in the community. This study is the first report on methicillin-resistant Staphylococcus aureus in small ruminants and their meat at slaughter level in Greece, elucidating a possible vehicle food for transmission to humans. These results suggest that human or animal sources could be involved in meat contamination and thus sources of contamination require investigation to control the dispersion of MRSA in the community. © 2015 The Society for Applied Microbiology.

  9. Antimicrobial resistance of Staphylococcus spp. from small ruminant mastitis in Brazil

    Directory of Open Access Journals (Sweden)

    Chirles A. França

    2012-08-01

    Full Text Available The study aimed to determine the antimicrobial resistance patterns and to identify molecular resistance markers in Staphylococcus spp. (n=210 isolated from small ruminant mastitis in Brazil. The antimicrobial resistance patterns were evaluated by the disk diffusion test and by detection of the presence of mecA, blaZ, ermA, ermB, ermC and msrA genes by PCR. The efflux pump test was performed using ethidium bromide and biofilm production was determined by Congo red agar test along with PCR for detection of the icaD gene. The isolates were most resistant to amoxicillin (50.0%, streptomycin (42.8%, tetracycline (40.4%, lincomycin (39.0% and erythromycin (33.8%. Pan-susceptibility to all tested drugs was observed in 71 (33.8% isolates and 41 Staphylococcus isolates were positive for the efflux pump. Although phenotypic resistance to oxacillin was observed in 12.8% of the isolates, none harbored the mecA gene. However, 45.7% of the isolates harbored blaZ indicating that beta-lactamase production was the main mechanism associated with staphylococci resistance to beta-lactams in the present study. The other determinants of resistance to antimicrobial agents ermA, ermB, ermC, and msrA were observed in 1.4%, 10.4%, 16.2%, and 0.9% of the isolates, respectively. In addition, the icaD gen was detected in 32.9% of the isolates. Seventy three isolates (54 from goats and 19 from sheep were negative for all resistance genes tested and 69 isolates presented two or more resistance genes. Association among blaZ, ermA, ermB, ermC and efflux pump were observed in 17 isolates, 14 of which originated from goats and three from sheep. The data obtained in this study show the resistance of the isolates to beta-lactamics, which may be associated with the use of antimicrobial drugs without veterinary control.

  10. A comparative study of therapeutic response of patients with clinical chancroid to ciprofloxacin, erythromycin, and cotrimoxazole.

    Science.gov (United States)

    D'Souza, P; Pandhi, R K; Khanna, N; Rattan, A; Misra, R S

    1998-07-01

    Cotrimoxazole has traditionally been used as first drug for treatment of chancroid in India. With reports of increasing resistance to the drug, this study was conducted to compare treatment response of clinical chancroid between ciprofloxacin, 500 mg twice daily for 3 days, erythromycin, 500 mg four times daily for 7 days, and double-strength cotrimoxazole (trimethoprim 160 mg + sulfamethoxazole 800 mg), twice daily for 7 days. Forty-six patients with a clinical diagnosis of chancroid were randomly divided into 3 groups. Sixteen patients received ciprofloxacin, whereas 15 each received erythromycin and cotrimoxazole. Patients were seen on day 7, 14, and if needed day 21. Clinical response was noted in terms of cure, improvement, or failure. Excellent response was observed to both ciprofloxacin and erythromycin therapy with cure rates of 93.7% and 93.3%, respectively. Improvement was observed in 6.7% cases in both groups. There were no failures with either ciprofloxacin or erythromycin. Poor response to cotrimoxazole therapy was observed with 53.3% cure rates and a high failure rate of 46.7%. Ciprofloxacin and erythromycin are equally effective in chancroid. Ciprofloxacin is better in terms of dosage schedule, duration of treatment, and low cost. Cotrimoxazole should be discontinued as drug of choice because of high failure rates.

  11. Prevalence of mef and ermB genes in invasive pediatric erythromycin-resistant Streptococcus pneumoniae isolates from Argentina Prevalencia de los genes mef y ermB en aislamientos invasivos de Streptococcus pneumoniae resistentes a eritromicina recuperados de pacientes pediátricos en Argentina

    Directory of Open Access Journals (Sweden)

    A. Corso

    2009-03-01

    Full Text Available During the period 1993-2001, a total of 1,499 pneumococci isolates were recovered through the Argentinean surveillance of Streptococcus pneumoniae causing invasive disease in children under 6 years of age, 3.5% of which were erythromycin resistant. Among the 50 erythromycin-resistant strains available, 58% (n=29 harbored mefA/E genes (15 mefA, 30%; and 14 mefE, 28%, 34% (n=17 ermB, and 6% (n=3 both mefA/E plus ermB genes, while one isolate was negative for all the acquired genes studied. The England14-9 (42%, Poland6B-20 (20% and Spain9v-3 (16% clones were responsible for the emergence of pneumococcal macrolide resistance in pediatric population from Argentina.En el marco del programa de vigilancia regional SIREVA, se analizaron 1499 aislamientos de Streptococcus pneumoniae causantes de enfermedad invasiva en menores de 6 años, recuperados entre 1993 y 2001. Se detectó un 3,5% de resistencia a eritromicina. De los 50 aislamientos resistentes a eritromicina que pudieron ser estudiados, el 58% (n=29 tenían los genes mefA/E (15 mefA, 30% y 14 mefE, 28%, el 34% (n=17 el gen ermB y el 6% (n=3 la combinación de genes mefA/E y ermB. Sólo un aislamiento fue negativo para todos los genes analizados. Los clones internacionales England14-9, Poland6B-20 y Spain9v-3 representaron el 78% del total de aislamientos resistentes (42, 20 y 16%, respectivamente y se consideraron los responsables de la emergencia de la resistencia a macrólidos entre los neumococos que afectan a la población pediátrica de Argentina.

  12. Prevalence and Antimicrobial Resistance of Enterobacteriaceae in Shell Eggs from Small-Scale Poultry Farms and Farmers' Markets.

    Science.gov (United States)

    Kilonzo-Nthenge, A; Nahashon, S N; Godwin, S; Liu, S; Long, D

    2016-12-01

    Public health concerns over the emergence of antimicrobial resistant bacteria have increased recently. The purpose of this study was to investigate the prevalence of antimicrobial resistant Enterobacteriaceae in shell eggs purchased from small poultry farms and farmers' markets. A total of 504 eggs were pooled to make 252 composite samples, consisting of 2 eggs per composite. The microbial quality of shell eggs was determined by standard quantitative, biochemical, and PCR techniques. Susceptibility to 13 antimicrobial agents was determined by the Kirby-Bauer disk diffusion technique, and results were interpreted based on Clinical and Laboratory Standards Institute values. Shell eggs and egg contents were positive for Escherichia coli (11.9 and 5.2%, respectively), Enterobacter (9.1 and 7.9%), and Serratia (11.5 and 4.8%). Salmonella was isolated from 3.6% of egg shells but not from egg contents. Mean (±SD) Enterobacteriaceae levels (4.4 ± 2.0 log CFU per eggshell) on shell eggs from poultry farms was significantly higher (P ≤ 0.05) than that on shell eggs from farmers' markets (2.1 ± 1.3 log CFU per eggshell). Of the 134 isolates recovered, resistance among isolates from farm and market shell eggs to erythromycin was most common (48.5 and 32.8%, respectively) followed by ampicillin (44.8 and 17.2%), and tetracycline (29.9 and 17.2%). The multiple antibiotic resistance index value for E. coli and Pantoea was 0.62, and that for Salmonella and Klebsiella terrigena was 0.08, indicating that Enterobacteriaceae in shell eggs can be resistant to multiple antimicrobial agents. These data reveal that shell eggs from small poultry farms and farmers' markets can harbor antimicrobial resistant pathogenic and commensal bacteria. Thus, failure to properly handle shell eggs poses a potential health hazard to consumers.

  13. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment

    DEFF Research Database (Denmark)

    Feld, Louise; Schjorring, S.; Hammer, Karin

    2008-01-01

    Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different gastrointes......Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different...

  14. A study of dynamic resistance during small scale resistance spot welding of thin Ni sheets

    International Nuclear Information System (INIS)

    Tan, W; Zhou, Y; Kerr, H W; Lawson, S

    2004-01-01

    The dynamic resistance has been investigated during small scale resistance spot welding (SSRSW) of Ni sheets. Electrical measurements have been correlated with scanning electron microscope images of joint development. The results show that the dynamic resistance curve can be divided into the following stages based on physical change in the workpieces: asperity heating, surface breakdown, asperity softening, partial surface melting, nugget growth and expulsion. These results are also compared and contrasted with dynamic resistance behaviour in large scale RSW

  15. Small brown planthopper resistance loci in wild rice (Oryza officinalis).

    Science.gov (United States)

    Zhang, Weilin; Dong, Yan; Yang, Ling; Ma, Bojun; Ma, Rongrong; Huang, Fudeng; Wang, Changchun; Hu, Haitao; Li, Chunshou; Yan, Chengqi; Chen, Jianping

    2014-06-01

    Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.

  16. Effect of the aqueous extract of Psidium guajava on erythromycin ...

    African Journals Online (AJOL)

    The effect of Psidium guajava extract on erythromycin-induced liver damage in albino rats was investigated using 30 normal rats grouped into six . Group I and II served as the normal and treatment controls that were administered with normal saline and 100mg/kg body weight of erythromycin stearate daily for 14 days ...

  17. Genetic variation for drought resistance in small red seeded ...

    African Journals Online (AJOL)

    Common bean (Phaseolus vulgaris L.) productivity is low in major growing regions of Ethiopia mainly due to drought, caused by low and erratic rainfall. A field experiment was carried out at Gofa in Southern Ethiopia, to assess genetic variability for drought resistance in forty-nine small red seeded common bean genotypes ...

  18. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2016-03-01

    Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea ; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea . Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI , the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ 3446 and WBΔ 3446 Δ 3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE . When cultured in a 5 L fermentor, erythromycin A of WBΔ 3446 and WBΔ 3446 Δ 3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.

  19. Bioavailability and stability of erythromycin delayed release tablets.

    Science.gov (United States)

    Ogwal, S; Xide, T U

    2001-12-01

    Erythromycin is available as the free base, ethylsuccinate, estolate, stearate, gluceptate, and lactobionate derivatives. When given orally erythromycin and its derivatives except the estolate are inactivated to some extent by the gastric acid and poor absorption may result. To establish whether delayed release erythromycin tablets meet the bioequivalent requirement for the market. Sectrophotometric analysis was used to determine the dissolution percentage of the tablets in vitro. High performance liquid chromatography and IBM/XT microcomputer was used to determine the bioavailability and pharmacokinetic parameters in vivo. Dissolution percentage in thirty minutes reached 28.9% and in sixty minutes erythromycin was completely released. The parameters of the delayed release tablets were Tlag 2.3 hr, Tmax.4.5 hr, and Cmax 2.123 g/ml Ka 0.38048 hr(-1) T (1/2) 1.8 hr, V*C/F 49.721 AUC 12.9155. The relative bioavailability of erythromycin delayed release tablet to erythromycin capsules was 105.31% The content, appearance, and dissolution bioavailability of delayed release erythromycin tablets conforms to the United States pharmacopoeia standards. The tablets should be stored in a cool and dry place in airtight containers and the shelf life is temporarily assigned two years.

  20. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate.

    Directory of Open Access Journals (Sweden)

    Abdessamad Ababou

    Full Text Available Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.

  1. Effect of irradiation on erythromycin residues in poultry meat

    International Nuclear Information System (INIS)

    Mazurowski, P.

    1993-01-01

    Ionising radiation in doses used for radurisation (Recommendations of international organizations admit for poultry meat doses up to 5 kGy. Practically doses up to 3 kGy are applied does not influence erythromycin concentration in poultry meat. Doses on a level 10 kGy reduce its concentration in slurry more effectively, but results of earlier studies on penicillin and streptomycin suggest, that reduction of erythromycin level in meat should be smaller than in slurry. This allows an assumption that poultry meat irradiation with radurisation doses (up to 5 kGy), does not cause danger of overlooking of erythromycin residues in meat, with traditional, microbiological methods of detection. (orig.)

  2. Small-scale electrical resistivity tomography of wet fractured rocks.

    Science.gov (United States)

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  3. Proliferation resistance considerations for remote small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Whitlock, J., E-mail: whitlockj@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Sprinkle, J., E-mail: j.sprinkle@iaea.org [International Atomic Energy Agency, Vienna (Austria)

    2013-07-01

    Remotely located Small Modular Reactors at the low end of energy production (on the order of 10 MWe, referenced here as Very Small Modular Reactors or VSMRs) present unique proliferation resistance advantages and challenges. Addressing these challenges in the most efficient manner may not only be desirable, but necessary, for development of this technology. Incorporation of safeguards considerations early in the design process (Safeguards by Design) along with safety, security, economics and other key drivers, is of importance. Operational Transparency may become an essential aspect of the safeguards approach for such systems. (author)

  4. Topical erythromycin vs blank vehicle in a multiclinic acne study.

    Science.gov (United States)

    Jones, E L; Crumley, A F

    1981-09-01

    A stable solution of erythromycin was developed using a vehicle of ethanol, propylene glycol, and citric acid buffer. In a controlled, randomized, double-blind comparison, a 2% solution of erythromycin applied to moderately severe facial acne was found to be superior to the blank vehicle in reducing the number of inflamed papules. During a period of 12 weeks, such papules were reduced by 56% in the erythromycin group, compared with 33% in the blank vehicle group. In the erythromycin group, 62% of the subjects had a good or excellent response, compared with 27% of those in the blank vehicle group. Adverse effects were similar in type in both groups and included redness, scaling, dryness, oiliness, burning, itching, and irritation of the eyes. No allergic reactions or skin infections were encountered.

  5. Autobacteriographic studies of clarithromycin and erythromycin in mice

    International Nuclear Information System (INIS)

    Kohno, Y.; Ohta, K.; Suwa, T.; Suga, T.

    1990-01-01

    The antimicrobial activity of clarithromycin was compared with that of erythromycin in experimentally infected mice by whole-body autobacteriography. In mice with systemic staphylococcal infections, the number of vital microbes in the body was relatively low in the early period after oral administration of erythromycin, but increased thereafter to the levels found in nonmedicated control mice. On the other hand, with clarithromycin treatment, a significantly smaller number of microbes was evident throughout the body. The microbes were scarcely seen in the parenchyma of any organs during the examination period. This potent antimicrobial activity of clarithromycin compared with that of erythromycin was further demonstrated in mice with respiratory infections. On the other hand, to examine the distribution properties of both antibiotics in the whole body, an autoradiographic study was carried out with [N-methyl-14C]clarithromycin and [N-methyl-14C]erythromycin. Both labeled antibiotics were distributed widely throughout the body after oral administration in both uninfected control mice and mice with systemic infections. However, the radioactivity was more marked and persistent for [14C]clarithromycin than it was for [14C]erythromycin, particularly in the lungs. The observations described above indicate the superior in vivo antimicrobial activity of clarithromycin compared with that of erythromycin and suggest that the superiority of clarithromycin is largely attributed to its favorable distribution properties. The advantages of whole-body autobacteriography, coupled with whole-body autoradiography, are discussed

  6. Small ring testing of a creep resistant material

    International Nuclear Information System (INIS)

    Hyde, C.J.; Hyde, T.H.; Sun, W.; Nardone, S.; De Bruycker, E.

    2013-01-01

    Many components in conventional and nuclear power plant, aero-engines, chemical plant etc., operate at temperatures which are high enough for creep to occur. These include steam pipes, pipe branches, gas and steam turbine blades, etc. The manufacture of such components may also require welds to be part of them. In most cases, only nominal operating conditions (i.e. pressure, temperatures, system load, etc.) are known and hence precise life predictions for these components are not possible. Also, the proportion of life consumed will vary from position to position within a component. Hence, non-destructive techniques are adopted to assist in making decisions on whether to repair, continue operating or replace certain components. One such approach is to test a small sample removed from the component to make small creep test specimens which can be tested to give information on the remaining creep life of the component. When such a small sample cannot be removed from the operating component, e.g. in the case of small components, the component can be taken out of operation in order to make small creep test specimens, the results from which can then be used to assist with making decisions regarding similar or future components. This paper presents a small creep test specimen which can be used for the testing of particularly strong and creep resistant materials, such as nickel-based superalloys

  7. Sulphaphenazole, streptomycin and sulphaphenazole combination, trimethoprim, and erythromycin in the treatment of chancroid.

    Science.gov (United States)

    Kumar, B; Sharma, V K; Bakaya, V

    1990-01-01

    One hundred and thirty six patients with chancroid were treated with four different treatment regimens; (A) Sulphaphenazole 1 g 12 hourly by mouth x 10 days (B) Inj streptomycin 1 g intramuscularly daily with sulphaphenazole 1 g 12 hourly orally x 10 days; (C) trimethoprim 200 mg 12 hourly by mouth x 7-10 days, and (D) erythromycin 500 mg 6 hourly orally x 7-10 days. Cure rates of 9% with sulphaphenazole alone, 48% with streptomycin and sulphaphenazole combination, 93% with trimethoprim and 100% with erythromycin were obtained. Sulphaphenazole alone or in combination with streptomycin were thus inferior in the treatment of chancroid. There is need for modification of treatment regimens recommended for chancroid in the textbooks of dermatology and venereology. Trimethoprim can be recommended as first line of treatment for chancroid in developing countries like India where resistance to trimethoprim is uncommon and erythromycin is suggested as a second line of therapy because by that time syphilis can be easily ruled out. PMID:2187791

  8. Resistance to small plastic strains during martensite tempering under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zabil' skij, V.V.; Sarrak, V.I. (AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1982-11-01

    The mechanism of plastic deformation of martensite of a series of hardened steels (N18, 20KhG, 50KhFA and others) during tempering under tension and the role of residual internal microstresses and phase transformations are studied. It is shown that martensite low resistance to small plastic deformations during tempering under tension which is usually associated with phase transformations depends as well on the level of residual internal microstresses in the martensite structure. The decrease of resistance to deformation in the course of the decomposition of a solid solution is due to weakening of martensitic matrix because of carbon departure from the solid solution and carbide coarsening. An assumption is made that martensite plastic deformation during tempering under tension is realized at the expense of the directed microplastic deformation in the regions of higher concentration of internal stresses.

  9. Resident cats in small animal veterinary hospitals carry multi-drug resistant enterococci and are likely involved in cross-contamination of the hospital environment

    Directory of Open Access Journals (Sweden)

    Anuradha eGhosh

    2012-02-01

    Full Text Available In the U.S., small animal veterinary hospitals (SAVHs commonly keep resident cats living permanently as pets within their facilities. Previously, multi-drug resistant (MDR enterococci were found as a contaminant of multiple surfaces within such veterinary hospitals, and nosocomial infections are a concern. The objectives of this study were to determine whether resident cats carry MDR enterococci and if they potentially play a role in the contamination of the hospital environment. Enterococcal strains (n=180 were isolated from the feces of six healthy resident cats from different SAVHs. The concentration of enterococci ranged from 1.1 x 105 to 6.0 x 108 CFU g-1 of feces, and the population comprised E. hirae (38.3±18.6%, E. faecium (35.0±14.3%, E. faecalis (23.9±11.0%, and E. avium (2.8±2.2%. Testing of phenotypic resistance to 14 antimicrobial agents revealed multi-drug resistance (≥3 antimicrobials in 48.9% of all enterococcal isolates with most frequent resistance to tetracycline (72.8%, erythromycin (47.8%, and rifampicin (35.6%. Vancomycin resistant E. faecalis (3.9% with vanB not horizontally transferable in in vitro conjugation assays were detected from one cat. Genotyping (pulsed-field gel electrophoresis demonstrated a host-specific clonal population of MDR E. faecalis and E. faecium. Importantly, several feline isolates were genotypically identical or closely related to isolates from surfaces of cage door, thermometer, and stethoscope of the corresponding SAVHs. These data demonstrate that healthy resident cats at SAVHs carry MDR enterococci and likely contribute to contamination of the SAVH environment. Proper disposal and handling of fecal material and restricted movement of resident cats within the ward is recommended.

  10. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Wu, Hang; Chen, Meng; Mao, Yongrong; Li, Weiwei; Liu, Jingtao; Huang, Xunduan; Zhou, Ying; Ye, Bang-Ce; Zhang, Lixin; Weaver, David T; Zhang, Buchang

    2014-11-13

    Saccharopolyspora erythraea was extensively utilized for the industrial-scale production of erythromycin A (Er-A), a macrolide antibiotic commonly used in human medicine. Yet, S. erythraea lacks regulatory genes in the erythromycin biosynthetic gene (ery) cluster, hampering efforts to enhance Er-A production via the engineering of regulatory genes. By the chromosome gene inactivation technique based on homologous recombination with linearized DNA fragments, we have inactivated a number of candidate TetR family transcriptional regulators (TFRs) and identified one TFR (SACE_7301) positively controlling erythromycin biosynthesis in S. erythraea A226. qRT-PCR and EMSA analyses demonstrated that SACE_7301 activated the transcription of erythromycin biosynthetic gene eryAI and the resistance gene ermE by interacting with their promoter regions with low affinities, similar to BldD (SACE_2077) previously identified to regulate erythromycin biosynthesis and morphological differentiation. Therefore, we designed a strategy for overexpressing SACE_7301 with 1 to 3 extra copies under the control of PermE* in A226. Following up-regulated transcriptional expression of SACE_7301, eryAI and ermE, the SACE_7301-overexpressed strains all increased Er-A production over A226 proportional to the number of copies. Likewise, when SACE_7301 was overexpressed in an industrial S. erythraea WB strain, Er-A yields of the mutants WB/7301, WB/2×7301 and WB/3×7301 were respectively increased by 17%, 29% and 42% relative to that of WB. In a 5 L fermentor, Er-A accumulation increased to 4,230 mg/L with the highest-yield strain WB/3×7301, an approximately 27% production improvement over WB (3,322 mg/L). We have identified and characterized a TFR, SACE_7301, in S. erythraea that positively regulated erythromycin biosynthesis, and overexpression of SACE_7301 in wild-type and industrial S. erythraea strains enhanced Er-A yields. This study markedly improves our understanding of the unusual

  11. Myasthenia gravis exacerbation and diarrhea associated with erythromycin treatment

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2017-01-01

    Full Text Available An important problem in management of the case with myasthenia gravis (MG is the control of exacerbation. There are several possible causes of exacerbation of MG including the use of drug. Here, the authors report a case of MG exacerbation and diarrhea associated with erythromycin treatment.

  12. Characterization of the effects of erythromycin estolate and erythromycin base on the excretory function of the isolated rat liver

    International Nuclear Information System (INIS)

    Gaeta, G.B.; Utili, R.; Adinolfi, L.E.; Abernathy, C.O.; Giusti, G.

    1985-01-01

    To investigate the mechanisms of erythromycin cholestasis, the effects of erythromycin estolate (EE) on the excretory function of the isolated perfused rat liver and on liver plasma membrane (LM) preparations were studied and compared to those of erythromycin base (EB) and lauryl sulfate (LS), added alone or in combination. EE (at 125 to 200 microM) caused dose-dependent reductions of bile and perfusate flows, bile acid (BA) excretion, and biliary BA concentration. The alterations of the excretory function were only in part due to the decreased perfusate flow. In contrast, both 200 and 300 microM concentrations of EB elicited similar choleretic responses, which were presumably related to the osmotic activity of the drug excreted in the bile. LS did not affect hepatic excretory functions. However, the simultaneous addition of EB and LS resulted in a rate of bile flow lower than that observed with EB alone. EE, but not EB, increased canalicular permeability to [ 14 C]sucrose as measured by bile to plasma (B:P) ratio. Neither drugs altered [ 14 C]erythritol B:P ratio. In LM preparations both Na+,K+- and Mg2+-ATPase activities were inhibited in a dose-dependent manner by EE, but not by EB. The data suggest that EE could affect bile flow by inhibiting cotransport of Na+ and BA and by altering LM permeability and support the view that the effect of erythromycins on the liver may be related to their surface activity

  13. [Pharmacological availability of erythromycin granules for children's use].

    Science.gov (United States)

    Korenev, S V; Garsheva, G B; Nesterova, L Ia; Grakovskaia, L K; Tentsova, A I

    1990-08-01

    Pharmaceutical availability of erythromycin granules with polymeric coating of different composition+ was studied. With an account of the ++anatomo-physiological features of a child organism and the properties of the antibiotic, acetylphthalyl cellulose in combination with hydroxypropyl methylcellulose or methyl cellulose was used as a film forming agent. The coated granules were estimated by such parameters as the time of disintegration and the rate of dissolution in various media. The results of the study showed that coating of the erythromycin granules with the film composed of acetylphthalyl cellulose and hydroxypropyl methylcellulose in the ratio of 8 to 2 provided the required protection of the antibiotic in acid media and high pharmaceutical availability of the drug.

  14. Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line

    NARCIS (Netherlands)

    Meijer, C.; Mulder, N H; Timmer-Bosscha, H; Zijlstra, J G; de Vries, E G

    1987-01-01

    In two Adriamycin (Adr) resistant sublines (GLC4-Adr1 and GLC4-Adr2) of a human small cell lung carcinoma cell line, GLC4, cross-resistance for radiation was found. GLC4-Adr1 has an acquired Adr resistance factor of 44 after culturing without Adr for 20 days and GLC4-Adr2, the same subline cultured

  15. Genetic and physiological studies of antibiotic resistance in a clinical isolate of Streptococcus faecalis

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1987-01-01

    An erythromycin-sensitive clinical isolate of Streptococcus faecalis (CS-4B) generated intermediate-level erythromycin-resistant isolates ([CS-4B(S)] at a frequency of 4 x 10 -8 per cell. CS-4B(S) produces high-level erythromycin-resistant isolates [CS-4B(L)] at a very high frequency. The erythromycin-resistance is non-transferable, chromosomally located, and distinct from the well described erythromycin-resistance of the MLS type. The erythromycin-resistance of CS-4B(S) and CS-4B(L) is not due to an in vitro or in vivo alteration or inactivation of erythromycin. 14 C-erythromycin binds in vitro, as evaluated with sucrose gradients, to 70S ribosomes and 50S ribosomal subunits in CS-4B. Binding to CS-4B(L) ribosomes was barely detectable whereas CS-4B(S) ribosomes retained binding capacity. The binding studies on filter membranes revealed a substantial reduction of 14 C-erythromycin binding to CS-4B(S) ribosomes when compared to CS-4B ribosomes. The in vivo accumulation of 14 C-erythromycin in CS-4B and CS-4B(S) parallel the in vitro binding capacity of ribosomes indicating the apparent absence of a permeability barrier to erythromycin in CS-4B

  16. Resistance projection welding small pins in vacuum tube feedthrough assembly

    International Nuclear Information System (INIS)

    Kuncz, F. Jr.

    1980-01-01

    Resistance projection welding of two stainless steel pins to a cup is successfully accomplished by specially designed electrodes and by forming domes on the pin ends. Details of electrode and pin construction are given, as well as welding parameters

  17. Adverse effects of erythromycin on the structure and chemistry of activated sludge

    International Nuclear Information System (INIS)

    Louvet, J.N.; Giammarino, C.; Potier, O.; Pons, M.N.

    2010-01-01

    This study examines the effects of erythromycin on activated sludge from two French urban wastewater treatment plants (WWTPs). Wastewater spiked with 10 mg/L erythromycin inhibited the specific evolution rate of chemical oxygen demand (COD) by 79% (standard deviation 34%) and the specific N-NH 4 + evolution rate by 41% (standard deviation 25%). A temporary increase in COD and tryptophan-like fluorescence, as well as a decrease in suspended solids, were observed in reactors with wastewater containing erythromycin. The destruction of activated sludge flocs was monitored by automated image analysis. The effect of erythromycin on nitrification was variable depending on the sludge origin. Erythromycin inhibited the specific nitrification rate in sludge from one WWTP, but increased the nitrification rate at the other facility. - Erythromycin toxicity on activated sludge is expected to reduce pollution removal.

  18. Small towns resisting urban decay through residential attractiveness

    DEFF Research Database (Denmark)

    Fertner, Christian; Groth, Niels Boje; Herslund, Lise Byskov

    2015-01-01

    composition, residential migration, social organisation and community engagement form and affect small town (1000–5000 inhabitants) development patterns in Denmark and specific place-based endowments. The study is carried out with mixed methods, comprising a quantitative analysis of development trends......, complemented by qualitative case studies in six small towns. Our findings show how favourable development paths are a combination of a positive development in population, provision of daily commodities and attractive housing, and a high number of local voluntary social organisations. Introducing the concept......Small towns are often considered as losing out in the current trend towards urban development. However, research from around Europe shows a great diversity of small town development, including successful development trajectories despite geographical disadvantages. Investigations...

  19. Cadmium resistance in Drosophila: a small cadmium binding substance

    International Nuclear Information System (INIS)

    Jacobson, K.B.; Williams, M.W.; Richter, L.J.; Holt, S.E.; Hook, G.J.; Knoop, S.M.; Sloop, F.V.; Faust, J.B.

    1985-01-01

    A small cadmium-binding substance (CdBS) has been observed in adult Drosophila melanogaster that were raised for their entire growth cycle on a diet that contained 0.15 mM CdCl 2 . Induction of CdBS was observed in strains that differed widely in their sensitivity of CdCl 2 . This report describes the induction of CdBS and some of its characteristics. 17 refs., 4 figs., 1 tab

  20. Topical Delivery of Erythromycin Through Cubosomes for Acne.

    Science.gov (United States)

    Khan, Sana; Jain, Poorva; Jain, Sourabh; Jain, Richa; Bhargava, Saurabh; Jain, Aakanchha

    2018-01-01

    Topical delivery is an attractive route for local and systemic treatment. The novel topical application has many advantages like averting the GI-irritation, preventing the metabolism of drugs in the liver and increasing the bioavailability of the drug over the conventional dosage forms. The aim of present work was to prepare and characterized erythromycin encapsulated cubosomes using different concentrations of glyceryl monooleate and poloxamer 407 by the emulsification method. The prepared dispersion of cubosomes was characterized for surface morphology, particle size, entrapment efficiency and in vitro release. Further, optimized formulation was converted to cubosomal gel by incorporating carbopol 934 at different concentrations. The prepared gel was characterized for homogeneity, pH, viscosity, spreadibility, drug content and in vitro drug release study. The result of optimized cubosomes showed average particle size of 264.5±2.84nm and entrapment efficiency about 95.29±1.32 % and the pH of optimized cubosomal was found to be 6.5, viscosity 2475-8901(cp), drug content 95.29% and the spreadability was found to be 11.74 gm.cm/sec. The in vitro drug release kinetics of optimized formulation was found to follow Korsmeyer peppas model having highest R2 value 0.835 and in vitro drug release of optimized erythromycin loaded cubosomal gel and plain drug gel in 24 hr was found to be 89.91±0.73 and 88.64±2.16, while in 36 hr plain drug gel and cubosomal gel showed drug release about 87.64±0.97 and 91.55±1.09, and sustained release was obtained after 24 hr in case of cubosomal gel. Thus, as a whole it can be concluded that erythromycin loaded cubosomes are effective in topically delivering drug in sustained and non-invasive manner for treatment and prevention of acne. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Preparation of carbon-11 labelled erythromycin A lactobionate for the study of the antibiotic in vivo

    International Nuclear Information System (INIS)

    Palmer, A.J.; Pike, V.W.; Horlock, P.L.; Perun, L.A.; Freiberg, L.A.; Dunnigan, D.A.; Liss, R.H.

    1982-01-01

    Erythromycin A is produced naturally by Streptomyces erythreus and is an important macrolide antibiotic. This paper describes the chemical synthesis of Erythromycin A by the reductive methylation of N-dimethylerythromycin A, and its labelling with 11 C formaldehyde. (U.K.)

  2. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin.

    Science.gov (United States)

    Peng, Jinyun; Huang, Qing; Zhuge, Wenfeng; Liu, Yuxia; Zhang, Cuizong; Yang, Wei; Xiang, Gang

    2018-05-30

    In this study, we developed a novel photoelectrochemical (PEC) sensor for the highly sensitive detection of erythromycin by functionalising graphene oxide (GO) with nickel tetra-amined phthalocyanine (NiTAPc) through covalent bonding, which resulted in the formation of NiTAPc-Gr. The fabricated sensor showed a higher PEC efficiency under blue light, exhibiting a peak wavelength of 456 nm, as compared to that of the monomer. Further, the NiTAPc-Gr/indium tin oxide (ITO) sensor exhibited a photocurrent that was 50-fold higher than that for a GO/ITO sensor under the same conditions. Under optimal conditions, the NiTAPc-Gr PEC sensor showed a linear response for erythromycin concentrations ranging from 0.40 to 120.00 μmol L -1 , with the minimum limit for detection being 0.08 μmol L -1 . Thus, the NiTAPc-Gr sensor exhibited superior performance and excellent PEC characteristics, high stability, and good reproducibility with respect to the sensing of erythromycin. Moreover, it is convenient to use, fast, small, and cheap to produce. Hence, it should find wide use in the analysis of erythromycin in real-world applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. “Recovering our Stories”: A Small Act of Resistance

    Directory of Open Access Journals (Sweden)

    Lucy Costa

    2012-10-01

    Full Text Available This paper describes a community event organized in response to the appropriation and overreliance on the psychiatric patient “personal story” within mental health organizations. The sharing of experiences through stories by individuals who self-identify as having “lived experience” has been central to the history of organizing for change in and outside of the psychiatric system. However, in the last decade, personal stories have increasingly been used by the psychiatric system to bolster research, education, and fundraising interests. We explore how personal stories from consumer/survivors have been harnessed by mental health organizations to further their interests and in so doing have shifted these narrations from “agents of change” towards one of “disability tourism” or “patient porn.” We mark the ethical dilemmas of narrative cooptation and consumption, and query how stories of resistance can be reclaimed not as personal recovery narratives but rather as a tool for socio-political change.

  4. Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer.

    Science.gov (United States)

    Tanino, Ryosuke; Tsubata, Yukari; Harashima, Nanae; Harada, Mamoru; Isobe, Takeshi

    2018-03-30

    Pemetrexed (PEM) improves the overall survival of patients with advanced non-small cell lung cancer (NSCLC) when administered as maintenance therapy. However, PEM resistance often appears during the therapy. Although thymidylate synthase is known to be responsible for PEM resistance, no other mechanisms have been investigated in detail. In this study, we explored new drug resistance mechanisms of PEM-treated NSCLC using two combinations of parental and PEM-resistant NSCLC cell lines from PC-9 and A549. PEM increased the apoptosis cells in parental PC-9 and the senescent cells in parental A549. However, such changes were not observed in the respective PEM-resistant cell lines. Quantitative RT-PCR analysis revealed that, besides an increased gene expression of thymidylate synthase in PEM-resistant PC-9 cells, the solute carrier family 19 member1 ( SLC19A1) gene expression was markedly decreased in PEM-resistant A549 cells. The siRNA-mediated knockdown of SLC19A1 endowed the parental cell lines with PEM resistance. Conversely, PEM-resistant PC-9 cells carrying an epidermal growth factor receptor (EGFR) mutation acquired resistance to a tyrosine kinase inhibitor erlotinib. Although erlotinib can inhibit the phosphorylation of EGFR and Erk, it is unable to suppress the phosphorylation of Akt in PEM-resistant PC-9 cells. Additionally, PEM-resistant PC-9 cells were less sensitive to the PI3K inhibitor LY294002 than parental PC-9 cells. These results indicate that SLC19A1 negatively regulates PEM resistance in NSCLC, and that EGFR-tyrosine-kinase-inhibitor resistance was acquired with PEM resistance through Akt activation in NSCLC harboring EGFR mutations.

  5. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Renaud, Justin; Sumarah, Mark; Sabourin, Lyne

    2016-08-15

    The macrolide antibiotics erythromycin, clarithromycin and azithromycin are very important in human and animal medicine, and can be entrained onto agricultural ground through application of sewage sludge or manures. In the present study, a series of replicated field plots were left untreated or received up to five annual spring applications of a mixture of three drugs to achieve a nominal concentration for each of 10 or 0.1 mg kg{sup −1} soil; the latter an environmentally relevant concentration. Soil samples were incubated in the laboratory, and supplemented with antibiotics to establish the dissipation kinetics of erythromycin and clarithromycin using radioisotope methods, and azithromycin using HPLC-MS/MS. All three drugs were dissipated significantly more rapidly in soils with a history of field exposure to 10 mg kg{sup −1} macrolides, and erythromycin and clarithromycin were also degraded more rapidly in field soil exposed to 0.1 mg kg{sup −1} macrolides. Rapid mineralization of {sup 14}C-labelled erythromycin and clarithromycin are consistent with biodegradation. Analysis of field soils revealed no carryover of parent compound from year to year. Azithromycin transformation products were detected consistent with removal of the desosamine and cladinose moieties. Overall, these results have revealed that following several years of exposure to macrolide antibiotics these are amenable to accelerated degradation. The potential accelerated degradation of these drugs in soils amended with manure and sewage sludge should be investigated as this phenomenon would attenuate environmental exposure and selection pressure for clinically relevant resistance. - Highlights: • The impact of field exposure on persistence of macrolide antibiotics was evaluated. • Soil samples were incubated in the laboratory with macrolides. • Field exposure resulted in more rapid dissipation of all macrolides. • Radiolabelled erythromycin and clarithromycin were rapidly mineralized

  6. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field

    International Nuclear Information System (INIS)

    Topp, Edward; Renaud, Justin; Sumarah, Mark; Sabourin, Lyne

    2016-01-01

    The macrolide antibiotics erythromycin, clarithromycin and azithromycin are very important in human and animal medicine, and can be entrained onto agricultural ground through application of sewage sludge or manures. In the present study, a series of replicated field plots were left untreated or received up to five annual spring applications of a mixture of three drugs to achieve a nominal concentration for each of 10 or 0.1 mg kg"−"1 soil; the latter an environmentally relevant concentration. Soil samples were incubated in the laboratory, and supplemented with antibiotics to establish the dissipation kinetics of erythromycin and clarithromycin using radioisotope methods, and azithromycin using HPLC-MS/MS. All three drugs were dissipated significantly more rapidly in soils with a history of field exposure to 10 mg kg"−"1 macrolides, and erythromycin and clarithromycin were also degraded more rapidly in field soil exposed to 0.1 mg kg"−"1 macrolides. Rapid mineralization of "1"4C-labelled erythromycin and clarithromycin are consistent with biodegradation. Analysis of field soils revealed no carryover of parent compound from year to year. Azithromycin transformation products were detected consistent with removal of the desosamine and cladinose moieties. Overall, these results have revealed that following several years of exposure to macrolide antibiotics these are amenable to accelerated degradation. The potential accelerated degradation of these drugs in soils amended with manure and sewage sludge should be investigated as this phenomenon would attenuate environmental exposure and selection pressure for clinically relevant resistance. - Highlights: • The impact of field exposure on persistence of macrolide antibiotics was evaluated. • Soil samples were incubated in the laboratory with macrolides. • Field exposure resulted in more rapid dissipation of all macrolides. • Radiolabelled erythromycin and clarithromycin were rapidly mineralized. • Macrolides

  7. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Spang-Thomsen, Mogens

    2003-01-01

    Etoposide (VP16) is a potent inducer of DNA double-strand breaks (DSBs) and is efficiently used in small cell lung cancer (SCLC) therapy. However, acquired VP16 resistance remains an important barrier to effective treatment. To understand the underlying mechanisms for VP16 resistance in SCLC, we...... investigated DSB repair and cellular VP16 sensitivity of SCLC cells. VP16 sensitivity and RAD51, DNA-PK(cs), topoisomerase IIalpha and P-glycoprotein protein levels were determined in 17 SCLC cell lines. In order to unravel the role of RAD51 in VP16 resistance, we cloned the human RAD51 gene, transfected SCLC...... cells with RAD51 sense or antisense constructs and measured the VP16 resistance. Finally, we measured VP16-induced DSBs in the 17 SCLC cell lines. Two cell lines exhibited a multidrug-resistant phenotype. In the other SCLC cell lines, the cellular VP16 resistance was positively correlated with the RAD51...

  8. Transcriptome and Small RNAome Dynamics during a Resistant and Susceptible Interaction between Cucumber and Downy Mildew

    Directory of Open Access Journals (Sweden)

    Alyssa Burkhardt

    2016-03-01

    Full Text Available Cucumber ( L. downy mildew, caused by the obligate oomycete pathogen (Berk. and Curt. Rostov., is the primary factor limiting cucumber production. Although sources of resistance have been identified, such as plant introduction line PI 197088, the genes and processes involved in mediating resistance are still unknown. In the current study, we conducted a comprehensive transcriptome and small RNAome analysis of a resistant (PI 197088 and susceptible (‘Vlaspik’ cucumber during a time course of infection using Illumina sequencing. We identified significantly differentially expressed (DE genes within and between resistant and susceptible cucumber leaves over a time course of infection. Weighted gene correlation network analyses (WGCNA created coexpression modules containing genes with unique expression patterns between Vlaspik and PI 197088. Recurring data trends indicated that resistance to cucumber downy mildew is associated with earlier response to the pathogen, hormone signaling, and regulation of nutrient supply. Candidate resistance genes were identified from multiple transcriptome analyses and literature support. Additionally, parallel sequencing of small RNAs (sRNAs from cucumber and during the infection time course was used to identify and quantify novel and existing microRNA (miRNA in both species. Predicted miRNA targets of cucumber transcripts suggest a complex interconnectedness of gene expression regulation in this plant–pathogen system. This work bioinformatically uncovered gene expression patterns involved in the mediation of or response to resistance. Herein, we provide the foundation for future work to validate candidate resistance genes and miRNA-based regulation proposed in this study.

  9. Erythromycin as a safe and effective treatment option for erythema annulare centrifugum

    Directory of Open Access Journals (Sweden)

    Fu-Chen Chuang

    2015-01-01

    Full Text Available Background: Erythema annulare centrifugum (EAC is an inflammatory dermatosis with unknown etiology. It is usually self-limited, but chronic disease may be difficult to treat. We observed incidentally the therapeutic effect of erythromycin for EAC among patients taking erythromycin for other diseases. Aim: To evaluate the treatment response of erythromycin for EAC. Materials and Methods: During the study period, from July 2007 to February 2011, all patients with EAC were assigned to erythromycin stearate tablet 1000 mg per day for two weeks. EAC was diagnosed by a constellation of clinical and pathological findings. The efficacy (before and after the treatment was assessed clinically by one dermatologist and photographically by two blinded dermatologists. Secondary outcomes included adverse drug effects and recurrence. Results: Eight patients were enrolled in this study. Most patients had chronic relapsing disease with poor response to previous treatment. All the patients showed rapid response with profound reduction in the size of lesion and erythema two weeks after initiation of erythromycin treatment. The response was so obvious and complete that a coincidental response was less likely. Three patients had recurrence of disease and they tended to have more extensive lesions. Readministration of erythromycin was effective. All patients tolerated the treatment well. Conclusion: Our study documented erythromycin as a safe and cost-effective treatment for EAC.

  10. Cytoplasmic RAP1 mediates cisplatin resistance of non-small cell lung cancer.

    Science.gov (United States)

    Xiao, Lu; Lan, Xiaoying; Shi, Xianping; Zhao, Kai; Wang, Dongrui; Wang, Xuejun; Li, Faqian; Huang, Hongbiao; Liu, Jinbao

    2017-05-18

    Cytotoxic chemotherapy agents (e.g., cisplatin) are the first-line drugs to treat non-small cell lung cancer (NSCLC) but NSCLC develops resistance to the agent, limiting therapeutic efficacy. Despite many approaches to identifying the underlying mechanism for cisplatin resistance, there remains a lack of effective targets in the population that resist cisplatin treatment. In this study, we sought to investigate the role of cytoplasmic RAP1, a previously identified positive regulator of NF-κB signaling, in the development of cisplatin resistance in NSCLC cells. We found that the expression of cytoplasmic RAP1 was significantly higher in high-grade NSCLC tissues than in low-grade NSCLC; compared with a normal pulmonary epithelial cell line, the A549 NSCLC cells exhibited more cytoplasmic RAP1 expression as well as increased NF-κB activity; cisplatin treatment resulted in a further increase of cytoplasmic RAP1 in A549 cells; overexpression of RAP1 desensitized the A549 cells to cisplatin, and conversely, RAP1 depletion in the NSCLC cells reduced their proliferation and increased their sensitivity to cisplatin, indicating that RAP1 is required for cell growth and has a key mediating role in the development of cisplatin resistance in NSCLC cells. The RAP1-mediated cisplatin resistance was associated with the activation of NF-κB signaling and the upregulation of the antiapoptosis factor BCL-2. Intriguingly, in the small portion of RAP1-depleted cells that survived cisplatin treatment, no induction of NF-κB activity and BCL-2 expression was observed. Furthermore, in established cisplatin-resistant A549 cells, RAP1 depletion caused BCL2 depletion, caspase activation and dramatic lethality to the cells. Hence, our results demonstrate that the cytoplasmic RAP1-NF-κB-BCL2 axis represents a key pathway to cisplatin resistance in NSCLC cells, identifying RAP1 as a marker and a potential therapeutic target for cisplatin resistance of NSCLC.

  11. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin.

    Science.gov (United States)

    Matic, Vlatka; Kosowska, Klaudia; Bozdogan, Bulent; Kelly, Linda M; Smith, Kathy; Ednie, Lois M; Lin, Gengrong; Credito, Kim L; Clark, Catherine L; McGhee, Pamela; Pankuch, Glenn A; Jacobs, Michael R; Appelbaum, Peter C

    2004-11-01

    The MICs of GW 773546, GW 708408, and telithromycin for 164 macrolide-susceptible and 161 macrolide-resistant pneumococci were low. The MICs of GW 773546, GW 708408, and telithromycin for macrolide-resistant strains were similar, irrespective of the resistance genotypes of the strains. Clindamycin was active against all macrolide-resistant strains except those with erm(B) and one strain with a 23S rRNA mutation. GW 773546, GW 708408, and telithromycin at two times their MICs were bactericidal after 24 h for 7 to 8 of 12 strains. Serial passages of 12 strains in the presence of sub-MICs yielded 54 mutants, 29 of which had changes in the L4 or L22 protein or the 23S rRNA sequence. Among the macrolide-susceptible strains, resistant mutants developed most rapidly after passage in the presence of clindamycin, GW 773546, erythromycin, azithromycin, and clarithromycin and slowest after passage in the presence of GW 708408 and telithromycin. Selection of strains for which MICs were >/=0.5 microg/ml from susceptible parents occurred only with erythromycin, azithromycin, clarithromycin, and clindamycin; 36 resistant clones from susceptible parent strains had changes in the sequences of the L4 or L22 protein or 23S rRNA. No mef(E) strains yielded resistant clones after passage in the presence of erythromycin and azithromycin. Selection with GW 773546, GW 708408, telithromycin, and clindamycin in two mef(E) strains did not raise the erythromycin, azithromycin, and clarithromycin MICs more than twofold. There were no change in the ribosomal protein (L4 or L22) or 23S rRNA sequences for 15 of 18 mutants selected for macrolide resistance; 3 mutants had changes in the L22-protein sequence. GW 773546, GW 708408, and telithromycin selected clones for which MICs were 0.03 to >2.0 microg/ml. Single-step studies showed mutation frequencies 4.3 x 10(-3) for resistant strains. The postantibiotic effects of GW 773546, GW 708408, and telithromycin were 2.4 to 9.8 h.

  12. Effectiveness of small daily amounts of progressive resistance training for frequent neck/shoulder pain

    DEFF Research Database (Denmark)

    Andersen, Lars; Saervoll, Charlotte A; Mortensen, Ole S

    2011-01-01

    Regular physical exercise is a cornerstone in rehabilitation programs, but adherence to comprehensive exercise remains low. This study determined the effectiveness of small daily amounts of progressive resistance training for relieving neck/shoulder pain in healthy adults with frequent symptoms...

  13. Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians

    DEFF Research Database (Denmark)

    Paul, Narayan Chandra; Moodley, Arshnee; Ghibaudo, G.

    2011-01-01

    Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is increasingly reported in small animals and cases of human infections have already been described despite its recent emergence in veterinary practice. We investigated the prevalence of MRSP and methicillin-resistant Staphylococcus...... aureus (MRSA) among small animal dermatologists attending a national veterinary conference in Italy. Nasal swabs were obtained from 128 veterinarians, seven of which harboured MRSP (n = 5; 3.9%) or MRSA (n = 2; 1.6%). A follow-up study of two carriers revealed that MRSP persisted for at least 1 month...... by spa typing. Methicillin-resistant isolates were further typed by antimicrobial susceptibility testing, SCCmec and multi-locus sequence typing. Two lineages previously associated with pets were identified among the five MRSP isolates; the European epidemic clone ST71-SCCmec II-III and ST106-SCCmec IV...

  14. Characterization and transfer studies of macrolide resistance genes in Streptococcus pneumoniae from Denmark

    DEFF Research Database (Denmark)

    Nielsen, Karen L; Hammerum, Anette M; Lambertsen, Lotte M

    2010-01-01

    Over the last decade, erythromycin resistance has been increasing in frequency in Streptococcus pneumoniae in Denmark. In the present study, 49 non-related erythromycin-resistant S. pneumoniae isolates from invasive sites and 20 isolates from non-invasive sites were collected; antimicrobial...

  15. Erythromycin residue in honey from the Southern Marmara region of Turkey.

    Science.gov (United States)

    Gunes, Nazmiye; Cibik, Recep; Gunes, Mesut Ertan; Aydin, Levent

    2008-11-01

    Honey samples, collected from the Southern Marmara region of Turkey, were analysed for erythromycin residues by liquid chromatography-mass spectrometry using electrospray ionization in the positive ion mode (LC-ESI-MS). Fifty samples, comprising chestnut, pine, linden and multi-flower honeys, were collected directly from hives and analyzed. The limit of detection and quantification were 6 and 20 ng g(-1), respectively, and recovery ranged from 85 to 89%. Four of the honey samples (8%) were found to be contaminated with erythromycin residues at concentrations ranging from 50 to 1776 ng g(-1). An erythromycin-fortified cake feeding assay was also performed in a defined hive to test the transfer of erythromycin residue to the honey matrix. In this test hive, the residue level in the honey, 3 months after dosing, was approximately 28 ng g(-1).

  16. Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multispectroscopic methods.

    Science.gov (United States)

    Naik, Keerti M; Nandibewoor, Sharanappa T

    2016-03-01

    In this paper, the interaction of methylparaben and erythromycin with human serum albumin (HSA) was studied for the first time using spectroscopic methods including Fourier transform infrared (FTIR) spectroscopy and UV absorption spectroscopy in combination with fluorescence quenching under physiological conditions. The binding parameters were evaluated using a fluorescence quenching method. Based on Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (HSA) and the acceptor (methylparaben and erythromycin) was evaluated. UV/vis absorption, FTIR, synchronous and 3D spectral results showed that the conformation of HSA was changed in the presence of methylparaben and erythromycin. The thermodynamic parameters were calculated according to the van't Hoff equation and are discussed. The effect of some biological metal ions and site probes on the binding of methylparaben and erythromycin to HSA were further examined. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Erythromycin for Promoting the Postpyloric Placement of Feeding Tubes: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Qing-Jun Jiang

    2018-01-01

    Full Text Available Background. Critically ill patients can benefit from enteral nutrition with postpyloric feeding tubes, but the low success rate limits its wide use. Erythromycin could elevate the success rate of tube insertion, but its clinical efficiency still remains controversial. Methods. Included studies must be RCTs which assessed the success rate of postpyloric feeding tube insertion using erythromycin. Results. 284 patients were enrolled in six studies. Meta-analysis showed that erythromycin significantly increases the rate of successful postpyloric feeding tube placement (RR 1.45, 95% CI (1.12, 1.86 and did not increase the risk of adverse effects (RR 2.15, 95% CI (0.20, 22.82. Subgroup analysis showed that unweighted feeding tubes (RR 1.47, 95% CI (1.03, 2.11 could significantly increase the success rate. Country of study, intravenous route of erythromycin, and year of participant enrollment did not influence these results. Conclusions. Erythromycin significantly increases the success rate of postpyloric feeding tube placement. This suggests that erythromycin can be used as an auxiliary method to improve the success rate of bedside insertion.

  18. Failure of erythromycin to eliminate airway colonization with ureaplasma urealyticum in very low birth weight infants

    Directory of Open Access Journals (Sweden)

    Kruger Thomas E

    2003-09-01

    Full Text Available Abstract Background Airway colonization of mechanically ventilated very low birth weight infants (birth weight Ureaplasma urealyticum (Uu is associated with an increased risk of bronchopulmonary dysplasia (BPD. While Uu is sensitive to erythromycin in vitro, the efficacy of intravenous (IV erythromycin to eliminate Uu from the airways has not been studied. Methods 17 very low birth weight infants with Uu positive tracheal aspirate (TA cultures were randomized to either 5 (8 infants or 10 days (9 infants of IV erythromycin lactobionate (40 mg/kg/day in 3 divided doses. Tracheal aspirate cultures for Uu were performed on days 0, 5, 10 and 15. Results Intravenous erythromycin failed to eliminate airway colonization in a large proportion of infants regardless of whether they received 5 or 10 days of treatment. Ureaplasma urealyticum was isolated from 4/15 (27% of TAs obtained at 5 days, 5/12 TAs (42% obtained at 10 days and 6/11(55% TAs obtained at 15 days (combined group data. Conclusions Erythromycin administered IV does not eliminate Uu from the airways in a large proportion of infants. Failure of erythromycin to eliminate Uu from the airways may contribute to the lack of efficacy of this drug in reducing the incidence of BPD in very low birth weight infants.

  19. Change from lung adenocarcinoma to small cell lung cancer as a mechanism of resistance to afatinib.

    Science.gov (United States)

    Manca, Paolo; Russano, Marco; Pantano, Francesco; Tonini, Giuseppe; Santini, Daniele

    2017-08-29

    We report the case of a patient affected by advanced EGFR mutation-positive lung who experienced resistance to therapy during treatment with Afatinib through the occurrence of a switch of tumor histotype to small cell lung cancer (SCLC) with features of a G3 neuroendocrine carcinoma. Unexpectedly, the switch to SCLC histotype occurred in the only site not responsive to afatinib and subsequently the most responsive to chemotherapy. Our case shows that occurrence of switch to SCLC is a possible mechanism of resistance during treatment with Afatinib.

  20. Focused Role of an Organic Small-Molecule PBD on Performance of the Bistable Resistive Switching.

    Science.gov (United States)

    Li, Lei; Sun, Yanmei; Ai, Chunpeng; Lu, Junguo; Wen, Dianzhong; Bai, Xuduo

    2015-12-01

    An undoped organic small-molecule 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and a kind of nanocomposite blending poly(methyl methacrylate) (PMMA) into PBD are employed to implement bistable resistive switching. For the bistable resistive switching indium tin oxide (ITO)/PBD/Al, its ON/OFF current ratio can touch 6. What is more, the ON/OFF current ratio, approaching to 10(4), is available due to the storage layer PBD:PMMA with the chemical composition 1:1 in the bistable resistive switching ITO/PBD:PMMA/Al. The capacity, data retention of more than 1 year and endurance performance (>10(4) cycles) of ITO/PBD:PMMA(1:1)/Al, exhibits better stability and reliability of the samples, which underpins the technique and application of organic nonvolatile memory.

  1. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy.

    Directory of Open Access Journals (Sweden)

    Joseph T Wu

    2009-05-01

    Full Text Available The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains.We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available; and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug. We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR and the resistant attack rate (RAR unless the probability of emergence of resistance to the primary drug p(A was so low (less than 1 in 10,000 that resistance was unlikely to be a problem or so high (more than 1 in 20 that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105

  2. Hypertrophic remodeling of subcutaneous small resistance arteries in patients with Cushing's syndrome.

    Science.gov (United States)

    Rizzoni, Damiano; Porteri, Enzo; De Ciuceis, Carolina; Rodella, Luigi F; Paiardi, Silvia; Rizzardi, Nicola; Platto, Caterina; Boari, Gianluca E M; Pilu, Annamaria; Tiberio, Guido A M; Giulini, Stefano M; Favero, Gaia; Rezzani, Rita; Rosei, Claudia Agabiti; Bulgari, Giuseppe; Avanzi, Daniele; Rosei, Enrico Agabiti

    2009-12-01

    Structural alterations of small resistance arteries in essential hypertensive patients (EH) are mostly characterized by inward eutrophic remodeling. However, we observed hypertrophic remodeling in patients with renovascular hypertension, in those with acromegaly, as well as in patients with non-insulin-dependent diabetes mellitus, suggesting a relevant effect of humoral growth factors on vascular structure, even independent from the hemodynamic load. Cortisol may stimulate the renin-angiotensin system and may induce cardiac hypertrophy. However, presently no data are available about small artery structure in patients with Cushing's syndrome. We have investigated the structure of sc small resistance arteries in 12 normotensive subjects (NT), in 12 EH subjects, and in eight patients with Cushing's syndrome (CS). Small arteries from sc fat were dissected and mounted on a micromyograph. The normalized internal diameter, media thickness, media to lumen ratio, and the media cross-sectional area were measured, as well as indices of oxidative stress. Demographic variables were similar in the three groups, except for clinic blood pressure. The media to lumen ratio was significantly greater in EH and CS, compared with NT; no difference was observed between EH and CS. The media cross-sectional area was significantly greater in CS compared with EH and with NT. An increased vascular oxidative stress was present in CS, as demonstrated by increased levels of superoxide anions, cyclooxygenase-1 and endothelial nitric oxide synthase in the microvessels. Our results suggest the presence of hypertrophic remodeling in sc small resistance arteries of CS, probably as a consequence of growth-promoting properties of circulating cortisol and/or increased vascular oxidative stress.

  3. Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K. K. [University of Agriculture, Faisalabad (Pakistan). Dept. of Parasitology

    2014-03-15

    Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in Pakistan Antinematicidal resistance has been rooted on all the continents particularly in areas where ovine and caprine are being reared intensively due to frequent annual use of broad-spectrum dewormers. Farmers rely on mono-strategic scheme by using synthetic drugs to treat their livestock which is deemed the easier way to control gastrointestinal nematode infections as compared to the other strategies. On the other hand, recurrent employment of antinematicidal chemotherapeutics has conduced to development and prevalence of resistance among nematode populations. In this regard, other advocating strategies such as grazing management, rotation of antinematicidal drugs (although it is too late), amelioration of animal immunity, genetic approaches, biological control, nutritional supplementation, avoidance of mass treatment, improvement of management, eradication of concurrent diseases, and phytotherapy should be considered too. Although, by far there are no commercialized substantial alternatives to chemotherapy, but the current substitutes could decrease the parasitic burden, which, in turn, restrict indiscriminate use of synthetic drugs. The resistance is more rampant on organized farms as compared to non organized farms in rural areas in Asian, African and South Latin American countries because tamed animal raisers in those areas depend on ethnobotanicals to treat parasitism due to high cost of allopathic drugs. Therefore, in this review, the different strategies to control the antinematicidal resistance on organized farms in Pakistan will be elaborated. (author)

  4. Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in pakistan

    International Nuclear Information System (INIS)

    Hamad, K.K.

    2014-01-01

    Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in Pakistan Antinematicidal resistance has been rooted on all the continents particularly in areas where ovine and caprine are being reared intensively due to frequent annual use of broad-spectrum dewormers. Farmers rely on mono-strategic scheme by using synthetic drugs to treat their livestock which is deemed the easier way to control gastrointestinal nematode infections as compared to the other strategies. On the other hand, recurrent employment of antinematicidal chemotherapeutics has conduced to development and prevalence of resistance among nematode populations. In this regard, other advocating strategies such as grazing management, rotation of antinematicidal drugs (although it is too late), amelioration of animal immunity, genetic approaches, biological control, nutritional supplementation, avoidance of mass treatment, improvement of management, eradication of concurrent diseases, and phytotherapy should be considered too. Although, by far there are no commercialized substantial alternatives to chemotherapy, but the current substitutes could decrease the parasitic burden, which, in turn, restrict indiscriminate use of synthetic drugs. The resistance is more rampant on organized farms as compared to non organized farms in rural areas in Asian, African and South Latin American countries because tamed animal raisers in those areas depend on ethnobotanicals to treat parasitism due to high cost of allopathic drugs. Therefore, in this review, the different strategies to control the antinematicidal resistance on organized farms in Pakistan will be elaborated. (author)

  5. Overcoming Resistance to Cetuximab with Honokiol, A Small-Molecule Polyphenol.

    Science.gov (United States)

    Pearson, Hannah E; Iida, Mari; Orbuch, Rachel A; McDaniel, Nellie K; Nickel, Kwangok P; Kimple, Randall J; Arbiser, Jack L; Wheeler, Deric L

    2018-01-01

    Overexpression and activation of the EGFR have been linked to poor prognosis in several human cancers. Cetuximab is a mAb against EGFR that is used for the treatment in head and neck squamous cell carcinoma (HNSCC) and metastatic colorectal cancer. Unfortunately, most tumors have intrinsic or will acquire resistance to cetuximab during the course of therapy. Honokiol is a natural compound found in the bark and leaves of the Chinese Magnolia tree and is established to have several anticancer properties without appreciable toxicity. In this study, we hypothesized that combining cetuximab and honokiol treatments could overcome acquired resistance to cetuximab. We previously developed a model of acquired resistance to cetuximab in non-small cell lung cancer H226 cell line. Treatment of cetuximab-resistant clones with honokiol and cetuximab resulted in a robust antiproliferative response. Immunoblot analysis revealed the HER family and their signaling pathways were downregulated after combination treatment, most notably the proliferation (MAPK) and survival (AKT) pathways. In addition, we found a decrease in phosphorylation of DRP1 and reactive oxygen species after combination treatment in cetuximab-resistant clones, which may signify a change in mitochondrial function. Furthermore, we utilized cetuximab-resistant HNSCC patient-derived xenografts (PDX) to test the benefit of combinatorial treatment in vivo There was significant growth delay in PDX tumors after combination treatment with a subsequent downregulation of active MAPK, AKT, and DRP1 signaling as seen in vitro Collectively, these data suggest that honokiol is a promising natural compound in overcoming acquired resistance to cetuximab. Mol Cancer Ther; 17(1); 204-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers

    International Nuclear Information System (INIS)

    Proia, Lorenzo; Schiller, Daniel von; Sànchez-Melsió, Alexandre; Sabater, Sergi; Borrego, Carles M.; Rodríguez-Mozaz, Sara; Balcázar, José Luis

    2016-01-01

    The extensive use of antibiotics in human and veterinary medicine and their subsequent release into the environment may have direct consequences for autochthonous bacterial communities, especially in freshwater ecosystems. In small streams and rivers, local inputs of wastewater treatment plants (WWTPs) may become important sources of organic matter, nutrients and emerging pollutants, such as antibiotic resistance genes (ARGs). In this study, we evaluated the effect of WWTP effluents as a source of ARGs in river biofilms. The prevalence of genes conferring resistance to main antibiotic families, such as beta-lactams (bla_C_T_X_-_M), fluoroquinolones (qnrS), sulfonamides (sul I), and macrolides (ermB), was determined using quantitative PCR (qPCR) in biofilm samples collected upstream and downstream WWTPs discharge points in four low-order streams. Our results showed that the WWTP effluents strongly modified the hydrology, physico-chemistry and biological characteristics of the receiving streams and favoured the persistence and spread of antibiotic resistance in microbial benthic communities. It was also shown that the magnitude of effects depended on the relative contribution of each WWTP to the receiving system. Specifically, low concentrations of ARGs were detected at sites located upstream of the WWTPs, while a significant increase of their concentrations was observed in biofilms collected downstream of the WWTP discharge points (particularly ermB and sul I genes). These findings suggest that WWTP discharges may favour the increase and spread of antibiotic resistance among streambed biofilms. The present study also showed that the presence of ARGs in biofilms was noticeable far downstream of the WWTP discharge (up to 1 km). It is therefore reasonable to assume that biofilms may represent an ideal setting for the acquisition and spread of antibiotic resistance determinants and thus be considered suitable biological indicators of anthropogenic pollution by active

  7. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with essential hypertension.

    Science.gov (United States)

    Favero, Gaia; Paini, Anna; De Ciuceis, Carolina; Rodella, Luigi F; Moretti, Enrico; Porteri, Enzo; Rossini, Claudia; Ministrini, Silvia; Solaini, Leonardo; Stefano, Caletti; Coschignano, Maria Antonietta; Brami, Valeria; Petelca, Alina; Nardin, Matteo; Valli, Ilenia; Tiberio, Guido A M; Bonomini, Francesca; Agabiti Rosei, Claudia; Portolani, Nazario; Rizzoni, Damiano; Rezzani, Rita

    2018-03-09

    In the development of hypertensive microvascular remodeling, a relevant role may be played by changes in extracellular matrix proteins. Aim of this study was the to evaluate some extracellular matrix components within the tunica media of subcutaneous small arteries in 9 normotensive subjects and 12 essential hypertensive patients, submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. Subcutaneous small resistance arteries were dissected and mounted on an isometric myograph, and the tunica media to internal lumen ratio was measured. In addition, fibronectin, laminin, transforming growth factor-beta-1 (TGF-β1) and emilin-1 contents within the tunica media were evaluated by immunofluorescence and relative immunomorphometrical analysis (immunopositivity % of area). The total collagen content and collagen subtypes within the tunica media were evaluated using both Sirius red staining (under polarized light) and immunofluorescence assay. Normotensive controls had less total and type III collagen in respect with hypertensive patients. Fibronectin and TGF-β1 tunica media content was significantly greater in essential hypertensive patients, compared with normotensive controls, while laminin and emilin-1 tunica media content was lesser in essential hypertensive patients, compared with normotensive controls. A significant correlation was observed between fibronectin tunica media content and media to lumen ratio. Our results indicate that, in small resistance arteries of patients with essential hypertension, a relevant fibrosis may be detected; fibronectin and TGF-β1 tunica media content is increased, while laminin and emilin-1 content is decreased; these changes might be involved in the development of small resistance artery remodeling in humans.

  8. Overview of anthelmintic resistance of gastrointestinal nematodes of small ruminants in Brazil

    Directory of Open Access Journals (Sweden)

    Jordana Andrioli Salgado

    2016-03-01

    Full Text Available Abstract Frequent and inappropriate use of all classes of antiparasitic drugs in small ruminants has led to failures in their effectiveness, culminating in a global problem of anthelmintic resistance. Brazil stands out as one of the world’s leaders in publications about anthelmintic resistance, and for having the most numerous reports of this resistance in small ruminants in the Americas. These studies have involved mainly the fecal egg count reduction test (FECRT and its correlation with field management practices. In vivoeffectiveness testing is conducted in areas where livestock is of greater economic significance, e.g., in the South (sheep and Northeast (goats, or is important for research and economic centers, such as the Southeast (sheep. The most widely studied species is sheep, for which the widest range of drugs is also evaluated. Despite significant advances achieved in molecular research, laboratory analyses should include knowledge about the reality in the field so that they can become feasible for the producer. Moreover, molecular studies can be underpinned by the analysis of field studies, such as the maintenance of antiparasitic effectiveness over time and the mechanisms involved in this process.

  9. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    Science.gov (United States)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  10. Comparative evaluation of retinoic acid, benzoyl peroxide and erythromycin lotion in acne vulgarils

    Directory of Open Access Journals (Sweden)

    Dogra A

    1993-01-01

    Full Text Available Ninety three patients suffering from acne vulgaris were treated with 0.05% retinoic acid (23 patients, 10% benzyoyl peroxide (24 patients, 2% erythromycin lotin (25 patients and 50% glycerine in methylated spirit (21 patients used as a control, for a period of 6 weeks. The patients were evaluated at 2 weeks and 6 weeks by spot counting of the lesions and diagrammatic representations. Good to excellent results were obtained in 69.6% of patients of erythromycin lotion. Retinoic acid was more effective in reducing noninflammatory lesions (75.2% whereas inflammatory lesions showed better response (73.6% with erythromycin lotion and benzoyl peroxide was almost equally effective in both types of lesions.

  11. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jin Ye

    2009-04-01

    Full Text Available Abstract Background The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA. Results In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS. Conclusion GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.

  12. Effect of the aqueous extract of Psidium guajava on erythromycin-induced liver damage in rats.

    Science.gov (United States)

    Sambo, N; Garba, S H; Timothy, H

    2009-12-01

    The effect of Psidium guajava extract on erythromycin-induced liver damage in albino rats was investigated using 30 normal rats grouped into six. Group I and II served as the normal and treatment controls that were administered with normal saline and 100 mg/kg body weight of erythromycin stearate daily for 14 days respectively. Rats in group III were administered 450 mg/kg body weight of Psidium guajava only for 7 days while rats in groups IV, V and VI were administered Psidium guajava extract for 7 days and 100mg/kg body weight of erythromycin for 14 days. Histopathological investigation of the liver tissues revealed striking oedema and mild periportal mononuclear cell infiltration of hepatic cords in the liver of rats administered 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract. Pretreatment with 150 mg/kg of Psidium guajava extract showed a slight degree of protection against the induced hepatic injury caused by 100 mg/kg of erythromycin stearate. Biochemical analysis of the serum obtained revealed a significant increase in serum levels of hepatic enzymes measured in the groups administered with 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract compared to the control groups and those pretreated with 150 mg/kg of Psidium guajava extract. This study has shown that the aqueous extract of psidium guajava leaf possesses hepatoprotective property at lower dose and a hepatotoxic property at higher dose but further studies with prolonged duration is recommended.

  13. Irradiation test of component for radiation-resistant small sized motor

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2009-01-01

    A small-sized motor with a resistance to radiation was developed. This motor has been able to operate at a gamma-ray dose of a value 700 times as high as the specification of a commercial motor. The present work describes results of post-irradiation examinations (PIEs) to evaluate effects of neutron irradiation on the lifetime of some major components of the motor such as a bearing, a magnet and a fixation agent for a field coil wire. It became clear from the results of PIEs that the radiation-resistance dose of the motor using a Sm-Co magnet will be expected to be one order of magnitude higher than that of the motor using a Nb-Fe-B magnet.

  14. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Leng, Bingfeng

    2016-01-01

    Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby...... limit uptake of aminoglycosides (e.g., gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried...... mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500...

  15. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, S., E-mail: up201208875@fc.up.pt [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169–007 Porto (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Antunes, S.C. [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169–007 Porto (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Correia, A.T. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200–150, Porto (Portugal); Nunes, B. [Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810–193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810–193 Aveiro (Portugal)

    2016-03-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  16. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss

    International Nuclear Information System (INIS)

    Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Nunes, B.

    2016-01-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  17. Engineering of an Lrp family regulator SACE_Lrp improves erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Liu, Jing; Chen, Yunfu; Wang, Weiwei; Ren, Min; Wu, Panpan; Wang, Yansheng; Li, Changrun; Zhang, Lixin; Wu, Hang; Weaver, David T; Zhang, Buchang

    2017-01-01

    Leucine-responsive regulatory proteins (Lrps) are a group of transcriptional regulators that regulate diverse cellular processes in bacteria and archaea. However, the regulatory role of Lrps in antibiotic biosynthesis remains poorly understood. In this study, we show that SACE_5388, an Lrp family regulator named as SACE_Lrp, is an efficient regulator for transporting and catabolizing branched-chain amino acids (BCAAs), playing an important role in regulating erythromycin production in Saccharopolyspora erythraea. SACE_Lrp directly controlled the expression of the divergently transcribed SACE_5387-5386 operon putatively encoding a BCAA ABC transporter by interacting with the intergenic region between SACE_Lrp and SACE_5387 (SACE_Lrp-5387-int), and indirectly controlled the expression of ilvE putatively encoding an aminotransferase catabolizing BCAAs. BCAA catabolism is one source of the precursors for erythromycin biosynthesis. Lysine and arginine promoted the dissociation of SACE_Lrp from SACE_Lrp -5387-int, whereas histidine increased their binding. Gene disruption of SACE_Lrp (ΔSACE_Lrp) in S. erythraea A226 resulted in a 25% increase in erythromycin production, while overexpression of SACE_5387-5386 in A226 enhanced erythromycin production by 36%. Deletion of SACE_Lrp (WBΔSACE_Lrp) in the industrial strain S. erythraea WB enhanced erythromycin production by 19%, and overexpression of SACE_5387-5386 in WBΔSACE_Lrp (WBΔSACE_Lrp/5387-5386) increased erythromycin production by 41% compared to WB. Additionally, supplement of 10mM valine to WBΔSACE_Lrp/5387-5386 culture further increased total erythromycin production up to 48%. In a 5-L fermenter, the erythromycin accumulation in the engineered strain WBΔSACE_Lrp/5387-5386 with 10mM extra valine in the industrial culture media reached 5001mg/L, a 41% increase over 3503mg/L of WB. These insights into the molecular regulation of antibiotic biosynthesis by SACE_Lrp in S. erythraea are instrumental in increasing

  18. Quantitative proteomics identifies central players in erlotinib resistance of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Lund, Rikke Raaen; Beck, Hans Christian

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as 70% of patients show significant tumor regression when treated. However, all patients relapse due to development of acquired resistance, which in 43-50% of cases are caused...... by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained. Our aim is to identify novel resistance mechanisms in erlotinib-resistant subclones of the NSCLC cell line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20...... or other EGFR or KRAS mutations, potentiating the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones...

  19. Threat of multidrug resistant Staphylococcus aureus in Western Nepal

    DEFF Research Database (Denmark)

    Bhatta, Dharm R.; Cavaco, Lina; Nath, Gopal

    2015-01-01

    antibiotic susceptibility testing in developing countries like Nepal. Hospital acquired infections including prevalence of MRSA can be minimized by appropriate hygienic measures in patient care and management and by antibiotic stewardship. Screening of erythromycin resistant isolates would minimize clinical...

  20. A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species

    DEFF Research Database (Denmark)

    Lampkowska, Joanna; Feld, Louise; Monaghan, Aine

    2008-01-01

    Optimal conditions and a standardized method for conjugation between two model lactococcal strains, Lactococcus lactis SH4174 (pAM beta 1-containing, erythromycin resistant donor) and L. lactis Bu2-60 (plasmid-free, erythromycin sensitive recipient), were developed and tested in a inter-laborator...

  1. A standardized conjugation protocol to assess antibiotic resistance transfer between lactococcal species

    NARCIS (Netherlands)

    Lampkowska, J.; Feld, L.; Monaghan, A.; Toomey, N.; Schjørring, S.; Jacobsen, B.; Voet, van der H.; Andersen, S.R.; Bolton, D.; Aarts, H.J.M.; Krogfelt, K.A.; Wilcks, A.; Bardowski, J.K.

    2008-01-01

    Optimal conditions and a standardized method for conjugation between two model lactococcal strains, Lactococcus lactis SH4174 (pAMbeta1-containing, erythromycin resistant donor) and L. lactis Bu2-60 (plasmid-free, erythromycin sensitive recipient), were developed and tested in a inter-laboratory

  2. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy.

  3. Insulin resistance in young adults born small for gestational age (SGA).

    Science.gov (United States)

    Putzker, Stephanie; Bechtold-Dalla Pozza, Susanne; Kugler, Karl; Schwarz, Hans P; Bonfig, Walter

    2014-03-01

    This work aimed to assess glucose metabolism and insulin sensitivity in young adults born small for gestational age (SGA) as well as to measure the body composition and adipocytokines of these subjects. A total of 108 out of 342 SGA-born participants were invited for reexamination from the former Bavarian Longitudinal Study (BLS), in which 7505 risk-newborns of the years 1985 to 1986 were prospectively followed. Of these, 76 (34 female/42 male) participants at the age of 19.7±0.5 years were enrolled. Clinical examination and oral glucose tolerance testing (oGTT) was performed with assessment of insulin resistance indices, HbA1c, body mass index (BMI), adipocytokines, and body composition by bioimpedance analysis (BIA). A total of 25 out of 76 (32.9%) patients had abnormal fasting and/or glucose-stimulated insulin levels. Glucose values measured during oGTT showed no abnormalities, except one participant who had impaired glucose tolerance. Homeostasis model assessment insulin resistance index (HOMA-IR) was 1.92±4.2, and insulin sensitivity index by Matsuda (ISI(Matsuda)) showed mean values of 7.85±4.49. HOMA-IR>2.5 was found in 8 patients (10.5%), and 20 patients (26.3%) had an ISI(Matsuda)range for both genders and correlated significantly with BMI (r=0.465, p0.001), but not with adiponectin. Insulin resistance correlated with change in weight-for-height Z-score during the first 3 months of age, indicating that weight gain during that early phase might be a risk factor for the development of insulin resistance in children born SGA. A high percentage of insulin-resistant subjects were reconfirmed in a large German cohort of young adults born SGA. Therefore, regular screening for disturbances in glucose metabolism is recommended in these subjects.

  4. Vasodilator effects of red wines in subcutaneous small resistance artery of patients with essential hypertension.

    Science.gov (United States)

    Porteri, Enzo; Rizzoni, Damiano; De Ciuceis, Carolina; Boari, Gianluca E M; Platto, Caterina; Pilu, Annamaria; Miclini, Marco; Agabiti Rosei, Claudia; Bulgari, Giuseppe; Agabiti Rosei, Enrico

    2010-04-01

    It has been suggested that in animal models, red wine may have a protective effect on the vascular endothelium. However, it is not known whether this effect is also present in human small vessels and whether it is specific for certain wines. The objective of this study is to compare the vasodilator effects in subcutaneous small resistance arteries of wines with different flavonoid content as well as of ethanol vs. wines in normotensive (NT) subjects and in patients with essential hypertension (EH). Twenty-six EH and 27 NT were included in the study. Subcutaneous small resistance arteries were dissected and mounted on a micromyograph. Then we evaluated vasodilator responses as concentration-response curves (20, 30, and 50 microl) to the following items: (i) a red wine produced in small oak barrels ("en barrique": EB) (Barolo Oberto 1994), (ii) a red wine produced in large wood barrels (LB) (Barolo Scarzello 1989), (iii) a red wine produced in steel tanks (Albarello Rosso del Salento 1997), and (iv) a white wine produced in steel tanks in the presence or absence of an inhibitor of the nitric oxide (NO) synthase (L-NMMA 100 micromol/l). A dose-dependent vasodilator effect of red wines (particularly EB and LB) was detected in both NT and HT. The observed response was not reduced after preincubation with L-NMMA. Our results suggest red wines are more potent vasodilator than ethanol alone, possibly depending on the content of polyphenols or tannic acid. HT show similar responses compared with NT, indicating that red wine is not harmful in this population.

  5. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients

    DEFF Research Database (Denmark)

    Schmidt, L E; Olsen, A K; Stentoft, K

    2001-01-01

    BACKGROUND: Interindividual variation in the pharmacokinetics of the immunosuppressive agents cyclosporine (INN, ciclosporin) and tacrolimus may result from differences in the activity of cytochrome P4503A (CYP3A). The erythromycin breath test is an in vivo assay of hepatic CYP3A activity......, but the method has never been directly validated. The aim of the study was to investigate whether an early postoperative erythromycin breath test correlated with the hepatic CYP3A protein level and catalytic activity in liver transplant recipients. METHODS: In 18 liver transplant recipients, the erythromycin...... breath test was performed within 2 hours after transplantation. A graft biopsy was obtained during surgery and analyzed for the CYP3A protein level by Western blotting and for CYP3A activity with erythromycin demethylation and testosterone 6beta- hydroxylation assays. RESULTS: The erythromycin breath...

  6. Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation

    Science.gov (United States)

    Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.

    2018-01-01

    Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.

  7. 76 FR 22904 - Ferm Solutions, Inc.; Filing of Food Additive Petition (Animal Use); Erythromycin Thiocyanate

    Science.gov (United States)

    2011-04-25

    ...] Ferm Solutions, Inc.; Filing of Food Additive Petition (Animal Use); Erythromycin Thiocyanate AGENCY... announcing that Ferm Solutions, Inc., has filed a petition proposing that the food additive regulations be..., Drug, and Cosmetic Act (section 409(b)(5) (21 U.S.C. 348(b)(5)), notice is given that a food additive...

  8. Thin-layer chromatographic determination of erythromycin and other macrolide antibiotics in livestock products.

    Science.gov (United States)

    Petz, M; Solly, R; Lymburn, M; Clear, M H

    1987-01-01

    A method is described for determination of 4 macrolide antibiotics in livestock products. Erythromycin, tylosin, oleandomycin, and spiramycin were extracted from animal tissues, milk, and egg with acetonitrile at pH 8.5. Cleanup was done by adding sodium chloride and dichloromethane, evaporating the organic layer, and subsequent acid/base partitioning. After the antibiotics were separated by thin-layer chromatography (TLC), they were reacted with xanthydrol and could be detected as purple spots down to 0.02 mg/kg without interference by other commonly used therapeutic drugs (23 were tested). Anisaldehyde-sulfuric acid, cerium sulfate-molybdic acid, phosphomolybdic acid, and Dragendorff's reagent proved to be less sensitive as visualizing agents. For quantitation, TLC plates were scanned at 525 nm. Recoveries were between 71 and 96% for erythromycin and tylosin in liver, muscle, and egg at the 0.1-0.5 mg/kg level and 51% for erythromycin in milk at the 0.02 mg/kg level (coefficient of variation = 10-18%). Bioautography with Bacillus subtilis was used to confirm results, in addition to TLC analysis of derivatized antibiotics and liquid chromatography with electrochemical detection. Various derivatization procedures for erythromycin were investigated for improved ultra-violet or fluorescence detection in liquid chromatography.

  9. Erythromycin potentiates PR interval prolonging effect of verapamil in the rat: A pharmacodynamic drug interaction

    International Nuclear Information System (INIS)

    Dakhel, Yaman; Jamali, Fakhreddin

    2006-01-01

    Calcium channel blockers and macrolide antibiotics account for many drug interactions. Anecdotal reports suggest interactions between the two resulting in severe side effects. We studied the interaction between verapamil and erythromycin in the rat to see whether it occurs at the pharmacokinetics or pharmacodynamic level. Adult male Sprague-Dawley rats received doses of 1 mg/kg verapamil or 100 mg/kg erythromycin alone or in combination (n = 6/group). Serial blood samples (0-6 h) were taken for determination of the drug concentrations using HPLC. Electrocardiograms were recorded (0-6 h) through subcutaneously inserted lead II. Binding of the drugs to plasma proteins was studied using spiked plasma. Verapamil prolonged PR but not QT interval. Erythromycin prolonged QT but not PR interval. The combination resulted in a significant increase in PR interval prolongation and AV node blocks but did not further prolong QT interval. Pharmacokinetics and protein binding of neither drug were altered by the other. Our rat data confirm the anecdotal human case reports that combination of erythromycin and verapamil can result in potentiation of the cardiovascular response. The interaction appears to be at the pharmacodynamic rather than pharmacokinetic level hence may be extrapolated to other calcium channel antagonists

  10. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata

    International Nuclear Information System (INIS)

    Nie Xiangping; Liu Binyang; Yu Huijuan; Liu Weiqiu; Yang Yufeng

    2013-01-01

    We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate–glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate–glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate–glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity. - Highlights: ► Antibiotics may affect the antioxidant system of Pseudokirchneriella subcapitata. ► Erythromycin decreased AsA, GSH biosynthesis and antioxidant enzyme activities. ► Ciprofloxacin and sulfamethoxazole were lower toxic than erythromycin. - Antibiotics (Erythromycin, ciprofloxacin and sulfamethoxazole) cause the change of antioxidant system and lead to oxidative stress to a green microalga, Pseudokirchneriella subcapitata.

  11. Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2017-10-01

    Full Text Available The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH is one of the major destructive pests of rice (Oryza sativa L.. Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant and 02428 (SBPH-susceptible, were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05 at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD and glutathione (GSH were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and

  12. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  13. Genetic complexity of fusidic acid-resistant small colony variants (SCV in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jonas Lannergård

    Full Text Available FusE mutants are fusidic acid-resistant small colony variants (SCVs of Staphylococcus aureus that can be selected with aminoglycosides. All FusE SCVs have mutations in rplF, encoding ribosomal protein L6. However, individual FusE mutants including some with the same mutation in rplF display auxotrophy for either hemin or menadione, suggesting that additional mutations are involved. Here we show that FusE SCVs can be divided into three genetic sub-groups and that some carry an additional mutation, in one of the genes required for hemin biosynthesis, or in one of the genes required for menadione biosynthesis. Reversion analysis and genome sequencing support the hypothesis that these combinations of mutations in the rplF, hem, and/or men genes can account for the SCV and auxotrophic phenotypes of FusE mutants.

  14. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    Science.gov (United States)

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. ©2013 AACR

  15. Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B.

    Science.gov (United States)

    Samuelsen, Orjan; Haukland, Hanne Husom; Kahl, Barbara C; von Eiff, Christof; Proctor, Richard A; Ulvatne, Hilde; Sandvik, Kjersti; Vorland, Lars H

    2005-12-01

    To determine whether Staphylococcus aureus small colony variants (SCVs) are resistant to the antimicrobial peptide lactoferricin B. To assess if deficiency in transmembrane potential, a common characteristic of SCVs that are haemin- or menadione-auxotrophs, affects the uptake of the peptide into the bacterial cytoplasm. A broth microdilution technique was used for susceptibility testing to determine the MIC of lactoferricin B for SCVs with three different auxotrophisms (haemin, menadione or thymidine) and their isogenic parent strains. Both clinical isolates and genetically defined mutants were used. The internalization of lactoferricin B in a hemB mutant and the respective parent strain was studied using transmission electron microscopy and immunogold labelling. All SCVs showed reduced susceptibility to lactoferricin B irrespective of their auxotrophy compared with their isogenic parent strains. The MIC for all SCVs was >256 mg/L, whereas the MICs for the parent strains ranged from 16-256 mg/L. Surprisingly, the hemB mutant contained significantly more lactoferricin B intracellularly than the respective parent strain. The resistance mechanism of SCVs towards the antimicrobial peptide lactoferricin B is presumably caused by the metabolic changes present in SCVs rather than by a changed transmembrane potential of SCVs or reduced uptake of the peptide.

  16. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    Science.gov (United States)

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Hyperglycaemia attenuates the gastrokinetic effect of erythromycin and affects the perception of postprandial hunger in normal subjects

    International Nuclear Information System (INIS)

    Jones, K.L.; Berry, M.; Kong, M.F.; Kwiatek, M.; Samsom, M.; Horowitz, M.; Royal Adelaide Hospital, SA

    1998-01-01

    Full text: Recent studies have demonstrated that acute changes in the blood glucose concentration may affect gastrointestinal motor function and the perception of sensations arising from the gastrointestinal tract. Erythromycin has been shown to accelerate gastric emptying in both normal subjects and patients with diabetes mellitus. The major aims of this study were to determine in normal subjects whether the effects of erythromycin on gastric emptying, and perceptions of hunger and fullness are modified by the blood glucose concentration. 10 normal subjects (aged 20-39 yr) underwent concurrent measurement of gastric emptying, blood glucose, hunger and fullness on four separate occasions: twice during euglycaemia (∼4 mmol/L) and twice during hyperglycaemia (∼15 mmol/L). Either erythromycin (3 mg/kg) or saline (0.9%) was administered intravenously immediately before ingestion of a radioisotopically labelled solid meal. Gastric emptying was slower (P<0.0001) during hyperglycaemia when compared to euglycaemia after both erythromycin and saline administration. Erythromycin accelerated the post-lag emptying rate during euglycaemia (P<0.05), but not hyperglycaemia. Hunger decreased (P<0.001) and fullness increased (P<0.001) after the meal Postprandial hunger was less (P<0.05) and fullness greater (P<0.05 during hyperglycaemia after saline infusion, but not after erythromycin. Hunger was greater after erythromycin when compared to saline during both hyperglycaemia and euglycaemia (P<0.05). In conclusion, at a blood glucose concentration of ∼15 mmol/L when compared to euglycaemia: (i) after administration of erythromycin (3 mg/kg IV) gastric emptying of a solid meal is much slower, (ii) the effect of erythromycin on gastric emptying of a solid meal is attenuated and (iii) the perception of postprandial hunger is reduced and that of fullness increased

  18. Hyperglycaemia attenuates the gastrokinetic effect of erythromycin and affects the perception of postprandial hunger in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.L.; Berry, M.; Kong, M.F.; Kwiatek, M.; Samsom, M.; Horowitz, M. [University of South Australia, SA (Australia). School of Medicine Radiation]|[Royal Adelaide Hospital, SA (Australia). Department of Medicine

    1998-06-01

    Full text: Recent studies have demonstrated that acute changes in the blood glucose concentration may affect gastrointestinal motor function and the perception of sensations arising from the gastrointestinal tract. Erythromycin has been shown to accelerate gastric emptying in both normal subjects and patients with diabetes mellitus. The major aims of this study were to determine in normal subjects whether the effects of erythromycin on gastric emptying, and perceptions of hunger and fullness are modified by the blood glucose concentration. 10 normal subjects (aged 20-39 yr) underwent concurrent measurement of gastric emptying, blood glucose, hunger and fullness on four separate occasions: twice during euglycaemia ({approx}4 mmol/L) and twice during hyperglycaemia ({approx}15 mmol/L). Either erythromycin (3 mg/kg) or saline (0.9%) was administered intravenously immediately before ingestion of a radioisotopically labelled solid meal. Gastric emptying was slower (P<0.0001) during hyperglycaemia when compared to euglycaemia after both erythromycin and saline administration. Erythromycin accelerated the post-lag emptying rate during euglycaemia (P<0.05), but not hyperglycaemia. Hunger decreased (P<0.001) and fullness increased (P<0.001) after the meal Postprandial hunger was less (P<0.05) and fullness greater (P<0.05) during hyperglycaemia after saline infusion, but not after erythromycin. Hunger was greater after erythromycin when compared to saline during both hyperglycaemia and euglycaemia (P<0.05). In conclusion, at a blood glucose concentration of {approx}15 mmol/L when compared to euglycaemia: (i) after administration of erythromycin (3 mg/kg IV) gastric emptying of a solid meal is much slower, (ii) the effect of erythromycin on gastric emptying of a solid meal is attenuated and (iii) the perception of postprandial hunger is reduced and that of fullness increased

  19. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.

    2014-11-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  20. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.; Fleet, Luke R.; Burgess, Claire H.; McLachlan, Martyn A.

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  1. Detection of Small Colony Variants Among Methicillin-Resistant Staphylococcus aureus Blood Isolates.

    Science.gov (United States)

    Yagci, Server; Sancak, Banu; Hascelik, Gulsen

    2016-12-01

    Staphylococcus aureus small colony variants (SCVs) are associated with chronic and persistent infections. Methicillin-resistant S. aureus (MRSA) SCVs cause more severe infections and mortality rates are higher in comparison with infections caused by MRSA. Our objective was to document the prevalence and phenotypical characteristics of SCVs among MRSA blood isolates. MRSA strains isolated from blood during 1999-2009 were evaluated retrospectively. Among 299 MRSA isolates, suspected colonies were inoculated onto Columbia blood agar and Schaedler agar. Columbia blood agar was incubated in normal atmosphere and Schaedler agar in 5-10% CO 2 , both at 35°C. If the small, nonpigmented, nonhemolytic colonies on Columbia blood agar were seen as normal-sized, hemolytic, and pigmented colonies on Schaedler agar, they were considered as MRSA SCVs. Six MRSA SCVs were detected. When subcultures were made, four of them reversed to phenotypically normal S. aureus, but two isolates were stable as SCV phenotype. The prevalence of SCVs among MRSA blood isolates was found as 6/299 (2%) with 2 (0.67%) stable. The detection of SCVs among MRSA blood isolates was reported from Turkey for the first time in this study. As the clinical significance of MRSA infections is well documented, evaluation of MRSA SCVs in clinical samples, especially from intensive care patients and those who have chronic and persistent infections are important to consider.

  2. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Kirm, Benjamin; Magdevska, Vasilka; Tome, Miha; Horvat, Marinka; Karničar, Katarina; Petek, Marko; Vidmar, Robert; Baebler, Spela; Jamnik, Polona; Fujs, Štefan; Horvat, Jaka; Fonovič, Marko; Turk, Boris; Gruden, Kristina; Petković, Hrvoje; Kosec, Gregor

    2013-12-17

    Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bld

  3. Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients

    Energy Technology Data Exchange (ETDEWEB)

    De Ciuceis, Carolina; Porteri, Enzo; Rizzoni, Damiano; Boari, Gianluca E.M.; Rosei, Enrico Agabiti [University of Brescia, Clinica Medica, Department of Clinical and Experimental Sciences, Brescia (Italy); Cornali, Claudio; Mardighian, Dikran; Fontanella, Marco M. [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Pinardi, Chiara [Spedali Civili, Medical Physics Unit, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Rodella, Luigi F.; Rezzani, Rita [University of Brescia, Section of Anatomy, Department of Clinical and Experimental Sciences, Brescia (Italy); Gasparotti, Roberto [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy)

    2014-12-15

    The aim of this study was to prospectively investigate whether the structure of cerebral small-resistance arteries is related to cerebral perfusion parameters as measured with dynamic susceptibility-weighted contrast magnetic resonance imaging (DSC-MRI) in a selected cohort of hypertensive and normotensive patients. Ten hypertensive and 10 normotensive patients were included in the study. All patients underwent neurosurgical intervention for an intracranial tumor and were investigated with DSC-MRI at 1.5 T. Cerebral small-resistance arteries were dissected from a small portion of morphologically normal cerebral tissue and mounted on an isometric myograph for the measurement of the media-to-lumen (M/L) ratio. A quantitative assessment of cerebral blood flow (CBF) and volume (CBV) was performed with a region-of-interest approach. Correlation coefficients were calculated for normally distributed variables. The institutional review board approved the study, and informed consent was obtained from all patients. Compared with normotensive subjects, hypertensive patients had significantly lower regional CBF (mL/100 g/min) in the cortical grey matter (55.63 ± 1.90 vs 58.37 ± 2.19, p < 0.05), basal ganglia (53.34 ± 4.39 vs 58.22. ± 4.33, p < 0.05), thalami (50.65 ± 3.23 vs 57.56 ± 4.45, p < 0.01), subcortical white matter (19.32 ± 2.54 vs 22.24 ± 1.9, p < 0.05), greater M/L ratio (0.099 ± 0.013 vs 0.085 ± 0.012, p < 0.05), and lower microvessel density (1.66 ± 0.67 vs 2.52 ± 1.28, p < 0.05). A statistically significant negative correlation was observed between M/L ratio of cerebral arteries and CBF in the cortical grey matter (r = -0.516, p < 0.05), basal ganglia (r = -0.521, p < 0.05), thalami (r = -0.527 p < 0.05), and subcortical white matter (r = -0.612, p < 0.01). Our results indicate that microvascular structure might play a role in controlling CBF, with possible clinical consequences. (orig.)

  4. Identification of resistance mechanisms in erlotinib-resistant subclones of the non-small cell lung cancer cell line HCC827 by exome sequencing

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Alcaraz, Nicolas; Lund, Rikke Raaen

    the SeqCap EZ Human Exome Library v3.0 kit and whole-exome sequencing of these (100 bp paired-end) were performed on an Illumina HiSeq 2000 platform. Using a recently developed in-house analysis pipeline the sequencing data were analyzed. The analysis pipeline includes quality control using Trim......Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as 70% of patients show significant tumor regression upon treatment (Santarpia et. al., 2013). However, all patients relapse due to development of acquired resistance, which...... mutations in erlotinib-resistant subclones of the NSCLC cell line, HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20, 30 µM erlotinib, respectively). DNA libraries of each subclone and the parental HCC827 cell line were prepared in biological duplicates using...

  5. The penetration of cefazolin, erythromycin and methicillin into human bone tissue

    DEFF Research Database (Denmark)

    Sørensen, T S; Colding, H; Schroeder, E

    1978-01-01

    The penetration of cefazolin, erythromycin and methicillin into normal bone was studied in 20 patients undergoing surgery for fracture in the trochanteric region of the femur. The antibiotic concentrations were determined in serum, bone marrow, and cancellous and cortical bone. For all three...... antibiotics the bone marrow concentrations were of the same order of magnitude as the serum concentrations. In the eight patients receiving erythromycin, detectable concentrations were found in all the cancellous bone specimens (ranging from 1/7 to 1/2 of the serum concentration) and in three cortical bone...... specimens (ranging from 1/50 to 1/5 of the serum concentration). In the six patients receiving cefazolin, a detectable concentration was found in only one cancellous bone sample. In the six patients receiving methicillin, detectable concentrations were found only in the blood contaminated specimens of one...

  6. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis

    Science.gov (United States)

    Fedashchin, Andrij; Cernota, William H.; Gonzalez, Melissa C.; Leach, Benjamin I.; Kwan, Noelle; Wesley, Roy K.; Weber, J. Mark

    2015-01-01

    A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ∼3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041

  7. Development of pH sensitive polymeric nanoparticles of erythromycin stearate

    Directory of Open Access Journals (Sweden)

    Sulekha Bhadra

    2016-01-01

    Full Text Available Context: Bioavailability of conventional tablet of erythromycin stearate is low as it is unstable at acidic pH and also shows a low dissolution rate. Objective: It was proposed to protect it from the acidic condition of the stomach along with an increase in dissolution rate by formulating pH sensitive nanoparticles. Materials and Methods: The nanoparticles were prepared by the solvent evaporation technique using different quantities of Eudragit L100-55 and polyvinyl alcohol (PVA. Size reduction was achieved by high speed homogenization technique using Digital Ultra Turrax homogenizer. The formulation was optimized using 32 factorial design, keeping drug polymer ratio and surfactant concentration as independent variables. Particle size, entrapment efficiency, and drug-release (DR were studied as dependent variables. Results: Optimized batch containing 1:0.3 erythromycin stearate: Eudragit L100-55 ratio and 1.0% PVA showed 8.24 ± 0.71% DR in pH 1.2 in 1-h and 90.38 ± 5.97% in pH 5.5 and pH 6.8 within 2-h, respectively. Discussion: The optimized batch exhibited lower release in acidic pH and faster release in higher pH compared to the marketed preparation. Conclusion: Thus the present study concludes that pH sensitive nanoparticles of erythromycin stearate increases the dissolution of the drug in intestinal pH and also protect it from acidic pH, which may help in improving the bioavailability of erythromycin.

  8. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    Science.gov (United States)

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  9. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin.

    Science.gov (United States)

    Brown, Richard G; Marchesi, Julian R; Lee, Yun S; Smith, Ann; Lehne, Benjamin; Kindinger, Lindsay M; Terzidou, Vasso; Holmes, Elaine; Nicholson, Jeremy K; Bennett, Phillip R; MacIntyre, David A

    2018-01-24

    Preterm prelabour rupture of the fetal membranes (PPROM) precedes 30% of preterm births and is a risk factor for early onset neonatal sepsis. As PPROM is strongly associated with ascending vaginal infection, prophylactic antibiotics are widely used. The evolution of vaginal microbiota compositions associated with PPROM and the impact of antibiotics on bacterial compositions are unknown. We prospectively assessed vaginal microbiota prior to and following PPROM using MiSeq-based sequencing of 16S rRNA gene amplicons and examined the impact of erythromycin prophylaxis on bacterial load and community structures. In contrast to pregnancies delivering at term, vaginal dysbiosis characterised by Lactobacillus spp. depletion was present prior to the rupture of fetal membranes in approximately a third of cases (0% vs. 27%, P = 0.026) and persisted following membrane rupture (31%, P = 0.005). Vaginal dysbiosis was exacerbated by erythromycin treatment (47%, P = 0.00009) particularly in women initially colonised by Lactobacillus spp. Lactobacillus depletion and increased relative abundance of Sneathia spp. were associated with subsequent funisitis and early onset neonatal sepsis. Our data show that vaginal microbiota composition is a risk factor for subsequent PPROM and is associated with adverse short-term maternal and neonatal outcomes. This highlights vaginal microbiota as a potentially modifiable antenatal risk factor for PPROM and suggests that routine use of erythromycin for PPROM be re-examined.

  10. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    International Nuclear Information System (INIS)

    Mahgoub, Afaf; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-01-01

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNFα) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNFα was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNFα level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis

  11. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  12. Drug resistance makes new control measures of stomach parasites in small ruminants necessary = Resistentie maakt nieuwe aanpak van de bestrijding van maagdarmwormen bij kleine herkauwers noodzakelijk

    NARCIS (Netherlands)

    Eysker, M.; Borgsteede, F.H.M.; Ploeger, H.W.; Vellema, P.

    2005-01-01

    Control of Parasitic gastroenteritis in small ruminants is threatened by the worldwide growing problem of anthelmintic resistance. Therfore, alternativeapproaches for worm control are imperative. Of utmost importance is to slow down selection pressure for anthelmintic resistance by using alternative

  13. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea

    OpenAIRE

    Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T.; Zhang, Lixin; Zhang, Buchang

    2016-01-01

    Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysi...

  14. Thermal-hydraulic development a small, simplified, proliferation-resistant reactor

    International Nuclear Information System (INIS)

    Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

    1999-01-01

    This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture

  15. Irradiation tests of a small-sized motor with radiation resistance

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2007-01-01

    In the Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER), tritium production and release behavior will be studied using neutrons from fusion reactions, as the blanket development for a demonstration (DEMO) reactor. For development of the TBM, in-pile functional tests are planned, including an integrated irradiation experiment of a fusion blanket mock-up for pulsed operation simulating the ITER operation mode, using the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Agency (JAEA).Due to be installed in an irradiation rig, a small-sized motor has to be developed for rotating a neutron absorber with a window to realize the simulated pulse operation. Since degradation of materials of the motor may be caused by radiation damage due to neutron and gamma-ray irradiation, it is important to examine the soundness of the motor materials under the neutron and gamma irradiation.In the present study, a small-sized motor with increased radiation resistance was developed as follows. A design of a commercial alternate current (AC) servomotor was adopted in the base structure, and some components of the motor were replaced by those made of radiation-proof materials, through elimination of organic materials. Polyester-coated wire for field coil and epoxy for fixed resin were replaced by polyimide-coated wire and polysiloxane filled with MgO and Al 2 O 3 , respectively. Furthermore, inorganic lubricant (Mo-based coating of 4 micro meter in thickness) was treated on the surface of a gear, instead of organic (polyphenylether) oil.Radiation-induced degradation of the components of the developed small-sized motor was examined using JMTR and the Japan Research Reactor No.4 (JRR-4) of JAEA. The motor was operating normally up to a gamma-ray dose of 7 x 10 8 Gy, a fast neutron (E>1 MeV) fluence of 2 x 10 21 m -2 and a thermal neutron (E 22 m -2 . The irradiated gamma-ray dose for this motor is about 700 times as high as the operation

  16. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    Directory of Open Access Journals (Sweden)

    Schierack Peter

    2009-10-01

    Full Text Available Abstract Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin

  17. Reduced expression of bax in small cell lung cancer cells is not sufficient to induce cisplatin-resistance

    Directory of Open Access Journals (Sweden)

    Biagosch J

    2010-10-01

    Full Text Available Abstract Resistance to cisplatin in the course of chemotherapy contributes to the poor prognosis of small cell lung cancer (SCLC. B cell lymphoma-2 is the founding member of a large family of proteins that either promote or inhibit apoptosis. We aimed at investigating if the pro-apoptotic members Bad, Bax, Bim and Bid are involved in cisplatin-resistance. Cisplatin-resistance in the SCLC cell line H1339 was induced by repetitive exposure to cisplatin. Protein expression was quantified by Western Blot and immuno-fluorescence analysis. Protein expression was altered using siRNA interference. Four "cycles" of 0.5 μg/ml cisplatin led to partial cisplatin-resistance in H1339 cells. The expression of Bad, Bim and Bid was comparable in naïve and resistant cells while the expression of Bax was reduced in the resistant clone. But, reducing Bax expression in naïve cells did not lead to altered cisplatin sensitivity neither in H1339 nor in H187 SCLC cells. We conclude that the reduced Bax expression after exposure to cisplatin is not sufficient to induce cis-platin-resistance in SCLC cells.

  18. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Morgan A Wambaugh

    2017-06-01

    Full Text Available Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M. O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT. We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional

  19. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Science.gov (United States)

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that

  20. Antibiotic Resistance Patterns in Invasive Group B Streptococcal Isolates

    Directory of Open Access Journals (Sweden)

    Mei L. Castor

    2008-01-01

    Full Text Available Antibiotics are used for both group B streptococcal (GBS prevention and treatment. Active population-based surveillance for invasive GBS disease was conducted in four states during 1996—2003. Of 3813 case-isolates, 91.0% (3471 were serotyped, 77.1% (2937 had susceptibility testing, and 46.6% (3471 had both. All were sensitive to penicillin, ampicillin, cefazolin, cefotaxime, and vancomycin. Clindamycin and erythromycin resistance was 12.7% and 25.6%, respectively, and associated with serotype V (P<.001. Clindamycin resistance increased from 10.5% to 15.0% (X2 for trend 12.70; P<.001; inducible clindamycin resistance was associated with the erm genotype. Erythromycin resistance increased from 15.8% to 32.8% (X2 for trend 55.46; P<.001. While GBS remains susceptible to beta-lactams, resistance to alternative agents such as erythromycin and clindamycin is an increasing concern.

  1. Antibiotic resistant profile of Streptococcus pneumoniae from the ...

    African Journals Online (AJOL)

    The isolates were subjected to antimicrobial susceptibility testing using the disc diffusion method. Results: S. pneumoniae was isolated from 37(42.04%) of the 88 samples. Isolates showed the highest resistance of 12 (32.43%) to erythromycin and lowest resistance of 4(10.81%) to ciprofloxacin. The resistance profiles for ...

  2. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae.

    Science.gov (United States)

    Kosowska, Klaudia; Credito, Kim; Pankuch, Glenn A; Hoellman, Dianne; Lin, Gengrong; Clark, Catherine; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C

    2004-11-01

    The MIC at which 50% of strains are inhibited (MIC(50)) and the MIC(90) of GW 773546, a novel macrolide, were 1.0 and 2.0 microg/ml, respectively, for 223 beta-lactamase-positive, beta-lactamase-negative, and beta-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC(50)s and MIC(90)s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 microg/ml, respectively, while the MIC(50) and MIC(90) of azithromycin were 1.0 and 2.0 microg/ml, respectively. The MIC(50) and MIC(90) of erythromycin were 4.0 and 8.0 microg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 microg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 x 10(-9) to 2.2 x 10(-6) with

  3. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    International Nuclear Information System (INIS)

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo

  4. The motilin receptor agonist erythromycin stimulates hunger and food intake through a cholinergic pathway.

    Science.gov (United States)

    Deloose, Eveline; Vos, Rita; Janssen, Pieter; Van den Bergh, Omer; Van Oudenhove, Lukas; Depoortere, Inge; Tack, Jan

    2016-03-01

    Motilin-induced phase III contractions have been identified as a hunger signal. These phase III contractions occur as part of the migrating motor complex (MMC), a contractility pattern of the gastrointestinal tract during fasting. The mechanism involved in this association between subjective hunger feelings and gastrointestinal motility during the MMC is largely unknown, however, as is its ability to stimulate food intake. We sought to 1) investigate the occurrence of hunger peaks and their relation to phase III contractions, 2) evaluate whether this relation was cholinergically driven, and 3) assess the ability of the motilin receptor agonist erythromycin to induce food intake. An algorithm was developed to detect hunger peaks. The association with phase III contractions was studied in 14 healthy volunteers [50% men; mean ± SEM age: 25 ± 2 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23 ± 1]. The impact of pharmacologically induced phase III contractions on the occurrence of hunger peaks and the involvement of a cholinergic pathway were assessed in 14 healthy volunteers (43% men; age: 29 ± 3 y; BMI: 23 ± 1). Last, the effect of erythromycin administration on food intake was examined in 15 healthy volunteers (40% men; age: 28 ± 3 y; BMI: 22 ± 1). The occurrence of hunger peaks and their significant association with phase III contractions was confirmed (P hunger peaks (P hunger feelings through a cholinergic pathway. Moreover, erythromycin stimulated food intake, suggesting a physiologic role of motilin as an orexigenic signal from the gastrointestinal tract. This trial was registered at www.clinicaltrials.gov as NCT02633579. © 2016 American Society for Nutrition.

  5. Liquid chromatographic and spectrophotometric methods for the determination of erythromycin stearate and trimethoprim in tablets

    OpenAIRE

    Hassib, Sonia T.; Farag, Awatef E.; Elkady, Ehab F.

    2011-01-01

    Simple, accurate and precise reversed-phase liquid chromatographic (LC) and spectrophotometric methods have been developed and validated for the determination of erythromycin stearate (ERS) and trimethoprim (TMP) in mixture. In LC method, chromatographic separation was achieved on a Symmetry® Waters C18 column (150 × 4.6 mm, 5 μm) based on isocratic elution using a mobile phase consisting of potassium dihydrogen phosphate buffer pH (9):acetonitrile:water (25:100:50, v/v/v) at a flow rate of 1...

  6. Indomethacin induces apoptosis via a MRPI-dependent mechanism in doxorubicin-resistant small-cell lung cancer cells overexpressing MRPI

    NARCIS (Netherlands)

    de Groot, D. J. A.; van der Deen, M.; Le, T. K. P.; Regeling, A.; de Jong, S.; de Vries, E. G. E.

    2007-01-01

    Small-cell lung cancers (SCLCs) initially respond to chemotherapy, but are often resistant at recurrence. The non-steroidal anti-inflammatory drug indomethacin is an inhibitor of multidrug resistance protein 1 (MRPI) function. The doxorubicin-resistant MRPI-overexpressing human SCLC cell line

  7. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  8. Intravenous erythromycin dramatically accelerates gastric emptying in gastroparesis diabeticorum and normals and abolishes the emptying discrimination between solids and liquids

    International Nuclear Information System (INIS)

    Urbain, J.L.; Vantrappen, G.; Janssens, J.; Van Cutsem, E.; Peeters, T.; De Roo, M.

    1990-01-01

    Erythromycin, a macrolide antibiotic, has recently been shown to have a motilin like effect on gastrointestinal muscle strips. In this study, we have evaluated the effect of erythromycin on patients with delayed gastric emptying and healthy subjects using the dual radionuclide technique. Twelve patients with gastroparesis diabeticorum and ten healthy age- and sex-matched controls were studied. Gastric emptying of solids and liquids was determined using 99mTc-SC scrambled egg and 111In-DTPA in water. Following a baseline study and on a separate day, each patient and control received a 15-min i.v. perfusion of erythromycin starting at meal ingestion. Eleven out of the 12 patients were restudied after a 3-wk oral administration. In patients and controls, i.v. erythromycin dramatically accelerated gastric emptying of both solids and liquids which were emptied at the same rate. After chronic oral administration, solid and liquid emptying remained significantly accelerated. Erythromycin appears to be a very powerful gastrokinetic drug. Derived compounds with the gastrokinetic effect and without the antibiotic activity could be useful in dyspeptic patients with delayed gastric emptying

  9. Intravenous erythromycin dramatically accelerates gastric emptying in gastroparesis diabeticorum and normals and abolishes the emptying discrimination between solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Urbain, J.L.; Vantrappen, G.; Janssens, J.; Van Cutsem, E.; Peeters, T.; De Roo, M. (Univ. of Leuven (Belgium))

    1990-09-01

    Erythromycin, a macrolide antibiotic, has recently been shown to have a motilin like effect on gastrointestinal muscle strips. In this study, we have evaluated the effect of erythromycin on patients with delayed gastric emptying and healthy subjects using the dual radionuclide technique. Twelve patients with gastroparesis diabeticorum and ten healthy age- and sex-matched controls were studied. Gastric emptying of solids and liquids was determined using 99mTc-SC scrambled egg and 111In-DTPA in water. Following a baseline study and on a separate day, each patient and control received a 15-min i.v. perfusion of erythromycin starting at meal ingestion. Eleven out of the 12 patients were restudied after a 3-wk oral administration. In patients and controls, i.v. erythromycin dramatically accelerated gastric emptying of both solids and liquids which were emptied at the same rate. After chronic oral administration, solid and liquid emptying remained significantly accelerated. Erythromycin appears to be a very powerful gastrokinetic drug. Derived compounds with the gastrokinetic effect and without the antibiotic activity could be useful in dyspeptic patients with delayed gastric emptying.

  10. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador.

    Science.gov (United States)

    Braykov, Nikolay P; Eisenberg, Joseph N S; Grossman, Marissa; Zhang, Lixin; Vasco, Karla; Cevallos, William; Muñoz, Diana; Acevedo, Andrés; Moser, Kara A; Marrs, Carl F; Foxman, Betsy; Trostle, James; Trueba, Gabriel; Levy, Karen

    2016-01-01

    The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 "production birds" (commercially raised broiler chickens and laying hens) and 455 "household birds" (raised for domestic use) and household and coop environmental samples from 17 villages between 2010 and 2013. We analyzed data on zones of inhibition from Kirby-Bauer tests, rather than established clinical breakpoints for AR, to distinguish between populations of organisms. We saw significantly higher levels of AR in bacteria from production versus household birds; resistance to either amoxicillin-clavulanate, cephalothin, cefotaxime, and gentamicin was found in 52.8% of production bird isolates and 16% of household ones. A strain jointly resistant to the 4 drugs was exclusive to a subset of isolates from production birds (7.6%) and coop surfaces (6.5%) and was associated with a particular purchase site. The prevalence of AR in production birds declined with bird age (P resistance (AR) in E. coli isolates from small-scale poultry production environments versus domestic environments in rural Ecuador, where such backyard poultry operations have become established over the past decade. Our previous research in the region suggests that introduction of AR bacteria through travel and commerce may be an important source of AR in villages of this region. This report extends the prior analysis by examining small-scale production chicken farming as a potential source of resistant strains. Our results suggest that AR strains associated with poultry production likely originate from sources outside the study

  11. Role of thermodynamic, kinetic and structural factors in the recrystallization behavior of amorphous erythromycin salts

    Energy Technology Data Exchange (ETDEWEB)

    Nanakwani, Kapil; Modi, Sameer R.; Kumar, Lokesh; Bansal, Arvind K., E-mail: akbansal@niper.ac.in

    2014-04-01

    Graphical abstract: - Highlights: • Crystallization kinetics of amorphous erythromycin salts was assessed. • Contribution of thermodynamic, kinetic and structural factors was evaluated. • Role of counterions on physical stability of amorphous salts was investigated. • Implications of the study: In rationalizing stabilization approach for amorphous form. - Abstract: Amorphous form has become an important drug delivery strategy for poorly water soluble drugs. However, amorphous form has inherent physical instability due to its tendency to recrystallize to stable crystalline form. In the present study, amorphous forms of erythromycin free base (ED) and its salts namely, stearate (ES), phosphate (EP) and thiocyanate (ET) were generated by in situ melt quenching and evaluated for their crystallization tendency. Salts were characterized for kinetic, thermodynamic and structural factors to understand crystallization behavior. Kinetics of crystallization followed the order as ES > EP > ET > ED. Fragility and molecular mobility does not completely explain these findings. However, configurational entropy (S{sub conf}), indicative of entropic barrier to crystallization, followed the order as ET > EP > ES > ED. Lower crystallization tendency of ED can be explained by its lower thermodynamic driving force for crystallization (H{sub conf}). This correlated well with different structural parameters for the counter ions.

  12. Interlaboratory study of a liquid chromatography method for erythromycin: determination of uncertainty.

    Science.gov (United States)

    Dehouck, P; Vander Heyden, Y; Smeyers-Verbeke, J; Massart, D L; Marini, R D; Chiap, P; Hubert, Ph; Crommen, J; Van de Wauw, W; De Beer, J; Cox, R; Mathieu, G; Reepmeyer, J C; Voigt, B; Estevenon, O; Nicolas, A; Van Schepdael, A; Adams, E; Hoogmartens, J

    2003-08-22

    Erythromycin is a mixture of macrolide antibiotics produced by Saccharopolyspora erythreas during fermentation. A new method for the analysis of erythromycin by liquid chromatography has previously been developed. It makes use of an Astec C18 polymeric column. After validation in one laboratory, the method was now validated in an interlaboratory study. Validation studies are commonly used to test the fitness of the analytical method prior to its use for routine quality testing. The data derived in the interlaboratory study can be used to make an uncertainty statement as well. The relationship between validation and uncertainty statement is not clear for many analysts and there is a need to show how the existing data, derived during validation, can be used in practice. Eight laboratories participated in this interlaboratory study. The set-up allowed the determination of the repeatability variance, s(2)r and the between-laboratory variance, s(2)L. Combination of s(2)r and s(2)L results in the reproducibility variance s(2)R. It has been shown how these data can be used in future by a single laboratory that wants to make an uncertainty statement concerning the same analysis.

  13. Tc-99m erythromycin lactobionate inhalation scintigraphy in parenchymal lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Hatice E-mail: hdurak@kordon.deu.edu.tr; Aktogu, Serir; Degirmenci, Berna; Sayit, Elvan; Ertay, Tuerkan; Dereli, Sevket

    1999-08-01

    We have investigated Technetium 99m erythromycin lactobionate (Tc 99m EL) clearance from the lungs after inhalation, in the presence of an alveolitis. Eighteen patients (6 sarcoidosis, 7 idiopathic fibrosis, and 5 miliary tuberculosis) were imaged after the patients inhaled 1,110 MBq of Tc 99m EL. Clearance half time for the first 45 min, for 24 h, and retention at 24 h correlated with percentage of lymphocytes in bronchoalveolar lavage fluid (BAL) (r=.729, r=.883, and r=.826, respectively). There was a positive correlation between peripheral penetration (PP) and forced expiratory volume in 1 s (FEV{sub 1}) (r=.806) and forced vital capacity (FVC) (r=.781). Retention was more marked in sarcoidosis compared with tuberculosis (0.025erythromycin can also be administered by inhalation for therapeutic purposes.

  14. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Andrew C., E-mail: ajo@ceh.ac.uk [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Keller, Virginie; Dumont, Egon [Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Sumpter, John P. [Institute for the Environment, Brunel University, Uxbridge UB8 (United Kingdom)

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  15. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers

    International Nuclear Information System (INIS)

    Johnson, Andrew C.; Keller, Virginie; Dumont, Egon; Sumpter, John P.

    2015-01-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6 × 9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2–3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1–1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. - Highlights: • Antibiotic consumption varied up to 200-fold between European nations. • Antibiotic concentrations predicted to be 10 ng/L or less for most European rivers. • These antibiotic

  16. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers.

    Science.gov (United States)

    Johnson, Andrew C; Keller, Virginie; Dumont, Egon; Sumpter, John P

    2015-04-01

    This study evaluated the potential concentrations of four antibiotics: ciprofloxacin (CIP), sulfamethoxazole (SUF), trimethoprim (TRI) and erythromycin (ERY) throughout the rivers of Europe. This involved reviewing national consumption rates together with assessing excretion and sewage treatment removal rates. From this information, it was possible to construct best, expected and worst case scenarios for the discharge of these antibiotics into rivers. Consumption data showed surprising variations, up to 200-fold in the popularity of different antibiotics across different European nations. Using the water resources model GWAVA which has a spatial resolution of approximately 6×9 km, river water concentrations throughout Europe were predicted based on 31-year climate data. The modelled antibiotic concentrations were within the range of measurements reported previously in European effluents and rivers. With the expected scenario, the predicted annual-average antibiotic concentrations ranged between 0 and 10 ng/L for 90% by length of surface waters. In the worst case scenario concentrations could reach between 0.1 and 1 μg/L at the most exposed locations. As both predicted and observed sewage effluent concentrations were below reported effect levels for the most sensitive aquatic wildlife, no direct toxicity in rivers is expected. Predicted river concentrations for CIP and ERY were closest to effect levels in wildlife, followed by SUF which was 2-3 orders of magnitude lower. TRI appeared to be of the least concern with around 6 orders of magnitude difference between predicted and effect levels. However, mixture toxicity may elevate this risk and antibiotic levels of 0.1-1 μg/L in hotspots may contribute to local environmental antibiotic resistance in microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Research Progress of the Resistance Mechanism of Non-small Cell Lung Cancer 
to EGFR-TKIs

    Directory of Open Access Journals (Sweden)

    Huihui LIU

    2013-10-01

    Full Text Available Nowadays, lung cancer is the malignant tumor of the highest morbidity and mortality over the world, and non-small cell lung cancer (NSCLC makes up about 80%. There is a great many NSCLC patients have been in advanced stage when diagnosed. As a result, people pay more attention to curing advanced NSCLC. The standard treatment to advanced NSCLC is platinum-based combined chemotherapy. However, chemotherapy drugs usually have limited effects on improving the survival of the patients. Then exploring new therapies is extremely urgent to us. Now, molecular targeted therapy has been the most promising research area for the treatment of NSCLC with researches going deep into pathogenesis and biological behavior of lung cancer. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs have achieved a great success in the treatment of advanced NSCLC. Their representatives are erlotinib and gefitinib. The two drugs have been widely used to treat advanced NSCLCs worldwide, especially for the patients with EGFR activating mutations. However, after a period of treatment (median time is 6 to 12 months, most patients will develop drug resistance to EGFR-TKIs. Intense research in these NSCLCs has identified two major mechanisms of resistance to TKIs: primary and acquired resistances. The research about resistance mechanism of NSCLC to EGFR-TKIs is a hot one because of their excellent effects on improving overall and progression-free survival. The aim of this article was to summarize the development of the resistance mechanisms.

  18. Managing anthelmintic resistance in small ruminant livestock of resource-poor farmers in South Africa.

    Science.gov (United States)

    Vattaa, A F; Lindberg, A L E

    2006-03-01

    Gastrointestinal parasitism is one of the most important disease complexes of sheep and goats impacting on the resource-poor livestock farmer. Of the responsible nematodes, Haemonchus contortus, a blood-sucking worm of the abomasum, poses possibly the greatest threat. Over the past several decades, the worm has been controlled through the use of anthelmintics, but the emergence of anthelmintic resistance has threatened this chemotherapeutic approach. In Africa, the overall prevalence of anthelmintic resistance has not been extensively investigated, particularly within the resource-poor farming sector, but resistance has been reported from at least 14 countries with most of the reports emanating from Kenya and South Africa and the majority concerning H. contortus. While levels of resistance under commercial sheep farming systems in South Africa is considered to be amongst the worst in the world, resistance has also been reported from the resource-poor farming sector. Increases in productivity and reproduction of livestock and the development of markets for sale of animals are seen by international funding bodies as a way out of poverty for communities that keep livestock. This must lead to the greater need for parasite control. At such times, the risk of levels of anthelmintic resistance escalating is much greater and there is therefore a need to look at alternatives to their use. Proposed strategies include the appropriate, but judicious use of anthelmintics by application of the FAMACHA system and the use of alternatives to anthelmintics such as strategic nutrient supplementation. It is also very clear that there is a strong demand for knowledge about animal diseases, including helminthosis, and their effective management in the resource-poor livestock farming communities. This is an important challenge to meet.

  19. Survey of strain distribution and antibiotic resistance pattern of group B streptococci (Streptococcus agalactiae isolated from clinical specimens

    Directory of Open Access Journals (Sweden)

    Mousavi, Seyed Masoud

    2016-09-01

    Full Text Available Aim: The aims of the present study were to determine the antibiotic susceptibility profils with particular emphasis on susceptible or resistant strains to macrolides and lincosamids antibiotics and to determine possible antibiotic resistance mechanisms occurring in group B streptococci (GBS strains using PCR assay and disk diffusion method.Methods: A total of 62 clinical GBS strains were investigated. Antibacterial susceptibility testing was performed using the disk diffusion method and inducible resistance test for clindamycin by standard double disk diffusion or D-zone test for all isolates to differentiate macrolide resistance phenotype (M, constitutive macrolide-lincosamide-streptogramin B phenotype (cMLS and induced macrolide-lincosamide-streptogramin B phenotype (iMLS. In addition, minimum inhibitory concentrations (MIC of penicillin were determined for all isolates. Finally, possible existence of antibiotic resistance genes for erythromycin , and and for clindamycin were examined among isolates using PCR assay.Results: All 62 isolates were susceptible to penicillin, ampicillin, linezolid, cefazoline and vancomycin. However, 93.5% (n=58 of isolates showed an increased MIC to penicillin. The overall rate of erythromycin resistance was 35.5% (n=22. All erythromycin-resistant isolates displayed the M phenotype (100%, n=22. All three erythromycin resistance genes (i.e. , and were found in erythromycin-resistant isolates.Conclusion: It was concluded that prescribing antibiotic without antibacterial susceptibility tests should be prevented because of the high prevalence of erythromycin-resistant GBS strains and the fact that erythromycin-resistant GBS strains has shown an increased MIC to penicillin, as the drug of choice for treating GBS infections.

  20. Small Victories: Reflections on Teaching "Harry Potter" to Resistant Prospective Teachers.

    Science.gov (United States)

    Bercaw, Lynne A.

    2003-01-01

    Describes the author's interactions with prospective teachers' resistances to books in the "Harry Potter" series and how she dealt with these situations. Recognizes that her role as a teacher educator includes honoring her students' beliefs, upholding the integrity of the academic discipline of children's literature, and adhering to the…

  1. Transient, heat-induced thermal resistance in the small intestine of mouse

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1980-01-01

    Heat-induced thermal resistance has been investigated in mouse jejunum by assaying crypt survival 24 h after treatment. Hyperthermia was achieved by immersing an exteriorized loop of intestine in a bath of Krebs-Ringer solution. Two approaches have been used. In the first, thermal survival curves were obtained following single hyperthermal treatments at temperatures in the range 42 to 44 0 C. Transient thermal resistance, inducted by a plateau in the crypt survival curve, developed during heating at temperatures around 42.5 0 C after 60 to 80 min. In the second series of experiments, a priming heat treatment (40.0, 41.0, 41.5, or 42.0 0 C for 60 min) was followed at varying intervals by a test treatment at 43.0 0 C. A transient resistance to the second treatment was induced, the extent and time of development being dependent upon the priming treatment. Crypt survival curves for thermally resistant intestine showed an increase in thermal D 0 and a decrease in n compared with curves from previously unheated intestine

  2. Causality of small and large intestinal microbiota in weight regulation and insulin resistance

    Directory of Open Access Journals (Sweden)

    Torsten P.M. Scheithauer

    2016-09-01

    Conclusions: Interventions aimed to restoring gut microbial homeostasis, such as ingestion of specific fibers or therapeutic microbes, are promising strategies to reduce insulin resistance and the related metabolic abnormalities in obesity, metabolic syndrome, and type 2 diabetes. This article is part of a special issue on microbiota.

  3. Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Glaysher, Sharon; Modi, Paul; Rahamim, Joe; Smith, Mark E; Amer, Khalid; Addis, Bruce; Poole, Matthew; Narayanan, Ajit; Gulliford, Tim J; Andreotti, Peter E; Cree, Ian A; Yiannakis, Dennis; Gabriel, Francis G; Johnson, Penny; Polak, Marta E; Knight, Louise A; Goldthorpe, Zoe; Peregrin, Katharine; Gyi, Mya

    2009-01-01

    NSCLC exhibits considerable heterogeneity in its sensitivity to chemotherapy and similar heterogeneity is noted in vitro in a variety of model systems. This study has tested the hypothesis that the molecular basis of the observed in vitro chemosensitivity of NSCLC lies within the known resistance mechanisms inherent to these patients' tumors. The chemosensitivity of a series of 49 NSCLC tumors was assessed using the ATP-based tumor chemosensitivity assay (ATP-TCA) and compared with quantitative expression of resistance genes measured by RT-PCR in a Taqman Array™ following extraction of RNA from formalin-fixed paraffin-embedded (FFPE) tissue. There was considerable heterogeneity between tumors within the ATP-TCA, and while this showed no direct correlation with individual gene expression, there was strong correlation of multi-gene signatures for many of the single agents and combinations tested. For instance, docetaxel activity showed some dependence on the expression of drug pumps, while cisplatin activity showed some dependence on DNA repair enzyme expression. Activity of both drugs was influenced more strongly still by the expression of anti- and pro-apoptotic genes by the tumor for both docetaxel and cisplatin. The doublet combinations of cisplatin with gemcitabine and cisplatin with docetaxel showed gene expression signatures incorporating resistance mechanisms for both agents. Genes predicted to be involved in known mechanisms drug sensitivity and resistance correlate well with in vitro chemosensitivity and may allow the definition of predictive signatures to guide individualized chemotherapy in lung cancer

  4. Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Amer Khalid

    2009-08-01

    Full Text Available Abstract Background NSCLC exhibits considerable heterogeneity in its sensitivity to chemotherapy and similar heterogeneity is noted in vitro in a variety of model systems. This study has tested the hypothesis that the molecular basis of the observed in vitro chemosensitivity of NSCLC lies within the known resistance mechanisms inherent to these patients' tumors. Methods The chemosensitivity of a series of 49 NSCLC tumors was assessed using the ATP-based tumor chemosensitivity assay (ATP-TCA and compared with quantitative expression of resistance genes measured by RT-PCR in a Taqman Array™ following extraction of RNA from formalin-fixed paraffin-embedded (FFPE tissue. Results There was considerable heterogeneity between tumors within the ATP-TCA, and while this showed no direct correlation with individual gene expression, there was strong correlation of multi-gene signatures for many of the single agents and combinations tested. For instance, docetaxel activity showed some dependence on the expression of drug pumps, while cisplatin activity showed some dependence on DNA repair enzyme expression. Activity of both drugs was influenced more strongly still by the expression of anti- and pro-apoptotic genes by the tumor for both docetaxel and cisplatin. The doublet combinations of cisplatin with gemcitabine and cisplatin with docetaxel showed gene expression signatures incorporating resistance mechanisms for both agents. Conclusion Genes predicted to be involved in known mechanisms drug sensitivity and resistance correlate well with in vitro chemosensitivity and may allow the definition of predictive signatures to guide individualized chemotherapy in lung cancer.

  5. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    Science.gov (United States)

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  6. Reversal of cisplatin resistance in non-small cell lung cancer stem cells by Taxus chinensis var.

    Science.gov (United States)

    Jiang, Y Q; Xu, X P; Guo, Q M; Xu, X C; Liu, Q Y; An, S H; Xu, J L; Su, F; Tai, J B

    2016-09-02

    Drug resistance in cells is a major impedance to successful treatment of lung cancer. Taxus chinensis var. inhibits the growth of tumor cells and promotes the synthesis of interleukins 1 and 2 and tumor necrosis factor, enhancing immune function. In this study, T. chinensis var.-induced cell death was analyzed in lung cancer cells (H460) enriched for stem cell growth in a defined serum-free medium. Taxus-treated stem cells were also analyzed for Rhodamine 123 (Rh-123) expression by flow cytometry, and used as a standard functional indicator of MDR. The molecular basis of T. chinensis var.-mediated drug resistance was established by real-time PCR analysis of ABCC1, ABCB1, and lung resistance-related protein (LRP) mRNA, and western blot analysis of MRP1, MDR1, and LRP. Our results revealed that stem cells treated with higher doses of T. chinensis var. showed significantly lower growth inhibition rates than did H460 cells (P var. and cisplatin was also significantly inhibited (P var. (P var.-treated stem cells showed significant downregulation of the ABCC1, ABCB1, and LRP mRNA and MRP1, MDR1, and LRP (P var.-mediated downregulation of MRP1, MDR1, and LRP might contribute to the reversal of drug resistance in non-small cell lung cancer stem cells.

  7. Heterogeneous resistance mechanisms in an EGFR exon 19-mutated non-small cell lung cancer patient treated with erlotinib

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Grauslund, Morten; Melchior, Linea C.

    2017-01-01

    Patients with epidermal growth factor receptor (EGFR) gene-mutated non-small cell lung cancer (NSCLC) obtain substantial clinical benefit from EGFR tyrosine-kinase inhibitors (TKIs), but will ultimately develop TKI-resistance resulting in median progression-free survival of 9–15 months during first......-line TKI-therapy. However, type and timing of TKI-resistance cannot be predicted and several mechanisms may simultaneously/subsequently occur during TKI-treatment. In this respect, we present a 49 year-old Caucasian male ex-smoker with metastatic pulmonary adenocarcinoma (ADC) that concomitantly harbored...... for SCLC combined with erlotinib continuation was implemented obtaining significant objective response. However, after completing 6 cycles of this combination, new pulmonary and hepatic metastases appeared and showed persistence of the original EGFR- and FGFR3-mutated ADC phenotype together...

  8. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Rasmussen, Allan; Kirkegaard, Preben

    2003-01-01

    of cyclosporine and tacrolimus nephrotoxicity, episodes of early graft rejection, early graft function, and graft survival. RESULTS: Cyclosporine and tacrolimus nephrotoxicity were associated with low postoperative ERMBT values (mean 0.63%+/-0.25% 14C/hr vs. 1.35%+/-0.84% 14C/hr, P=0.02). No significant...... association between early graft rejection and ERMBT values was demonstrated. There was a significant inverse correlation between postoperative ERMBT values and the time to normalization of international normalized ratio as a measure of early graft function (r=-0.78, PGraft loss was associated......BACKGROUND: Interindividual variability in dosage requirements of the calcineurin inhibitor immunosuppressive agents cyclosporine and tacrolimus after liver transplantation may result from differences in the CYP3A activity of the liver graft. Early postoperative erythromycin breath test (ERMBT...

  9. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shanwei; Xiang, Gang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Yuwen, Daolu [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Su, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Shen, Yan, E-mail: shenyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  10. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    International Nuclear Information System (INIS)

    Mi, Shanwei; Xiang, Gang; Yuwen, Daolu; Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang; Su, Yongqian; Shen, Yan; Xu, Qiang

    2016-01-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  11. Development of a standardized susceptibility test for Campylobacter with quality control ranges for ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem

    DEFF Research Database (Denmark)

    McDermott, P. F.; Bodeis, S. M.; Aarestrup, Frank Møller

    2004-01-01

    -control (QC) strain. Minimal inhibitory concentration (MIC) QC ranges were determined for two incubation time/temperature combinations: 36degreesC for 48 hr and 42degreesC for 24 hr. Quality-control ranges were determined for ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem. For all...

  12. High Temperature Effects on Yeast-like Endosymbiotes and Pesticide Resistance of the Small Brown Planthopper, Laodelphax striatellus

    Directory of Open Access Journals (Sweden)

    Xiao-jie ZHANG

    2008-12-01

    Full Text Available The newly-hatched nymphs of the small brown planthopper (SBPH, Laodelphax striatellus, including field and sensitive populations, were subjected to the high-temperature (35°C treatment. The number of yeast-like endosymbiotes in SBPH reduced by 23.47%–34.23%, 57.86%–61.51% and 88.96%–90.71% after the high-temperature treatment for 1 d, 2 d, and 3 d, respectively. However, the size of yeast-like endosymbiotes was not obviously affected. Resistance of SBPH to three insecticides (imidacloprid, chlorpyrifos and fipronil decreased with the increase of treatment time.

  13. Biomechanics and load resistance of small-diameter and mini dental implants: a review of literature.

    Science.gov (United States)

    Hasan, Istabrak; Bourauel, Christoph; Mundt, Torsten; Stark, Helmut; Heinemann, Friedhelm

    2014-02-01

    In recent years, the application of small-diameter and mini dental implants to support removable and fixed prosthesis has dramatically increased. However, the success of these implants under functional biting forces and the reaction of the bone around them need to be analyzed. This review was aimed to present studies that deal with the fatigue life of small-diameter and mini dental implants under normal biting force, and their survival rate. The numerical and experimental studies concluded that an increase in the risk of bone damage or implant failure may be assumed in critical clinical situations and implants with <3 mm diameter have a risk of fracture in clinical practice. The survival rate of the small-diameter and mini dental implants over 5 years was 98.3-99.4%.

  14. Analysis of multidrug resistant group B streptococci with reduced penicillin susceptibility forming small, less hemolytic colonies.

    Directory of Open Access Journals (Sweden)

    Hirotsugu Banno

    Full Text Available Group B streptococci (GBS; Streptococcus agalactiae are the leading cause of neonatal invasive diseases and are also important pathogens for elderly adults. Until now, nearly all GBS with reduced penicillin susceptibility (PRGBS have shown β-hemolytic activity and grow on sheep blood agar. However, we have previously reported three PRGBS clinical isolates harboring a CylK deletion that form small less hemolytic colonies. In this study, we examined the causes of small, less hemolytic colony formation in these clinical isolates. Isogenic strains were sequenced to identify the mutation related to a small colony size. We identified a 276_277insG nucleic acid insertion in the thiamin pyrophosphokinase (tpk gene, resulting in premature termination at amino acid 103 in TPK, as a candidate mutation responsible for small colony formation. The recombinant strain Δtpk, which harbored the 276_277insG insertion in the tpk gene, showed small colony formation. The recombinant strain ΔcylK, which harbored the G379T substitution in cylK, showed a reduction in hemolytic activity. The phenotypes of both recombinant strains were complemented by the expression of intact TPK or CylK, respectively. Moreover, the use of Rapid ID 32 API and VITEK MS to identify strains as GBS was evaluated clinical isolates and recombinant strains. VITEK MS, but not Rapid ID 32 API, was able to accurately identify the strains as GBS. In conclusion, we determined that mutations in tpk and cylK caused small colonies and reduced hemolytic activity, respectively, and characterized the clinical isolates in detail.

  15. Alise's Small Stories: Indices of Identity Construction and of Resistance to the Discourse of Cognitive Impairment

    Science.gov (United States)

    Lenchuk, Iryna; Swain, Merrill

    2010-01-01

    In this paper, we discuss two types of discourse: the first one--the discourse of cognitive impairment of a long-term care facility (LTCF) reflected in the institution's language policy and in the language use of several caregivers of the LTCF; and the second one, the discourse of "small" stories (Bamberg and Georgakopoulou 2008) told by Alise, a…

  16. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Fuquan; Shen, Mingjing; Yang, Li; Yang, Xiaodong; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2017-08-03

    Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the

  17. HYPERTHERMIC POTENTIATION OF CISPLATIN TOXICITY IN A HUMAN SMALL-CELL LUNG-CARCINOMA CELL-LINE AND A CISPLATIN-RESISTANT SUBLINE

    NARCIS (Netherlands)

    HETTINGA, JVE; LEMSTRA, W; MEIJER, C; MULDER, NH; KONINGS, AWT; DEVRIES, EGE; KAMPINGA, HH

    1994-01-01

    A human small cell lung carcinoma cell line (GLC4) and its subline with in vitro acquired cisplatin (cDDP) resistance (GLC4-cDDP) were used to study the applicability of hyperthermia to interfere with acquired cDDP resistance. GLC4 and GLC4-cDDP did not differ in heat sensitivity (clonogenic

  18. Influence of tra genes of IncP and F plasmids on the mobilization of small Kanamycin resistance ColE1-Like plasmids in bacterial biofilms

    Science.gov (United States)

    Background: Horizontal gene transfer is a mechanism for movement of antibiotic resistance genes among bacteria. Some small kanamycin resistance (KanR) ColE1-like plasmids isolated from different serotypes of Salmonella enterica were shown to carry mobilization genes; although not self-transmissibl...

  19. Implications of MicroRNAs in the Treatment of Gefitinib-Resistant Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Thomas K. Sin

    2016-02-01

    Full Text Available Non-small cell lung cancer (NSCLC represents about 85% of the reported cases of lung cancer. Acquired resistance to targeted therapy with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib, is not uncommon. It is thus vital to explore novel strategies to restore sensitivity to gefitinib. Provided that microRNAs (miRNAs negatively regulate their gene targets at the transcriptional level, it is speculated that miRNA mimetics may reduce the expression, activity and signal transduction of EGFR so that sensitization of tumour sites to gefitinib-induced cytotoxicity can be achieved. Indeed, a growing body of evidence has shown that the manipulation of endogenous levels of miRNA not only attenuates the EGFR/PI3K/Akt phosphorylation cascade, but also restores apoptotic cell death in in vitro models of experimentally-induced gefitinib resistance and provoked tumour regression/shrinkage in xenograft models. These data are in concordant with the clinical data showing that the differential expression profiles of miRNA in tumour tissues and blood associate strongly with drug response and overall survival. Furthermore, another line of studies indicate that the chemopreventive effects of a variety of natural compounds may involve miRNAs. The present review aims to discuss the therapeutic capacity of miRNAs in relation to recent discoveries on EGFR-TKI resistance, including chronic drug exposure and mutations.

  20. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations

    International Nuclear Information System (INIS)

    Gao, Jing; Meng, Qingwei; Zhao, Yanbin; Chen, Xuesong; Cai, Li

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most aggressive types of cancer. However, resistance to cisplatin (CDDP) remains a major challenge in NSCLC treatment. The purpose of this study was to investigate the ability of EHD1 [Eps15 homology (EH) domain - containing protein 1] to confer CDDP resistance in NSCLC cells and to investigate mechanisms of this resistance. The associations between EHD1 expression in NSCLC specimens and clinicopathological features, including prognosis, were assessed by immunohistochemistry (IHC). Using DNA microarrays, we performed a genome-wide analysis of cisplatin-resistant NSCLC cells to identify the involvement of the EHD1 gene in this resistance. We overexpressed and knocked down EHD1 in cell lines to investigate the effect of this gene on proliferation and apoptosis. A quantitative analytical method for assessing CDDP in cells was developed. High-performance liquid chromatography was used to measure the concentration of cisplatin in cells. The immunohistochemistry assay showed that adjuvant chemotherapy-treated NSCLC patients expressing EHD1 exhibited reduced OS compared with patients who did not express EHD1 (P = 0.01). Moreover, DNA microarrays indicated that the EHD1 gene was upregulated in CDDP- resistant NSCLC cells. The IC50 value of CDDP in cells that overexpressed EHD1 was 3.3-fold greater than that in the A549-control line, and the IC50 value of EHD1 knockdown cells was at least 5.2-fold lower than that of the control cells, as evidenced by a CCK-8 assay. We found that the percentage of early apoptotic cells was significantly decreased in A549-EHD1 cells, but the rates of early apoptosis were higher in the EHD1 knockdown cell line than in the A549/DDP control line, as indicated by a flow cytometry analysis. High-performance liquid chromatography (HPLC) showed that the total platinum level was lower in A549-EHD1 cells than in control cells, and the concentration of CDDP was higher in the EHD1 knockdown cells than in

  1. Advances of Drug Resistance Marker of Gemcitabine for Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Baorui LIU

    2011-05-01

    Full Text Available With the development of pharmacogenomics and pharmacogenetics, personal therapy based on genes has become one of the most effective ways to enhance chemotherapeutic effect on non-small cell lung cancer (NSCLC patients. Much attention has been paid to validate the predictive biomarkers of chemotherapy in order to guide chemotherapy and enhance effect in general. Gemcitabine is one of the common agents treating NSCLC recently. This review is mainly about the recent reports on potential biomarkers of Gemcitabine in tailored therapy of NSCLC.

  2. Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine

    Science.gov (United States)

    Damkier, Per; Hansen, Lone L; Brøsen, Kim

    1999-01-01

    Aims In vitro studies suggest that the oxidation of quinidine to 3-hydroxyquinidine is a specific marker reaction for CYP3A4 activity. To assess the possible use of this reaction as an in vivo marker of CYP3A4 activity, we studied the involvement of cytochromes CYP2C9, CYP2E1 and CYP3A4 in the in vivo oxidative metabolism of quinidine. Methods An open study of 30 healthy young male volunteers was performed. The pharmacokinetics of a 200 mg single oral dose of quinidine was studied before and during daily administration of 100 mg diclofenac, a CYP2C9 substrate (n=6); 200 mg disulfiram, an inhibitor of CYP2E1 (n=6); 100 mg itraconazole, an inhibitor of CYP3A4 (n=6); 250 ml single strength grapefruit juice twice daily, an inhibitor of CYP3A4 (n=6); 250 mg of erythromycin 4 times daily, an inhibitor of CYP3A4 (n=6). Probes of other enzyme activities, caffeine (CYP1A2), sparteine (CYP2D6), mephenytoin (CYP2C19), tolbutamide (CYP2C9) and cortisol (CYP3A4) were also studied. Results Concomitant administration of diclofenac reduced the partial clearance of quinidine by N-oxidation by 27%, while no effect was found for other pharmacokinetic parameters of quinidine. Concomitant administration of disulfiram did not alter any of the pharmacokinetic parameters of quinidine. Concomitant administration of itraconazole reduced quinidine total clearance, partial clearance by 3-hydroxylation and partial clearance by N-oxidation by 61, 84 and 73%, respectively. The renal clerance was reduced by 60% and the elimination half-life increased by 35%. Concomitant administration of grapefruit juice reduced the total clearance of quinidine and its partial clearance by 3-hydroxylation and N-oxidation by 15, 19 and 27%, respectively. The elimination half-life of quinidine was increased by 19%. The caffeine metabolic index was reduced by 25%. Concomitant administration of erythromycin reduced the total clearance of quinidine and its partial clearance by 3-hydroxylation and N-oxidation by 34, 50

  3. High NOTCH activity induces radiation resistance in non small cell lung cancer

    International Nuclear Information System (INIS)

    Theys, Jan; Yahyanejad, Sanaz; Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2013-01-01

    Background and purpose: Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods: NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results: Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions: We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy

  4. TUCAN/CARDINAL/CARD8 and apoptosis resistance in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Checinska, Agnieszka; Giaccone, Giuseppe; Hoogeland, Bas SJ; Ferreira, Carlos G; Rodriguez, Jose A; Kruyt, Frank AE

    2006-01-01

    Activation of caspase-9 in response to treatment with cytotoxic drugs is inhibited in NSCLC cells, which may contribute to the clinical resistance to chemotherapy shown in this type of tumor. The aim of the present study was to investigate the mechanism of caspase-9 inhibition, with a focus on a possible role of TUCAN as caspase-9 inhibitor and a determinant of chemosensitivity in NSCLC cells. Caspase-9 processing and activation were investigated by Western blot and by measuring the cleavage of the fluorogenic substrate LEHD-AFC. Proteins interaction assays, and RNA interference in combination with cell viability and apoptosis assays were used to investigate the involvement of TUCAN in inhibition of caspase-9 and chemosensitivity NSCLC. Analysis of the components of the caspase-9 activation pathway in a panel of NSCLC and SCLC cells revealed no intrinsic defects. In fact, exogenously added cytochrome c and dATP triggered procaspase-9 cleavage and activation in lung cancer cell lysates, suggesting the presence of an inhibitor. The reported inhibitor of caspase-9, TUCAN, was exclusively expressed in NSCLC cells. However, interactions between TUCAN and procaspase-9 could not be demonstrated by any of the assays used. Furthermore, RNA interference-mediated down-regulation of TUCAN did not restore cisplatin-induced caspase-9 activation or affect cisplatin sensitivity in NSCLC cells. These results indicate that procaspase-9 is functional and can undergo activation and full processing in lung cancer cell extracts in the presence of additional cytochrome c/dATP. However, the inhibitory protein TUCAN does not play a role in inhibition of procaspase-9 and in determining the sensitivity to cisplatin in NSCLC

  5. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  6. Adenocarcinoma of the Lung Acquiring Resistance to Afatinib by Transformation to Small Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Jun Nishimura

    2017-07-01

    Full Text Available A 65-year-old woman visited our hospital due to right chest pain and dyspnea on exertion. Chest radiography revealed decreased permeability of the right lung. Computed tomography demonstrated a huge mass in the right upper lobe and right pleural effusion. Right pleural effusion cytology yielded a diagnosis of adenocarcinoma and was positive for mutation of epidermal growth factor receptor (EGFR; exon 21 L858R. Afatinib was selected for the initial treatment. Multiple tumors regressed remarkably, but then rapidly progressed 3 months later. We performed re-biopsy to detect the mechanism of resistance to afatinib. Histopathology revealed a mixture of small cell carcinoma (SCC and adenocarcinoma harboring same EGFR mutation. To the best of our knowledge, this is the first report of transformation to SCC after treatment with afatinib.

  7. Application of In Vitro Transposon Mutagenesis to Erythromycin Strain Improvement in Saccharopolyspora erythraea.

    Science.gov (United States)

    Weber, J Mark; Reeves, Andrew; Cernota, William H; Wesley, Roy K

    2017-01-01

    Transposon mutagenesis is an invaluable technique in molecular biology for the creation of random mutations that can be easily identified and mapped. However, in the field of microbial strain improvement, transposon mutagenesis has scarcely been used; instead, chemical and physical mutagenic methods have been traditionally favored. Transposons have the advantage of creating single mutations in the genome, making phenotype to genotype assignments less challenging than with traditional mutagens which commonly create multiple mutations in the genome. The site of a transposon mutation can also be readily mapped using DNA sequencing primer sites engineered into the transposon termini. In this chapter an in vitro method for transposon mutagenesis of Saccharopolyspora erythraea is presented. Since in vivo transposon tools are not available for most actinomycetes including S. erythraea, an in vitro method was developed. The in vitro method involves a significant investment in time and effort to create the mutants, but once the mutants are made and screened, a large number of highly relevant mutations of direct interest to erythromycin production can be found.

  8. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion.

    Science.gov (United States)

    Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong

    2015-05-30

    Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Liquid chromatographic and spectrophotometric methods for the determination of erythromycin stearate and trimethoprim in tablets

    Directory of Open Access Journals (Sweden)

    Sonia T. Hassib

    2011-12-01

    Full Text Available Simple, accurate and precise reversed-phase liquid chromatographic (LC and spectrophotometric methods have been developed and validated for the determination of erythromycin stearate (ERS and trimethoprim (TMP in mixture. In LC method, chromatographic separation was achieved on a Symmetry® Waters C18 column (150 × 4.6 mm, 5 μm based on isocratic elution using a mobile phase consisting of potassium dihydrogen phosphate buffer pH (9:acetonitrile:water (25:100:50, v/v/v at a flow rate of 1.6 ml min−1 with UV detection at 210 nm for ERS and 280 nm for TMP. Besides, two spectrophotometric methods were applied after reaction with perchloric acid (12 M which gives a colored product with ERS. Then, the spectral interference between the colored product of ERS and TMP was resolved by either ratio spectra derivative spectrophotometry in the first spectrophotometric method or chemometric techniques, namely classical least-squares (CLS, principal component regression (PCR and partial least-squares regression (PLS in the second spectrophotometric method. The results were statistically compared using one-way analysis of variance (ANOVA. The methods developed were satisfactorily applied to the analysis of the pharmaceutical preparation containing the two drugs and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.

  10. Expression of CD147 in advanced non-small cell lung cancer correlated with cisplatin-based chemotherapy resistance.

    Science.gov (United States)

    Zeng, H Z; Qu, Y Q; Liang, A B; Deng, A M; Zhang, W J; Xiu, B; Wang, H; Wang, H

    2011-01-01

    CD147, a widely expressed cell surface glycoprotein in cancer, is associated with tumor invasiveness and chemotherapy resistance. Recently, CD147 is also regarded as a potential therapeutic target for cancer therapy. The aim of the study was to investigate CD147 expression in non-small cell lung cancer (NSCLC), and evaluate its correlation with cisplatin-based chemotherapy resistance. In this study, we examined immunohistochemically the expression of CD147 in 118 advanced NSCLC cases treated with cisplatin-based chemotherapy, and then the association of CD147 expression with clinicopathological characteristics was analyzed. Furthermore, RNA interference approach was used to silence CD147 expression in a cisplatin-resistant human lung cancer cell line A549/DDP, and the inhibition effect of cisplatin on tumor cells was assayed by MTT. In the overall series, positive CD147 expression was observed in 101/118 (85.6%) cases. A membranous CD147 pattern was identified in 76/101 (75.2%) of CD147 positive tumors. CD147 membranous expression,but not the overall CD147 expression, was associated with poor response to cisplatin-based chemotherapies and a poor prognosis in advanced NSCLC patients. In vitro results showed that silencing CD147 increased the proliferation inhibitory effect of cisplatin to A549/DDP cells. In conclusion, our study indicated that membranous CD147 expression is a predictive factor of the response to cisplatin-based chemotherapies, and the use of CD147-targeted therapeutic adjuvants might be considered in the treatment of advanced NSCLC patients.

  11. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer.

    Science.gov (United States)

    Fernandez, Harvey R; Gadre, Shreyas M; Tan, Mingjun; Graham, Garrett T; Mosaoa, Rami; Ongkeko, Martin S; Kim, Kyu Ah; Riggins, Rebecca B; Parasido, Erika; Petrini, Iacopo; Pacini, Simone; Cheema, Amrita; Varghese, Rency; Ressom, Habtom W; Zhang, Yuwen; Albanese, Christopher; Üren, Aykut; Paige, Mikell; Giaccone, Giuseppe; Avantaggiati, Maria Laura

    2018-04-12

    Therapy resistance represents a clinical challenge for advanced non-small cell lung cancer (NSCLC), which still remains an incurable disease. There is growing evidence that cancer-initiating or cancer stem cells (CSCs) provide a reservoir of slow-growing dormant populations of cells with tumor-initiating and unlimited self-renewal ability that are left behind by conventional therapies reigniting post-therapy relapse and metastatic dissemination. The metabolic pathways required for the expansion of CSCs are incompletely defined, but their understanding will likely open new therapeutic opportunities. We show here that lung CSCs rely upon oxidative phosphorylation for energy production and survival through the activity of the mitochondrial citrate transporter, SLC25A1. We demonstrate that SLC25A1 plays a key role in maintaining the mitochondrial pool of citrate and redox balance in CSCs, whereas its inhibition leads to reactive oxygen species build-up thereby inhibiting the self-renewal capability of CSCs. Moreover, in different patient-derived tumors, resistance to cisplatin or to epidermal growth factor receptor (EGFR) inhibitor treatment is acquired through SLC25A1-mediated implementation of mitochondrial activity and induction of a stemness phenotype. Hence, a newly identified specific SLC25A1 inhibitor is synthetic lethal with cisplatin or with EGFR inhibitor co-treatment and restores antitumor responses to these agents in vitro and in animal models. These data have potential clinical implications in that they unravel a metabolic vulnerability of drug-resistant lung CSCs, identify a novel SLC25A1 inhibitor and, lastly, provide the first line of evidence that drugs, which block SLC25A1 activity, when employed in combination with selected conventional antitumor agents, lead to a therapeutic benefit.

  12. Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H)

    Energy Technology Data Exchange (ETDEWEB)

    Capobianco, J.O.; Goldman, R.C. (Abbott Laboratories, IL (USA))

    1990-09-01

    The effect of collapsing the electrochemical proton gradient (delta mu H) on ({sup 3}H)erythromycin and ({sup 14}C)azithromycin transport in Haemophilus influenzae ATCC 19418 was studied. The proton gradient and membrane potential were determined from the distribution of (2-{sup 14}C)dimethadione and rubidium-86, respectively. delta mu H was reduced from 124 to 3 mV in EDTA-valinomycin-treated cells at 22{degrees}C with 150 mM KCl and 0.1 mM carbonyl cyanide m-chlorophenylhydrazone. During the collapse of delta mu H, macrolide uptake increased. Erythromycin efflux studies strongly suggested that this increase was not due to an energy-dependent efflux pump but was likely due to increased outer membrane permeability. These data indicated that macrolide entry was not a delta mu H-driven active transport process but rather a passive diffusion process.

  13. Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting

    Science.gov (United States)

    Söylemez, Meshude Akbulut; Barsbay, Murat; Güven, Olgun

    2018-01-01

    Radiation-induced RAFT polymerization technique was applied to synthesize well-defined molecularly imprinted polymers (MIPs) of erythromycin (ERY). Methacrylic acid (MAA) was grafted onto porous polyethylene (PE)/polypropylene (PP) nonwoven fabrics, under γ-irradiation by employing 2-pheny-2-propyl benzodithioate as the RAFT agent and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. MAA/erythromycin ratios of 2/1, 4/1, 6/1 were tested to optimize the synthesis of MIPs. The highest binding capacity was encountered at a MAA/ERY ratio of 4/1. Non-imprinted polymers (NIPs) were also synthesized in the absence of ERY. The MIPs synthesized by RAFT method presented a better binding capacity compared to those prepared by conventional method where no RAFT agent was employed.

  14. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    Science.gov (United States)

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Semi-automated preparation of a 11C-labelled antibiotic - [N-methyl-11C]erythromycin A lactobionate

    International Nuclear Information System (INIS)

    Pike, V.W.; Palmer, A.J.; Horlock, P.L.; Liss, R.H.

    1984-01-01

    A fast semi-automated method is described for labelling the antibiotic, erythromycin A (1), with the short-lived positron-emitting radionuclide, 11 C(tsub(1/2)=20.4 min), in order to permit the non-invasive study of its tissue uptake in vivo. Labelling was achieved by the fast reductive methylation of N-demethylerythromycin A (2) with [ 11 C]formaldehyde, itself prepared from cyclotron-produced [ 11 C]-carbon dioxide. Rapid chemical and radiochemical purification of the [N-methyl- 11 C]erythromycin A (3) were achieved by HPLC and verified by TLC with autoradiography. The purified material was formulated for human i.v. injection as a sterile apyrogenic solution of the lactobionate salt. The preparation takes 42 min from the end of radionuclide production and from [ 11 C]carbon dioxide produces [N-methyl- 11 C]erythromycin A lactobionate in 4-12% radiochemical yield, corrected for radioactive decay. (author)

  16. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules.

    Science.gov (United States)

    Masoodi, Khalid Z; Xu, Yadong; Dar, Javid A; Eisermann, Kurtis; Pascal, Laura E; Parrinello, Erica; Ai, Junkui; Johnston, Paul A; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Investigation of plasmid DNA and antibiotic resistance in some ...

    African Journals Online (AJOL)

    Twenty-eight strains of Salmonella, Pseudomonas, and Escherichia coli isolated from cultures of stool, urine and wound were tested for their susceptibility to various antimicrobial agents. All the strains were resistant to erythromycin and tetracycline. Nineteen Salmonella isolates were susceptible to chloramphenicol and ...

  18. Quantitative proteomics as a tool to identify resistance mechanisms in erlotinib-resistant subclones of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine

    , which in 43-50% of cases are caused by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained (Lin & Bivona, 2012). Our aim is to identify novel resistance mechanisms – and potentially new drug targets - in erlotinib-resistant subclones of the NSCLC cell...... of erlotinib, and in biological triplicates on a Q-Exactive mass spectrometer. Only proteins identified with minimum 2 unique peptides and in minimum 2 of 3 replicates were accepted. Results: Importantly, the resistant clones did not acquire the T790M or other EGFR or KRAS mutations, potentiating...... the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones compared to the parental cell line. By network analysis, we...

  19. Wastage-resistant characteristics of 12Cr steel tube material. Small leak sodium-water reaction test

    International Nuclear Information System (INIS)

    Shimoyama, Kazuhito

    2004-03-01

    In the water leak accident of a steam generator designed for a sodium cooled reactor in the Feasibility Study, the localization of tube failure propagation by using an advanced water leak detector will be required from the viewpoints of the safety and economical efficiency of the plant. So far, the conventional knowledge and analytical tools have been used in the investigation and evaluation of water leak phenomenon; nevertheless, there was neither test data nor the study of quantitative evaluation on the corrosion behavior, so-called wastage-resistant characteristics, of 12Cr steel tube material in sodium-water reactions. Wastage tests for the 12Cr steel tube material were conducted in small water leaks by use of the Sodium-Water Reaction Test Rig (SWAT-1R), and the data of wastage rate were obtained in the parameter of water leak rate under the constant sodium temperature and distance between leak and target tubes. The test results lead to the following conclusions: (1) The wastage-resistibility of 12Cr steel is 1.6 times greater than that of 9Cr steel and is 2.7 times greater than that of 2.25Cr-1Mo steel. (2)The wastage-resistibility of 12Cr steel increases in smaller water leaks; especially in water leak rates of 1 g/sec or less, it is more excellent than that of SUS321 stainless steel used as Monju superheater tube material. (3) Based on the correlation of wastage rate for the 9Cr steel, the correlation for the 12Cr steel has been obtained to be used for the evaluation of tube failure propagation. As the correlation of wastage rate for the 12Cr steel is based on the correlation for the 9Cr steel, it gives enough conservatism in smaller water leaks. To serve in accurately evaluating the tube failure propagation in smaller water leaks, it is necessary to obtain new correlation of wastage rate for the 12Cr steel based on the data in the wide range of water leak rates. (author)

  20. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    (Marinho et al., 2013. Erythromycin and tetracycline are widely used in human therapy, and this may have contributed to the increasing resistance to these antibiotics (Hummel et al., 2007, Barros et al., 2011. It also highlights the lack of antibiotic efficiency in medicine, doing with resistance dissemination. Also, several genes associated with antimicrobial resistance were already found in antimicrobial-resistant enterococci from echinoderms: tet(M/tet(L, erm(A/erm(B, vat(D/vat(E, aac(6’-aph(2'' and aph(3'-IIIa genes were detected in tetracycline, erythromycin, quinupristin-dalfopristin, gentamicin and kanamycin-resistant isolates, respectively (Marinho et al., 2013. Despite of the small number of Escherichia coli isolates from echinoderms samples, they displayed an antibiotic-resistant phenotype to: tetracycline, streptomycin, tobramycin and amoxicillin + clavulanic acid. E. coli isolates from echinoderms tetracycline-resistant had tet(A and tet(B genes present in their genome. Besides, the aadA gene was detected in all E. coli streptomycin-resistant strains isolated from echinoderms (Marinho et al., 2013. According to some results, enterococci and E. coli displaying phenotype and resistance genes to some antibiotics that were already documented in marine animals, humans, wastewaters and numerous wildlife animals (Marinho et al., 2013, Barros et al., 2011, Sousa et al., 2011, Foti et al., 2009. Echinoderms are coastal animals and, consequently, it is possible that sewage discharges at the ocean may represent the main source of antibiotic-resistant bacteria deriving from several habitats. Indirect effects in micro-systems from the antibiotic disturbance are largely unknown; however, it is expected that such disorder might have significant long-term effects on the rate and stability of the ecosystem. Nevertheless, the consumption of exotic food is an example of a potential pathway for human contact with marine echinoderms microbiota, which may contain antibiotic-resistant

  1. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Bromhaar Mechteld

    2008-05-01

    Full Text Available Abstract Background Obesity and insulin resistance are two major risk factors underlying the metabolic syndrome. The development of these metabolic disorders is frequently studied, but mainly in liver, skeletal muscle, and adipose tissue. To gain more insight in the role of the small intestine in development of obesity and insulin resistance, dietary fat-induced differential gene expression was determined along the longitudinal axis of small intestines of C57BL/6J mice. Methods Male C57BL/6J mice were fed a low-fat or a high-fat diet that mimicked the fatty acid composition of a Western-style human diet. After 2, 4 and 8 weeks of diet intervention small intestines were isolated and divided in three equal parts. Differential gene expression was determined in mucosal scrapings using Mouse genome 430 2.0 arrays. Results The high-fat diet significantly increased body weight and decreased oral glucose tolerance, indicating insulin resistance. Microarray analysis showed that dietary fat had the most pronounced effect on differential gene expression in the middle part of the small intestine. By overrepresentation analysis we found that the most modulated biological processes on a high-fat diet were related to lipid metabolism, cell cycle and inflammation. Our results further indicated that the nuclear receptors Ppars, Lxrs and Fxr play an important regulatory role in the response of the small intestine to the high-fat diet. Next to these more local dietary fat effects, a secretome analysis revealed differential gene expression of secreted proteins, such as Il18, Fgf15, Mif, Igfbp3 and Angptl4. Finally, we linked the fat-induced molecular changes in the small intestine to development of obesity and insulin resistance. Conclusion During dietary fat-induced development of obesity and insulin resistance, we found substantial changes in gene expression in the small intestine, indicating modulations of biological processes, especially related to lipid

  2. Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase.

    Science.gov (United States)

    Alonso, C A; González-Barrio, D; Tenorio, Carmen; Ruiz-Fons, F; Torres, C

    2016-04-01

    Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16-blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Jason T Fong

    Full Text Available The use of tyrosine kinase inhibitors (TKIs against EGFR/c-Met in non-small cell lung cancer (NSCLC has been shown to be effective in increasing patient progression free survival (PFS, but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4-5 and 11-22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2-4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39% by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.

  4. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  5. Histological assessment of gills and liver of Oncorhynchus mykiss exposed to sublethal concentrations of the antibiotic erythromycin

    Directory of Open Access Journals (Sweden)

    Sara Rodrigues

    2015-12-01

    Full Text Available The ever-increasing presence of therapeutic drugs in the aquatic environment has been systematically reported during the past years. Among these substances, antibiotics are particularly important because they are widely used in medical and veterinary practice, livestock production and aquaculture. Erythromycin (ERY is a macrolide antibiotic, which is widely used in human therapeutics, but also in aquaculture practices. ERY was already detected in surface waters, in levels between several 19.2 ng/L to 1 μg/L. Therefore, it is necessary to characterize its potential ecotoxicological effects, including tissue modifications in target and non-target species. Histological assessment of different tissues of exposed fish are useful tools for ecotoxicological studies, helping to establish causal relationships between contaminant exposure and several biological responses. This study assessed the acute and chronic histopathological effects of erythromycin in Oncorhynchus mykiss. Gills and liver of rainbow trout were examined histologically after acute (0.001, 0.010, 0.100, 1.000 and 10.00 mg/L and chronic (0.05, 0.10, 0.20, 0.40 and 0.80 µg/L exposures. A qualitative and semi-qualitative evaluation of both tissues was performed, and also a quantitative evaluation of various lamellar structures (morphometric measurements and PAGE index (proportion of the secondary lamellae available for gas exchange. In both exposures, proliferative and degenerative alterations were the most predominant changes in gills. Organisms exposed to the highest concentrations of erythromycin had significant higher gill pathological indices in both acute and chronic experiments. Significant alterations in morphometric measurements and a decrease in the PAGE index were also observed. O. mykiss exposed to ERY had slightly higher levels of degenerative and circulatory alterations in liver. The liver pathological index increased significantly with higher concentrations for both

  6. Resistance mechanisms to erlotinib in the non-small cell lung cancer cell line, HCC827 examined by RNA-seq

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Alcaraz, Nicolas; Ditzel, Henrik

    (Illumina) prior to sequencing on an Illumina HiSeq platform (100bp paired end). The resistant subclones were examined both in presence and absence of erlotinib. The data was analyzed by an in-house developed pipeline including quality control by Trim Galore v0.3.3, mapping of reads to HG19 by TopHat2 v.2......Background: Erlotinib, an EGFR selective reversible inhibitor, has dramatically changed the treatment of non-small cell lung cancer (NSCLC) as approximately 70% of patients show significant tumor regression upon treatment. However, all patients eventually relapse due to development of acquired...... - in erlotinib-resistant subclones of the NSCLC cell line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20, 30 µM erlotinib, respectively), and prepared cDNA libraries of purified RNA from biological duplicates using TruSeq® Stranded Total RNA Ribo-Zero™ Gold...

  7. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    Science.gov (United States)

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  8. Validation of the digital PCR system in tyrosine kinase inhibitor-resistant EGFR mutant non-small-cell lung cancer.

    Science.gov (United States)

    Masago, Katsuhiro; Fujita, Shiro; Hata, Akito; Okuda, Chiyuki; Yoshizumi, Yuko; Kaji, Reiko; Katakami, Nobuyuki; Hirata, Yukio; Yatabe, Yasushi

    2018-03-01

    The aim of this study was to compare the accuracy of the QuantStudio 3D Digital polymerase chain reaction (dPCR) system and a PCR-based next generation sequencing (NGS) system for detecting a secondary mutation in the epidermal growth factor receptor (EGFR) gene T790M in non-small cell lung cancer (NSCLC) patients previously diagnosed with EGFR-activating mutations. Twenty-five patients with NSCLC previously treated with EGFR-TKIs were examined. The patients were treated daily with either erlotinib or gefitinib. New biopsies, followed by DNA sequencing on an Ion Torrent systems using the Ion Torrent AmpliSeq Cancer Hotspot Panel and dPCR were performed. A comparison of NGS, sensitive PCR, and dPCR revealed that the sensitivities of NGS and dPCR were similar in this study. As well, T790M was detected in as low as about 5% of mutant allelic frequencies, which represented 5% of the total reads on site mapped reads in NGS and greater than 5% of the dPCR reads, which represented mutant and wild type copies. The strategy in which NGS sequencing is followed by revealed acquired mutation with dPCR may be a reasonable one. We demonstrated the utility of combining NGS and dPCR as a tool for monitoring T790M. NGS and dPCR with formalin-fixed paraffin-embedded (FFPE) specimens might become a standard genomic test for exploring acquired resistance to targeted molecular medicines. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  9. Campylobacter coli in Organic and Conventional Pig Production in France and Sweden: Prevalence and Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Isabelle Kempf

    2017-05-01

    Full Text Available The purpose of the study was to evaluate and compare the prevalence and antimicrobial resistance of Campylobacter coli in conventional and organic pigs from France and Sweden. Fecal or colon samples were collected at farms or at slaughterhouses and cultured for Campylobacter. The minimum inhibitory concentrations of ciprofloxacin, nalidixic acid, streptomycin, tetracycline, erythromycin, and gentamicin were determined by microdilution for a total of 263 French strains from 114 pigs from 50 different farms and 82 Swedish strains from 144 pigs from 54 different farms. Erythromycin resistant isolates were examined for presence of the emerging rRNA methylase erm(B gene. The study showed that within the colon samples obtained in each country there was no significant difference in prevalence of Campylobacter between pigs in organic and conventional productions [France: conventional: 43/58 (74%; organic: 43/56 (77% and Sweden: conventional: 24/36 (67%; organic: 20/36 (56%]. In France, but not in Sweden, significant differences of percentages of resistant isolates were associated with production type (tetracycline, erythromycin and the number of resistances was significantly higher for isolates from conventional pigs. In Sweden, the number of resistances of fecal isolates was significantly higher compared to colon isolates. The erm(B gene was not detected in the 87 erythromycin resistant strains tested.

  10. Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs.

    Science.gov (United States)

    Álvarez-Pérez, S; Blanco, J L; Peláez, T; Lanzarot, M P; Harmanus, C; Kuijper, E; García, M E

    2015-03-01

    To longitudinally assess the shedding of antimicrobial resistant Clostridium difficile strains by clinically healthy dogs raised at breeding facilities. 18 puppies from three different litters (#1, 2 and 3) were sampled weekly from parturition to day 20-55 postpartum. Faecal samples from the mothers of litters #2 and 3 were also available for analysis. Bacterial isolates were ribotyped, tested for in vitro antimicrobial susceptibility and further characterised. C. difficile was recovered from all sampled animals of litters #1 and 2, and a third of puppies from litter #3, but marked differences in C. difficile recovery were detected in different age groups (0-100%). Recovered PCR ribotypes included 056 (22 isolates), 010 (6 isolates), 078 and 213 (2 isolates each), and 009 and 020 (1 isolate each). Different ribotypes were shed by four individual animals. Regardless of their origin and ribotype, all isolates demonstrated full resistance to levofloxacin. Additionally, all but one isolate (belonging to ribotype 078) were resistant to ertapenem, and all ribotype 010 isolates displayed high-level resistance to clindamycin, clarithromycin and erythromycin. A single ribotype 078 isolate showed metronidazole heteroresistance. Healthy dogs can shed antimicrobial-resistant C. difficile strains. © 2014 British Small Animal Veterinary Association.

  11. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  12. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew; Chhabra, Gagan; Foster, Brad [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States); Webb, Brian [Thermo Fisher Scientific, Rockford, Illinois (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States)

    2016-09-02

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) in the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.

  13. Discovery of 2',4'-dimethoxychalcone as a Hsp90 inhibitor and its effect on iressa-resistant non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Seo, Young Ho

    2015-10-01

    Heat shock protein 90 (Hsp90) is a ATP dependent molecular chaperone and has emerged as an attractive therapeutic target in the war on cancer due to its role in regulating maturation and stabilization of numerous oncogenic proteins. In this study, we discovered that 2',4'-dimethoxychalcone (1b) disrupted Hsp90 chaperoning function and inhibited the growth of iressa-resistant non-small cell lung cancer (NSCLC, H1975). The result suggested that 2',4'-dimethoxychalcone (1b) could serve as a potential therapeutic lead to circumvent the drug resistance acquired by EGFR mutation and Met amplification.

  14. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal.

    Science.gov (United States)

    Marrotte, R R; Gonzalez, A; Millien, V

    2014-08-01

    We evaluated the effect of habitat and landscape characteristics on the population genetic structure of the white-footed mouse. We develop a new approach that uses numerical optimization to define a model that combines site differences and landscape resistance to explain the genetic differentiation between mouse populations inhabiting forest patches in southern Québec. We used ecological distance computed from resistance surfaces with Circuitscape to infer the effect of the landscape matrix on gene flow. We calculated site differences using a site index of habitat characteristics. A model that combined site differences and resistance distances explained a high proportion of the variance in genetic differentiation and outperformed models that used geographical distance alone. Urban and agriculture-related land uses were, respectively, the most and the least resistant landscape features influencing gene flow. Our method detected the effect of rivers and highways as highly resistant linear barriers. The density of grass and shrubs on the ground best explained the variation in the site index of habitat characteristics. Our model indicates that movement of white-footed mouse in this region is constrained along routes of low resistance. Our approach can generate models that may improve predictions of future northward range expansion of this small mammal. © 2014 John Wiley & Sons Ltd.

  15. Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Fang, Bingliang; Mohan, Radhe; Chang, Joe Y.

    2012-01-01

    Background: Treatment resistance resulting from the presence of cancer stem cells (CSCs) remains a challenge in cancer treatment. Little is known about possible markers of CSCs in treatment-resistant non-small cell lung cancer (NSCLC). We explored the coxsackie-adenovirus receptor (CAR) as one such marker of CSCs in models of treatment-resistant NSCLC. Materials and methods: Resistant H460 and A549 cell lines were established by repeated exposure to paclitaxel or fractionated radiation. CSC markers were measured by Western blotting and flow cytometry. We also established stable CAR-overexpressing and stable shRNA-CAR-knockdown cell lines and assessed their survival, invasiveness, and tumorigenic capabilities with clonogenic, telomerase, Matrigel, and tumor formation assays. Results: CAR expression was associated with CSC phenotype both in vitro and in vivo. CAR-overexpressing cells were more treatment-resistant, self-renewing, and tumorigenic than were parental cells, and shRNA-mediated knockdown of CAR expression was sufficient to inhibit these functions. CAR expression also correlated with the epithelial–mesenchymal transition. Conclusions: We showed for the first time that CAR is a marker of CSCs and may affect the activities of CSCs in treatment-resistant NSCLC. CAR may prove to be a target for CSC treatment and a predictor of treatment response in patients with NSCLC.

  16. Antimicrobial drug resistance in Staphylococcus aureus isolated from cattle in Brazil.

    Science.gov (United States)

    Pereira, M S; Siqueira-Júnior, J P

    1995-06-01

    Isolates of Staphylococcus aureus obtained from apparently healthy cattle in the State of Paraiba, Brazil were characterized in relation to resistance to 21 antimicrobial agents. Among the 46 isolates obtained, resistance to penicillin was most frequent, followed by resistance to cadmium, streptomycin, arsenate, tetracycline, mercury, erythromycin and kanamycin/neomycin. All isolates were susceptible to fusidic acid, ethidium bromide, cetrimide, chloramphenicol, benzalkonium chloride, doxycycline, gentamicin, methicillin, minocycline, novobiocin, rifamycin, tylosin and vancomycin. Only six isolates were susceptible to all the drugs tested. With respect to the antibiotics, multi-resistant isolates were uncommon. These results are probably a consequence of the peculiarities of local drug usage pressures. In relation to metal ions, resistance to mercury was rare while resistance to arsenate was relatively frequent, which contrasts with the situation for human Staph. aureus strains. After treatment with ethidium bromide, elimination of resistance to penicillin, tetracycline, streptomycin, erythromycin and cadmium was observed, which was consistent with the genetic determinants being plasmid-borne.

  17. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    Science.gov (United States)

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Mulder, Nanno; de Vries, Liesbeth

    1991-01-01

    Cells exhibiting decreased topoisomerase II (Topo II) activity are resistant to several drugs that require Topo II as an intermediate. These drugs are cytotoxic due to the formation of a cleavable complex between the drug, Topo II and DNA. Fostriecin belongs to a new class of drugs that inhibit Topo

  19. Comparison of the effect of a single dose of erythromycin with pantoprazole on gastric content volume and acidity in elective general surgery patients

    Science.gov (United States)

    Bhatia, Nidhi; Palta, Sanjeev; Arora, Kanika

    2011-01-01

    Introduction: Pulmonary aspiration of gastric contents remains one of the most feared complications of anesthesia. A gastric pH of 2.5 or less and a volume of 25 ml (0.4 ml/kg body weight) or more in average adult patients are considered critical factors for the development of pulmonary damage in adults. Materials and Methods: This study compared the efficacy of a single oral dose of erythromycin (a macrolide antibiotic) with oral pantoprazole (a proton pump inhibitor) on pre-operative gastric fluid volume and pH in a prospective, randomized, double-blind controlled fashion in 80 adult patients (of ASA physical status I and II) planned for elective surgery under general anesthesia. Patients were divided into two groups of 40 patients each. The pantoprazole group (Group I) received oral pantoprazole 40 mg and the erythromycin group (Group II) received oral erythromycin 250 mg at least 1 h prior to the induction of anesthesia. After tracheal intubation, gastric fluid was aspirated via a Salem Sump tube and its volume and pH were measured. Results: Although both erythromycin and pantoprazole decreased the gastric fluid volume to a similar extent, the decrease in gastric fluid acidity by pantoprazole was significantly greater than that by erythromycin. The proportion of patients at risk of pulmonary aspiration according to traditional criteria, i.e. pH ≤2.5 and volume ≥25ml, was lower in the pantoprazole group. Conclusion: Administration of pantoprazole was found to be more useful than a sub-therapeutic dose of erythromycin in decreasing both volume and acidity of gastric content. PMID:21772679

  20. Comparison of the effect of a single dose of erythromycin with pantoprazole on gastric content volume and acidity in elective general surgery patients

    Directory of Open Access Journals (Sweden)

    Nidhi Bhatia

    2011-01-01

    Full Text Available Introduction: Pulmonary aspiration of gastric contents remains one of the most feared complications of anesthesia. A gastric pH of 2.5 or less and a volume of 25 ml (0.4 ml/kg body weight or more in average adult patients are considered critical factors for the development of pulmonary damage in adults. Materials and Methods: This study compared the efficacy of a single oral dose of erythromycin (a macrolide antibiotic with oral pantoprazole (a proton pump inhibitor on pre-operative gastric fluid volume and pH in a prospective, randomized, double-blind controlled fashion in 80 adult patients (of ASA physical status I and II planned for elective surgery under general anesthesia. Patients were divided into two groups of 40 patients each. The pantoprazole group (Group I received oral pantoprazole 40 mg and the erythromycin group (Group II received oral erythromycin 250 mg at least 1 h prior to the induction of anesthesia. After tracheal intubation, gastric fluid was aspirated via a Salem Sump tube and its volume and pH were measured. Results: Although both erythromycin and pantoprazole decreased the gastric fluid volume to a similar extent, the decrease in gastric fluid acidity by pantoprazole was significantly greater than that by erythromycin. The proportion of patients at risk of pulmonary aspiration according to traditional criteria, i.e. pH ≤2.5 and volume ≥25ml, was lower in the pantoprazole group. Conclusion: Administration of pantoprazole was found to be more useful than a sub-therapeutic dose of erythromycin in decreasing both volume and acidity of gastric content.

  1. Absence of transient elevated uv resistance during germination of Bacillus subtilis spores lacking small, acid-soluble spore proteins α and β

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Dormant spores of various Bacillus species are much more resistant to UV irradiation than are the corresponding vegetative cells. This elevated spore UV resistance appears to have two causes. First, UV irradiation of spores does not produce the pyrimidine dimers formed in vegetative-cell DNA, but rather produces several other photoproducts, the most predominant of which is termed the spore photoproduct, a 5-thyminyl-5,6-dihydrothymine adduct (1, 10). Second, spores have at least two mechanisms which efficiently repair this spore photoproduct during spore germination, including one which monomerizes the adduct back to two thymines. This study shows that germinating spores of bacillus subtilis mutants which lack small, acid-soluble spore proteins α and β did not exhibit the transient elevated UV resistance seen during germination of wild-type spores

  2. Distribution and characterization of methicillin-resistant Staphylococcus aureus (MRSA) at the small animal hospital, faculty of veterinary medicine, Chiang Mai University, Thailand.

    Science.gov (United States)

    Patchanee, Prapas; Tadee, Pakpoom; Ingkaninan, Pimlada; Tankaew, Pallop; Hoet, Armando E; Chupia, Vena

    2014-03-01

    Of 416 samples taken from veterinary staff (n = 30), dogs (n = 356) and various environmental sites (n = 30) at the Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Thailand, 13 samples contained methicillin-resistant Staphylococcus aureus (MRSA), of which 1 (SCCmec type II) came from veterinarian, 9 (SCCmec types I, III, IVa, V and untypeable) from dogs, and 3 (SCCmec types I, III, and IVb) from environmental samples. The MRSA isolates were 100% susceptible to vancomycin (100%), 69% to cephazolin and 62% to gentamicin, but were up to 92% resistant to tetracycline group, 69% to trimethoprim-sulfamethoxazoles and 62% to ceftriaxone. In addition, all MRSA isolates showed multidrug resistance. As the MRSA isolates from the veterinary staff and dogs were of different SCCmec types, this suggests there were no cross-infections. However, environmental contamination appears to have come from dogs, and appropriate hygienic practices should be introduced to solve this problem.

  3. Identification and characterization of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus pettenkoferi from a small animal clinic.

    Science.gov (United States)

    Weiss, Sonja; Kadlec, Kristina; Fessler, Andrea T; Schwarz, Stefan

    2013-12-27

    The aim of this study was to isolate and characterize methicillin-resistant staphylococci (MRS) in a small animal clinic and to investigate their distribution and possible transmission. Swabs (n=72) were taken from hospitalized pets, the environment and employees of a small animal clinic and screened for the presence of MRS. The staphylococcal species was confirmed biochemically or by 16S rDNA sequencing. Susceptibility to antimicrobial agents was tested by broth dilution. The presence of mecA and other resistance genes was confirmed by PCR. Molecular typing of the isolates followed standard procedures. In total, 34 MRS belonging to the four species Staphylococcus aureus (n=5), Staphylococcus epidermidis (n=21), Staphylococcus haemolyticus (n=6) or Staphylococcus pettenkoferi (n=2) were isolated. All isolates were multidrug-resistant with resistance to at least three classes of antimicrobial agents. Among the five methicillin-resistant S. aureus (MRSA) isolates, four belonged to the clonal complex CC398; two of them were isolated from cats, the remaining two from pet cages. Overall, the MRS isolates differed in their characteristics, except for one S. epidermidis clone (n=9) isolated from hospitalized cats without clinical staphylococcal infections, pet cages, the clinic environment as well as from a healthy employee. This MRSE clone was resistant to 10 classes of antimicrobial agents, including aminocyclitols, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols, pleuromutilins, sulfonamides, tetracyclines and trimethoprim. These findings suggest a possible transmission of specific MRS isolates between animal patients, employees and the clinic environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Krüppel-like factor 4 promotes c-Met amplification-mediated gefitinib resistance in non-small-cell lung cancer.

    Science.gov (United States)

    Feng, Wei; Xie, Qianyi; Liu, Suo; Ji, Ying; Li, Chunyun; Wang, Chunle; Jin, Longyu

    2018-06-01

    Gefitinib has been widely used in the first-line treatment of advanced EGFR-mutated non-small-cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9-14 months of treatment. This study revealed that Krüppel-like factor 4 (KLF4) contributes to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells. We observed that KLF4 was overexpressed in c-Met-overexpressing NSCLC cells and tissues. Knockdown of KLF4 increased tumorigenic properties in gefitinib-resistant NSCLC cell lines without c-Met overexpression, but it reduced tumorigenic properties and increased gefitinib sensitivity in gefitinib-resistant NSCLC cells with c-Met overexpression, whereas overexpression of KLF4 reduced gefitinib sensitivity in gefitinib-sensitive NSCLC cells. Furthermore, Western blot analysis revealed that KLF4 contributed to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells by inhibiting the expression of apoptosis-related proteins under gefitinib treatment and activating the c-Met/Akt signaling pathway by decreasing the inhibition of β-catenin on phosphorylation of c-Met to prevent blockade by gefitinib. In summary, this study's results suggest that KLF4 is a promising candidate molecular target for both prevention and therapy of NSCLC with c-Met overexpression. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIα expression

    International Nuclear Information System (INIS)

    Henness, Sheridan; Davey, Mary W.; Harvie, Rozelle M.; Davey, Ross A.

    2002-01-01

    Purpose: After standard treatment with chemotherapy and radiotherapy, small-cell lung cancer (SCLC) often develops resistance to both treatments. Our aims were to establish if fractionated radiation treatment alone would induce radiation and drug resistance in the H69 SCLC cell line, and to determine the mechanisms of resistance. Methods and Materials: H69 SCLC cells were treated with fractionated X-rays to an accumulated dose of 37.5 Gy over 8 months to produce the H69/R38 subline. Drug and radiation resistance was determined using the MTT (3,-4,5 dimethylthiazol-2,5 diphenyltetrazolium bromide) cell viability assay. Protein expression was analyzed by Western blot. Results: The H69/R38 subline was resistant to radiation (2.0 ± 0.2-fold, p<0.0001), cisplatin (14 ± 7-fold, p < 0.001), daunorubicin (6 ± 3-fold, p<0.05), and navelbine (1.7 ± 0.15-fold, p<0.02). This was associated with increased expression of the multidrug resistance-associated proteins, MRP1 and MRP2, and topoisomerase IIα and decreased expression of glutathione-S-transferase π (GSTπ) and bcl-2 and decreased cisplatin accumulation. Treatment with 4 Gy of X-rays produced a 66% decrease in MRP2 in the H69 cells with no change in the H69/R38 cells. This treatment also caused a 5-fold increase in topoisomerase IIα in the H69/R38 cells compared with a 1.5-fold increase in the H69 cells. Conclusions: Fractionated radiation alone can lead to the development of stable radiation and drug resistance and an altered response to radiation in SCLC cells

  6. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  7. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles.

    Science.gov (United States)

    Nascimento, Ana Vanessa; Singh, Amit; Bousbaa, Hassan; Ferreira, Domingos; Sarmento, Bruno; Amiji, Mansoor M

    2017-01-01

    Efficiency of chemotherapy is often limited by low therapeutic index of the drug as well as emergence of inherent and acquired drug resistance in cancer cells. As a common strategy to overcome drug resistance, higher doses of chemo-agents are administered. However, adverse side effects are usually increased as a consequence. A potentially effective approach is to combine chemotherapy with other therapeutic strategies such as small interfering RNAs (siRNAs) that allow the use of lower yet efficient doses of the anticancer drugs. We previously developed epidermal growth factor receptor (EGFR)-targeted chitosan (CS) nanoparticles as a versatile delivery system for silencing the essential mitotic checkpoint gene Mad2, and induce cell death. Here, we tested this system as a single therapy and in combination with cisplatin in cisplatin sensitive and resistant lung cancer models, and characterized its in vivo efficacy and safety. Combination treatment resulted in significant improvement in tumor inhibition that was strikingly more effective in cisplatin-resistant tumors. Importantly, effective cisplatin dosage was dramatically reduced in the co-therapy regimen resulting in negligible toxic effects from the drug as confirmed by parameters such as body weight gain, biochemical markers of hepatic and renal function, and histopathology of liver/kidney/spleen tissues. Overall, we demonstrate that the combination of Mad2 siRNA-loaded CS nanoparticles strategy with chemotherapeutic agents such as cisplatin constitutes an efficient and safe approach for the treatment of drug resistant tumors. Lung cancer remains one of the leading killers in the United States and around the world. Platinum agents, including cisplatin, are the first line treatment in lung cancer, including non-small cell lung cancer (NSCLC), which is the predominant form of lung cancer. In this study, we have evaluated Mad2 cell-cycle checkpoint gene silencing using small interfering RNA (siRNA) delivered

  8. Retail ready-to-eat food as a potential vehicle for Staphylococcus spp. harboring antibiotic resistance genes.

    Science.gov (United States)

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Laniewska-Trokenheim, Lucja

    2014-06-01

    Ready-to-eat (RTE) food, which does not need thermal processing before consumption, could be a vehicle for the spread of antibiotic-resistant microorganisms. As part of general microbiological safety checks, staphylococci are routinely enumerated in these kinds of foods. However, the presence of antibiotic-resistant staphylococci in RTE food is not routinely investigated, and data are only available from a small number of studies. The present study evaluated the pheno- and genotypical antimicrobial resistance profile of Staphylococcus spp. isolated from 858 RTE foods (cheeses, cured meats, sausages, smoked fishes, salads). Of 113 strains isolated, S. aureus was the most prevalent species, followed by S. xylosus, S. saprophyticus, and S. epidermidis. More than half (54.9%) of the isolates were resistant to at least one class of tested antibiotic; of these, 35.4% of the strains were classified as multidrug resistant. Most of the isolates were resistant to cefoxitin (49.6%), followed by clindamycin (39.3%), tigecycline (27.4%), quinupristin-dalfopristin (22.2%), rifampin (20.5%), tetracycline (17.9%), and erythromycin (8.5%). All methicillin-resistant staphylococci harbored the mecA gene. Among the isolates resistant to at least one antibiotic, 38 harbored tetracycline resistance determinant tet (M), 24 harbored tet (L), and 9 harbored tet (K). Of the isolates positive for tet (M) genes, 34.2% were positive for the Tn916-Tn1545-like integrase family gene. Our results indicated that retail RTE food could be considered an important route for the transmission of antibiotic-resistant bacteria harboring multiple antibiotic resistance genes.

  9. Managing anthelmintic resistance in small ruminant livestock of resource-poor farmers in South Africa : review article

    Directory of Open Access Journals (Sweden)

    A.F. Vatta

    2006-06-01

    Full Text Available Gastrointestinal parasitism is one of the most important disease complexes of sheep and goats impacting on the resource-poor livestock farmer. Of the responsible nematodes, Haemonchus contortus, a blood-sucking worm of the abomasum, poses possibly the greatest threat. Over the past several decades, the worm has been controlled through the use of anthelmintics, but the emergence of anthelmintic resistance has threatened this chemotherapeutic approach. In Africa, the overall prevalence of anthelmintic resistance has not been extensively investigated, particularly within the resource-poor farming sector, but resistance has been reported from at least 14 countries with most of the reports emanating from Kenya and South Africa and the majority concerning H. contortus. While levels of resistance under commercial sheep farming systems in South Africa is considered to be amongst the worst in the world, resistance has also been reported from the resource-poor farming sector. Increases in productivity and reproduction of livestock and the development of markets for sale of animals are seen by international funding bodies as a way out of poverty for communities that keep livestock. This must lead to the greater need for parasite control. At such times, the risk of levels of anthelmintic resistance escalating is much greater and there is therefore a need to look at alternatives to their use. Proposed strategies include the appropriate, but judicious use of anthelmintics by application of the FAMACHA(c system and the use of alternatives to anthelmintics such as strategic nutrient supplementation. It is also very clear that there is a strong demand for knowledge about animal diseases, including helminthosis, and their effective management in the resource-poor livestock farming communities. This is an important challenge to meet.

  10. Effects of erythromycin on γ‐glutamyl cysteine synthetase and interleukin‐1β in hyperoxia‐exposed lung tissue of premature newborn rats

    Directory of Open Access Journals (Sweden)

    Cheng Cai

    2014-09-01

    Conclusions: Changes in oxidant‐mediated IL‐1 beta and GSH are involved in the development of hyperoxia‐induced lung injury. Erythromycin may up‐regulate the activity of γ‐GCS, increasing the expression of GSH, inhibiting the levels of oxidant‐mediated IL‐1 beta and alleviating hyperoxia‐induced lung injury via an antioxidant effect.

  11. Development of a stability-indicating high performance liquid chromatography method for assay of erythromycin ethylsuccinate in powder for oral suspension dosage form

    Directory of Open Access Journals (Sweden)

    Fahimeh Kamarei

    2014-12-01

    Full Text Available In this study an effective method was developed to assay erythromycin ethylsuccinate for an oral suspension dosage form. The chromatographic separation was achieved on an X-Terra™ C18 analytical column. A mixture of acetonitrile–ammonium dihydrogen phosphate buffer (0.025 mol L-1 (60:40, V/V (pH 7.0 was used as the mobile phase, effluent flow rate monitored at 1.0 mL min−1, and UV detection at 205 nm. In forced degradation studies, the effects of acid, base, oxidation, UV light and temperature were investigated showing no interference in the peak of drug. The proposed method was validated in terms of specificity, linearity, robustness, precision and accuracy. The method was linear at concentrations ranging from 400 to 600 μg mL−1, precise (intra- and inter-day relative standard deviations <0.65, accurate (mean recovery; 99.5%. The impurities and degradation products of erythromycin ethylsuccinate were selectively determined with good resolution in both the raw material and the final suspension forms. The method could be useful for both routine analytical and quality control assays of erythromycin ethylsuccinate in commercial powder for an oral suspension dosage form and it could be a very powerful tool to investigate the chemical stability of erythromycin ethylsuccinate.

  12. Erytromycine bij prematuur gebroken vliezen gunstig voor de gezondheid van het kind [Erythromycin for premature rupture of membranes is beneficial for infant

    NARCIS (Netherlands)

    Buitendijk, S.E.

    2001-01-01

    In the 'Overview of the role of antibiotics in curtailing labour and early delivery'(ORACLE I)-trial in women with premature rupture of membranes, the use of erythromycin was found to be associated with a decrease in the primary composite outcome (neonatal death, chronic lung disease or major

  13. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants—the impact of ventilator settings on tracheal pressure swings

    International Nuclear Information System (INIS)

    Hentschel, Roland; Buntzel, Julia; Guttmann, Josef; Schumann, Stefan

    2011-01-01

    Resistive properties of endotracheal tubes (ETTs) are particularly relevant in newborns and small infants who are generally ventilated through ETTs with a small inner diameter. The ventilation rate is also high and the inspiratory time (ti) is short. These conditions effectuate high airway flows with excessive flow acceleration, so airway resistance and inertance play an important role. We carried out a model study to investigate the impact of varying ETT size, lung compliance and ventilator settings, such as peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and inspiratory time (ti) on the pressure–flow characteristics with respect to the resistive and inertive properties of the ETT. Pressure at the Y piece was compared to direct measurement of intratracheal pressure (P trach ) at the tip of the ETT, and pressure drop (ΔP ETT ) was calculated. Applying published tube coefficients (Rohrer's constants and inertance), P trach was calculated from ventilator readings and compared to measured P trach using the root-mean-square error. The most relevant for ΔP ETT was the ETT size, followed by (in descending order) PIP, compliance, ti and PEEP, with gas flow velocity being the principle in common for all these parameters. Depending on the ventilator settings ΔP ETT exceeded 8 mbar in the smallest 2.0 mm ETT. Consideration of inertance as an additional effect in this setting yielded a better agreement of calculated versus measured P trach than Rohrer's constants alone. We speculate that exact tracheal pressure tracings calculated from ventilator readings by applying Rohrer's equation and the inertance determination to small size ETTs would be helpful. As an integral part of ventilator software this would (1) allow an estimate of work of breathing and implementation of an automatic tube compensation, and (2) be important for gentle ventilation in respiratory care, especially of small infants, since it enables the physician to

  14. Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci

    Czech Academy of Sciences Publication Activity Database

    Ulanová, Dana; Novotná, Jitka; Smutná, Yvona; Kameník, Zdeněk; Gažák, Radek; Šulc, Miroslav; Sedmera, Petr; Kadlčík, Stanislav; Plháčková, Kamila; Janata, Jiří

    2010-01-01

    Roč. 54, č. 2 (2010), s. 927-930 ISSN 0066-4804 R&D Projects: GA MŠk 2B08064; GA AV ČR IAA500200810 Institutional research plan: CEZ:AV0Z50200510 Keywords : COAGULASE-NEGATIVE STAPHYLOCOCCI * ERYTHROMYCIN RESISTANCE * SUBSTRATE-SPECIFICITY Subject RIV: EE - Microbiology, Virology Impact factor: 4.672, year: 2010

  15. Antimicrobial Susceptibility/Resistance of Streptococcus Pneumoniae

    Science.gov (United States)

    Karcic, Emina; Aljicevic, Mufida; Bektas, Sabaheta; Karcic, Bekir

    2015-01-01

    Introduction: Pneumococcal infections are a major cause of morbidity and mortality worldwide, whose treatment is threatened with an increase in the number of strains resistant to antibiotic therapy. Goal: The main goal of this research was to investigate the presence of antimicrobial susceptibility/resistance of S. pneumoniae. Material and methods: Taken are swabs of the nose and nasopharynx, eye and ear. In vitro tests that were made in order to study the antimicrobial resistance of pneumococci are: disk diffusion method and E-test. Results: The resistance to inhibitors of cell wall synthesis was recorded at 39.17%, protein synthesis inhibitors 19.67%, folate antagonists 47.78% and quinolone in 1.11%. S. pneumoniae has shown drug resistance to erythromycin in 45%, clindamycin in 45%, chloramphenicol–0.56%, rifampicin–6.11%, tetracycline–4.67%, penicillin-G in 4.44%, oxacillin in 73.89%, ciprofloxacin in 1.11% and trimethoprim-sulfamethoxazole in 5.34% of cases. Conclusion: The highest resistance pneumococcus showed to erythromycin, clindamycin and trimethoprim-sulfamethoxazole and these should be avoided in the treatment. The least resistance pneumococcus showed to tetracycline, rifampicin, chloramphenicol, penicillin-G and ciprofloxacin. PMID:26236165

  16. The logic, experimental steps, and potential of heterologous natural product biosynthesis featuring the complex antibiotic erythromycin A produced through E. coli.

    Science.gov (United States)

    Jiang, Ming; Zhang, Haoran; Pfeifer, Blaine A

    2013-01-13

    The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach. Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli. Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number

  17. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  18. miR Profiling Identifies Cyclin-Dependent Kinase 6 Downregulation as a Potential Mechanism of Acquired Cisplatin Resistance in Non-Small-Cell Lung Carcinoma.

    Science.gov (United States)

    Bar, Jair; Gorn-Hondermann, Ivan; Moretto, Patricia; Perkins, Theodore J; Niknejad, Nima; Stewart, David J; Goss, Glenwood D; Dimitroulakos, Jim

    2015-11-01

    To identify the mechanisms of cisplatin resistance, global microRNA (miR) expression was tested. The expression of miR-145 was consistently higher in resistant cells. The expression of cyclin-dependent kinase 6 (CDK6), a potential target of miR-145, was lower in resistant cells, and inhibition of CDK4/6 protected cells from cisplatin. Cell cycle inhibition, currently being tested in clinical trials, might be antagonistic to cisplatin and other cytotoxic drugs. Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death. Platinum-based chemotherapeutic drugs are the most active agents in treating advanced disease. Resistance to these drugs is common and multifactorial; insight into the molecular mechanisms involved will likely enhance efficacy. A set of NSCLC platinum-resistant sublines was created from the Calu6 cell line. Cell viability was quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Differentially expressed microRNAs (miRs) in these lines were identified using Affymetrix miR arrays. The potential genes targeted by these miRs were searched using the TargetScan algorithm. The expression levels of miRs and mRNA were tested using real-time polymerase chain reaction. miR-145 was reproducibly elevated in all the resistant sublines tested; however, modulation of miR-145 levels alone in these cells did not affect their response to cisplatin. A potential target of miR-145 is cyclin-dependent kinase 6 (CDK6), an important regulator of cell proliferation. The mRNA and protein levels of CDK6 were both downregulated in the resistant sublines. An inhibitor of CDK4/6 (PD0332991) protected parental NSCLC cells from cisplatin cytotoxicity. In the present study, we identified miRs differentially expressed in cisplatin-resistant cell lines, including miR-145. A predicted target of miR-145 is CDK6, and its expression was found to be downregulated in the resistant sublines, although not directly by miR-145. Inhibition

  19. Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature

    Science.gov (United States)

    Barr, Martin P.; Gray, Steven G.; Hoffmann, Andreas C.; Hilger, Ralf A.; Thomale, Juergen; O’Flaherty, John D.; Fennell, Dean A.; Richard, Derek; O’Leary, John J.; O’Byrne, Kenneth J.

    2013-01-01

    Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing

  20. Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature.

    Directory of Open Access Journals (Sweden)

    Martin P Barr

    Full Text Available Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC. Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin.An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460. Over a period of twelve months, cisplatin resistant (CisR cell lines were derived from original, age-matched parent cells (PT and subsequently characterized. Proliferation (MTT and clonogenic survival assays (crystal violet were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX and cellular platinum uptake (ICP-MS was also assessed.Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines.Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the

  1. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Joo Lee

    Full Text Available The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the chronological life. Evidence is presented that triclabendazole decreases the intracellular level of cyclic AMP by inhibiting adenylyl cyclase and triggers the parallel rapid translocation of the stress-resistance transcription factor Msn2 from the cytosol into the nucleus, as deduced from experiments employing a strain in which MSN2 is replaced with MSN2-GFP (GFP, green fluorescent protein. Msn2 and Msn4 are responsible for activating the transcription of numerous genes that encode proteins that protect cells from stress. The results are consistent with triclabendazole either inhibiting the association of Ras with adenylyl cyclase or directly inhibiting adenylyl cyclase, which in turn triggers Msn2/4 to enter the nucleus and activate stress-responsible element gene expression.

  3. Detection of Macrolide, Lincosamide and Streptogramin Resistance among Methicillin Resistant Staphylococcus aureus (MRSA in Mumbai

    Directory of Open Access Journals (Sweden)

    Arunagiri Subramanian

    2015-01-01

    Full Text Available Background: The increase in incidence of Methicillin Resistant Staphyloccocus aureus (MRSA and its extraordinary potential to develop antimicrobial resistance has highlighted the need for better agents to treat such infections. This has led to a renewed interest in use of new drugs for treatment with clindamycin and quinuprsitin-dalfopristin being the preferred choice for treatment. Aim & Objectives: This study was undertaken to detect the prevalence of MacrolideLincosamide-Streptogramin (MLS resistance among clinical isolates of MRSA.Material and Methods:Two hundred and thirty clinical isolates of S. aureus were subjected to routine antibiotic susceptibility testing including cefoxitin, erythromycin and quinupristindalfopristin. Inducible resistance to clindamycin was tested by 'D' test as per Clinical and Laboratory Standards Institute (CLSI guidelines. Results: Out of all S. aureus isolates, 93.91% were identified as MRSA. In the disc diffusion testing, 81.5% of isolates showed erythromycin resistance. Among these, the prevalence of constitutive (cMLS , inducible (iMLS b b and MS-phenotype were 35.80%, 31.82% and 32.39% respectively by the D-test method. 77.8% of isolates were resistant to quinupristin-dalfopristin and the Minimum Inhibitory Concentration (MIC ranged from 4–32 µg/ml. 89.20% of isolates were resistant to both quinupristin-dalfopristin and erythromycin of which 35.03%, 35.67% and 29.30% belonged to iMLS , cMLS and MS phenotype respectively. Conclusion: The emergence of quinupristindalfopristin resistance and MLS phenotypes brings b about the need for the simple and reliable D-test in routine diagnosis and further susceptibility testing for proper antimicrobial therapy.

  4. A comparison of erythromycin and cefadroxil in the prevention of flare-ups from asymptomatic teeth with pulpal necrosis and associated periapical pathosis.

    Science.gov (United States)

    Morse, D R; Furst, M L; Lefkowitz, R D; D'Angelo, D; Esposito, J V

    1990-05-01

    In a previous study by our group with patients having asymptomatic teeth with pulpal necrosis and an associated periapical radiolucent lesion (PN/PL), it was shown that prophylactic administration of penicillin V or erythromycin (high-dose, 1-day regimen) resulted in a low incidence of flare-up (mean = 2.2%) and a low incidence of swelling and pain not associated with flare-up. No hypersensitivity responses occurred, and gastrointestinal side effects were found primarily with the erythromycins. To ascertain whether a single-dose administration of a long-acting 1-gm tablet of the cephalosporin antibiotic cefadroxil would result in a similar outcome, the present study was undertaken with 200 patients having quiescent PN/PL. The patients were randomly given either cefadroxil or erythromycin (base or stearate). Evaluations of flare-up were done 1 day, 1 week, and 2 months after endodontic treatment. A 2.0% flare-up incidence was found, with no statistically significant differences for cefadroxil (1.0%), stearate (2.0%), or base (4.0%). No hypersensitivity responses occurred. Gastrointestinal side effects were found primarily with the erythromycins (19.0%). The results showed that a 1-gm, single-dose regimen of cefadroxil was as effective as erythromycin and penicillin in preventing flare-ups and serious sequelae. A comparative analysis of the data from our first study (no peritreatment antibiotics) and the pooled data from our last three investigations (including the current trial) showed that peritreatment antibiotic coverage significantly reduced flare-ups and serious sequelae after endodontic treatment of asymptomatic PN/PL (p less than 0.001).

  5. Resistance of a human immunodeficiency virus type 1 isolate to a small molecule CCR5 inhibitor can involve sequence changes in both gp120 and gp41

    International Nuclear Information System (INIS)

    Anastassopoulou, Cleo G.; Ketas, Thomas J.; Depetris, Rafael S.; Thomas, Antonia M.; Klasse, Per Johan; Moore, John P.

    2011-01-01

    Here, we describe the genetic pathways taken by a human immunodeficiency virus type 1 (HIV-1) isolate, D101.12, to become resistant to the small molecule CCR5 inhibitor, vicriviroc (VCV), in vitro. Resistant D101.12 variants contained at least one substitution in the gp120 V3 region (H308P), plus one of two patterns of gp41 sequence changes involving the fusion peptide (FP) and a downstream residue: G514V+V535M or M518V+F519L+V535M. Studies of Env-chimeric and point-substituted viruses in peripheral blood mononuclear cells (PBMC) and TZM-bl cells showed that resistance can arise from the cooperative action of gp120 and gp41 changes, while retaining CCR5 usage. Modeling the VCV inhibition data from the two cell types suggests that D101.12 discriminates between high- and low-VCV affinity forms of CCR5 less than D1/85.16, a resistant virus with three FP substitutions.

  6. Resistance pattern of clinical isolates of staphylococcus aureus against five groups of antibiotics

    International Nuclear Information System (INIS)

    Farzana, K.; Hameed, A.

    2006-01-01

    Among the samples received in pathology laboratory, Pakistan institute of Medical Science, Islamabad, 5069 samples had bacterial growth, among these 2580 (51%) samples were Gram-positive cocci and 1688 were Staphylococcus aureus during a period of two years. Out of these Gram-positive cocci 56% were resistant to penicillin group, 27% were resistant to cephalosporin group, 22% were resistant to aminoglycoside group 15% were resistant to quinolone group and 31% were resistant to other antibiotics (cotrimaxazole, erythromycin, aztreonam, vancomycin, nitrofurantion and meropenam). Antibio-grams of Gram-positive cocci were determined against various antibiotics by disc diffusion method. The rate of resistance to most of the antibiotics such as ampicillin, piperacillin, carbenicillin, penicillin, cephradine, cefotaxime, erythromycin, ceclor, ofloxacin, pefloxacin, ciprofloxacin, cotrimexazole (septran), gentamicin, meropenem, ceftazidime, erythromycin, tobramycin, enoxacin was higher when tested against the isolates collected from pus as compared to those from blood and urine. Antibiotic resistant strains were more prevalent in pus samples than other clinical isolates (blood and urine). The randomly selected 155 strains of Staphylococcus aureus when tested against five groups of antibiotics showed resistance rate against ampicillin (92%), cephradine (92%), cephradine (60%), and gentamicin (58%). However intermediate resistance was found in case of vancomicin (38%), in hospitalized and non-hospitalized patients. (author)

  7. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  8. Design and deployment strategies for small and medium sized reactors (SMRs) to overcome loss of economies of scale and incorporate increased proliferation resistance

    International Nuclear Information System (INIS)

    Kuznetsov, V.

    2007-01-01

    The designers of innovative small and medium sized reactors pursue new design and deployment strategies making use of certain advantages provided by smaller reactor size and capacity to achieve reduced design complexity and simplified operation and maintenance requirements, and to provide for incremental capacity increase through multi-module plant clustering. Competitiveness of SMRs (Small and Medium size Reactor) depends on the incorporated strategies to overcome loss of economies of scale but equally it depends on finding appropriate market niches for such reactors. For many less developed countries, these are the features of enhanced proliferation resistance and increased robustness of barriers for sabotage protection that may ensure the progress of nuclear power. For such countries, small reactors without on-site refuelling, designed for infrequent replacement of well-contained fuel cassette(s) in a manner that impedes clandestine diversion of nuclear fuel material, may provide a solution. Based on the outputs of recent IAEA activities for innovative SMRs, the paper provides a summary of the state-of-the-art in approaches to improve SMR competitiveness and incorporate enhanced proliferation resistance and energy security. (author)

  9. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae.

    Science.gov (United States)

    Zhou, Kaixin; Xie, Lianyan; Han, Lizhong; Guo, Xiaokui; Wang, Yong; Sun, Jingyong

    2017-01-01

    ICE Sag37 , a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae . Two clinical strains of S. agalactiae , Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. Sma I-PFGE revealed a new Sma I fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICE Sag37 , which was characterized using several molecular methods and in silico analyses. ICE Sag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae . Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA , which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICE Sag37 carried genes for resistance to multiple antibiotics, including erythromycin [ erm(B) ], tetracycline [ tet(O) ], and aminoglycosides [ aadE, aphA , and ant(6) ]. Potential virulence factors, including a two-component signal transduction system ( nisK/nisR ), were also observed in ICE Sag37 . S1-PFGE analysis ruled out the existence of plasmids. ICE Sag37 is the first ICE Sa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae .

  10. Having your cake and eating it - Staphylococcus aureus small colony variants can evolve faster growth rate without losing their antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Gerrit Brandis

    2017-08-01

    Full Text Available Staphylococcus aureus can produce small colony variants (SCVs during infections. These cause significant clinical problems because they are difficult to detect in standard microbiological screening and are associated with persistent infections. The major causes of the SCV phenotype are mutations that inhibit respiration by inactivation of genes of the menadione or hemin biosynthesis pathways. This reduces the production of ATP required to support fast growth. Importantly, it also decreases cross-membrane potential in SCVs, resulting in decreased uptake of cationic compounds, with reduced susceptibility to aminoglycoside antibiotics as a consequence. Because SCVs are slow-growing (mutations in men genes are associated with growth rates in rich medium ~30% of the wild-type growth rate bacterial cultures are very susceptible to rapid takeover by faster-growing mutants (revertants or suppressors. In the case of reversion, the resulting fast growth is obviously associated with the loss of antibiotic resistance. However, direct reversion is relatively rare due to the very small genetic target size for such mutations. We explored the phenotypic consequences of SCVs evolving faster growth by routes other than direct reversion, and in particular whether any of those routes allowed for the maintenance of antibiotic resistance. In a recent paper (mBio 8: e00358-17 we demonstrated the existence of several different routes of SCV evolution to faster growth, one of which maintained the antibiotic resistance phenotype. This discovery suggests that SCVs might be more adaptable and problematic that previously thought. They are capable of surviving as a slow-growing persistent form, before evolving into a significantly faster-growing form without sacrificing their antibiotic resistance phenotype.

  11. Monitoring of anthelmintic resistance in small strongyles in the Czech Republic in the years 2006–2009

    Directory of Open Access Journals (Sweden)

    Štěpán Bodeček

    2013-01-01

    Full Text Available The aim of the field study performed in 2006 was to investigate the occurrence and distribution of intestinal helminths in horses based on pre-treatment faecal egg counts. In total, 948 horses bred on 37 farms were tested. Thirty six (97.2% farms tested were positive for cyathostomins; horses in 9 (24.3%, 6 (16.2% and 1 (2.7% different herds tested were positive for Parascaris equorum, Anoplocephala perfoliata and Strongyloides westeri, respectively. In 21 herds, 344 horses with values exceeding 100 eggs per gram were included in the trial for the presence of drug resistant cyathostomins by a faecal egg count reduction test. Horses were treated orally with recommended doses of fenbendazole and ivermectin. Resistance to fenbendazole was detected on 20 farms (95.24% with values of faecal egg count reduction test ranging from 0 to 90%. Ivermectin remained effective in all tested herds with the value of faecal egg count reduction test 96–100%. In autumn 2008, 178 horses on 10 farms were examined. Of these, only seven horses tested were negative for cyathostomins. One farm was tested positively for Anoplocephala perfoliata, and one for Parascaris equorum. In spring 2009, six farms were examined, four of which were the same farms as in 2006. We found a decreased number of eggs per gram in all horses, but an increase in benzimidazole resistance, which was found in 5 farms out of 6 (faecal egg count reduction test 15.2–84.6%. This is the first wide survey in horses from the Czech Republic. Based on this study, we can conclude that benzimidazole resistant cyathostomins in horses are widespread but ivermectin is still fully effective.

  12. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance.

    Directory of Open Access Journals (Sweden)

    Nadia Bakkour

    2007-10-01

    Full Text Available The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16 that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

  13. Staphylococcus aureus Adapts to Oxidative Stress by Producing H2O2-Resistant Small-Colony Variants via the SOS Response

    Science.gov (United States)

    Painter, Kimberley L.; Strange, Elizabeth; Bamford, Kathleen B.; Armstrong-James, Darius

    2015-01-01

    The development of chronic and recurrent Staphylococcus aureus infections is associated with the emergence of slow-growing mutants known as small-colony variants (SCVs), which are highly tolerant of antibiotics and can survive inside host cells. However, the host and bacterial factors which underpin SCV emergence during infection are poorly understood. Here, we demonstrate that exposure of S. aureus to sublethal concentrations of H2O2 leads to a specific, dose-dependent increase in the population frequency of gentamicin-resistant SCVs. Time course analyses revealed that H2O2 exposure caused bacteriostasis in wild-type cells during which time SCVs appeared spontaneously within the S. aureus population. This occurred via a mutagenic DNA repair pathway that included DNA double-strand break repair proteins RexAB, recombinase A, and polymerase V. In addition to triggering SCV emergence by increasing the mutation rate, H2O2 also selected for the SCV phenotype, leading to increased phenotypic stability and further enhancing the size of the SCV subpopulation by reducing the rate of SCV reversion to the wild type. Subsequent analyses revealed that SCVs were significantly more resistant to the toxic effects of H2O2 than wild-type bacteria. With the exception of heme auxotrophs, gentamicin-resistant SCVs displayed greater catalase activity than wild-type bacteria, which contributed to their resistance to H2O2. Taken together, these data reveal a mechanism by which S. aureus adapts to oxidative stress via the production of a subpopulation of H2O2-resistant SCVs with enhanced catalase production. PMID:25690100

  14. Termination of Vernakalant-Resistant Atrial Fibrillation by Inhibition of Small-Conductance Ca2+-Activated K+ Channels in Pigs

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Simó-Vicens, Rafel

    2017-01-01

    Background Evidence has emerged that small-conductance Ca2+-activated K+ (SK) channels constitute a new target for treatment of atrial fibrillation (AF). SK channels are predominantly expressed in the atria as compared with the ventricles. Various marketed antiarrhythmic drugs are limited by vent...

  15. Xenograft tumors derived from malignant pleural effusion of the patients with non-small-cell lung cancer as models to explore drug resistance.

    Science.gov (United States)

    Xu, Yunhua; Zhang, Feifei; Pan, Xiaoqing; Wang, Guan; Zhu, Lei; Zhang, Jie; Wen, Danyi; Lu, Shun

    2018-05-09

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) fusions show dramatic responses to specific tyrosine kinase inhibitors (TKIs); however, after 10-12 months, secondary mutations arise that confer resistance. We generated a murine xenograft model using patient-derived NSCLC cells isolated from the pleural fluid of two patients with NSCLC to investigate the mechanisms of resistance against the ALK- and EGFR-targeted TKIs crizotinib and osimertinib, respectively. Genotypes of patient biopsies and xenograft tumors were determined by whole exome sequencing (WES), and patients and xenograft-bearing mice received targeted treatment (crizotinib or osimertinib) accordingly. Xenograft mice were also treated for prolonged periods to identify whether the development of drug resistance and/or treatment responses were associated with tumor size. Finally, the pathology of patients biopsies and xenograft tumors were compared histologically. The histological characteristics and chemotherapy responses of xenograft tumors were similar to the actual patients. WES showed that the genotypes of the xenograft and patient tumors were similar (an echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) gene fusion (patient/xenograft: CTC15035 EML4-ALK ) and EGFR L858R and T790M mutations (patient/xenograft: CTC15063 EGFR L858R, T790M )). After continuous crizotinib or osimertinib treatment, WES data suggested that acquired ALK E1210K mutation conferred crizotinib resistance in the CTC15035 EML4-ALK xenograft, while decreased frequencies of EGFR L858R and T790M mutations plus the appearance of v-RAF murine sarcoma viral oncogene homolog B (BRAF) G7V mutations and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha (PIK3C2A) A86fs frame shift mutations led to osimertinib resistance in the CTC15063 EGFR L858R, T790M xenografts. We successfully developed a new method of generating

  16. Antimicrobials in small-scale urban pig farming in a lower middle-income country - arbitrary use and high resistance levels.

    Science.gov (United States)

    Ström, G; Boqvist, S; Albihn, A; Fernström, L-L; Andersson Djurfeldt, A; Sokerya, S; Sothyra, T; Magnusson, U

    2018-01-01

    Administration of antimicrobials to food-producing animals is regarded as a major contributor to the overall emergence of resistance in bacteria worldwide. However, few data are available on global antimicrobial use and resistance (AMR) in livestock, especially from low- and middle-income countries. We conducted a structured survey of 91 small-scale pig farms in the urban and peri-urban areas of Phnom Penh, Cambodia, to assess the farmers' knowledge, attitudes and practices related to antimicrobial use in their pig production. Commensal Escherichia coli was isolated from three healthy pigs from each farm ( n  = 261) and susceptibility testing was performed against 14 antimicrobials, using broth microdilution. Univariable logistic regression and generalized linear mixed models were used to investigate potential associations between farm characteristics, management factors and resistance to different types of antimicrobials. We found a widespread and arbitrary use of antimicrobials, often based on the farmer's own judgment. Around 66% of the farmers reported frequently self-adjusting treatment duration and dosage, and 45% had not heard about the term 'antimicrobial resistance'. The antimicrobials most commonly mentioned or kept by the farmers were amoxicillin, tylosin, gentamicin and colistin. Around 37% used a feed concentrate that contained antimicrobials, while antimicrobials for humans were used as a last-line treatment by 10% of the farmers. Commensal E. coli exhibited high prevalence of resistance to several antimicrobials considered to be of critical importance for human medicine, including ampicillin, ciprofloxacin and colistin, and multidrug-resistance was found in 79% of the samples. Higher prevalence of resistance was observed on farms that administered prophylactic antimicrobials and on farms that treated the entire group or herd in the event of disease. The widespread and arbitrary use of antimicrobials in pig farming in Cambodia is highly worrisome

  17. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Directory of Open Access Journals (Sweden)

    Geisla Mary Silva Soares

    2012-06-01

    Full Text Available Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.

  18. Options for small and medium sized reactors (SMRs) to overcome loss of economies of scale and incorporate increased proliferation resistance and energy security

    International Nuclear Information System (INIS)

    Kuznetsov, Vladimir

    2008-01-01

    The designers of innovative small and medium sized reactors pursue new design and deployment strategies making use of certain advantages provided by smaller reactor size and capacity to achieve reduced design complexity and simplified operation and maintenance requirements, and to provide for incremental capacity increase through multi-module plant clustering. Competitiveness of SMRs depends on the incorporated strategies to overcome loss of economies of scale but equally it depends on finding appropriate market niches for such reactors. For many less developed countries, these are the features of enhanced proliferation resistance and increased robustness of barriers for sabotage protection that may ensure the progress of nuclear power. For such countries, small reactors without on-site refuelling, designed for infrequent replacement of well-contained fuel cassette(s) in a manner that impedes clandestine diversion of nuclear fuel material, may provide a solution. Based on the outputs of recent IAEA activities for innovative SMRs, the paper provides a summary of the state-of-the-art in approaches to improve SMR competitiveness and incorporate enhanced proliferation resistance and energy security. (author)

  19. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  20. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    Science.gov (United States)

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Threading the Needle: Small-Molecule Targeting of a Xenobiotic Receptor to Ablate Escherichia coli Polysaccharide Capsule Expression Without Altering Antibiotic Resistance.

    Science.gov (United States)

    Arshad, Mehreen; Goller, Carlos C; Pilla, Danielle; Schoenen, Frank J; Seed, Patrick C

    2016-04-15

    Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract and invasive infections worldwide, is rapidly acquiring multidrug resistance, hastening the need for selective new anti-infective agents. Here we demonstrate the molecular target of DU011, our previously discovered potent, nontoxic, small-molecule inhibitor of UPEC polysaccharide capsule biogenesis and virulence. Real-time polymerase chain reaction analysis and a target-overexpression drug-suppressor screen were used to localize the putative inhibitor target. A thermal shift assay quantified interactions between the target protein and the inhibitor, and a novel DNase protection assay measured chemical inhibition of protein-DNA interactions. Virulence of a regulatory target mutant was assessed in a murine sepsis model. MprA, a MarR family transcriptional repressor, was identified as the putative target of the DU011 inhibitor. Thermal shift measurements indicated the formation of a stable DU011-MprA complex, and DU011 abrogated MprA binding to its DNA promoter site. Knockout of mprA had effects similar to that of DU011 treatment of wild-type bacteria: a loss of encapsulation and complete attenuation in a murine sepsis model, without any negative change in antibiotic resistance. MprA regulates UPEC polysaccharide encapsulation, is essential for UPEC virulence, and can be targeted without inducing antibiotic resistance. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. A Rapid Phenotypic Whole Cell Screening Approach for the Identification of Small Molecule Inhibitors that Counter Beta-lactamase Resistance in Pseudomonas aeruginosa

    Science.gov (United States)

    Collia, Deanna; Bannister, Thomas D.; Tan, Hao; Jin, Shouguang; Langaee, Taimour; Shumate, Justin; Scampavia, Louis; Spicer, Timothy P.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen which is prevalent in hospitals and continues to develop resistance to multiple classes of antibiotics. Historically, β-lactam antibiotics have been the first line of therapeutic defense. However, the emergence of multidrug-resistant (MDR) strains of P. aeruginosa, such as AmpC β-lactamase overproducing mutants, limits the effectiveness of current antibiotics. Among AmpC hyper producing clinical isolates, inactivation of AmpG, which is essential for the expression of AmpC, increases bacterial sensitivity to β-lactam antibiotics. We hypothesize that inhibition of AmpG activity will enhance the efficacy of β-lactams against P. aeruginosa. Here, using a highly drug resistant AmpC inducible laboratory strain PAO1, we describe an ultra-high throughput whole cell turbidity assay designed to identify small molecule inhibitors of the AmpG. We screened 645K compounds to identify compounds with the ability to inhibit bacterial growth in the presence of Cefoxitin; an AmpC inducer, and identified 2,663 inhibitors which were also tested in the absence of Cefoxitin to determine AmpG specificity. The Z′ and S:B were robust at 0.87 ± 0.05 and 2.2 ± 0.2, respectively. Through a series of secondary and tertiary studies, including a novel luciferase based counterscreen, we ultimately identified 8 potential AmpG specific inhibitors. PMID:28850797

  3. Multidrug-resistant Streptococcus pneumoniae isolates from healthy Ghanaian preschool children

    DEFF Research Database (Denmark)

    Dayie, Nicholas Tete Kwaku Dzifa; Arhin, Reuben E.; Newman, Mercy J.

    2015-01-01

    in a previous study, to six antimicrobials was determined by disk diffusion test. Overall, 90.4% of isolates were intermediate penicillin resistant, 99.1% were trimethoprim resistant, 73.0% were tetracycline resistant, and 33.9% were sulfamethoxazole resistant. Low resistance was recorded for erythromycin (2...... of this study was to determine the antibiogram of S. pneumoniae recovered from Ghanaian children younger than six years of age and to what extent resistances were due to the spread of certain sero- and multilocus sequence typing (MLST) types. The susceptibility of 115 pneumococcal isolates, recovered...

  4. Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry.

    Science.gov (United States)

    Zhao, Dongyan; Song, Guo-qing

    2014-12-01

    Small interfering RNAs (siRNAs) are silencing signals in plants. Virus-resistant transgenic rootstocks developed through siRNA-mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock-to-scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV-hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV-hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long-distance (1.2 m) transfer of PNRSV-hpRNA-derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for 'using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages.

    Science.gov (United States)

    Wimalarathna, Helen M L; Richardson, Judith F; Lawson, Andy J; Elson, Richard; Meldrum, Richard; Little, Christine L; Maiden, Martin C J; McCarthy, Noel D; Sheppard, Samuel K

    2013-07-15

    Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004-5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition. Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains. These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.

  6. The Mechanism of Gefitinib Resistance Induced by Hepatocyte Growth Factor 
in Sensitive Non-small Cell Lung Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xianglan XUAN

    2013-01-01

    Full Text Available Background and objective Previous studies have reported that Met might be related to gefitinib resistance in non-small cell lung cancer (NSCLC. The present study aims to explore the mechanism of hepatocyte growth factor (HGF-induced gefitinib resistance in different gene types of sensitive NSCLC in vitro. Methods The PC-9 and H292 cell lines were chosen and induced by HGF. The cell survival was measured using MTT assay, the cell cycle distribution was measured using PI assay, and cell apoptosis with an Annexin V-PE assay, respectively. The c-Met and p-Met protein expression was determined via Western blot analysis. Results Gefitinib inhibited the growth of PC-9 and H292 cells in a dose-dependent manner. The concentration-survival curves of both cell lines shifted to the right when induced with HGF. HGF did not affect PC-9 and H292 cell proliferation. The cell also had a higher cell survival rate when treated with HGF and gefitinib compared with that under gefitinib alone (P<0.05. The apoptotic rate and cell cycle progression showed no significant difference between the HG and G group (P>0.05. HGF stimulated Met phosphorylation in the PC-9 and H292 cells. Gefitinib inhibited the HGF-induced Met phosphorylation in PC-9 cells, but not in H292 cells. Conclusion HGF induces gefitinib resistance in PC-9 and H292 cells. HGF-induced Met phosphorylation may be an important mechanism of gefitinib resistance in sensitive NSCLC.

  7. A histomorphometric study of the effect of doxycycline and erythromycin on bone formation in dental alveolar socket of rat

    Directory of Open Access Journals (Sweden)

    Mohammad Shahabooei

    2015-01-01

    Full Text Available Background: The aim of the present study was to evaluate whether subantimicrobial doses of doxycycline (DOX and erythromycin (EM used for the treatment of peri-implant osteolysis due to their anti-osteoclastogenesis can interfere with the osseous wound healing process in rat alveolar socket. Materials and Methods: Forty-five male Wistar rats had their first maxillary right molar extracted and were divided into three groups. DOX and EM at the doses of 5 mg/kg/day orally (p.o. and 2 mg/kg/day intraperitoneally (i.p. were administered respectively to two separate groups for 7 days after operation. In the control group the animals received normal saline (5 ml/kg. Five rats were sacrificed at 7, 14 and 21 days post-extraction in each study group. A histomorphometric analysis was used to evaluate new bone formation inside the alveolar socket. Significant level was set at 0.05. Results: The findings showed that the percentage of new bone formation (NBF enhanced significantly on days 7 and 14. There was no significant difference in the NBF between DOX and EM groups. Conclusion: Short-term treatment with both DOX and EM enhanced new bone formation without any advances in favor of each drug.

  8. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    Science.gov (United States)

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  9. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of 11C-labeled topotecan using small-animal positron emission tomography

    International Nuclear Information System (INIS)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Hatori, Akiko; Yui, Joji; Nengaki, Nobuki; Ogawa, Masanao; Yoshida, Yuichiro; Wakizaka, Hidekatsu; Yanamoto, Kazuhiko; Fukumura, Toshimitsu; Zhang Mingrong

    2011-01-01

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [ 11 C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [ 11 C]TPT using small-animal PET. Methods: [ 11 C]TPT was synthesized by the reaction of a desmethyl precursor with [ 11 C]CH 3 I. In vitro study using [ 11 C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [ 11 C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [ 11 C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b -/- Bcrp1 -/- mice, PET results indicated that the brain uptake of [ 11 C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [ 11 C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after the injection of [ 11 C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [ 11 C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  10. CANDLE reactor: an option for simple, safe, high nuclear proliferation resistant , small waste and efficient fuel use reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.

    2010-01-01

    The innovative nuclear energy systems have been investigated intensively for long period in COE-INES program and CRINES activities in Tokyo Institute of Technology. Five requirements; sustainability, safety, waste, nuclear-proliferation, and economy; are considered as inevitable requirements for nuclear energy. Characteristics of small LBE cooled CANDLE fast reactor developed in this Institute are discussed for these requirements. It satisfies clearly four requirements; safety, nonproliferation and safeguard, less wastes and sustainability. For the remaining requirement, economy, a high potential to satisfy this requirement is also shown

  11. Effects of erythromycin on γ-glutamyl cysteine synthetase and interleukin-1β in hyperoxia-exposed lung tissue of premature newborn rats.

    Science.gov (United States)

    Cai, Cheng; Qiu, Gang; Gong, Xiaohui; Chen, Yihuan; Zhao, Huanhu

    2014-01-01

    To explore the effect of erythromycin on hyperoxia-induced lung injury. One-day-old preterm offspring Sprague-Dawley (SD) rats were randomly divided into four groups: group 1, air + sodium chloride; group 2, air + erythromycin;group 3, hyperoxia + sodium chloride; and group 4, hyperoxia + erythromycin. At one, seven, and 14 days of exposure, glutathione (GSH) and interleukin-1 beta (IL-1 beta) were detected by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA), and bicinchoninic acid (BCA) was used to detect GSH protein. γ-glutamine-cysteine synthetase (γ-GCS) mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR). Compared with group 1, expressions of GSH and γ-GCS mRNA in group 3 were significantly increased at one and seven days of exposure (p < 0.05), but expression of γ-GCS mRNA was significantly reduced at 14 days; expression of IL-1 beta in group 3 was significantly increased at seven days of exposure (p < 0.05), and was significantly reduced at 14 days. Compared with group 3, expressions of GSH and γ-GCS mRNA in group 4 were significantly increased at one, seven, and 14 days of exposure (p < 0.05), but expressions of GSH showed a downward trend at 14 days; expression of IL-1 beta in group 4 was significantly reduced at one and seven days of exposure (p < 0.05). Changes in oxidant-mediated IL-1 beta and GSH are involved in the development of hyperoxia-induced lung injury. Erythromycin may up-regulate the activity of γ-GCS, increasing the expression of GSH, inhibiting the levels of oxidant-mediated IL-1 beta and alleviating hyperoxia-induced lung injury via an antioxidant effect. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Antibiotic resistance and enterotoxin genes in Staphylococcus sp. isolates from polluted water in Southern Brazil

    OpenAIRE

    BASSO, ANA P.; MARTINS, PAULA D.; NACHTIGALL, GISELE; SAND, SUELI VAN DER; MOURA, TIANE M. DE; FRAZZON, ANA PAULA G.

    2014-01-01

    The aim of this study was to evaluate the species distribution, antibiotic-resistance profile and presence of enterotoxin (SE) genes in staphylococci isolated from the Dilúvio stream in South Brazil. Eighty-eight staphylococci were identified, 93.18% were identified as coagulase-negative (CNS) and 6.82% coagulase-positive (CPS). Fourteen Staphylococcus species were detected and the most frequently were Staphylococcus cohnii (30.48%) and S. haemolyticus (21.95%). Resistance to erythromycin was...

  13. Resistance and resilience of small-scale recirculating aquaculture systems (RAS) with or without algae to pH perturbation

    Science.gov (United States)

    Giatsis, Christos; Md Yusoff, Fatimah; Verreth, Johan; Verdegem, Marc

    2018-01-01

    The experimental set-up of this study mimicked recirculating aquaculture systems (RAS) where water quality parameters such as dissolved oxygen, pH, temperature, and turbidity were controlled and wastes produced by fish and feeding were converted to inorganic forms. A key process in the RAS was the conversion of ammonia to nitrite and nitrite to nitrate through nitrification. It was hypothesized that algae inclusion in RAS would improve the ammonia removal from the water; thereby improving RAS water quality and stability. To test this hypothesis, the stability of the microbiota community composition in a freshwater RAS with (RAS+A) or without algae (RAS-A) was challenged by introducing an acute pH drop (from pH 7 to 4 during three hours) to the system. Stigeoclonium nanum, a periphytic freshwater microalga was used in this study. No significant effect of the algae presence was found on the resistance to the acute pH drop on ammonia conversion to nitrite and nitrite conversion to nitrate. Also the resilience of the ammonia conversion to the pH drop disruption was not affected by the addition of algae. This could be due to the low biomass of algae achieved in the RAS. However, with regard to the conversion step of nitrite to nitrate, RAS+A was significantly more resilient than RAS-A. In terms of overall bacterial communities, the composition and predictive function of the bacterial communities was significantly different between RAS+A and RAS-A. PMID:29659617

  14. Minimum Transendothelial Electrical Resistance Thresholds for the Study of Small and Large Molecule Drug Transport in a Human in Vitro Blood-Brain Barrier Model.

    Science.gov (United States)

    Mantle, Jennifer L; Min, Lie; Lee, Kelvin H

    2016-12-05

    A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here, human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ω·cm 2 . By assessing the permeabilities of several known drugs, a benchmarking system to evaluate brain permeability of drugs was established. Furthermore, relationships between TEER and permeability to both small and large molecules were established, demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype, and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.

  15. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores

    International Nuclear Information System (INIS)

    Mason, J.M.; Setlow, P.

    1987-01-01

    Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores

  16. Bag3 promotes resistance to apoptosis through Bcl-2 family members in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Yong; Wang, Jian-Hua; Lu, Qiang; Wang, Yun-Jie

    2012-01-01

    In non-small cell lung cancer (NSCLC) certain molecular characteristics, which are related to molecular alterations have been investigated. These are responsible for both the initiation and maintenance of the malignancy in lung cancer. The aim of this study was to evaluate the influence of Bag3 (Bcl-2 associated athanogene 3) in the regulation of apoptosis on NSCLC. Bag3 and Hsp70 expression were examined by immunohistochemistry to confirm their potential roles in the prevalence of NSCLC. We also established human normal bronchial epithelial cells and HOP-62 cell line as the model to analyze cell apoptosis and the expression of Hsp70, Bcl-XL and Bcl-2, which were affected by Bag3. In this study, we found that Bag3 and Hsp70 are highly expressed in few tissues and cell lines of NSCLC. Bag3 inhibits apoptosis in human normal bronchial epithelial cell lines and sustain the survival of NSCLC cells. Bag3, Hsp70, Bcl-XL and Bcl-2 are up-regulated in NSCLC cell lines. At the same time, the silencing of Bag3 results in diminishing protein levels of Bcl-XL and Bcl-2. The results of immunoprecipitation identified that Bag3 could interact with Hsp70, Bcl-XL and Bcl-2 NSCLC cells directly or indirectly. We conclude that NSCLC cells were protected from apoptosis through increasing Bag3 expression and consequently promoted the expression of Bcl-XL and Bcl-2.

  17. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes--a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Philipp A Gerber

    Full Text Available The association of small, dense low-density lipoprotein (sdLDL particles with an increased cardiovascular risk is well established. However, its predictive value with regard to glucose metabolism and arterial disease in patients with type 2 diabetes has not been thoroughly investigated. We conducted a prospective longitudinal cohort study in patients with (prediabetes who were seen at baseline and after two years. sdLDL particles were determined by gradient gel electrophoresis. Insulin resistance was estimated by using the homeostatic model assessment 2 (HOMA2. Intima media thickness (IMT and flow-mediated dilation (FMD were assessed by ultrasound measurements. Fifty-nine patients (mean age 63.0 ± 12.2 years were enrolled and 39 were seen at follow-up. IMT increased in the whole cohort during follow-up. The change in IMT was predicted by the proportion of sdLDL particles at baseline (p=0.03, and the change in FMD was predicted by LDL-cholesterol levels at baseline (p=0.049. HOMA2 and changes in HOMA2 correlated with the proportion of sdLDL particles and changes in this proportion, respectively (p<0.05 for both. Serum resistin levels increased in parallel with the increasing sdLDL particle number, while serum adiponectin increased only in patients with unaltered sdLDL particle number at follow-up (p<0.01 for both. In conclusion, the proportion of small, dense LDL particles and changes in this proportion are predictive of changes in intima media thickness and insulin resistance, and are closely associated with other determinants of an adverse metabolic status. Thus, this parameter extends the individual risk assessment beyond the limitations of traditional risk markers in patients with dysglycemia.

  18. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer.

    Science.gov (United States)

    Yu, Jiangyong; Wang, Shuhang; Zhao, Wei; Duan, Jianchun; Wang, Zhijie; Chen, Hanxiao; Tian, Yanhua; Wang, Di; Zhao, Jun; An, Tongtong; Bai, Hua; Wu, Meina; Wang, Jie

    2018-05-01

    Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance. Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined. Results: Different proportions of α2δ1 + cells were identified in SCLC cell lines and PDX models. α2δ1 + cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1 + cells instead of CD133 + cells in PDXs, and an increased proportion of α2δ1 + cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models. Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  20. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance

    International Nuclear Information System (INIS)

    Jotte, Robert M; Spigel, David R

    2015-01-01

    Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance

  1. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs.

    Science.gov (United States)

    Cherkasov, Artem; Hilpert, Kai; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Mullaly, Sarah C; Volkmer, Rudolf; Hancock, Robert E W

    2009-01-16

    Increased multiple antibiotic resistance in the face of declining antibiotic discovery is one of society's most pressing health issues. Antimicrobial peptides represent a promising new class of antibiotics. Here we ask whether it is possible to make small broad spectrum peptides employing minimal assumptions, by capitalizing on accumulating chemical biology information. Using peptide array technology, two large random 9-amino-acid peptide libraries were iteratively created using the amino acid composition of the most active peptides. The resultant data was used together with Artificial Neural Networks, a powerful machine learning technique, to create quantitative in silico models of antibiotic activity. On the basis of random testing, these models proved remarkably effective in predicting the activity of 100,000 virtual peptides. The best peptides, representing the top quartile of predicted activities, were effective against a broad array of multidrug-resistant "Superbugs" with activities that were equal to or better than four highly used conventional antibiotics, more effective than the most advanced clinical candidate antimicrobial peptide, and protective against Staphylococcus aureus infections in animal models.

  2. Grain yields and disease resistance as selection criteria for introduction of new varieties of small grain cereal in Lubumbashi, D.R. Congo.

    Science.gov (United States)

    Mukobo, M R P; Ngongo, L M; Haesaert, G

    2014-01-01

    Wheat production in African countries is a major challenge for their development, considering their increasing consumption of wheat flour products. In the Democratic Republic of Congo, wheat and wheat-based products are the important imported food products although there is a potential for the cultivation of small grain cereals such as durum wheat, wheat and triticale. Trials done in Lubumbashi in the Katanga Province have shown that Septoria Leaf Blotch, Septoria Glume Blotch and Fusarium head blight are the main constraints to the efficient development of these cultures. Some varieties of Elite Spring Wheat, High Rainfall Wheat, Triticale and Durum Wheat from CIMMYT were followed during 4 growing seasons and agronomic characteristics and their levels of disease resistance were recorded. Correlations of agronomic characteristics with yields showed that in most cases, thousand kernel weight is the parameter that has the most influence on the yield level (p < 0.0001). The analysis of variance for all diseases showed that there were significant effects related to the year, the species and the interaction years x species. Triticale varieties seem to have a better resistance against the two forms of Septoria compared to wheat varieties but, they seem to be more sensitive to Fusarium Head Blight than wheat varieties. However, the Fusarium Head Blight has a rather low incidence in Lubumbashi.

  3. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs.

    Directory of Open Access Journals (Sweden)

    Peng Li

    Full Text Available OBJECTIVES: This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance. METHODS: A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available. RESULTS: A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%, ampicillin (27.9%, sulfamethoxazole/trimethoprim (19.4%, nalidixic acid (19.4%, streptomycin (16.2% and ceftiofur (10.9%, and very low resistance rates to ciprofloxacin (7.8%, gentamicin (6.9%, and spectinomycin (2.3% were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%, clindamycin (82.1%, tetracycline (64.3%, and erythromycin (48.8%. Resistance rates to florfenicol (17.9%, penicillin (6.0%, ciprofloxacin (3.6%, levofloxacin (1.2%, and ampicillin (1.2% were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant. CONCLUSIONS: In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are

  4. Genomic organization of a vancomycin-resistant staphylococcus aureus

    International Nuclear Information System (INIS)

    Mirani, A.Z.; Jamil, N.

    2013-01-01

    Objective: To study the genomic organization of vancomycin resistance in a local isolate of vancomycin resistant Staphylococcus aureus (VRSA). Study Design: Experimental study. Place and Duration of Study: Department of Microbiology, University of Karachi, January 2008 through December 2010. Methodology: A vancomycin-resistant Staphylococcus aureus (VRSA-CP2) isolate (MIC 16 mu g/ml) was isolated from a local hospital of Karachi. Species identification was confirmed by Gram staining, standard biochemical tests and PCR amplification of the nuc gene. The vancomycin MIC was re-confirmed by E-test. For the genetic determination of vancomycin resistance, in-vitro amplification of vanA cassette was performed by using plasmid DNA of CP2, CP2's transformant as template on MWG Thermo-Cycler. Amplified products of vanR, vanS, vanH, vanA, vanY, orf2, orf1D, orf2E, orf-Rev and IS element genes were subjected to Sanger's electrophoresis based sequence determination using specific primers. The Basic Local Alignment Search Tool (BLAST) algorithm was used to identify sequences in GenBank with similarities to the vanA cassette genes. Results: The vancomycin-resistant isolate CP2 was found to be resistant to oxacillin, chloramphenicol, erythromycin, rifampicin, gentamicin, tetracycline and ciprofloxacin, as well. The isolate CP2 revealed four bands: one of large molecular size approx 56.4 kb and three of small size approx 6.5 kb, approx 6.1 kb and approx 1.5 kb by agarose gel electrophoresis indicating the presence of 3 plasmids. The plasmid DNA of isolate CP2 was analyzed by PCR for the presence of the van cassettes with each of the vanA , vanB and vanC specific primers. It carried vanA cassette, which comprises of vanR, vanS, vanH, vanA, vanY, and orf2. The vanA cassette of isolate CP2 also carried an insertion element (IS). However, it did not show the PCR product for orf1. Vancomycin resistance was successfully transferred from the donor CP2 to a vancomycin-sensitive recipient S

  5. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    De Miguel, Diego; Gallego-Lleyda, Ana; Erviti-Ardanaz, Sandra; Anel, Alberto; Martinez-Lostao, Luis; Ayuso, José María; Fernández, Luis José; Ochoa, Ignacio; Pazo-Cid, Roberto; Del Agua, Celia

    2016-01-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment. (paper)

  6. Antibacterial resistance of community-acquired respiratory tract pathogens recovered from patients in Latin America: results from the PROTEKT surveillance study (1999-2000

    Directory of Open Access Journals (Sweden)

    Mendes C.

    2003-01-01

    Full Text Available PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin is a global surveillance study established in 1999 to monitor antibacterial resistance of respiratory tract organisms. Thirteen centers from Argentina, Brazil and Mexico participat ed during 1999-2000; they collected 1,806 isolates (Streptococcus pneumoniae 518, Haemophilus influenzae 520, Moraxella catarrhalis 140, Staphylococcus aureus 351, S. pyogenes 277. Overall, 218 (42.1% of the S. pneumoniae isolates had reduced susceptibility to penicillin, 79 (15.3% were penicillin-resistant and 79 (15.3% were erythromycin-resistant. Mexico had the highest prevalence of penicillin (76.5% and erythromycin (31.2% resistance. Of 77 erythromycin-resistant S. pneumoniae tested for resistance genotype, 43 possessed mef(A, 33 possessed erm(B and 1 possessed both erm(B and mef(A mechanism. All S. pneumoniae isolates were fully susceptible to telithromycin, linezolid, teicoplanin and vancomycin. Among H. influenzae isolates, 88 (16.9% produced b-lactamase, ranging from 11% (Brazil to 24.5% (Mexico. Among M. catarrhalis isolates, 138 (98.6% produced b-lactamase. Twenty-four (8.7% of the S. pyogenes isolates were erythromycin-resistant; resistance being attributable to mefA (n=18, ermTR (n=5 and ermB (n=1. All H. influenzae, M. catarrhalis and S. pyogenes were fully susceptible to telithromycin. Methicillin resistance was found in 26.5% of the S. aureus isolates (Argentina 15%; Mexico 20%; Brazil 31.3%. Telithromycin was effective against 97.7% of methicillin-susceptible isolates. PROTEKT confirms that antibacterial resistance is an emerging problem in Latin America. The previously reported high levels of pneumococcal resistance to the b-lactam and macrolides were exceeded. New agents that do not induce resistance or that exert low selective pressure, e.g. telithromycin, are essential to safeguard future antibacterial efficacy.

  7. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    Directory of Open Access Journals (Sweden)

    Debby D Wang

    Full Text Available EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib. Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met. Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The

  8. Methicillin resistant Staphylococcus aureus in Ethiopia: a meta-analysis.

    Science.gov (United States)

    Eshetie, Setegn; Tarekegn, Fentahun; Moges, Feleke; Amsalu, Anteneh; Birhan, Wubet; Huruy, Kahsay

    2016-11-21

    The burden of methicillin resistant Staphylococcus aureus is a major public health concern worldwide; however the overall epidemiology of multidrug resistant strains is neither coordinated nor harmonized, particularly in developing countries including Ethiopia. Therefore, the aim of this meta-analysis was to assess the burden of methicillin resistant Staphylococcos aureus and its antibiotic resistance pattern in Ethiopia at large. PubMed, Google Scholar, and lancet databases were searched and a total of 20 studies have been selected for meta-analysis. Six authors have independently extracts data on the prevalence of methicillin resistant Staphylococcus aureus among clinical isolates of Staphylococcus aureus. Statistical analysis was achieved by using Open meta-analyst (version 3.13) and Comprehensive meta-analysis (version 3.3) softwares. The overall prevalence of methicillin resistant Staphylococcus aureus and its antibiotic resistance pattern were pooled by using the forest plot, table and figure with 95% CI. The pooled prevalence of methicillin resistant Staphylococcus aureus was 32.5% (95% CI, 24.1 to 40.9%). Moreover, methicillin resistant Staphylococcus aureus strains were found to be highly resistant to penicillin, ampicillin, erythromycin, and amoxicillin, with a pooled resistance ratio of 99.1, 98.1, 97.2 and 97.1%, respectively. On the other hand, comparably low levels of resistance ratio were noted to vancomycin, 5.3%. The overall burden of methicillin resistant Staphylococcus aureus is considerably high, besides these strains showed extreme resistance to penicillin, ampicillin, erythromycin and amoxicillin. In principle, appropriate use of antibiotics, applying safety precautions are the key to reduce the spread of multidrug resistant strains, methicillin resistant Staphylococcus aureus in particular.

  9. Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains

    Directory of Open Access Journals (Sweden)

    Annaleise Wilson

    2018-02-01

    Full Text Available The current global crisis of antimicrobial resistance (AMR among important human bacterial pathogens has been amplified by an increased resistance prevalence. In recent years, a number of studies have reported higher resistance levels among Listeria monocytogenes isolates, which may have implications for treatment of listeriosis infection where resistance to key treatment antimicrobials is noted. This study examined the genotypic and phenotypic AMR patterns of 100 L. monocytogenes isolates originating from food production supplies in Australia and examined this in the context of global population trends. Low levels of resistance were noted to ciprofloxacin (2% and erythromycin (1%; however, no resistance was observed to penicillin G or tetracycline. Resistance to ciprofloxacin was associated with a mutation in the fepR gene in one isolate; however, no genetic basis for resistance in the other isolate was identified. Resistance to erythromycin was correlated with the presence of the ermB resistance gene. Both resistant isolates belonged to clonal complex 1 (CC1, and analysis of these in the context of global CC1 isolates suggested that they were more similar to isolates from India rather than the other CC1 isolates included in this study. This study provides baseline AMR data for L. monocytogenes isolated in Australia, identifies key genetic markers underlying this resistance, and highlights the need for global molecular surveillance of resistance patterns to maintain control over the potential dissemination of AMR isolates.

  10. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  11. Antibacterial resistance in Streptococcus pyogenes (GAS) from healthy carriers and tonsillitis patients and association with antibacterial sale in the Faroe Islands

    DEFF Research Database (Denmark)

    Magnussen, Marita D; Gaini, Shahin; Gislason, Hannes

    2016-01-01

    The aim of this study was to investigate the antibacterial resistance of Streptococcus pyogenes (GAS), and correlate the findings with the sales of erythromycin and tetracycline. General practitioners in the Faroe Islands were recruited to send oropharyngeal swabs. From an ongoing pneumococcal...

  12. Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot.

    Science.gov (United States)

    Lorenzo, María; García, Nuria; Ayala, Juan Alfonso; Vadillo, Santiago; Píriz, Segundo; Quesada, Alberto

    2012-05-25

    Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Erythromycin and Sulfisoxazole

    Science.gov (United States)

    ... dehydrogenase (G-6-PD) deficiency, yellowing of the skin or eyes, colitis, or stomach problems.tell your doctor if you ... rash If you experience any of the following symptoms, call your doctor immediately: severe skin rash itching hives difficulty breathing or swallowing wheezing ...

  14. Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate medium

    International Nuclear Information System (INIS)

    Pérez, Tzayam; Sirés, Ignasi; Brillas, Enric; Nava, José L.

    2017-01-01

    Highlights: • Use of a 10 dm 3 solar plant with a FM01-LC cell and a CPC photoreactor. • Predominant H 2 O 2 production at the graphite-felt cathode and photolysis at the CPC. • Close agreement was obtained between theoretical and experimental data. • Four heterocyclic, one aromatic, one tertiary amine and five carboxylic acids detected. • Release of nitrate ions and, to a lesser extent, ammonium ion. - Abstract: A solar photoelectro-Fenton (SPEF) plant containing a filter-press FM01-LC flow reactor in series with a compound parabolic collector (CPC) as photoreactor, operating in batch recirculation mode, was simulated using a parametric model. The degradation of 10 dm 3 of solutions of the heterocyclic antibiotic erythromycin (ERY) in 0.050 mol dm −3 Na 2 SO 4 at pH 3.0 was used for validation. The filter-press reactor contained a platinized titanium plate anode and a graphite-felt cathode that produced H 2 O 2 from the reduction of dissolved oxygen (0.24 mmol dm −3 ). Trials were performed under potentiostatic and galvanostatic conditions with predominance of H 2 O 2 production, minimizing H 2 evolution reaction. The effect of initial catalyst (Fe 2+ ) concentration, current density (j), initial antibiotic concentration as dissolved organic carbon (DOC) and volumetric flow rate on the ERY mineralization was studied. Good agreement between simulations and experimental DOC decays was obtained. Mineralization current efficiencies and specific energy consumptions were also determined. The best performance under galvanostatic conditions was found for 0.225 mmol dm −3 ERY (100 mg dm −3 DOC), 0.50 mmol dm −3 Fe 2+ , volumetric flow rate of 3.0 dm 3 min −1 and j cath = -0.16 mA cm −2 , reaching 69% mineralization with current efficiency of 75% and specific energy consumption of 0.059 kWh (g DOC) −1 . Six organic by-products were identified by gas chromatography-mass spectrometry, whereas final short-chain carboxylic acids like formic and oxalic

  15. Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase.

    Science.gov (United States)

    Murakami, Satoshi; Minami-Ohtsubo, Maki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Tabata, Tetsuya

    2017-05-31

    Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact. SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila , Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N

  16. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    Science.gov (United States)

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  17. A controlled clinical trial testing two potentially non-cross-resistant chemotherapeutic regimens in small-cell carcinoma of the lung.

    Science.gov (United States)

    Broder, L E; Selawry, O S; Charyulu, K N; Ng, A; Bagwell, S

    1981-03-01

    With the objectives of improving response rate, duration of response, and survival in small-cell carcinoma of the lung, 39 patients were randomized to remission-induction with either one of two potentially non-cross-resistant drug combinations: APE (consisting of adriamycin, 35 mg/m2 IV, D1 Q 3 weeks; procarbazine, 60 mg/m2 PO, D1-10 Q 3 weeks; and the epipodophyllotoxin (VP16-213), 130 mg/m2 IV, D8, 15 Q 3 weeks) or MOCC (composed of methotrexate, 15 mg/m2 IV (with [vincristine] Oncovin) or PO twice weekly D8-21 Q 3 weeks; Oncovin, 1.5 mg/m2 IV, D8, 15 Q 3 weeks; cyclophosphamide, 600 mg/m2 IV, D1 Q 3 weeks, and CCNU, 60 mg/m2 PO Q 6 weeks). A fixed crossover to the alternate regimen occurred at three months. Radiotherapy was delivered to the primary tumor (locoregional disease only) by a split course technique (1,750 rads for five days with a three-week split, followed by 3,400 rads over 17 days). The median survival including both arms was 11 months for regional and nine months for extensive disease. The chemotherapeutic activity of both regimens was comparable, with 15/17 (88 percent) of the patients responding to APE (including six complete) and 14/17 (82 percent) responding to MOCC (including five complete). The median survival for the complete responders was 11.7 months, while the partial responders survived for a median of 9.7 months. There were 2/9 (22 percent) responders to the alternate regimen at progressive disease. The overall incidence of CNS progression was 17 percent. The toxicity of the regimens was moderate, except for one instance of granulocytopenic death. This study establishes two equipotent drug combinations for the treatment of small-cell carcinoma of the lung.

  18. Presence, distribution, and molecular epidemiology of methicillin-resistant Staphylococcus aureus in a small animal teaching hospital: a year-long active surveillance targeting dogs and their environment.

    Science.gov (United States)

    van Balen, Joany; Kelley, Christina; Nava-Hoet, Rocio C; Bateman, Shane; Hillier, Andrew; Dyce, Jonathan; Wittum, Thomas E; Hoet, Armando E

    2013-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is known to be present in small animal veterinary clinical environments. However, a better understanding of the ecology and dynamics of MRSA in these environments is necessary for the development of effective infectious disease prevention and control programs. To achieve this goal, a yearlong active MRSA surveillance program was established at The Ohio State University (OSU) Veterinary Medical Center to describe the spatial and molecular epidemiology of this bacterium in the small animal hospital. Antimicrobial susceptibility testing, staphylococcal chromosomal cassette mec (SCCmec) typing, pulsed-field gel electrophoresis (PFGE) typing, and dendrogram analysis were used to characterize and analyze the 81 environmental and 37 canine-origin MRSA isolates obtained during monthly sampling events. Overall, 13.5% of surfaces were contaminated with MRSA at 1 or more sampling times throughout the year. The majority of the environmental and canine isolates were SCCmec type II (93.8% and 86.5%, respectively) and USA100 (90.1% and 86.5%, respectively). By PFGE analysis, these isolates were found to be closely related, which reflects a low diversity of MRSA strains circulating in the hospital. For 5 consecutive months, 1 unique pulsotype was the most prevalent across the medical services and was recovered from a variety of surfaces and hospital locations. Carts/gurneys, doors, and examination tables/floors were the most frequently contaminated surfaces. Some surfaces maintained the same pulsotypes for 3 consecutive months. Molecular analysis found that incoming MRSA-positive dogs were capable of introducing a new pulsotype into the hospital environment during the surveillance period. Our results suggest that once a MRSA strain is introduced into the hospital environment, it can be maintained and spread for extended periods of time. These findings can aid in the development of biosecurity and biocontainment protocols aimed at

  19. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Agersø, Yvonne; Ahrens, Peter

    2000-01-01

    of conventional biochemical testing and 16S rDNA sequencing. The most common species were Staphylococcus aureus (83), Staphylococcus hyicus (11), Staphylococcus xylosus (9) and Staphylococcus cohnii (6). The isolates were susceptible to most antimicrobials tested. A high frequency of S. aureus (30%) was resistant...... to ciprofloxacin. Only six (7%) S. aureus isolates and one Staphylococcus saprophyticus were penicillin resistant. Resistance to sulphamethoxazole was observed among 16 (19%) of S. aureus isolates and two coagulase negative staphylococci (CNS). Twenty (24%) of the S. aureus isolates were resistant to erythromycin...

  20. Antimicrobial resistance mechanisms among Campylobacter.

    Science.gov (United States)

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  1. Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO-1 in Human Myofibres

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    2016-04-01

    Full Text Available Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE. Skeletal muscle biopsies were taken at baseline (PRE, 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01, declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise.

  2. [Bacterial resistance in acne? A meta-analysis of the controversy].

    Science.gov (United States)

    Alvarez-Sánchez, Mariana; Rodríguez-Ayala, Ernesto; Ponce-Olivera, Rosa María; Tirado-Sánchez, Andrés; Arellano-Mendoza, María Ivonne

    2016-01-01

    Acne is one of the dermatological pathologies with the highest incidence around the world. It is a multifactorial disease and its treatment can be complex. Propionibacterium acnes play a key role in the inflammation of this dermatosis. Topical antibiotics, including mainly erythromycin and clindamycin, have been used, but there is controversy over their use due to the widely documented bacterial resistance. For this reason a meta-analysis of the publications over the past 10 years is presented in order to confirm this hypothesis. A search was made of the publications over the past 10 years that included the results of antibiogams of patients with acne. MeSH type searches were performed with the terms "acne vulgaris", "Propionibacterium acnes", "topical administration", "treatment", "erythromycin", "clindamycin", "nadifloxacin", "antibacterial agent", "bacterial drug resistance" in PubMed, Ovid, EBSCO, Cochrane, ScienceDirect and ClinicalKey meta-searches. A total of 13 articles were found that met the inclusion criteria. The mean odds ratio (OR 1.24, 95% CI) of the articles showed a slight tendency toward resistance of Propionibacterium acnes. An increase in bacterial resistance to topical erythromycin and clindamycin can be confirmed, thus the use of these antibiotics is recommended in selective cases for short periods, and in combination with benzoyl peroxide for the best clinical outcome in patients with acne vulgaris. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  3. DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Helleday, Thomas

    2003-01-01

    being VP16 resistant. In order to explain the VP16 resistant phenotype several mechanisms where considered. The p53 status, P-glycoprotein, MRP, topoisomerase IIalpha, and Mre11 protein levels, as well as growth kinetics, provided no explanations of the observed VP16 resistance. In contrast...

  4. Ultrastructural morphology and localisation of cisplatin-induced platinum-DNA adducts in a cisplatin-sensitive and -resistant human small cell lung cancer cell line using electron microscopy

    NARCIS (Netherlands)

    Meijer, C; van Luyn, MJA; Nienhuis, EF; Blom, N; Mulder, NH; de Vries, EGE

    2001-01-01

    Ultrastructural morphology (transmission electron microscopy) and localisation of cisplatin-induced platinum (Pt)-DNA adducts (immunoelectron microscopy) were analysed in the human small cell lung cancer cell line GLC(4) and its 40-fold in vitro acquired cisplatin-resistant subline GLC(4)-CDDP,

  5. A randomized, double-blind, placebo-controlled trial of single-dose ciprofloxacin versus erythromycin for the treatment of chancroid in Nairobi, Kenya.

    Science.gov (United States)

    Malonza, I M; Tyndall, M W; Ndinya-Achola, J O; Maclean, I; Omar, S; MacDonald, K S; Perriens, J; Orle, K; Plummer, F A; Ronald, A R; Moses, S

    1999-12-01

    A randomized, double-blind, placebo-controlled clinical trial was conducted in Nairobi, Kenya, to compare single-dose ciprofloxacin with a 7-day course of erythromycin for the treatment of chancroid. In all, 208 men and 37 women presenting with genital ulcers clinically compatible with chancroid were enrolled. Ulcer etiology was determined using culture techniques for chancroid, serology for syphilis, and a multiplex polymerase chain reaction for chancroid, syphilis, and herpes simplex virus (HSV). Ulcer etiology was 31% unmixed chancroid, 23% unmixed syphilis, 16% unmixed HSV, 15% mixed etiology, and 15% unknown. For 111 participants with chancroid, cure rates were 92% with ciprofloxacin and 91% with erythromycin. For all study participants, the treatment failure rate was 15%, mostly related to ulcer etiologies of HSV infection or syphilis, and treatment failure was 3 times more frequent in human immunodeficiency virus-infected subjects than in others, mostly owing to HSV infection. Ciprofloxacin is an effective single-dose treatment for chancroid, but current recommendations for empiric therapy of genital ulcers may result in high treatment failure due to HSV infection.

  6. Emerging antimicrobial resistance pattern of Helicobacter pylori in central Gujarat

    Directory of Open Access Journals (Sweden)

    H B Pandya

    2014-01-01

    Full Text Available Background: Antimicrobial resistance is a growing problem in H. pylori treatment. The study was intended to evaluate the prevalence of resistance amongst 80 H.pylori isolates cultured from biopsy taken during routine endoscopies in 2008-2011. Materials and Methods: 855 gastro duodenal biopsies were collected and cultured on H.pylori selective medium (containing Brucella agar and Columbia agar (Hi media, with Skirrow′s supplement (antibiotic supplement and 7% human blood cells. H.pylori was isolated from 80 specimens. The antimicrobial susceptibility of H.pylori isolates was carried out by the Kirby Bauer technique against metronidazole (5 µg, clarithromycin (15 µg, ciprofloxacin (5 µg, amoxicillin (10 µg, tetracycline (30 µg, erythromycin (15 µg, levofloxacin (5 µg, and furazolidone (50 µg (Sigma- Aldrich, MO. Results: 83.8% isolates were resistant to metronidazole, 58.8% were resistant to Clarithromycin 72.5% were resistant to Amoxicillin, 50% to Ciprofloxacin and 53.8% to tetracycline. furazolidone, erythromycin and Levofloxacin showed only 13.8% resistance to H.pylori. Multi drug resistance with metronidazole+ clarithromycin+ tetracycline was 85%. For all the drugs Antimicrobial resistance rate was found higher in males compare to females. Metronidazole and amoxicillin resistance was found noteworthy in patients with duodenal ulcer (p = 0.018, gastritis (P = 0.00, and in reflux esophagitis (P = 0.00. clarithromycin and tetracycline resistance was suggestively linked with duodenitis (P = 0.018, while furazolidone, erythromycin and levofloxacin showed excellent sensitivity in patients with duodenitis (P value- 0.018, gastritis (P= 0.00 and reflux esophagitis (P = 0.00. Resistance with metronidazole (P = 0.481, clarithromycin (P= 0.261, amoxicillin (P = 0.276, tetracycline (P = 0.356, ciprofloxacin (P = 0.164 was not correlated well with Age-group and Gender of the patients. Conclusion: A very high percentage of patients were infected

  7. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    International Nuclear Information System (INIS)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-01-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  8. Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas

    2018-03-01

    Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy

  9. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Tomono, Takumi [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Kajita, Masahiro [Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Yano, Kentaro [Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Ogihara, Takuo, E-mail: togihara@takasaki-u.ac.jp [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan)

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  10. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  11. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. Isolated from free-living and captive raptors in Central Illinois.

    Science.gov (United States)

    Marrow, Judilee; Whittington, Julia K; Mitchell, Mark; Hoyer, Lois L; Maddox, Carol

    2009-04-01

    Due to their predatory nature, raptor species may serve as important indicators of environmental contamination with antimicrobial-resistant bacteria. Raptors prey on small rodents and birds that have diverse habitat ranges, including urban and rural environments, and their intestinal microflora can reflect that of the animals on which they feed. Enterococcus spp. were selected as target organisms because they have been isolated from the avian gastrointestinal tract, can be conferred by prey items, and because they are capable of multiple resistance patterns. They are also a concerning source of human antimicrobial resistance. In this study fecal cultures were obtained from 15 May 2004 to 31 August 2004, from 21 free-living raptors and four captive raptors. Enterococcus was isolated from 21 (84%) of the 25 birds, and 54 isolates were chosen for further study based upon unique colony morphology. The most common isolate recovered was Enterococcus faecalis (95%, 95% confidence interval [CI]: 89-100). One bird in the study was determined to have Enterococcus gallinarum. Two distinct ribotypes of E. faecalis were identified, one with unique bands at 11 and 13 kb and the other with unique bands at 14 and 20 kb. Both ribotypes were found in free-living and captive birds. The Enterococcus isolates in this study demonstrated a variety of antimicrobial-resistance characteristics, including almost complete resistance to amikacin, first-generation cephalosporins, spectinomycin, and sulphadimethoxime. Isolates demonstrated variable resistance to chloramphenicol, gentamicin, enrofloxacin, erythromycin, and ticarcillin. No phenotypically vancomycin-resistant E. faecalis isolates were recovered from any of the raptors; three isolates had intermediate level susceptibility. A significantly higher number of isolates collected from captive birds demonstrated resistance to chloramphenicol than those obtained from free-living birds. This trend was not duplicated with any of the remaining

  12. Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia.

    Science.gov (United States)

    Obeng, Akua Serwaah; Rickard, Heather; Ndi, Olasumbo; Sexton, Margaret; Barton, Mary

    2013-02-01

    Resistance to antimicrobials in enterococci from poultry has been found throughout the world and is generally recognized as associated with antimicrobial use. This study was conducted to evaluate the phenotypic and genotypic profile of enterococcal isolates of intensive (indoor) and free range chickens from 2008/09 and 2000 in order to determine the patterns of antimicrobial resistance associated with different management systems. The minimum inhibitory concentrations in faecal enterococci isolates were determined by agar dilution. Resistance to bacitracin, ceftiofur, erythromycin, lincomycin, tylosin and tetracycline was more common among meat chickens (free range and intensive) than free range egg layers (Pfree range meat chickens.

  13. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal.

    Science.gov (United States)

    Adhikari, R P; Shrestha, S; Barakoti, A; Amatya, R

    2017-07-11

    Staphylococcus aureus, an important nosocomial pathogen, is frequently associated with infections in human. The management of the infections by it especially methicillin resistant ones is often difficult because methicillin resistant S. aureus is usually resistant to multiple antibiotics. Macrolide-lincosamide streptogramin B family of antibiotics is commonly used to treat such infections as an alternative to vancomycin. This study was conducted over the period of one and half year from November 2013-April 2015 in Microbiology laboratory of Nepal Medical College and Teaching Hospital, Kathmandu, Nepal to find the incidence of different phenotypes of MLS B resistance among S. aureus from clinical samples and their association with methicillin resistance. Two hundred seventy isolates of S. aureus were included in the study. Methicillin resistance was detected by cefoxitin disc diffusion method and inducible clindamycin resistance by erythromycin and clindamycin disc approximation test (D-test). Of the 270 clinical isolates of S. aureus, 25.1% (68/270) were MRSA. Erythromycin and clindamycin resistance was seen in 54.4% (147/270) and 41.8% (113/270) isolates respectively. Resistance to erythromycin and clindamycin were higher in MRSA as compared to MSSA (erythromycin-resistance: 88.2% Vs 39.1% and clindamycin-resistance: 79.4% Vs 41.8%). The overall prevalence of i MLS B and c MLS B phenotype was 11.48% (31/270) and 29.25% (79/270) respectively. Both i MLS B and c MLS B phenotypes predominated in MRSA strains. Detection rate of MRSA in our study shows the necessity to improve in healthcare practices and to formulate new policy for the control of MRSA infections. Clindamycin resistance in the form of i MLS B and c MLS B especially among MRSA emphasizes the need of D-test to be performed routinely in our set up while using clindamycin as an alternative choice to anti-staphylococcal antibiotics like vancomycin and linezolid in the treatment of staphylococcal infections.

  14. Molecular characterization of antibiotic resistance in enterococci recovered from seagulls (Larus cachinnans) representing an environmental health problem.

    Science.gov (United States)

    Radhouani, Hajer; Igrejas, Gilberto; Pinto, Luís; Gonçalves, Alexandre; Coelho, Céline; Rodrigues, Jorge; Poeta, Patrícia

    2011-08-01

    Antimicrobial resistance and the mechanisms implicated were studied in 54 enterococci recovered from 57 seagull fecal samples. Almost 78% of the recovered enterococci showed resistance against one or more antibiotics and these isolates were identified to the species level. E. faecium was the most prevalent species (52.4%). High percentages of erythromycin and tetracycline resistances were found among our isolates (95.2%), and lower percentages were identified to other antibiotics. Most of the tetracycline-resistant strains carried the tet(M) and/or tet(L) genes. Genes associated with Tn916/Tn1545 and/or Tn5397 transposons were detected in 45% of tetracycline-resistant isolates. The erm(B) gene was detected in 65% of erythromycin-resistant isolates. The vat(D) and vat(E) genes were present in 5.9% and 11.8% of quinupristin/dalfopristin-resistant isolates, respectively. The ant(6)-Ia gene was identified in 57.1% of streptomycin-resistant isolates. All nine kanamycin-resistant isolates carried the aph(3)'-IIIa gene. The cat(A) gene was found in two chloramphenicol-resistant isolates. Seagulls should be considered a risk species for spreading in the environment antimicrobial resistant enterococci and can serve as a sentinel for antibiotic pressure from the surrounding farm and urban setting.

  15. Small changes in environmental parameters lead to alterations in antibiotic resistance, cell morphology and membrane fatty acid composition in Staphylococcus lugdunensis.

    Directory of Open Access Journals (Sweden)

    Marcus J Crompton

    Full Text Available Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in environmental conditions on growth characteristics, cell size and membrane fatty acid composition in S. lugdunensis. Liquid broth cultures of S. lugdunensis were grown under varying combinations of pH (6-8, temperature (35-39°C and osmotic pressure (0-5% sodium chloride w/w to reflect potential ranges of conditions encountered during transition from skin surfaces to invasion of wound sites. The cells were harvested at the mid-exponential phase of growth and assessed for antibiotic minimal inhibitory concentration (MIC, generation time, formation of small colony variants, cell size (by scanning electron microscopy and membrane fatty acid composition. Stress regimes with elevated NaCl concentrations resulted in significantly higher antibiotic resistance (MIC and three of the combinations with 5% NaCl had increased generation times (P<0.05. It was found that all ten experimental growth regimes, including the control and centroid cultures, yielded significantly different profiles of plasma membrane fatty acid composition (P<0.0001. Alterations in cell size (P<0.01 were also observed under the range of conditions with the most substantial reduction occurring when cells were grown at 39°C, pH 8 (514±52 nm, mean ± Standard Deviation compared with cells grown under control conditions at 37°C with pH 7 (702±76 nm, P<0.01. It was concluded that S. lugdunensis responded to slight changes in environmental conditions by altering plasma membrane fatty acid composition

  16. Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects

    DEFF Research Database (Denmark)

    Meier, Juris J; Kemmeries, Guido; Holst, Jens Juul

    2005-01-01

    . On separate occasions, the prokinetic drugs metoclopramide (10 mg), domperidone (10 mg), cisapride (10 mg, all at -30 min per oral), or erythromycin (200 mg intravenously from -30 to -15 min) were administered in addition to GLP-1. A liquid test meal (50 g sucrose and 8% mixed amino acids in 400 ml......, we aimed to antagonize the deceleration of gastric emptying by GLP-1 to study its effects on insulin secretion after a meal. Nine healthy male volunteers (age 25 +/- 4 years, BMI 25.0 +/- 4.9 kg/m2) were studied with an infusion of GLP-1 (0.8 pmol.kg(-1).min(-1) from -30 to 240 min) or placebo...... technique. Statistical analyses were performed using repeated-measures ANOVA and Duncan's post hoc test. GLP-1 significantly decelerated the velocity of gastric emptying (P drugs used had no effect. Postprandial...

  17. [Identification of lactic acid bacteria in commercial yogurt and their antibiotic resistance].

    Science.gov (United States)

    Qin, Yuxuan; Li, Jing; Wang, Qiuya; Gao, Kexin; Zhu, Baoli; Lv, Na

    2013-08-04

    To identify lactic acid bacteria (LAB) in commercial yogurts and investigate their antibiotic resistance. LABs were cultured from 5 yogurt brands and the isolates were identified at the species level by 16S rRNA sequence. Genotyping was performed by repetitive extragenic palindromic PCR (rep-PCR). The sensitivity to 7 antibiotics was tested for all LAB isolates by Kirby-Bauer paper diffusion (K-B method). Meanwhile, 9 antibiotic resistance genes (ARGs), including erythromycin resistance genes (ermA and ermB) and tetracycline resistance genes (tetM, tetK, tetS, tetQ, tetO, tetL and tetW), were detected by PCR amplification in the identified LAB isolates. The PCR products were confirmed by sequencing. Total 100 LABs were isolated, including 23 Lactobacillus delbrueckii ssp. bulgaricus, 26 Lactobacillus casei, 30 Streptococcus thermophilus, 5 Lactobacillus acidophilus, 6 Lactobacillus plantarum, and 10 Lactobacillus paracasei. The drug susceptibility test shows that all 100 isolates were resistant to gentamicin and streptomycin, 42 isolates were resistant to vancomycin, and on the contrary all were sensitive to cefalexin, erythromycin, tetracycline and oxytetracycline. Moreover, 5 ARGs were found in the 28 sequencing confirmed isolates, ermB gene was detected in 8 isolates, tet K in 4 isolates, tetL in 2 isolates, tetM in 4 isolates, tetO in 2 isolates. erm A, tet S, tet Q and tet W genes were not detected in the isolates. Antibiotic resistance genes were found in 53.57% (15/28) sequenced isolates, 2 -3 antibiotic resistance genes were detected in 4 isolates of L. delbrueckii ssp. bulgaricus. Some LABs were not labeled in commercial yogurt products. Antibiotic resistance genes tend to be found in the starter culture of L. delbrueckii ssp. Bulgaricus and S. thermophilus. All the LAB isolates were sensitive to erythromycin and tetracycline, even though some carried erythromycin and/or tetracycline resistance genes. We proved again that LAB could carry antibiotic

  18. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections

    NARCIS (Netherlands)

    Roord, JJ; Goossens, MMHT; Kimpen, JLL; Wolf, B.H.

    1996-01-01

    The efficacies and safeties of a 3-day, 3-dose course of azithromycin (10 mg/kg of body weight per day) and a 10-day, 30-dose course of erythromycin (40 mg/kg/day) for the treatment of acute lower respiratory tract infections in children were compared in an open randomized multicenter study.

  19. Associations of antimicrobial use with antimicrobial resistance in Campylobacter coli from grow-finish pigs in Japan.

    Science.gov (United States)

    Ozawa, M; Makita, K; Tamura, Y; Asai, T

    2012-10-01

    To determine associations between antimicrobial use and antimicrobial resistance in Campylobacter coli, 155 isolates were obtained from the feces of apparently healthy grow-finish pigs in Japan. In addition, data on the use of antibiotics collected through the national antimicrobial resistance monitoring system in Japan were used for the analysis. Logistic regression was used to identify risk factors to antimicrobial resistance in C. coli in pigs for the following antimicrobials: ampicillin, dihydrostreptomycin, erythromycin, oxytetracycline, chloramphenicol, and enrofloxacin. The data suggested the involvement of several different mechanisms of resistance selection. The statistical relationships were suggestive of co-selection; use of macrolides was associated with enrofloxacin resistance (OR=2.94; CI(95%): 0.997, 8.68) and use of tetracyclines was associated with chloramphenicol resistance (OR=2.37; CI(95%): 1.08, 5.19). The statistical relationships were suggestive of cross-resistance: use of macrolides was associated with erythromycin resistance (OR=9.36; CI(95%): 2.96, 29.62) and the use of phenicols was associated with chloramphenicol resistance (OR=11.83; CI(95%): 1.41, 99.44). These data showed that the use of antimicrobials in pigs selects for resistance in C. coli within and between classes of antimicrobials. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance.

    Science.gov (United States)

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Łaniewska-Trokenheim, Łucja

    2015-04-01

    The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of

  1. Antimicrobial resistance 1979-2009 at Karolinska hospital, Sweden: normalized resistance interpretation during a 30-year follow-up on Staphylococcus aureus and Escherichia coli resistance development.

    Science.gov (United States)

    Kronvall, Göran

    2010-09-01

    To utilize a material of inhibition zone diameter measurements from disc diffusion susceptibility tests between 1979 and 2009, an objective setting of epidemiological breakpoints was necessary because of methodological changes. Normalized resistance interpretation (NRI) met this need and was applied to zone diameter histograms for Staphylococcus aureus and Escherichia coli isolates. The results confirmed a slow resistance development as seen in Northern countries. The S. aureus resistance levels for erythromycin, clindamycin and fusidic acid in 2009 were 3.2%, 1.8% and 1.4% with denominator correction. A rise in resistance to four antimicrobials in 1983 was probably because of a spread of resistant Methicillin Susceptible Staphylococcus Aureus (MSSA). For E. coli, the denominator-corrected resistance levels in 2009 were 27% for ampicillin, around 3% for third-generation cephalosporins, 0.1% for imipenem, 2.5% for gentamicin, 19% for trimethoprim, 4.5% for co-trimoxazole, 1.2% for nitrofurantoin and 9% for ciprofloxacin. The temporal trends showed a rise in fluoroquinolone resistance from 1993, a parallel increase in gentamicin resistance, a substantial increase in trimethoprim and sulphonamide resistance in spite of decreased consumption, and a steady rise in ampicillin resistance from a constant level before 1989. A short review of global resistance surveillance studies is included.

  2. Detection of Antibiotic Resistant Staphylococcus aureus from Milk: A Public Health Implication

    Science.gov (United States)

    Akindolire, Muyiwa Ajoke; Babalola, Olubukola Oluranti; Ateba, Collins Njie

    2015-01-01

    The aim of this study was to investigate the occurrence, antibiotic susceptibility profiles, and virulence genes determinants of S. aureus isolated from milk obtained from retail outlets of the North-West Province, South Africa. To achieve this, 200 samples of raw, bulk and pasteurised milk were obtained randomly from supermarkets, shops and some farms in the North-West Province between May 2012 and April 2013. S. aureus was isolated and positively identified using morphological (Gram staining), biochemical (DNase, catalase, haemolysis and rapid slide agglutination) tests, protein profile analysis (MALDI-TOF mass spectrometry) and molecular (nuc specific PCR) methods. The antimicrobial resistance profiles of the isolates were determined using the phenotypic agar diffusion method. Genes encoding enterotoxins, exfoliative toxins and collagen adhesins were also screened using PCR. Among all the samples examined, 30 of 40 raw milk samples (75%), 25 of 85 bulk milk samples (29%) and 10 of 75 pasteurised milk samples (13%) were positive for S. aureus. One hundred and fifty-six PCR-confirmed S. aureus isolates were obtained from 75 contaminated milk samples. A large proportion (60%–100%) of the isolates was resistant to penicillin G, ampicillin, oxacillin, vancomycin, teicoplanin and erythromycin. On the contrary, low level resistance (8.3%–40%) was observed for gentamicin, kanamycin and sulphamethoxazole. Methicillin resistance was detected in 59% of the multidrug resistant isolates and this was a cause for concern. However, only a small proportion (20.6%) of these isolates possessed PBP2a which codes for Methicillin resistance in S. aureus. In addition, 32.7% of isolates possessed the sec gene whereas the sea, seb sed, see, cna, eta, etb genes were not detected. The findings of this study showed that raw, bulk and pasteurised milk in the North-West Province is contaminated with toxigenic and multi-drug resistant S. aureus strains. There is a need to implement

  3. Multidrug resistance in Enterococcus species of faecal origin from commercial dairy lactating cattle: Public health concern

    Directory of Open Access Journals (Sweden)

    Godfred Ngu Tanih

    2017-11-01

    Full Text Available Objective: To evaluate the prevalence of Enterococcus species in cattle faeces, their corresponding drug resistant patterns as well as the genes coding for resistance in the isolates. Methods: Two hundred and ninety rectal swabs were cultured for the isolation of Enterococcus. Presumptive isolates were confirmed by PCR, targeting the tuf gene, and confirmed isolates were identified to species level, using species-specific primers aimed at targeting six different species. Additionally, antibiogram was performed by disc diffusion and genes implicated in resistance were evaluated using molecular methods. Results: All presumptive isolates were confirmed as Enterococcus and speciated as: Enterococcus hirae (82%, Enterococcus faecium (5%, Enterococcus durans (5%, Enterococcus faecalis (2% and 6% of unidentified species. Resistance to various antimicrobials ranged from 16.4% for penicillin to 69.6% for erythromycin. Among the tetracycline and erythromycin-resistant isolates, tet M (100% and erm B (29% were the only amplified genes known to mediate resistance respectively. Other detected genes included van B (25%, van C1 (21% and bla Z (11%. Conclusions: A high prevalence of multidrug resistant Enterococcus species was observed in this study, accentuating the need to improve on animal farming practices to prevent the dissemination of this microorganism to the environment.

  4. ANTIBIOTIC RESISTANCE IN LACTIC ACID BACTERIA ISOLATED FROM FERMENTED DAIRY PRODUCTS AND BOZA

    Directory of Open Access Journals (Sweden)

    Gamze Başbülbül

    2015-06-01

    Full Text Available In this study, the resistance of 83 strains of lactic acid bacteria isolated from Turkish cheese, yogurt, kefir and boza samples to 6 antibiotics (gentamicin, tetracycline, chloramphenicol, erythromycin, vancomycin and ciprofloxacin was evaluated. The 83 isolates were identified by 16S rRNA gene sequencing and according to BLAST comparisons with sequences in the data banks, those strains showing the highest similarities with the isolates were Enterococcus faecium (10, Lactococcus lactis subsp. Lactis (10, Lactobacillus fermentum (6, Lactobacillus plantarum (6, Lactobacillus coryniformis (7, Lactobacillus casei (13, Leuconostoc mesenteroides (14, Pediococcus pentosaceus (10, Weisella confusa (7. Antimicrobial resistance of strains to 6 antibiotics was determined using the agar dilution method. The antibiotic resistance among all the isolates was detected against chloramphenicol (31,3 % of the isolates, tetracycline (30,1 %, erythromycin (2,4 %, ciprofloxacin (2,41%, vancomycin (73,5 %, intrinsic resistance. Overall 19,3 % of the isolates showed resistance against multiple antibiotics. Antibiotic resistance genes were studied by PCR and the following genes were detected; tet(M gene in Lactobacillus fermentum (1, Lactobacillus plantarum (1, Pediococcus pentosaceus (5, Enterococcus faecium (2, Weisella confusa (4 and the vancomycin resistance gene van(A in one Weisella confusa strain.

  5. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India

    Directory of Open Access Journals (Sweden)

    Mrinalee Devi

    2017-05-01

    Full Text Available Aim: This study was conducted to determine the prevalence and antimicrobial susceptibility of Streptococcus suis and their resistance patterns isolated from both clinically healthy carriers and diseased pigs in and around Guwahati, Assam, India. Materials and Methods: A total of 497 samples were collected during October, 2012, to April, 2014, from clinically healthy (n=67 and diseased (n=230 pigs of varying age and either sex maintained under organized and unorganized farming systems. Samples were processed for isolation and identification of S. suis by biochemical characterization and polymerase chain reaction targeting the housekeeping gene glutamate dehydrogenase. In vitro antimicrobial susceptibility of the recovered isolates against nine antibiotic groups comprising 17 antimicrobial agents was studied by standard method. Results: Of the 497 samples examined, 7 (1.41% isolates were confirmed to be S. suis of which 5 (1.87% and 2 (0.87% were derived from clinically healthy and diseased pigs, respectively. All the isolates were susceptible to gentamicin, amikacin, and erythromycin (100% followed by the penicillin group and enrofloxacin (85.71%, ceftriaxone, doxycycline HCL, ofloxacin and chloramphenicol (71.43%, to kanamycin, clindamycin and co-trimoxazole (42.85%. The isolates showed least susceptibility to cefalexin, tetracycline and streptomycin (28.57%. All the five S. suis isolates from clinically healthy pigs were susceptible to penicillin G, amoxyclav, doxycycline HCl, gentamicin, amikacin and erythromycin, 80.00% isolates susceptible to ampicillin, enrofloxacin and ofloxacin, 60.00% to ceftriaxone, kanamycin and chloramphenicol, 40% to cefalexin, tetracycline, clindamycin and co-trimoxazole, respectively. Only 20.00% isolates were susceptible to streptomycin. Both the isolates recovered from diseased pigs were susceptible to ampicillin, ceftriaxone, gentamicin, amikacin, enrofloxacin, erythromycin, and clindamycin. On the other hand

  6. An 8-Week High-Fat Diet Induces Obesity and Insulin Resistance with Small Changes in the Muscle Transcriptome of C57BL/6J Mice

    NARCIS (Netherlands)

    Wilde, de J.; Smit, E.; Mohren, R.; Boekschoten, M.V.; Groot, de P.J.; Berg, van den S.A.A.; Bijland, S.; Voshol, P.J.; Willems van Dijk, K.; Wit, de N.J.W.; Bunschoten, A.; Schaart, G.; Hulshof, M.F.M.; Mariman, E.C.M.

    2009-01-01

    Background: Skeletal muscle is responsible for most of the insulin-stimulated glucose uptake and metabolism. Therefore, it plays an important role in the development of insulin resistance, one of the characteristics of the metabolic syndrome (MS). As the prevalence of the MS is increasing, there is

  7. Exploring the mechanism of non-small-cell lung cancer cell lines resistant to epidermal growth factor receptor tyrosine kinase inhibitor

    Directory of Open Access Journals (Sweden)

    Yongkang Yu

    2016-01-01

    Conclusions: The regulatory edges with remarkable changes between HCC827 and ER3, HCC827 and T15.2 included some transcription factors and genes. (e. g., STAT3 and SOX9. STAT3, SOX9, STAT5B, EGR1, and STAT6 might affect the resistance of NSCLC to erlotinib.

  8. Genome-wide analysis of the regulatory function mediated by the small regulatory psm-mec RNA of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cheung, Gordon Y C; Villaruz, Amer E; Joo, Hwang-Soo; Duong, Anthony C; Yeh, Anthony J; Nguyen, Thuan H; Sturdevant, Daniel E; Queck, S Y; Otto, M

    2014-07-01

    Several methicillin resistance (SCCmec) clusters characteristic of hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains harbor the psm-mec locus. In addition to encoding the cytolysin, phenol-soluble modulin (PSM)-mec, this locus has been attributed gene regulatory functions. Here we employed genome-wide transcriptional profiling to define the regulatory function of the psm-mec locus. The immune evasion factor protein A emerged as the primary conserved and strongly regulated target of psm-mec, an effect we show is mediated by the psm-mec RNA. Furthermore, the psm-mec locus exerted regulatory effects that were more moderate in extent. For example, expression of PSM-mec limited expression of mecA, thereby decreasing methicillin resistance. Our study shows that the psm-mec locus has a rare dual regulatory RNA and encoded cytolysin function. Furthermore, our findings reveal a specific mechanism underscoring the recently emerging concept that S. aureus strains balance pronounced virulence and high expression of antibiotic resistance. Published by Elsevier GmbH.

  9. Voltammetric behavior of erythromycin ethylsuccinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation

    International Nuclear Information System (INIS)

    Vajdle, Olga; Guzsvány, Valéria; Škorić, Dušan; Anojčić, Jasmina; Jovanov, Pavle; Avramov-Ivić, Milka; Csanádi, János; Kónya, Zoltán

    2016-01-01

    Highlights: • Voltammetric characterization of erythromycin ethylsuccinate (EES) on Hg(Ag)FE. • Trace level determination of EES by electroreduction based SWV and SW-AdSV methods. • Protonation of the tertiary amino group supports the adsorption of EES on Hg(Ag)FE. • 1 H NMR confirms chemical shifting of tertiary amine methyl proton signals with pH. • Comparative HPLC-DAD measurements were performed for the validation of the methods. - Abstract: Erythromycin, a macrolide antibiotic, has similar antimicrobial spectrum to penicillin and it is widely used, especially in the treatment of patients who are allergic to penicillin. In this work, the application of a renewable silver-amalgam film electrode (Hg(Ag)FE) for the characterization and determination of erythromycin ethylsuccinate (EES), a widely used esterified form of this antibiotic, by means of cyclic voltammetry (CV) and square wave voltammetry (SWV) is presented. In the aqueous Britton-Robinson buffer (pH 5.0–9.0) that served as the supporting electrolyte, one reduction peak of EES was observed in the investigated potential range between −0.75 V and −1.80 V vs SCE, with peak potential maxima ranging from −1.59 V to −1.70 V, which strongly depended on the applied pH, as did the peak shape. For the analytical purposes the pH of 7.0 was selected, since in this electrolyte the EES peak was well-shaped and separated from the background current of the supporting electrolyte in both cases; in the direct cathodic SWV and in the case of square wave adsorptive stripping voltammetry (SW-AdSV). It was established, by the E p -pH correlation, that protons strongly influenced the electrochemical reduction of EES. The CVs recorded between 0.025–0.50 V s −1 at pH 7.0 confirmed that the electrode reaction is adsorption-controlled. Based on the series of 1 H NMR measurements it is proved that the tertiary amino group of EES is mainly in its protonated form at pH 7.0 which may lead, at appropriate

  10. The New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(45) Is Located within a Genomic Island in Staphylococcus fleurettii

    DEFF Research Database (Denmark)

    Wipf, Juliette R K; Schwendener, Sybille; Nielsen, Jesper Boye

    2015-01-01

    Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer...... inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus....

  11. Presence of superantigen genes and antimicrobial resistance in Staphylococcus isolates obtained from the uteri of dairy cows with clinical endometritis.

    Science.gov (United States)

    Zhao, J-L; Ding, Y-X; Zhao, H-X; He, X-L; Li, P-F; Li, Z-F; Guan, H; Guo, X

    2014-10-11

    Clinical endometritis is an important disease of dairy cattle and results in decreased reproductive performance. This disease is caused by contamination of the uterus with a broad spectrum of microorganisms after calving. In this study, staphylococcal isolates from the uterus of dairy cows with clinical endometritis were tested for their distribution of superantigen (SAg) genes and antimicrobial resistance. Between the 127 staphylococcal isolates collected in this study, 10 species were identified. The predominant strain identified was Staphylococcus aureus (n=53), followed by Staphylococcus saprophyticus (n=38) and Staphylococcus chromogenes (n=22). PCR analysis demonstrated that most isolates (63.0 per cent) harboured at least one SAg gene. The most commonly observed SAg gene and genotype was selj (38.6 per cent) and sec-selj-seln (24.0 per cent), respectively. Most isolates were resistant to penicillin (79.5 per cent), ampicillin (71.7 per cent), erythromycin (56.7 per cent), and tetracycline (52.0 per cent). PCR analysis demonstrated that the antimicrobial resistance determinants ermA, ermB, ermC, tetK, tetM and blaZ were detected in 0 per cent, 44.4 per cent, 51.4 per cent, 68.2 per cent, 13.6 per cent and 86.1 per cent of the erythromycin, tetracycline and β-lactam resistant isolates, respectively. There were 22 (17.3 per cent of all isolates) coagulase-negative staphylococci shown to be methicillin resistant. In the methicillin-resistant isolates, significant resistances to ampicillin, erythromycin and penicillin were observed (P<0.01). The results of this study demonstrate that staphylococci recovered from dairy cows with clinical endometritis contain an extensive and complex prevalence of SAg genes. Significant resistances to antibiotics were also seen, highlighting the need for the rational appliance of antibiotics in veterinary medicine. British Veterinary Association.

  12. In vitro antimicrobial susceptibility and genetic resistance determinants of Streptococcus agalactiae isolated from mastitic cows in Brazilian dairy herds

    Directory of Open Access Journals (Sweden)

    Juliana Rosa da Silva

    2017-08-01

    Full Text Available Streptococcus agalactiae is one of the main causative agents of bovine mastitis and is associated with several economic losses for producers. Few studies have evaluated antimicrobial susceptibility and the prevalence of genetic resistance determinants among isolates of this bacterium from Brazilian dairy cattle. This work aimed to evaluate the frequency of the antimicrobial resistance genes ermA, ermB, mefA, tetO, tetM, aphA3, and aad-6, and in vitro susceptibility to the antimicrobials amikacin, erythromycin, clindamycin, tetracycline, gentamicin, penicillin, ceftiofur, and cefalotin, and the associations between resistance genotypes and phenotypes among 118 S. agalactiae isolates obtained from mastitic cows in Brazilian dairy herds. Of the resistance genes examined, ermB was found in 19 isolates (16.1%, tetO in 23 (19.5%, and tetM in 24 (20.3%. The genes ermA, mefA, aphA3, and aad-6 were not identified. There was an association between the presence of genes ermB, tetM, and tetO and phenotypic resistance to erythromycin, clindamycin, and tetracycline. Rates of resistance to the tested antibiotics varied, as follows: erythromycin (19.5%, tetracycline (35.6%, gentamicin (9.3%, clindamycin (20.3%, penicillin (3.4%, and amikacin (38.1%; conversely, all isolates were susceptible to ceftiofur and cefalotin. Antimicrobial resistance testing facilitates the treatment decision process, allowing the most judicious choice of antibiotics. Moreover, it enables regional and temporal monitoring of the resistance dynamics of this pathogen of high importance to human and animal health.

  13. Early Onset Inflammation in Pre-Insulin-Resistant Diet-Induced Obese Rats Does Not Affect the Vasoreactivity of Isolated Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Raun, Kirsten; Boonen, Harrie C M

    2012-01-01

    Background: Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction. ...... concomitant vascular dysfunction. The results show that inflammation and obesity are tightly associated, and that inflammation is manifested prior to significant insulin resistance and vascular dysfunction........ Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. Methods: Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were...... conducted on DIO rats and their controls prior to the development of insulin resistance. Furthermore, the plasma contents of selected cytokines [macrophage chemoattractant protein (MCP-1), interleukin-6 (IL-6), and interleukin-1 (IL-1)] and the concentration of adiponectin were measured. Using wire...

  14. Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages

    Directory of Open Access Journals (Sweden)

    Hanna Lethycia Wolupeck

    Full Text Available ABSTRACT: The present study aimed to assess the antibiotic resistance in 54 indigenous Lactobacillus plantarum isolated from artisanal fermented sausages. The confirmation of the strain species was performed by multiplex-PCR assay. Antibiotic resistance was assessed by disk diffusion (DD and Minimum Inhibitory Concentration (MIC methods. Of 54 L. plantarum, 44 strains were genotypically confirmed as L. plantarum and 3 as Lactobacillus pentosus. The highest resistance rates were to ampicillin and streptomycin. The highest susceptibility rates were shown to tetracycline, chloramphenicol and penicillin G. None of the strains showed multidrug resistance. Resistance rates by DD and MIC were not different (P>0.05 for ampicillin, chloramphenicol, erythromycin and penicillin G. Future research should assess the genetic mechanisms underlying the phenotypic resistance in Lactobacillus strains to screen the potential probiotic strains for the development of functional meat products.

  15. Antibacterial susceptibility patterns and cross-resistance of methicillin resistant and sensitive Staphyloccus aureus isolated from the hospitalized patients in Shiraz, Iran

    Directory of Open Access Journals (Sweden)

    Aziz Japoni

    2010-10-01

    Full Text Available Nosocomial infections caused by methicillin-resistant staphylococci (MRSA pose a serious problem in many countries. This study aimed to determine the antibacterial susceptibility patterns of methicillin sensitive and resistant Staphylococcus aureus isolates from the hospitalized patients. Totally 356 isolates of Staphylococcus aureus (S. aureus including 200, 137 and 19 corresponding to MSSA, MRSA, and intermediate MRSA strains, respectively were isolated. Antibacterial susceptibility patterns of the isolates to 14 antibiotics were examined using Kirby-Bauer method. MICs of 15 antibiotics to 156 MRSA isolates were determined by E test method. Cross-resistances of MRSA isolates (137+19 to the other tested antibiotics were also determined. S.aureus with high frequencies were isolated from the blood, sputum and deep wound samples. All of 200 MSSA isolates were sensitive to oxacillin, vancomycin, tecoplanin, rifampin, linezolid, quinupristin/dalfopristin, mupirocin and fusidic acid. A gradient of reduced susceptibility of MSSA to cephalexin, co-trimoxazole, ciprofloxacin, clindamycin, tetracycline, erythromycin and gentamicin were evident. MRSA isolates were sensitive to vancomycin, tecoplanin, linezolid, quinupristin/dalfopristin, mupirocin and fusidic acid, while reduced susceptibility of them to rifampin, co-trimoxazole, clindamycin, cephalexin, tetracycline, ciprofloxacin, erythromycin and gentamicin were observed. MRSA isolates exhibited a high range of cross-resistance to the eight tested antibiotics. Overall, co-trimoxazole, ciprofloxacin, clindamycin, tetracycline, erythromycin and gentamicin showed low activity against MSSA and MRSA isolates which may indicate they are not suitable to be used in clinical practices. To preserve the effectiveness of antibiotics, rational prescription and concomitant application of preventive measures against the spread of MRSA are recommended.

  16. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  17. Using Oxytetracycline, Amikacin and Erythromycin in Controlling Mycelial Growth and Spore Germination of Rhytisma acerinum as Pathogen in Tar Spot Disease at Acer velutinum Boiss in Vitro

    Directory of Open Access Journals (Sweden)

    Sh. Mehdi Karami

    2017-08-01

    Full Text Available Introduction : There are seven species and sub-species of Acer sp. in the Northern forest of Iran. One of the most important diseases of this tree in all over the world is tar spot. Two species of fungi, which cause this disease, are Rhytisma acerinum and R. punctatum from the category of Ascomycetidae. Studies on the Acer platinum sp. show that causative agent of this disease is R.punctatum which cause the early fall and make leaves turning yellow especially in the plant nurseries and forested areas. Therefore, investigating the use of antibiotics in treating this disease in the forest areas is necessary. The objective of the current research was to use Oxytetracycline, Amikacin and Erythromycin in Controlling mycelial growth and spore germination of R. acerinum as Pathogen in tar spot disease at Acer velutinum Boiss in vitro. Materials and methods: To control the disease of Maple tar spot in the condition of light and darkness, the medium containing oxytetracycline, Amikacin and Erythromycin were used. Four different dosage of 50, 100, 200, 500 microliter, of oxytetracycline 10% in the light and dark conditions in 100cc of distilled water and Amikacin 5% in four different dose of, 100, 200, 400 and 1000 microliter, light and dark conditions in 100 cc of distilled water and for erythromycin 5% four different dose of, 100, 200, 400 and 1000 microliter in 100 cc of distilled water in light and dark conditions each in three repetitions of medium were prepared. In this step, to evaluate the effect of light on the rate of the growth of mycelium and fungal colonies of R. acerinum, for each of the treatments with the different dosage, half of the repetitions were under the light condition and another half in dark condition (incubator. Then, after the growth, radiant growth was measured over one week. To investigate the fungi spore germination, above steps, were performed, as well. Results and Discussion: The results showed that among the mentioned

  18. The ORACLE Children Study: educational outcomes at 11 years of age following antenatal prescription of erythromycin or co-amoxiclav.

    Science.gov (United States)

    Marlow, Neil; Bower, Hannah; Jones, David; Brocklehurst, Peter; Kenyon, Sara; Pike, Katie; Taylor, David; Salt, Alison

    2017-03-01

    Antibiotics used for women in spontaneous preterm labour without overt infection, in contrast to those with preterm rupture of membranes, are associated with altered functional outcomes in their children. From the National Pupil Database, we used Key Stage 2 scores, national test scores in school year 6 at 11 years of age, to explore the hypothesis that erythromycin and co-amoxiclav were associated with poorer educational outcomes within the ORACLE Children Study. Anonymised scores for 97% of surviving children born to mothers recruited to ORACLE and resident in England were analysed against treatment group adjusting for key available socio-demographic potential confounders. No association with crude or with adjusted scores for English, mathematics or science was observed by maternal antibiotic group in either women with preterm rupture of membranes or spontaneous preterm labour with intact membranes. While the proportion receiving special educational needs was similar in each group (range 31.6-34.4%), it was higher than the national rate of 19%. Despite evidence that antibiotics are associated with increased functional impairment at 7 years, educational test scores and special needs at 11 years of age show no differences between trial groups. ISCRT Number 52995660 (original ORACLE trial number). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci

    Directory of Open Access Journals (Sweden)

    Adilson de Oliveira

    2016-09-01

    Full Text Available The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS. Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus. Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB. Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4% S. aureus strains that were resistant to oxacillin and six (42.8% that were resistant to erythromycin. Among the CoNS, 31 (88.6% strains were resistant to oxacillin, 14 (40% to erythromycin, 18 (51.4% to gentamicin, and 8 (22.8% to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and Co

  20. Prolonged exposure of methicillin-resistant Staphylococcus aureus (MRSA) COL strain to increasing concentrations of oxacillin results in a multidrug-resistant phenotype

    DEFF Research Database (Denmark)

    Martins, Ana; Couto, Isabel; Aagaard, Lone

    2007-01-01

    Our previous studies demonstrated that exposure of a bacterium to increasing concentrations of an antibiotic would increase resistance to that antibiotic as a consequence of activating efflux pumps. This study utilises the same approach; however, it employs the methicillin-resistant Staphylococcus...... aureus (MRSA) COL strain, which is highly resistant to oxacillin (OXA). MRSA COL was adapted to 3200 mg/L of OXA. Changes in resistance to other antibiotics were evaluated and efflux pump activity during the adaptation process was determined. MRSA COL was exposed to stepwise two-fold increases of OXA....... At the end of each step, minimum inhibitory concentration determination for erythromycin (ERY) and other antibiotics was conducted. Reserpine (RES) was employed to evaluate whether resistance to ERY was dependent on efflux pump activity. Efflux pump activity was also evaluated using the ethidium bromide (EB...

  1. Population pharmacokinetics of ifosfamide and its 2-and 3-dechloroethylated and 4-hydroxylated metabolites in resistant small-cell lung cancer patients

    NARCIS (Netherlands)

    Kerbusch, T; vanPutten, JWG; Groen, HJM; Huitema, ADR; Mathot, RAA; Beijnen, JH

    The aim of this study was to develop a population pharmacokinetic model that could describe the pharmacokinetics of ifosfamide, 2- and 3-dechloroethylifosfamide and 4-hydroxyifosfamide, and calculate their plasma exposure and urinary excretion. A group of 14 patients with small-cell lung cancer

  2. Non-cross resistant sequential single agent chemotherapy in first-line advanced non-small cell lung cancer patients: Results of a phase II study

    NARCIS (Netherlands)

    V. Surmont; J.G.J.V. Aerts (Joachim); K.Y. Tan; F.M.N.H. Schramel (Franz); R. Vernhout (Rene); H.C. Hoogsteden (Henk); R.J. van Klaveren (Rob)

    2009-01-01

    textabstractBackground. sequential chemotherapy can maintain dose intensity and preclude cumulative toxicity by increasing drug diversity. Purpose. to investigate the toxicity and efficacy of the sequential regimen of gemcitabine followed by paclitaxel in first line advanced stage non-small cell

  3. Phenotypical and Genotypical Antimicrobial Resistance of Coagulase-negative staphylococci Isolated from Cow Mastitis.

    Science.gov (United States)

    Klimiene, I; Virgailis, M; Pavilonis, A; Siugzdiniene, R; Mockeliunas, R; Ruzauskas, M

    2016-09-01

    The objectives of this study were to determine the prevalence and antimicrobial resistance of coagulase-negative staphylococci (CNS) isolated from dairy cows with subclinical mastitis. Antimicrobial resistance in staphylococci were evaluated by breakpoint values specific to the species (EU-CAST). The presence of resistance-encoding genes was detected by multiplex PCR. A total of 191 CNS isolates were obtained. The CNS isolates were typically resistant to penicillin (67.4%), tetracyc-line (18.9%), and erythromycin (13.7%). CNS isolates (78.0%) were resistant to at least one antimicrobial compound, and 22.0% were multiresistant. The multiresistant isolates were predominantly Staphylococcus chromogenes (28.6%), Staphylococcus warneri (19%) and Staphylococcus haemolyticus (14.3%). According to MIC pattern data, multiresistant isolates showed the highest resistance (p<0.05) rates to penicillin (85.7%), tetracycline (66.7%), and erythromycin (48.2%), but all of them were sensitive to daptomycin, oxacillin, qiunupristin/dalfopristin, and vancomycin. S. chromogenes (9.5%), S. haemolyticus (4.8%), and S. capitis ss capitis (2.4%) strains were resistant to methicillin; their resistance to oxacillin and penicillin was more than 8 mg/l. A high rate of resistance to penicillin was linked to a blaZ gene found in 66.6% of the isolated multiresistant CNS strains. Resistance to tetracycline via the tetK (38.1%) gene and penicillin via the mecA (23.8%) gene were detected less frequently. Gene msrAB was responsible for macrolides and lincosamides resistance and detected in 28.6% of the CNS isolates. Antimicrobial resistance genes were identified more frequently in S. epidermidis, S. chromogenes, and S. warneri.

  4. Enantioselective synthesis of C{sub 9}-C{sub 1}3 fragment of erythromycin B; Sintesis enantioselectiva del fragmento C{sub 9}-C{sub 1}3 de la eritromicina B

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, E.; Carretero, J.C. [Departamento de Quimica Organica, Universidad Autonoma, Madrid (Spain)

    1994-12-31

    A stereo controlled synthesis of the enantiomerically pure C{sub 9}-C{sub 1}3 fragment of erythromycin B is described. The process takes place in 15 steps from (R)-phenylsulfonyl p-tolylsulfinyl methane and butyraldehyde (16% overall yield). The key steps, corresponding to the formation of the chiral centers, are based on the iterative synthesis of gamma-hydroxivinylsulfones and further syb-sterereoselective addition of MeLi to their protected derivatives. 8 refs.

  5. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  6. [Microbiological characteristics and patterns of resistance in prosthetic joint infections in a referral hospital].

    Science.gov (United States)

    Ortega-Peña, Silvestre; Colín-Castro, Claudia; Hernández-Duran, Melissa; López-Jácome, Esaú; Franco-Cendejas, Rafael

    2015-01-01

    The prosthetic joint infection is the most feared and catastrophic complication for cause severe physical damage to patients and, generates high economic costs. To describe the microbiological characteristics and to determine the resistance pattern in prosthetic joint infections in a reference hospital in Mexico. Patients whose prosthetic devices were withdrawn due to suspicion of septic and aseptic loosening were included. Cultures were performed to identify microorganisms and susceptibility analysis. Of the 111 patients included, 55% were diagnosed with prosthetic joint infection, with the most frequent prosthesis being of the hip (43%). Positive cultures were obtained in 97% of the infected cases, of which 75% were monomicrobial infections. The most frequent bacterial species isolated were: Staphylococcus epidermidis (31%), Enterococcus faecalis (16%), Staphylococcus aureus (13%), and Escherichia coli (8%). The resistance patterns for the Staphylococcus genus were: oxacillin (79%), erythromycin (45%) and ciprofloxacin (37%). Enterococcus faecalis showed a high percentage of resistance to erythromycin and clindamycin (86%), and fluoroquinolones (43%). The large majority (86%) of Escherichia coli were extended spectrum beta-lactamases positive, in addition to having high resistance to fluoroquinolones (86%), trimethoprim/sulfamethoxazole (86%) and gentamicin (72%). The microbiological characteristics found in prosthetic joint infections vary according to the hospitals. In this series, a high proportion of coagulase-negative Staphylococci and Enterococcus spp. were found, as well as a high bacterial resistance. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  7. Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum.

    Science.gov (United States)

    Egervärn, M; Roos, S; Lindmark, H

    2009-11-01

    The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions. A tet(W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm(B) and one strain each was positive for erm(C) and erm(T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet(M) gene. The majority of the tet(W)-positive Lact. reuteri strains and all erm-positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study. Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated. These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.

  8. Trends in antimicrobial susceptibility among isolates of Campylobacter species in Ireland and the emergence of resistance to ciprofloxacin.

    LENUS (Irish Health Repository)

    Lucey, B

    2012-02-03

    Measurements were made of the susceptibility to six commonly prescribed antibiotics, including erythromycin, tetracycline and ciprofloxacin, of 130 isolates of Campylobacterjejuni and 15 isolates of Campylobacter coli cultured from human and poultry sources during 2000. The results were compared with the results from a collection of strains isolated between 1996 and 1998. The levels of resistance to erythromycin remained low, 2 per cent and 4.4 per cent for the human and poultry isolates, respectively. Resistance to tetracycline had increased to 31 per cent and 24.4 per cent from 13.9 per cent and 18.8 per cent for the human and poultry isolates, respectively. However, the resistance to ciprofloxacin of the strains isolated during 2000 had increased to 30 per cent, whereas between 1996 and 1998 there had been no resistance to this agent among human isolates, and only 3.1 per cent resistance among poultry isolates. The molecular basis for this resistance has been shown to be the result of a single amino acid substitution, Thr-86-Ile, in the gyrA subunit of DNA gyrase in Cjejuni. A subset of 59 isolates was tested by molecular methods and all of the 25 phenotypically resistant isolates possessed this substitution. None of the human isolates had been treated with ciprofloxacin before their laboratory isolation.

  9. [Cetuximab in combination with icotinib overcomes the acquired resistance caused by EGFR T790M mutation in non-small cell lung cancer].

    Science.gov (United States)

    Wang, Meng; Zhang, Lianmin; Zhao, Xiaoliang; Liu, Jun; Chen, Yulong; Wang, Changli

    2014-09-01

    The aim of this study was to investigate the effects of combination of icotinib and cetuximab on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC, and provide experimental evidence for rational treatment of NSCLC. The effects of these two agents on cell proliferation, apoptosis, and EGFR-dependent signaling were evaluated using 3-(4, 5-dimethylthiazol-2-yl)- 5-diphenyltetrazolium bromide (MTT) assay, annexin V staining, and Western blotting. The expression of molecular markers of tumor proliferation PCNA and Ki-67 protein was further examined by immunohistochemistry, and the expression of EGFR-signaling-related proteins in tissue sections taken from H1975 tumor xenografts was assessed by Western blot assay. Sensitivity to EGFR inhibitors was detected in human H1975 tumor xenograft in nude mice. The in vitro experiment showed that the proliferative ability of H1975 cells was inhibited in a dose-dependent manner, along with the increasing doses of cetuximab and icotinib, and the combination of cetuximab with icotinib resulted in a more pronounced growth inhibition of the H1975 cells. The apoptosis rate of H1975 cells after treatment with 0.5 µmol/L icotinib and 1 µg/ml cetuximab was (22.03 ± 2.41)% and that after treatment with 5 µmol/L icotinib and 10 µg/ml cetuximab was (42.75 ± 2.49)%, both were significantly higher than that after treatment with the same dose of icotinib or cetuximab alone (P icotinib treatment, but (30.8 ± 2.0) mm(3) in the cetuximab treatment group and 0 mm(3) in the cetuximab combined with icotinib group. There was a significantly decreased expression of Ki-67 and PCNA proteins and down-regulation of phosphorylation of EGFR signaling-related proteins in the cetuximab combined with icotinib group. The combination of icotinib with cetuximab can exert synergistic inhibitory effect on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC H1975 cells, interrupts the EGFR-downstream signaling pathway

  10. Resistivity effects in non-inductive RF current drive via helicity injection by Alfven waves: the case of conventional and small aspect ratio Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1996-01-01

    Supplementary non-inductive current drive and heating are necessary to bring Tokamak plasmas into the ignition regime. The resonant excitation of shear Alfven waves (SAW) - in the continuum range (CR) or/and in the discrete global Alfven eigenmode spectrum (GAE's) - represents one potential, suitable method for this purpose. Within the framework of ideal MHD, the current drive (CD) via helicity injection in Tokamak plasmas has been considered by Cuperman et al (1996) and Komoshvili et al. (1996). This work is concerned with the investigation of the non-ideal resistive MHD effects on both the excitation of SAW's (CR's and GAE's) and the generation of non-inductive current drive via helicity injection in Tokamak plasmas. The research covers Tokamak aspect ratios ranging between large value cases (R/a = 10) and the very tight value case (R/ a = 1.2). (authors)

  11. Heterogeneity in Immune Marker Expression after Acquisition of Resistance to EGFR Kinase Inhibitors: Analysis of a Case with Small Cell Lung Cancer Transformation.

    Science.gov (United States)

    Suda, Kenichi; Murakami, Isao; Yu, Hui; Kim, Jihye; Ellison, Kim; Rivard, Christopher J; Mitsudomi, Tetsuya; Hirsch, Fred R

    2017-06-01

    Expression of immune markers is of scientific interest because of their potential roles as predictive biomarkers for immunotherapy. Although the microenvironment of metastatic tumors and/or therapy-inducible histological transformation may affect the expression of these immune markers, there are few data regarding this context. A 76-year-old never-smoking female with EGFR-mutated lung adenocarcinoma (AC) acquired resistance to gefitinib. After her death, an autopsy revealed SCLC transformation and EGFR T790M secondary mutation (T790M) as mutually exclusive resistance mechanisms occurring differently in different metastases; two liver metastases (SCLC versus AC with T790M) and two lymph node metastases (SCLC versus AC with T790M) were analyzed to compare the expression status of immune markers by immunohistochemistry and by an immune oncology gene expression panel. Programmed death ligand 1 (PD-L1) protein was partially expressed in tumor cells with AC lesions (T790M) but not in tumor cells with SCLC transformation. The liver metastasis with SCLC transformation showed no stromal PD-L1 expression and scant tumor-infiltrating lymphocytes, whereas the other lesions demonstrated stromal PD-L1 staining and infiltration of CD8-positive T cells. Data generated using an immuno-oncology gene expression panel indicated a higher level of T-cell costimulatory molecules and lower expression of type I interferon-regulated genes in lesions with SCLC transformation. These data highlight the heterogeneity of expression of immune markers depending on the metastatic sites and histological transformation and indicate that the biopsy specimen from one lesion may not be representative of immune marker status for all lesions. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  12. Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress.

    Science.gov (United States)

    Deben, Christophe; Deschoolmeester, Vanessa; De Waele, Jorrit; Jacobs, Julie; Van den Bossche, Jolien; Wouters, An; Peeters, Marc; Rolfo, Christian; Smits, Evelien; Lardon, Filip; Pauwels, Patrick

    2018-04-21

    The compound APR-246 (PRIMA-1 MET ) is a known reactivator of (mutant) p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study focusses on the role of hypoxia-inducible factor-1α (HIF-1α) and the p53 tumor suppressor protein in hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC) cells and the potential of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance only occurred in the p53 mutant NCI-H2228 Q331 * cell line, and not in the wild type A549 and mutant NCI-H1975 R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228 Q331 * cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in NCI-H2228 Q331 * cells in a synergistic manner without affecting mutant p53 Q331 * transcriptional activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions. Synergism was dependent on the presence of mutant p53 Q331 * and the induction of reactive oxygen species, with depletion of one or the other leading to loss of synergism. Our data further support the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is retained or enforced under hypoxic conditions in the presence of mutant p53.

  13. Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Christophe Deben

    2018-04-01

    Full Text Available The compound APR-246 (PRIMA-1MET is a known reactivator of (mutant p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study focusses on the role of hypoxia-inducible factor-1α (HIF-1α and the p53 tumor suppressor protein in hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC cells and the potential of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance only occurred in the p53 mutant NCI-H2228Q331* cell line, and not in the wild type A549 and mutant NCI-H1975R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228Q331* cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in NCI-H2228Q331* cells in a synergistic manner without affecting mutant p53Q331* transcriptional activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions. Synergism was dependent on the presence of mutant p53Q331* and the induction of reactive oxygen species, with depletion of one or the other leading to loss of synergism. Our data further support the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is retained or enforced under hypoxic conditions in the presence of mutant p53.

  14. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of {sup 11}C-labeled topotecan using small-animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Hatori, Akiko; Yui, Joji [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Nengaki, Nobuki; Ogawa, Masanao; Yoshida, Yuichiro [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); SHI Accelerator Service, Ltd., Tokyo 141-8686 (Japan); Wakizaka, Hidekatsu [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Yanamoto, Kazuhiko [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871 (Japan); Fukumura, Toshimitsu [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Zhang Mingrong, E-mail: zhang@nirs.go.jp [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2011-07-15

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [{sup 11}C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [{sup 11}C]TPT using small-animal PET. Methods: [{sup 11}C]TPT was synthesized by the reaction of a desmethyl precursor with [{sup 11}C]CH{sub 3}I. In vitro study using [{sup 11}C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [{sup 11}C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [{sup 11}C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b{sup -/-}Bcrp1{sup -/-} mice, PET results indicated that the brain uptake of [{sup 11}C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [{sup 11}C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after the injection of [{sup 11}C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [{sup 11}C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  15. RAW TROPICAL OYSTERS AS VEHICLES FOR MULTIDRUG-RESISTANT Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque COSTA

    2015-06-01

    Full Text Available The following study aimed to determine the antimicrobial susceptibility profile of Vibrio parahaemolyticus strains from fresh and frozen oysters Crassostrea rhizophorae sold in Fortaleza-Brazil. An antibiogram was performed on 87 isolates using nine antibiotics: gentamicin (Gen 10 µg, ampicillin (Amp 10 µg, penicillin G (Pen 10U, ciprofloxacin (Cip 5 µg, chloramphenicol (Chl 30 µg, nalidixic acid (Nal 30 µg, tetracycline (Tet 30 µg, vancomycin (Van 30 µg and erythromycin (Ery 15 µg. All strains were resistant to at least one antibiotic, and 85 (97.7% were multi-resistant, with predominance of the Van+ Pen+Amp resistance profile (n = 46. Plasmid resistance to Pen, Amp and Ery was detected. Thus, the risk that raw oyster consumption poses to the health of consumers is highlighted, due to the fact that these bivalves may host antibacterial-resistant microorganisms.

  16. Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative Staphylococcus strains.

    Science.gov (United States)

    de Allori, María Cristina Gaudioso; Jure, María Angela; Romero, Cintia; de Castillo, Marta Elena Cecilia

    2006-08-01

    Coagulase-negative Staphylococcus (CNS) strains are frequently associated with bacteremia and hospital-acquired infections. 293 CNS strains were isolated from 744 samples from a dialysis center in S. M. de Tucumán, Argentina, from hemocultures, catheters and urine and identified as S. epidermidis, S. haemolyticus, S. saprophyticus, S. hominis and S. cohnii. 13 antibiotics were tested for antibacterial resistance. 75% of S. saprophyticus, 66% of S. epidermidis and 57% of S. haemolyticus was resistant to erythromycin and 50% of S. haemolyticus was resistant to ciprofloxacin. OXA resistance was found in 43% of S. haemolyticus. Presence of PBP 2a in OXA-R strains was confirmed with the modified agglutination assay (MRSA) and presence of the mecA gene. 15 strains with intermediate halos for vancomycin and teicoplanin showed a MIC in solid and liquid medium resistance to methicillin and biofilm production are decisive for a prompt and appropriate antimicrobial therapy and limited use of inappropriate glycopeptides.

  17. Effects of tiamulin, neomycin, tetracycline, fluorophenicol, penicillin G, Linco-Spectin, erythromycin and oxytetracycline on controlling bacterial contaminations of the river buffalo (Buballus bubalis) semen.

    Science.gov (United States)

    Alavi-Shoushtari, S M; Ahmadi, M; Shahvarpour, S; Kolahian, S

    2007-09-15

    In order to investigate the effects of tiamulin, neomycin, tetracycline, fluorophenicol, penicillin G, Linco-Spectin (0.15 mg mL(-1) lincomycin + 0.3 mg mL(-1) spectinomycin), erythromycin and oxytetracycline on controlling bacterial contaminations of the river buffalo semen, 120 mL diluted buffalo bull semen (diluted by tris-egg yolk extender) was divided into 5 mL tubes after initial evaluation and before (control sample) and at 0, 2, 6, 12 and 24 h after adding each of the above antibiotics at the recommended dose (D) and twice the recommended dose (Dx2) to the semen samples, each sample was cultured 4 times on Muller-Hinton agar medium and the results were recorded after 18 h incubation at 37 degrees C. Tiamulin, tetracycline, neomycin and fluorophenicol were ineffective. Oxytetracycline was effective in both D and Dx2 (p < 0.001). Penicillin G in both D and Dx2 was effective (p < 0.001). Linco-Spectin was effective, though not significant, in D at 2 h and in Dx2 at 0 h only. Erythromycin in D was not significantly effective, but, in Dx2 was effective (p < 0.001). Duration of the antibiotic exposure had no significant effect on the antibiotic potentials except for Linco-Spectin at 2 h (p < 0.014). The biochemical tests identified the contaminant bacteria as being a member of Arcanobacter (Corynebacterium) sp. In the next step, the semen sample of the same bull was taken, semen quality tests were carried out and the semen was diluted with the same extender (tris-egg yolk) + 7% glycerol, containing a double dose (Dx2) of these antibiotics and semen quality tests were carried out immediately after dilution, 18 h after storage at 4 degrees C and after the semen was packed in the straws, frozen in liquid nitrogen (-196 degrees C) and later thawed in 37 degrees C water bath to investigate whether these antibiotics have any adverse effect on the spermatozoa during the process of freezing and thawing. The comparison of the results with those of the control group (the

  18. Drug-resistance in Streptococcus pneumoniae isolates among Spanish middle aged and older adults with community-acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Raga-Luria Xavier

    2009-03-01

    Full Text Available Abstract Background Pneumococcal diseases remain a major cause of morbidity and mortality worldwide. Updated data on drug-resistance from different populations may be important to recognize changes in disease patterns. This study assessed current levels of penicilin resistance among Streptococcus Pneumoniae causing pneumonia in Spanish middle age and older adults. Methods Antimicrobial susceptibility was tested for 104 consecutive isolates of Streptococcus pneumoniae recovered from patients 50 years or older with radiographically confirmed pneumonia in the region of Tarragona (Spain between 2002 and 2007. According to the minimum inhibitory concentration of tested antimicrobials (penicillin, erythromycin, cefotaxime and levofloxacin strains were classified as susceptible or resistant. Antimicrobial resistance was determined for early cases (2002–2004 and contemporary cases (2005–2007. Results Twenty-seven (25.9% were penicillin-resistant strains (19 strains with intermediate resistance and 8 strains with high resistance. Penicillin-resistance was higher in 2002–2004 than in 2005–2007 (39.5% vs 18.2%, p = 0.017. Of 27 penicillin-resistant strains, 10 (37% were resistant to erythromycin, 8 (29.6% to cefotaxime, 2 (7.4% to levofloxacin, and 4 (14.8% were identified as multidrug resistant. Case-fatality rate was higher among those patients who had an infection caused by any penicillin susceptible strain (16.9% than in those with infections due to penicillin-resistant strains. Conclusion Resistance to penicillin among Streptococcus pneumoniae remains high, but such resistance does not result in increased mortality in patients with pneumococcal pneumonia.

  19. Characterization of antibiotic resistant Escherichia coli in different poultry farming systems in the Eastern Province and Kigali City of Rwanda

    Directory of Open Access Journals (Sweden)

    R. Manishimwe

    2017-09-01

    Full Text Available Antibiotic resistance has become a global public health concern as a wide num­ber of resistant bacteria are continuously emerging. Animals have been pointed out as one of the sources of antibiotic-resistant bacteria that can be transferred to humans. To enrich the data on antibiotic resistance in animals in Rwanda, a cross-sectional study was carried out in the Eastern Province and in Kigali City to isolate Escherichia coli from free-range and commercial poultry farms. Fecal samples were collected from 294 poultry farms and E. coli strains were isolated and identified. In total 241 E. coli isolates were subjected to an antibi­otic sensitivity test using five antibiotics (gentamicin, streptomycin, rifampicin, doxycycline and erythromycin. Antibiotic use in poultry was low in free-range poultry farms (30.9% compared to layer and broiler production farms (100%. Among 151 farmers who reported using antibiotics in poultry, almost half (49.7% always used antibiotics with a veterinarian prescription. Out of 241 E. coli isolates, 43.2% had a multiple resistance to four of the five antibiotics tested. Almost all the isolates (98.8% were resistant to erythromycin, 78.8% were resistant to streptomycin, 77.6% were resistant to doxycycline, 69.3% were resistant to rifampicin and only a few were resistant to gentamicin (3.7%. No statistically significant difference was observed regarding isolate resistance against antibiotics according to the farming system type. However, resistance of isolates to doxycycline was significantly higher in farms where antibiotic use was reported (84% than in farms where antibiotic use was not reported (70%. The observed antibiotic resistance of E. coli shows the existence of a potential source of resistance that can be transferred to pathogenic bacteria and impact humans as well as animals.

  20. Small-Molecule ONC201/TIC10 Targets Chemotherapy-Resistant Colorectal Cancer Stem-like Cells in an Akt/Foxo3a/TRAIL-Dependent Manner.

    Science.gov (United States)

    Prabhu, Varun V; Allen, Joshua E; Dicker, David T; El-Deiry, Wafik S

    2015-04-01

    Self-renewing colorectal cancer stem/progenitor cells (CSC) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class antitumor agent that induces TRAIL pathway-mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent antitumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+), and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown, and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. ©2015 American Association for Cancer Research.

  1. Small molecule ONC201/TIC10 targets chemotherapy-resistant colorectal cancer stem-like cells in an Akt/Foxo3a/TRAIL-dependent manner

    Science.gov (United States)

    Prabhu, Varun V.; Allen, Joshua E.; Dicker, David T.; El-Deiry, Wafik S.

    2015-01-01

    Self-renewing colorectal cancer stem/progenitor cells (CSCs) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class anti-tumor agent that induces TRAIL pathway mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent anti-tumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+) and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-Fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-Fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. PMID:25712124

  2. Antibiotics and Resistance: Glossary

    Science.gov (United States)

    ... chromosomes and plasmids. Transposons often carry genes specifying antimicrobial resistance. Virus An extremely small infective agent, visible only with an electron microscope. Viruses can cause disease in humans, animals and plants. Viruses consist of a protein coat ...

  3. Solvent-resistant small molecule solar cells by roll-to-roll fabrication via introduction of azide cross-linkable group

    DEFF Research Database (Denmark)

    Chen, Mei-Rong; Fan, Cong-Cheng; Andersen, Thomas Rieks

    2014-01-01

    A novel cross-linkable azide-functionalized diketopyrrolopyrrole based compound DPP(BT-N-3)(2) was designed and synthesized via Stille coupling. Cross-linking of such molecule could help us fabricate insoluble film which could be used to fabricate heterostructures through solution processing......, without dissolving the pre-patterned layers. In order to investigate the photovoltaic performances of the newly synthesized compound, large area solar cells were produced by roll coating technique. Two set of devices were fabricated by employing DPP(BT-N-3)(2) as either an electron donor or acceptor....... A best power conversion efficiency of 0.067%, combined with an open circuit voltage of 0.53 V, and a fill factor of 37.6% were obtained for the device with DPP(BT-N-3)(2) as an electron acceptor. In addition, we could prove that the large area small molecule based organic solar cells could be fabricated...

  4. Differences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone.

    Directory of Open Access Journals (Sweden)

    N Luisa Hiller

    Full Text Available We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain(23F ST81. Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.

  5. ORIGINAL ARTICLE: Multidrug Resistance and Phage Pattern of Staphylococcus aureus in Pyoderma Cases

    Directory of Open Access Journals (Sweden)

    Sanjay M. Wavare

    2012-01-01

    Full Text Available Background: Pyoderma is common in India and other tropical countries. Staphylococcus aureus is the commonest causative agent ofpyoderma. Aims and Objectives: To know the antibiotic susceptibility and bacteriophage pattern of Staphylococcus aureus isolated from pyoderma infection. Materials and Methods: One hundred clinically diagnosed pyoderma cases were investigated bacteriologically. A total of 59 isolates of S. aureus were subjected to antibioticsusceptibility testing by Kirby Bauer’s disk diffusion method and phage typing by routine test dilution X 100 bacteriophages. Results: Most of the strains were resistant to penicillin, ampicillin and were susceptible to gentamicin, streptomycin and erythromycin. Multidrug resistance was also high among these strains. Regarding the phage types, Phage type 52 (15 strains, 96 (8 strains and 71(16strains were predominant among the typed strains (55.95% of S. aureus. The most common group was mixed phage group (17% followed by phage group I (13.55%. Conclusion: Knowledge of antibioticsusceptibility pattern is essential to give proper antibiotic therapy and avoid unnecessary medication with non-effective drugs, which may increase resistance. Gentamicin, streptomycin and erythromycin are the drugs of choice in that order. Association of phage typing and antibiotic sensitivity of S. aureus showed the predominance of phage group III with greater frequency of penicillin resistance.

  6. Enhanced Host-Parasite Resistance Based on Down-Regulation of Phelipanche aegyptiaca Target Genes Is Likely by Mobile Small RNA

    Directory of Open Access Journals (Sweden)

    Neeraj K. Dubey

    2017-09-01

    Full Text Available RNA silencing refers to diverse mechanisms that control gene expression at transcriptional and post-transcriptional levels which can also be used in parasitic pathogens of plants that Broomrapes (Orobanche/Phelipanche spp. are holoparasitic plants that subsist on the roots of a variety of agricultural crops and cause severe negative effects on the yield and yield quality of those crops. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we suggest an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipanche aegyptiaca genes PaACS, PaM6PR, and PaPrx1 (pma: transient expression using Tobacco rattle virus (TRV:pma as a virus-induced gene-silencing vector and stable expression in transgenic tomato Solanum lycopersicum (Mill. plants harboring a hairpin construct (pBINPLUS35:pma. siRNA-mediated transgene-silencing (20–24 nt was detected in the host plants. Our results demonstrate that the quantities of PaACS and PaM6PR transcripts from P. aegyptiaca tubercles grown on transgenic tomato or on TRV-infected Nicotiana benthamiana plants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamiana plants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes.

  7. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    Science.gov (United States)

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Six-Year Retrospective Review of Hospital Data on Antimicrobial Resistance Profile of Staphylococcus aureus Isolated from Skin Infections from a Single Institution in Greece

    Directory of Open Access Journals (Sweden)

    Christina Stefanaki

    2017-12-01

    Full Text Available Objective: To determine the prevalence of resistant strains of Staphylococcus aureus (S. aureus isolated from Skin and soft tissue infections (SSTI to various antibiotics. Material and Methods: All culture-positive results for S. aureus from swabs taken from patients presenting at one Greek hospital with a skin infection between the years 2010–2015 were examined retrospectively. Bacterial cultures, identification of S. aureus and antimicrobial susceptibility testing were performed using the disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI guidelines and European Committee on Antimicrobial testing (EUCAST breakpoints. EUCAST breakpoints were applied if no CLSI were available. Results: Of 2069 S. aureus isolates identified, 1845 (88% were resistant to one or more antibiotics. The highest resistance was observed for benzylpenicillin (71.9%, followed by erythromycin (34.3%. Resistant strains to cefoxitin defined as MRSA (methicillin-resistant S. aureus represented 21% of total isolates. Interestingly, resistance to fusidic acid was 22.9% and to mupirocin as high as 12.7%. Low rates were observed for minocycline, rifampicin and trimethoprim/sulfamethoxazole (SXT. Resistance to antibiotics remained relatively stable throughout the six-year period, with the exception of cefoxitin, fusidic acid and SXT. A high percentage of MRSA strains were resistant to erythromycin (60%, fusidic acid (46%, clindamycin (38% and tetracycline (35.5%. Conclusions: Special attention is required in prescribing appropriate antibiotic therapeutic regimens, particularly for MRSA. These data on the susceptibility of S. aureus may be useful for guiding antibiotic treatment.

  9. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  10. Characterization of methicillin-resistant Staphylococcus aureus isolates from pig carcasses in Hong Kong

    DEFF Research Database (Denmark)

    Ho, J.; O'Donoghue, M.; Guardabassi, Luca

    2012-01-01

    This study describes the isolation and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from slaughtered pigs sampled from local markets in Hong Kong. The nares of 400 slaughtered pigs were cultured and MRSA isolates characterized for the presence of antibiotic-resistance de......This study describes the isolation and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from slaughtered pigs sampled from local markets in Hong Kong. The nares of 400 slaughtered pigs were cultured and MRSA isolates characterized for the presence of antibiotic...... tet(M). Resistance to erythromycin (89%) and chloramphenicol (71%) was associated with the presence of erm(C), and fex(A), respectively. No strains carried cfr and there was no resistance to linezolid, although minimum inhibitory concentration (MICs) were close to the resistance break point...

  11. Non-Cross Resistant Sequential Single Agent Chemotherapy in First-Line Advanced Non-Small Cell Lung Cancer Patients: Results of a Phase II Study

    Directory of Open Access Journals (Sweden)

    V. Surmont

    2009-01-01

    Full Text Available Background. sequential chemotherapy can maintain dose intensity and preclude cumulative toxicity by increasing drug diversity. Purpose. to investigate the toxicity and efficacy of the sequential regimen of gemcitabine followed by paclitaxel in first line advanced stage non-small cell lung cancer (NSCLC patients with good performance status (PS. Patients and methods. gemcitabine 1250 mg/m2 was administered on day 1 and 8 of course 1 and 2; Paclitaxel 150 mg/m2 on day 1 and 8 of course 3 and 4. Primary endpoint was response rate (RR, secondary endpoints toxicity and time to progression (TTP. Results. Of the 21 patients (median age 56, range 38–80 years; 62% males, 38% females 10% (2/21 had stage IIIB, 90% (19/21 stage IV, 15% PS 0, 85% PS 1. 20% of patients had a partial response, 30% stable disease, 50% progressive disease. Median TTP was 12 weeks (range 6–52 weeks, median overall survival (OS 8 months (range 1–27 months, 1-year survival was 33%. One patient had grade 3 hematological toxicity, 2 patients a grade 3 peripheral neuropathy. Conclusions. sequential administration of gemcitabine followed by paclitaxel in first line treatment of advanced NSCLC had a favourable toxicity profile, a median TTP and OS comparable with other sequential trials and might , therefore, be a treatment option for NSCLC patients with high ERCC1 expression.

  12. Prevalence and resistance patterns of commensal S. aureus in community-dwelling GP patients and socio-demographic associations. A cross-sectional study in the framework of the APRES-project in Austria.

    Science.gov (United States)

    Hoffmann, Kathryn; den Heijer, Casper D J; George, Aaron; Apfalter, Petra; Maier, Manfred

    2015-05-16

    The aim of the present study was to assess the prevalence and resistance of commensal S. aureus in the nasal microbiota of community-dwelling persons in Austria, as well as to identify possible associations with socio-demographic factors. Multi-drug resistance in this population was additionally studied. This cross-sectional study was conducted within the context of the European APRES project. In nine European countries, nasal swabs were collected from 32,206 general practice patients who received care for non-infectious reasons. In Austria, 20 GPs attempted to recruit 200 consecutive patients without infectious diseases, with each patient completing demographic questionnaires as well as providing a nose swab sample. Isolation, identification, and resistance testing of S. aureus were performed. Statistical analyses included subgroup analyses and logistic regression models. 3309 nose swabs and corresponding questionnaires from Austrian subjects were analyzed. S. aureus was identified in 16.6 % (n = 549) of nose swabs, of which 70.1 % were resistant against one or more antibiotics, mainly penicillin. S. aureus carrier status was significantly associated with male sex (OR 1.6; 1.3-2.0), younger age (OR 1.3; 1.0-1.8), living in a rural area (OR 1.4; 1.1-1.7) and working in the healthcare sector (OR 1.5; 1.0-2.1). Multi-drug resistances were identified in 13.7 % (n = 75) of the S. aureus carriers and 1.5 % (n = 8) tested positive for MRSA. The highest resistance rate was observed against penicillin (64.8 %), followed by azithromycin (13.5 %) and erythromycin with 13.3 %. This study describes the prevalence and resistance patterns of commensal S. aureus in community-dwelling persons in Austria and shows that differences exist between socio-demographic groups. Demographic associations have been found for S. aureus carriers but not for carriers of resistant S. aureus strains. Only two thirds of S. aureus strains were found to be resistant against small spectrum penicillin

  13. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria.

    Science.gov (United States)

    Ngbede, Emmanuel Ochefije; Raji, Mashood Abiola; Kwanashie, Clara Nna; Kwaga, Jacob Kwada Paghi

    2017-03-01

    This study investigated the occurrence, antimicrobial resistance and virulence of Enterococcus from poultry and cattle farms. Three hundred and ninety samples: cloacal/rectal swabs (n = 260) and manure (n = 130] were processed for recovery of Enterococcus species. Standard bacteriological methods were used to isolate, identify and characterize Enterococcus species for antimicrobial susceptibility and expression of virulence traits. Detection of antibiotic resistance and virulence genes was carried out by polymerase chain reaction. Enterococcus was recovered from 167 (42.8%) of the 390 samples tested with a predominance of Enterococcus faecium (27.7%). Other species detected were Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus raffinosus, Enterococcus avium, Enterococcus casseliflavus, Enterococcus mundtii and Enterococcus durans. All the isolates tested were susceptible to vancomycin, but resistance to tetracycline, erythromycin, ampicillin and gentamicin was also observed among 61.0, 61.0, 45.1 and 32.7% of the isolates, respectively. Sixty (53.1%) of the isolates were multidrug resistant presenting as 24 different resistance patterns with resistance to gentamicin-erythromycin-streptomycin-tetracycline (CN-ERY-STR-TET) being the most common (n = 11) pattern. In addition to expression of virulence traits (haemolysin, gelatinase, biofilm production), antibiotic resistance (tetK, tetL, tetM, tetO and ermB) and virulence (asa1, gelE, cylA) genes were detected among the isolates. Also, in vitro transfer of resistance determinants was observed among 75% of the isolates tested. Our data revealed poultry, cattle and manure in this area are hosts to varying Enterococcus species harbouring virulence and resistance determinants that can be transferred to other organisms and also are important for causing nosocomial infection.

  14. Crowdsourced Data Indicate Widespread Multidrug Resistance in Skin Flora of Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Scott Freeman

    2015-10-01

    Full Text Available In a laboratory exercise for undergraduate biology majors, students plated bacteria from swabs of their facial skin under conditions that selected for coagulase-negative Staphylococcus; added disks containing the antibiotics penicillin, oxacillin, tetracycline, and erythromycin; and measured zones of inhibition. Students also recorded demographic and lifestyle variables and merged this information with similar data collected from 9,000 other students who had contributed to the database from 2003 to 2011. Minimum inhibitory concentration (MIC testing performed at the Harborview Medical Center Microbiology Laboratory (Seattle, WA indicated a high degree of accuracy for student-generated data; species identification with a matrix-assisted laser desorption ionization (MALDI Biotyper revealed that over 88% of the cells analyzed by students were S. epidermidis or S. capitus. The overall frequency of resistant cells was high, ranging from 13.2% of sampled bacteria resistant to oxacillin to 61.7% resistant to penicillin. Stepwise logistic regressions suggested that recent antibiotic use was strongly associated with resistance to three of the four antibiotics tested (p = 0.0003 for penicillin, p << 0.0001 for erythromycin and tetracycline, and that age, gender, use of acne medication, use of antibacterial soaps, or makeup use were associated with resistance to at least one of the four antibiotics. Furthermore, drug resistance to one antibiotic was closely linked to resistance to the other three antibiotics in every case (all p values << 0.0001, suggesting the involvement of multidrug–resistant strains. The data reported here suggest that citizen science could not only provide an important educational experience for undergraduates, but potentially play a role in efforts to expand antibiotic resistance (ABR surveillance.

  15. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga

    2003-01-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...

  16. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Rothwell, Brian; Carlson, Lorne; Fletcher, Leigh; Venton, Philip

    2010-01-01

    The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature

  17. Antimicrobial susceptibility and glycopeptide-resistance of enterococci in vegetables

    Directory of Open Access Journals (Sweden)

    Ida Torre

    2010-03-01

    Full Text Available

    Background: Vancomycin-resistant enterococci (VRE, often responsible for nosocomial infections, have frequently been isolated from animal and vegetable foods. In our study we evaluated the antibiotic susceptibility of enterococci isolated from eight types of vegetables randomly selected from grocery stores in Naples.

    Methods: From July to November 2008, we analyzed 150 samples: the bacteria were isolated with standardized methods and antibiotic susceptibility was determined using the disc diffusion method. The resistance to vancomycin versus other antibiotics was assessed by the Kappa test.

    Results: 70% of the samples, mainly parsley (96.2%, showed enterococci. Of these, 59.1% belonged to the species Enterococcus faecium. Strains resistant to vancomycin and teicoplanin were isolated respectively in 47.6% and 49.5% of the samples: the first one mainly in curly endive (72.7% and the second one in parsley (76.9%. Almost all the isolated strains showed resistance to methicillin (89%, kanamycin (82% and cephalothin (68%. The Kappa test showed statistically significant associations between resistance to vancomycin and resistance to teicoplanin, erythromycin, methicillin, tetracycline and chloramphenicol.

    Conclusions: Because of the possible involvement of food in the transmission of resistant micro-organisms to human intestinal microbiota, our data may provide the basis for future studies.

  18. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian maned-wolf (Chrysocyon brachyurus

    Directory of Open Access Journals (Sweden)

    Olney Vieira-da-Motta

    2013-12-01

    Full Text Available Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus, in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  19. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian Maned-wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2013-12-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  20. Systemic immune-inflammation index predicting chemoradiation resistance and poor outcome in patients with stage III non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yu-Suo Tong

    2017-10-01

    Full Text Available Abstract Background There is increasing evidence that the existence of systemic inflammation response is correlated with poor prognosis in several solid tumors. The aim of this retrospective study was to investigate the association between systemic immune-inflammation index (SII and therapy response and overall survival in patients with stage III non-small cell lung cancer (NSCLC. The prognostic values of neutrophil to lymphocyte ratio (NLR, platelet to lymphocyte ratio (PLR, and prognostic nutritional index (PNI were also evaluated. Methods In total, 332 patients with new diagnosis of stage III NSCLC were included in this retrospective analysis. SII was defined as platelet counts × neutrophil counts/lymphocyte counts. Receiver operating characteristic (ROC curve was used to evaluate the optimal cut-off value for SII, NLR, PLR and PNI. Univariate and multivariate survival analysis were performed to identify the factors correlated with overall survival. Results Applying cut-offs of ≥ 660 (SII, ≥ 3.57 (NLR, ≥ 147 (PLR, ≤ 52.95 (PNI, SII ≥ 660 was significantly correlated with worse ECOG PS (< 0.001, higher T stage (< 0.001, advanced clinical stage (p = 0.019, and lower response rate (p = 0.018. In univariate analysis, SII ≥ 660, NLR ≥ 3.57, PLR ≥ 147, and PNI ≤ 52.95 were significantly associated with worse overall survival (p all < 0.001. Patients with SII ≥ 660 had a median overall survival of 10 months, and patients with SII < 660 showed a median overall survival of 30 months. In multivariate analysis only ECOG PS (HR, 1.744; 95% CI 1.158–2.626; p = 0.008, T stage (HR, 1.332; 95% CI 1.032–1.718; p = 0.028, N stage (HR, 1.848; 95% CI 1.113–3.068; p = 0.018, SII (HR, 2.105; 95% CI 1.481–2.741; p < 0.001 and NLR ≥ 3.57 (HR, 1.934; 95% CI 1.448–2.585; p < 0.001 were independently correlated with overall survival. Conclusions This study demonstrates that the SII is an

  1. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  2. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    Science.gov (United States)

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  3. Detection of macrolide resistance genes in culture-negative specimens from Bangladeshi children with invasive pneumococcal diseases.

    Science.gov (United States)

    Hasanuzzaman, Md; Malaker, Roly; Islam, Maksuda; Baqui, Abdullah H; Darmstadt, Gary L; Whitney, Cynthia G; Saha, Samir K

    2017-03-01

    In recent years, an increasing prevalence of macrolide resistance among pneumococci in Bangladesh has been observed. However, the scenario remains incomplete, as few isolates (80%) are culture-negative. This study optimised a triplex PCR method to detect macrolide resistance genes (MRGs) (mefA and ermB) and cpsA from culture-negative pneumococcal cases to predict the prevalence and level of macrolide resistance. The presence of MRGs among pneumococcal strains (n=153) with a wide range of erythromycin MICs (culture-negative clinical specimens and corresponding isolates. The known impact of the presence of specific MRG(s) on MICs of strains was used to predict the MICs of non-culturable strains based on the presence/absence of MRG(s) in the specimens. None of the erythromycin-susceptible isolates possessed any of the MRGs, and all non-susceptible strains had ≥1 MRG. MICs were 2-16mg/L and ≥256mg/L for 93% of strains with mefA and ermB, respectively, whereas 100% of isolates with both genes had MICs≥256mg/L. PCR for body fluids showed 100% concordance with corresponding isolates when tested for MRG(s) in parallel. Erythromycin MICs can be predicted for non-culturable strains with 93-100% precision based on detection of ermB and/or mefA. This method will be useful for establishing comprehensive surveillance for macrolide resistance among pneumococci, specifically in the population with prior antibiotic use. Copyright © 2017. Published by Elsevier Ltd.

  4. Vanillin selectively modulates the action of antibiotics against resistant bacteria.

    Science.gov (United States)

    Bezerra, Camila Fonseca; Camilo, Cicera Janaine; do Nascimento Silva, Maria Karollyna; de Freitas, Thiago Sampaio; Ribeiro-Filho, Jaime; Coutinho, Henrique Douglas Melo

    2017-12-01

    The treatment of infections caused by microorganisms that are resistant to antibiotics represent one of the main challenges of medicine today, especially due to the inefficacy of long-term drug therapy. In the search for new alternatives to treat these infections, many researchers have been looking for new substances derived from natural products to replace, or be used in combination with conventional antibiotics. Vanillin is a phenolic compound whose antimicrobial activity has been used in the elimination of pathogens present in fruits and vegetables. However, its antibacterial and modulating properties remain to be characterized. Therefore, this work aimed to evaluate the antibacterial activity and analyze the modulator activity of vanillin in association with conventional antibiotics. The antimicrobial activity of vanillin was evaluated using the microdilution method to determine the Minimum Inhibitory Concentration (MIC) Standard strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and multi-resistant strains of Escherichia coli 06, Staphylococcus aureus 10, Pseudomonas aeruginosa 24 were used in this study. The antibiotic modulating effect was analyzed by combining vanillin with Norfloxacin, Imipenem, Gentamicin, Erythromycin and Tetracycline against the following multiresistant bacteria strains: Escherichia coli 06, Staphylococcus aureus 10 and Pseudomonas aeruginosa 24. Data were analyzed using the ANOVA test of two tracks followed by the post hoc Bonferroni test. Vanillin presented CIMs ≥1024μg/mL against all tested strains demonstrating that it did not present significant antibacterial activity. However, modulated the activity of gentamicin and imipenem against S. aureus and E. coli, causing a synergistic effect, but did not affect the activity of norfloxacin, tetracycline and erythromycin against these same microorganisms. A synergistic effect was also obtained from the association of vanillin with norfloxacin against P

  5. Trends in antimicrobial susceptibility and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Jensen, L. B.

    2002-01-01

    (vat, vga, vga(B), vat(B), vat(D) and vat(E)), streptomycin (aadE) and tetracycline resistance (tet(K), tet(L), tet(M) and tet(O)) were determined in selected isolates. The occurrence of erythromycin resistance increased from 33% in 1996 to a maximum of 62% in 1997 and decreased to 26% in 2001....... Resistance to sulphametazole increased from 17% in 1996 to 30% in 1998 but has since decreased to 4% in 2001. Resistance to trimethoprim increased to 51% in 1997 and decreased to 21% in 2001. Resistance to tetracycline (21-31%) remained relatively constant during 1996-2000, but increased to 47% in 2001...

  6. Relations between the occurrence of resistance to antimicrobial growth promoters among Enterococcus faecium isolated from broilers and broiler meat

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Andersen, J. S.; Seyfarth, Anne Mette

    2003-01-01

    and streptogramin. By February 1998, all antimicrobial growth promoters (AGPs) were withdrawn from the Danish broiler production. The present study investigates, by logistic regression analyses, the (1) changes in the occurrence of AGP resistance among E. faecium from broilers and broiler meat from the fourth...... quarter of 1995 to the fourth quarter of 2001 and (2) relations between the occurrence of AGP resistance among E. faecium isolates from Danish broilers and AGP resistance among E. faecium isolates from the broiler meat of Danish and unknown origin collected in the same quarter within the year....... In the present study, we showed that after the AGP withdrawal, a significant decline in resistance to avilamycin, erythromycin, vancomycin and virginiamycin was observed among E. faecium from broilers and broiler meat. In addition, a decline in the occurrence of AGP resistance among E. faecium from Danish...

  7. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells.

    Science.gov (United States)

    Karla, Pradeep K; Pal, Dananjay; Mitra, Ashim K

    2007-01-01

    Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.

  8. Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states

    International Nuclear Information System (INIS)

    Capriotti, M.; Fleury, C.; Oposich, M.; Bethge, O.; Strasser, G.; Pogany, D.; Lagger, P.; Ostermaier, C.

    2015-01-01

    We provide theoretical and simulation analysis of the small signal response of SiO 2 /AlGaN/GaN metal insulator semiconductor (MIS) capacitors from depletion to spill over region, where the AlGaN/SiO 2 interface is accumulated with free electrons. A lumped element model of the gate stack, including the response of traps at the III-N/dielectric interface, is proposed and represented in terms of equivalent parallel capacitance, C p , and conductance, G p . C p -voltage and G p -voltage dependences are modelled taking into account bias dependent AlGaN barrier dynamic resistance R br and the effective channel resistance. In particular, in the spill-over region, the drop of C p with the frequency increase can be explained even without taking into account the response of interface traps, solely by considering the intrinsic response of the gate stack (i.e., no trap effects) and the decrease of R br with the applied forward bias. Furthermore, we show the limitations of the conductance method for the evaluation of the density of interface traps, D it , from the G p /ω vs. angular frequency ω curves. A peak in G p /ω vs. ω occurs even without traps, merely due to the intrinsic frequency response of gate stack. Moreover, the amplitude of the G p /ω vs. ω peak saturates at high D it , which can lead to underestimation of D it . Understanding the complex interplay between the intrinsic gate stack response and the effect of interface traps is relevant for the development of normally on and normally off MIS high electron mobility transistors with stable threshold voltage

  9. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Bora-Singhal, Namrata; Perumal, Deepak; Nguyen, Jonathan; Chellappan, Srikumar

    2015-07-01

    Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Drug Resistance Mechanisms of Mycoplasma pneumoniae to Macrolide Antibiotics

    Directory of Open Access Journals (Sweden)

    Xijie Liu

    2014-01-01

    Full Text Available Throat swabs from children with suspected Mycoplasma pneumoniae (M. pneumoniae infection were cultured for the presence of M. pneumoniae and its species specificity using the 16S rRNA gene. Seventy-six M. pneumoniae strains isolated from 580 swabs showed that 70 were erythromycin resistant with minimum inhibitory concentrations (MIC around 32–512 mg/L. Fifty M. pneumoniae strains (46 resistant, 4 sensitive were tested for sensitivity to tetracycline, ciprofloxacin, and gentamicin. Tetracycline and ciprofloxacin had some effect, and gentamicin had an effect on the majority of M. pneumoniae strains. Domains II and V of the 23S rRNA gene and the ribosomal protein L4 and L22 genes, both of which are considered to be associated with macrolide resistance, were sequenced and the sequences were compared with the corresponding sequences in M129 registered with NCBI and the FH strain. The 70 resistant strains all showed a 2063 or 2064 site mutation in domain V of the 23S rRNA but no mutations in domain II. Site mutations of L4 or L22 can be observed in either resistant or sensitive strains, although it is not known whether this is associated with drug resistance.

  11. Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdullah Al Faruq

    2016-10-01

    Full Text Available Aim: Salmonellosis is one of the most common zoonotic diseases, and the presence of antimicrobial resistant Salmonella in wild birds is global public health threat. Throughout the last decades, multidrug resistance of Salmonella spp. has increased, particularly in developing countries. Therefore, a cross-sectional study was conducted to investigate the prevalence of Salmonella spp. and antimicrobial resistance pattern against Salmonella spp. from two species of resident wild birds namely house crow (Corvus splendens and Asian pied starling (Gracupica contra. Materials and Methods: Samples were collected from cloacal swabs of house crows and Asian pied starling for isolating Salmonella spp. (bacteriological culture methods followed by antimicrobial susceptibility testing (disk diffusion method against Salmonella spp. isolates during March to December 2014. Results: The prevalence of Salmonella in Asian pied starling and house crows were 67% and 65%, respectively. Within the category of samples from different species, the variation in prevalence was not varied significantly (p>0.05. Isolated Salmonella spp. was tested for resistance to six different antimicrobial agents. Among six antimicrobial tested, 100% resistance were found to penicillin, oxacillin, and clindamycin followed by erythromycin (50-93%, kanamycin (7-20%, and cephalothin (30-67% from both species of birds. Kanamycin remained sensitive in (70-73%, cephalothin (26-70%, and erythromycin appeared to be (0-30% sensitive against Salmonella spp. isolates. Isolated Salmonella spp. was multidrug resistant up to three of the six antimicrobials tested. Conclusion: It can be said that the rational use of antimicrobials needs to be adopted in the treatment of disease for livestock, poultry, and human of Bangladesh to limit the emergence of drug resistance to Salmonella spp.

  12. Chlorine and antibiotic-resistant bacilli isolated from an effluent treatment plant - doi: 10.4025/actascitechnol.v35i1.12951

    Directory of Open Access Journals (Sweden)

    Suzana Cláudia Silveira Martins

    2013-01-01

    Full Text Available Resistance to different concentrations of chlorine and the susceptibility to antibiotics by bacteria isolated from the final effluent of the Pici Campus wastewater treatment plant of the Federal University of Ceará (UFC is evaluated. Twelve strains, morphologically and biochemically identified as belonging to the genus Bacillus, were selected. The strains were submitted to sodium hypochlorite at different contact times and tested against the antibiotics amoxicillin, erythromycin, chloramphenicol, tetracycline, and vancomycin. All strains were resistant to concentration 0.1 ppm chlorine up to 30 minutes, but bacteria resistant to concentrations up to 5,000 ppm for 10 minutes were detected. Bacterial growth was impaired in 10,000 ppm concentration. The strains presented three antibiotic resistance profiles, 50% were sensitive to all antibiotics, 25% were resistant to one antibiotic and 25% were resistant to two antibiotics.  

  13. Emergence of trimethoprim-resistant Escherichia coli in healthy persons in the absence of prophylactic or therapeutic antibiotics during travel to Guadalajara, Mexico.

    Science.gov (United States)

    Huang, D B; Jiang, Z D; Ericsson, C D; Adachi, J; Dupont, H L

    2001-01-01

    Thirty-nine healthy US students without diarrheal disease and who had not received prophylactic or therapeutic antibiotics were monitored for emergence of trimethoprim-resistant gram-negative fecal flora for a 3-week period after arrival in Guadalajara, Mexico. During this time period, most students showed no change in total fecal gram-negative bacteria (p > 0.05) but showed an increasing level of trimethoprim (TMP) resistance (p students. These 18 TMP-resistant E. coli were also resistant to ampicillin (44%), azithromycin (11%), chloramphenicol (39%), ciprofloxacin (11%), doxycycline (89%), erythromycin (100%), furazolidone (72%), levofloxacin (17%), trimethoprim-sulfamethoxazole (89%) and trovafloxacin (17%). In the absence of prophylactic and therapeutic antibiotics, increased acquisition of TMP-resistant gram-negative fecal flora in this developing country is probably due to poor sanitary conditions and the recurrent and heavy exposure to antimicrobial-resistant indigenous flora as a result of contaminated food and drink.

  14. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  15. An Investigation of Antibiotic Resistance Pattern in the Strains of Methicillin-resistant Staphylococcus epidermidis Isolated From Clinical Samples in Isfahan Province, Iran

    Directory of Open Access Journals (Sweden)

    Fahimeh Nourbakhsh

    2016-08-01

    Full Text Available Background and Objectives: Staphylococcus epidermidis is one of the effective factors causing nosocomial infections. This study was performed to investigate the antibiotic resistance pattern in the methicillin-resistant S. epidermidis strains isolated from clinical samples in Isfahan Province. Methods: In this descriptive cross-sectional study, 150 isolates of S. epidermidis were isolated from detected from the patients hospitalized in hospitals and treatment centers of Isfahan City. The antibiotic resistance pattern was evaluated by disk diffusion method. The presence of the gene encoding antibiotic resistance to methicillin (mec A in the isolates were investigated using PCR method. Data were analyzed with Chi-square and Fisher's exact statistical tests. Results: In this study, most isolates were related to urinary tract infections. The highest resistance was reported to penicillin (98.9%, erythromycin (89.4%, ciprofloxacin (77.7%, clindamycin (65.9%, tetracycline (63.2%, and meticillin (54%. None of the strains showed resistance to vancomycin and linezolid. Molecular studies indicated the presence of mecA gene in 76% of the studied isolates. Conclusion: According to the results of this study, vancomycin and linezolid antibiotics can be the best choice of treatment for infections caused by S. epidermidis. Also, high resistance of S. epidermidis can be a serious warning for increased multiple antibiotic resistance. Molecular studies are indicative of high sensitivity of molecular methods in the investigation of methicillin-resistant isolates.  

  16. Phenotypic and Genotypic Antimicrobial Resistance of Lactococcus Sp. Strains Isolated from Rainbow Trout (Oncorhynchus Mykiss

    Directory of Open Access Journals (Sweden)

    Ture Mustafa

    2015-04-01

    Full Text Available A current profile of antimicrobial resistance and plasmid of 29 Lactococcus garvieae and one Lactococcus lactis strains isolated from rainbow trouts (Oncorhynchus mykiss from farms throughout Turkey were investigated. All isolates were sensitive to penicillin G (90%, ampicillin (86.7%, florfenicol (83.3%, amoxicillin (80.1%, and tetracycline (73.4%, and resistant to trimethoprim+sulfamethoxazole (86.6% and gentamycin (46.6% by disc diffusion method. Twenty-eight (93% isolates had two to seven antibiotic resistance genes (ARGs determined by PCR. The most prevalent ARGs were tetracycline (tetB, erythromycin (ereB, and β-lactam (blaTEM. Bacterial strains were also screened for plasmid DNA by agarose gel electrophoresis and two strains harboured plasmids, with sizes ranging from 3 to 9 kb.

  17. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  18. Prevalence of resistance to 11 antimicrobials among Campylobacter coill isolated from pigs on 80 grower-finisher farms in Ontario.

    Science.gov (United States)

    Varela, Norma P; Friendship, Robert; Dewey, Cate

    2007-07-01

    We carried out a cross-sectional study to investigate antimicrobial resistance patterns of Campylobacter coli isolated from Ontario grower-finisher pigs. From January to June 2004, 1200 samples were collected from 80 farms by obtaining a constant number (15) of fecal samples per farm. Susceptibility of the isolates to 11 antimicrobial drugs was determined by the agar-dilution technique. The overall prevalence of resistance to 1 or more antimicrobials among the isolates was 99.2%. High levels of resistance were observed for azithromycin, clindamycin, erythromycin, streptomycin, and tetracycline: 91.7%, 82.5%, 81.4%, 70.7%, and 63.7%, respectively. For sulfamethoxazole, ampicillin, and nalidixic acid, resistance was observed in 40.3%, 26.6%, and 22.7% of the isolates, respectively. Although at very low levels, resistance was observed for ciprofloxacin (a fluoroquinolone), chloramphenicol, and gentamicin: in 2.4%, 1.7%, and 0.2%, respectively. Many of the isolates (29.7%) were resistant to 5 antimicrobials, the most common being azithromycin, clindamycin, erythromycin, streptomycin, and tetracycline. Isolates from the same farm showed at least 5 patterns of resistance. Results from this study indicate high levels of resistance to the antimicrobial drugs most commonly used in the Canadian swine industry (macrolides, lincosamides, and tetracyclines) among C. coli isolated from grower-finisher pigs in Ontario. Macrolides and fluoroquinolones are the drugs most commonly used to treat severe human campylobacteriosis. Fortunately, at present, there is little resistance to fluoroquinolones among C. coli from pigs in Ontario.

  19. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Directory of Open Access Journals (Sweden)

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  20. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk.

    Science.gov (United States)

    Frey, Yvonne; Rodriguez, Joan Peña; Thomann, Andreas; Schwendener, Sybille; Perreten, Vincent

    2013-04-01

    Coagulase-negative staphylococci (CNS; n=417) were isolated from bovine milk and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nineteen different species were identified, and Staphylococcus xylosus, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus sciuri were the most prevalent species. Resistance to oxacillin (47.0% of the isolates), fusidic acid (33.8%), tiamulin (31.9%), penicillin (23.3%), tetracycline (15.8%), streptomycin (9.6%), erythromycin (7.0%), sulfonamides (5%), trimethoprim (4.3%), clindamycin (3.4%), kanamycin (2.4%), and gentamicin (2.4%) was detected. Resistance to oxacillin was attributed to the mecA gene in 9.7% of the oxacillin-resistant isolates. The remaining oxacillin-resistant CNS did not contain the mecC gene or mecA1 promoter mutations. The mecA gene was detected in Staphylococcus fleurettii, Staphylococcus epidermidis, Staph. haemolyticus, and Staph. xylosus. Resistance to tetracycline was attributed to the presence of tet(K) and tet(L), penicillin resistance to blaZ, streptomycin resistance to str and ant(6)-Ia, and erythromycin resistance to erm(C), erm(B), and msr. Resistance to tiamulin and fusidic acid could not be attributed to an acquired resistance gene. In total, 15.1% of the CNS isolates were multidrug resistant (i.e., resistant to 2 or more antimicrobials). The remaining CNS isolates were susceptible to antimicrobials commonly used in mastitis treatment. Methicillin-resistant CNS isolates were diverse, as determined by mecA gene sequence analysis, staphylococcal cassette chromosome mec typing, and pulsed-field gel electrophoresis. Arginine catabolic mobile element types 1 and 3 were detected in both methicillin-resistant and methicillin-susceptible Staph. epidermidis and were associated with sequence types ST59 and ST111. Because this study revealed the presence of multidrug-resistant CNS in a heterogeneous CNS population, we recommend antibiogram analysis

  1. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany.

    Science.gov (United States)

    Schwaiger, K; Schmied, E-M V; Bauer, J

    2010-05-01

    By investigating the prevalence and antimicrobial resistance characteristics of Gram-positive bacteria from organic and conventional keeping systems of laying hens, it was to be determined to what extent these properties are influenced by the different systems. For this purpose, a total of 799 cloacal swabs and 800 egg samples were examined. Prevalences for all selected bacteria from cloacal swabs were much the same for both organic and caged birds: Listeria spp.1.3%[org] versus 1.6%[con]; Enterococcus spp. 95.5%[org] versus 97.5%[con]. Egg contents and eggshells were generally contaminated to a lesser extent, primarily with Enterococcus spp. Listeria isolates were susceptible to almost all tested antibiotics, only three Listeria innocua from conventional keepings were resistant to clindamycin; one isolate additionally to imipenem. High percentages of Enterococcus faecalis were resistant to doxycycline and macrolides. Enterococcus faecium proved to have high resistance rates to clindamycin, fosfomycin and erythromycin; 9.1% were even resistant to the reserve antibiotic synercid. Further, Enterococcus spp. showed higher resistance rates to doxycycline, erythromycin, fosfomycin and rifampicin. No glycopeptide resistant enterococci were detected. A correlation between keeping system and resistance/susceptibility rates could be demonstrated. In detail, E. faecalis from organic laying hen husbandries showed significant lower resistance prevalences to tylosin, streptomycin and doxycycline; susceptibility rates were higher for enrofloxacin and ciprofloxacin. Rifampicin and imipenem were more effective in isolates from conventional keepings (P < 0.05). The amounts of resistant isolates of the Enterococcus raffinosus from organic farms were significantly lower, the amounts of sensitive isolates were significantly higher than from conventional farms concerning eight antibiotics (P < 0.05). When comparing the susceptibility/resistance rates, as well as the mean minimum

  2. Small Data

    NARCIS (Netherlands)

    S. Pemberton (Steven)

    2014-01-01

    htmlabstractThe term “Open Data” often goes hand in hand with the term “Big Data”, where large data sets get released allowing for analysis, but the Cinderella of the Open Data ball is Small Data, small amounts of data, nonetheless possibly essential, that are too small to be put in some database or

  3. Antibacterial Activity of Essential Oil of Sature jahortensis Against Multi-DrugResistant Bacteria

    Directory of Open Access Journals (Sweden)

    Saeide Saeidi

    2014-05-01

    Full Text Available Background: Development of resistance to many of the commonly used antibiotics is an impetus for further attempts to search for new antimicrobial agents. Objectives: In the present study, the antibacterial activity of Saturejahortensis essential oil against multi-drug resistant bacteria isolated from the urinary tract infections was investigated. Materials and Methods: During the years 2011 to 2012 a total of 36 strains of pathogenic bacteria including 12 Klebsiellapneumoniae, 12 Escherichia coli and 12 Staphylococcus aureus species were isolated from urine samples of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-eastern Iran suffering from urinary tract infections. After bacteriological confirmatory tests, the minimum inhibitory concentrations of the essential oil of Saturejahortensis were determined using micro-dilution method. Results: The antibiotic resistance profile of the E. coli isolates were as follows: ceftazidime (50% cefixime (41.6%, tetracycline (75%, erythromycin (58.3%. However K. pneumoniae isolates showed resistance to ceftazidime (33.3%, cefixime (58.3%, erythromycin (75% and S. aureus isolates were resistant to cefixime (33.3%, trimethoprim-sulfamethoxazole (41.66%, penicillin (50%, oxacillin (83.3%, ceftazidime (66.6% and vancomycin (8.3%. The essential oil of this plant had inhibitory effect against most isolates. More than 1/3 of the E. coli isolates showed the lowest MIC (10 ppm whereas more than 1/3 of the K. pneumoniae isolates showed the highest (250 ppm MIC values. In contrast ,equal number of S. aureus isolates showed the low MIC values (10 and 50 ppm, while the heighest MIC (250 ppm was seen in 1/3 of isolates and moderate MIC (100 ppm was seen in one isolate only. Conclusions: The Saturejahortensis essential oil has a potent antimicrobial activity against multi-drug resistant bacteria. The present study confirms the usefullness of this essential oil as antibacterial agent but further research is

  4. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga

    2003-01-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse.......016 micro g/ml; erythromycin resistant)/ml, 10(6) CFU of strain B (MIC of penicillin, 0.25 micro g/ml)/ml, and 10(5) CFU of strain C (MIC of penicillin, 4 micro g/ml)/ml, was used in the two mouse models, and a mixture of 10(5) CFU of strain A/ml, 10(4) CFU of strain B/ml, and 10(3) CFU of strain C....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...

  5. The occurrence, transmission, virulence and antibiotic resistance of Listeria monocytogenes in fish processing plant.

    Science.gov (United States)

    Skowron, Krzysztof; Kwiecińska-Piróg, Joanna; Grudlewska, Katarzyna; Świeca, Agnieszka; Paluszak, Zbigniew; Bauza-Kaszewska, Justyna; Wałecka-Zacharska, Ewa; Gospodarek-Komkowska, Eugenia

    2018-06-13

    The aim of this research was to investigate the occurrence of Listeria monocytogenes in fish and fish processing plant and to determine their transmission, virulence and antibiotic resistance. L. monocytogenes was isolated according to the ISO 11290-1. The identification of L. monocytogenes was confirmed by multiplex PCR method. Genetic similarity of L. monocytogenes strains was determined with the Pulsed-Filed Gene Electrophoresis (PFGE) method. The multiplex PCR was used for identification of L. monocytogenes serogroups and detection of selected virulence genes (actA, fbpA, hlyA, iap, inlA, inlB, mpl, plcA, plcB, prfA). The L. monocytogens isolates susceptibility to penicillin, ampicillin, meropenem, erythromycin, trimethoprim/sulfamethoxazole was evaluated with disc diffusion method according to EUCAST v. 7.1. The presence of 237 L. monocytogenes isolates (before genetic similarity assessment) in 614 examined samples was confirmed. After strain differentiation by PFGE techniques the presence of 161 genetically different strains were confirmed. The genetic similarity of the examined isolates suggested that the source of the L. monocytogenes strains were fishes originating from farms. All tested strains possessed all detected virulence genes. Among examined strains, the most (26, 38.6%) belonged to the group 1/2a-3a. The most of tested strains were resistant to erythromycin (47.1%) and trimethoprim/sulfamethoxazole (47.1%). Copyright © 2018. Published by Elsevier B.V.

  6. Phenotypic and genotypic characterization of antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from hospital food

    Directory of Open Access Journals (Sweden)

    Farhad Safarpoor Dehkordi

    2017-10-01

    Full Text Available Abstract Background Pathogenic biotypes of the Methicillin-resistant Staphylococcus aureus (MRSA strains are considered to be one of the major cause of food-borne diseases in hospitals. The present investigation was done to study the pattern of antibiotic resistance and prevalence of antibiotic resistance genes of different biotypes of the MRSA strains isolated from various types of hospital food samples. Methods Four-hundred and eighty-five raw and cooked hospital food samples were cultured and MRSA strains were identified using the oxacillin and cefoxitin disk diffusion tests and mecA-based PCR amplification. Isolated strains were subjected to biotyping and their antibiotic resistance patterns were analyzed using the disk diffusion and PCR methods. Results Prevalence of S. aureus and MRSA were 9.69 and 7.62%, respectively. Meat and chicken barbecues had the highest prevalence of MRSA. Prevalence of bovine, ovine, poultry and human-based biotypes in the MRSA strains were 8.10, 8.10, 32.43 and 48.64%, respectively. All of the MRSA strains recovered from soup, salad and rice samples were related to human-based biotypes. MRSA strains harbored the highest prevalence of resistance against penicillin (100%, ceftaroline (100%, tetracycline (100%, erythromycin (89.18% and trimethoprim-sulfamethoxazole (83.78%. TetK (72.97%, ermA (72.97%, msrA (64.86% and aacA-D (62.16% were the most commonly detected antibiotic resistance genes. Conclusions Pattern of antibiotic resistance and also distribution of antibiotic resistance genes were related to the biotype of MRSA strains. Presence of multi-drug resistance and also simultaneous presence of several antibiotic resistance genes in some MRSA isolates showed an important public health issue Further researches are required to found additional epidemiological aspects of the MRSA strains in hospital food samples.

  7. Phenotypic and molecular characteristics of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in slaughterhouse pig-related workers and control workers in Guangdong Province, China.

    Science.gov (United States)

    Wang, X L; Li, L; Li, S M; Huang, J Y; Fan, Y P; Yao, Z J; Ye, X H; Chen, S D

    2017-07-01

    Pig farmers and veterinarians have high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) due to the occupational livestock exposure, while few reported this association on slaughterhouse workers. We conducted this cross-sectional study to explore the phenotypic and molecular characteristics of S. aureus and MRSA in slaughterhouse pig-related workers and control workers in Guangdong Province, China. Participants were interviewed and provided two nasal swabs. Swabs were tested for S. aureus, and isolates were further tested for antimicrobial susceptibility, virulence genes and multi-locus sequence typing. Compared with control workers, pig-related workers have significantly higher prevalence of MRSA carriage (adjusted odd ratio (aOR) 3·70, 95% CI 1·63-8·40). The proportions of MRSA resistant to clindamycin, erythromycin, tetracycline or chloromycetin were significantly higher in pig-related workers than in control workers. The predominant phenotypes of S. aureus were resistant to penicillin, clindamycin, erythromycin and tetracycline. Three MRSA CC9 isolates with livestock-associated characteristics (resistance to tetracycline and absence of immune evasion cluster (IEC) genes) were detected in pig-related workers but not in control workers. For human-associated CCs (CC7, CC59, CC6, and CC188), there was no significant difference in IEC profile or antimicrobial resistance between the groups. These findings reveal that there may be a potential risk for livestock-to-human transmission of LA-MRSA and human-to-human transmission of human-associated MRSA.

  8. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains

    Directory of Open Access Journals (Sweden)

    Miseon Park

    2014-01-01

    Full Text Available Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.

  9. Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter.

    Science.gov (United States)

    Zhang, Menglu; Chen, Lihua; Ye, Chengsong; Yu, Xin

    2018-02-01

    Heavy metal contamination of source water frequently occurred in developing countries as a result of accidents. To address the problems, most of the previous studies have focused on engineering countermeasures. In this study, we investigated the effects of heavy metals, particularly copper, on the development of antibiotic resistance by establishing a copper shock loading test. Results revealed that co-selection occurred rapidly within 6 h. Copper, at the levels of 10 and 100 mg/L, significantly increased bacterial resistance to the antibiotics tested, including rifampin, erythromycin, kanamycin, and a few others. A total of 117 antimicrobial-resistance genes were detected from 12 types of genes, and the relative abundance of most genes (particularly mobile genetic elements intⅠand transposons) was markedly enriched by at least one fold. Furthermore, the copper shock loading altered the bacterial community. Numerous heavy metal and antibiotic resistant strains were screened out and enriched. These strains are expected to enhance the overall level of resistance. More noticeably, the majority of the co-selected antibiotic resistance could sustain for at least 20 h in the absence of copper and antimicrobial drugs. Resistance to vancomycin, erythromycin and lincomycin even could remain for 7 days. The prominent selection pressure by the copper shock loading implies that a real accident most likely poses similar impacts on the water environment. An accidental release of heavy metals would not only cause harm to the ecological environment, but also contribute to the development of bacterial antibiotic resistance. Broader concerns should be raised about the biological risks caused by sudden releases of pollutants by accidents. Copyright © 2017. Published by Elsevier Ltd.

  10. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  11. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  12. Resistance patterns of bacterial isolates to antimicrobials from 3 hospitals in the United Arab Emirates

    International Nuclear Information System (INIS)

    AlDhaheri, Ahmed S; AlNiyadi, Mohammed S; AlDhaheri Ahmed D; Bastaki, Salim M

    2009-01-01

    To compare the resistance pattern of common bacterial pathogens to commonly used drugs. Information and statistics of antimicrobial resistance for 1994 and 2005 were collected from the 3 hospital microbiology laboratories in the United Arab Emirates. The resistance patterns of Staphylococcus aureus, Escherichia coli, Klebsiella spp, and Pseudomonas aeruginosa to several front-line drugs were estimated. All laboratories used automatic machines (Vitek 2), which identifies and determines minimum inhibitory concentrations simultaneously. Increased resistance was observed for Staphylococcus aureus, (n=315, 2005) to erythromycin (approximately 6 fold, Al-Ain Hospital only), cloxacillin (Al-Ain Hospital), and gentamicin (more than 3-10 folds in all hospitals). Increased penicillin resistance was not observed. For the common Gram-negative organisms, there was a high resistance to ampicillin, gentamicin, ceftriaxone, ciprofloxacin, and imipenem, which seemed to increase for Escherichia coli, (by 4.2-200%, n=305, 2005); however, there was very little resistance to imipenem (0.4%) in Tawam Hospital. Variable resistance patterns were obtained for Pseudomonas aeruginosa (n=316, 2005) and Klebsiella spp,(n=316, 2005) against aminoglycosides, cephalosporins, ciprofloxacin, and norfloxacin. Overall, there was an obvious increase in resistance of bacteria and the prevalence rate to a number of drugs from 1-120 folds during the 11-year period. (author)

  13. Intracellular forms of menadione-dependent small-colony variants of methicillin-resistant Staphylococcus aureus are hypersusceptible to β-lactams in a THP-1 cell model due to cooperation between vacuolar acidic pH and oxidant species.

    Science.gov (United States)

    Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise

    2012-12-01

    Phagocytosed methicillin-resistant Staphylococcus aureus (MRSA) are susceptible to β-lactams because of an acid-induced conformational change of penicillin-binding protein (PBP) 2a within phagolysosomes. We have examined whether this mechanism applies to menD and hemB small-colony variants (SCVs) of the COL MRSA strain, using cloxacillin, meropenem, doripenem, and vancomycin as comparator. Intracellularly, the change in cfu from post-phagocytosis inoculum was measured after 24 h of incubation with antibiotics combined or not with N-acetylcysteine (NAC; oxidant species scavenger); the relative potency (C(s)) was calculated from the Hill equation of concentration-response curves. Extracellularly, the effect of a pre-incubation with H(2)O(2) was determined on MICs and killing at pH 7.4 and 5.5. Intracellularly, the β-lactam C(s) was similar for the COL strain and the hemB mutant and not modified or slightly decreased (2- to 16-fold) by NAC. In contrast, the C(s) was 100- to 900-fold lower for the menD mutant, but similar to that for the COL strain when NAC was present. Extracellularly, β-lactam MICs were markedly reduced at pH 5.5 for the parental strain and the haemin-supplemented hemB mutant, with limited additional effect of pre-incubation with H(2)O(2). In contrast, MICs remained elevated at pH 5.5 for the menD mutant (supplemented with menadione sodium bisulphite or not), but were 7-10 dilutions lower after pre-incubation with H(2)O(2). Vancomycin MICs were unaltered in all conditions, with no marked effect of NAC on C(s). Cooperation between acidic pH and oxidant species confers high potency to β-lactams against intracellular forms of menD SCVs of MRSA.

  14. Characterization of pig-associated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Li, Jun; Jiang, Nansong; Ke, Yuebin; Feßler, Andrea T; Wang, Yang; Schwarz, Stefan; Wu, Congming

    2017-03-01

    Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) have been reported in various countries worldwide. However, although China is one of the biggest pig and pork producers, large-scale studies on pig-associated LA-MRSA from China are scarce. The aims of this study were to analyze 2420 non-duplicate samples collected from pigs at swine farms and slaughterhouses in different regions in China during 2014 for the prevalence of pig-associated MRSA and to determine the antimicrobial resistance pheno- and genotypes of the respective isolates. MRSA isolates were identified in 270 (11.2%) samples. The isolates were characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), spa typing, pulsed-field gel electrophoresis (PFGE) and screening for resistance genes. All MRSA isolates belonged to the clonal complex 9 and spa type t899, but showed variable PFGE patterns. All isolates were non-susceptible to oxacillin, cefoxitin, clindamycin, chloramphenicol, florfenicol, ciprofloxacin, and valnemulin. High rates of resistance were also observed for tetracycline (99.6%), erythromycin (97.0%), quinupristin-dalfopristin (97.0%), and gentamicin (80.4%). Three linezolid-non-susceptible isolates containing the multi-resistance gene cfr and nine rifampicin-non-susceptible isolates with mutations in rpoB were detected. Resistance to β-lactams was exclusively associated with mecA, while phenicol resistance was mainly attributable to fexA, except in the three cfr-positive isolates. The pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) was identified in all MRSA isolates, and no other pleuromutilin resistance genes, except cfr in three isolates, were detected. Pigs are the most important hosts of LA-MRSA in China. Screening for pig-associated MRSA is necessary to monitor changes in epidemiology and characteristics of these important pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Small Data

    OpenAIRE

    Pemberton, Steven

    2014-01-01

    htmlabstractThe term “Open Data” often goes hand in hand with the term “Big Data”, where large data sets get released allowing for analysis, but the Cinderella of the Open Data ball is Small Data, small amounts of data, nonetheless possibly essential, that are too small to be put in some database or online dataset to be put to use. RDFa is a technology that allows Cinderella to go to the ball.

  16. Trends in antimicrobial susceptibility in relation to antimicrobial usage and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Jensen, Lars Bogø

    2002-01-01

    (vat, vga, vga(B), vat(B), vat(D) and vat(E)), streptomycin (aadE) and tetracycline resistance (tet(K), tet(L), tet(M) and tet(O)) were determined in selected isolates. The occurrence of erythromycin resistance increased from 33% in 1996 to a maximum of 62% in 1997 and decreased to 26% in 2001....... Resistance to sulphametazole increased from 17% in 1996 to 30% in 1998 but has since decreased to 4% in 2001. Resistance to trimethoprim increased to 51% in 1997 and decreased to 21% in 2001. Resistance to tetracycline (21-31%) remained relatively constant during 1996-2000, but increased to 47% in 2001...

  17. Decolonization of Staphylococcus aureus in patients with atopic dermatitis: a reason for increasing resistance to antibiotics?

    Directory of Open Access Journals (Sweden)

    Izabela Błażewicz

    2017-12-01

    Full Text Available Introduction : Exacerbation of atopic dermatitis can be associated with bacterial infection. The skin of patients is colonized with Staphylococcus aureus in 90% of cases. An attempt has been made to demonstrate that eradication significantly reduces the severity of the disease. Studies indicate the efficacy of topical antibiotics, topical corticosteroids and calcineurin inhibitors. Due to increasing resistance to drugs and the defective antimicrobial peptide profile, decolonization is virtually impossible. Aim : To determine the prevalence of S. aureus colonization among patients with atopic dermatitis and to assess antimicrobial susceptibility of isolated strains to antibiotics, especially fusidic acid and mupirocin. Material and methods : One hundred patients with atopic dermatitis and 50 healthy subjects were microbiologically assessed for the carriage of S. aureus . Antimicrobial susceptibility tests were performed using the broth-microdilution method for antibiotics: ampicillin, ciprofloxacin, daptomycin, erythromycin, fusidic acid, linezolid, lincomycin, mupirocin, tetracycline and vancomycin. Results : Staphylococcus aureus strains were isolated from the majority of our patients, either from the skin (71% or the anterior nares (67%. In the present study, 10% of isolations represented methicillin-resistant S. aureus (MRSA. Antibiotics exhibited diverse activities against clinical isolates of S. aureus . Among those tested, the highest rates of resistance were shown for ampicillin – 58.5%, lincomycin – 37.5% and erythromycin – 31.0%. Enhanced resistance levels were expressed to mupirocin (17.5% and fusidic acid (15.5%. Conclusions : According to the increasing rate of resistance and quick recolonization after discontinuation of the treatment, chronic use of topical antibiotics is not recommended and should be limited to exacerbation of atopic dermatitis with clinical signs of bacterial infection.

  18. Antibiotic resistance plasmids of Staphylococcus aureus and their clinical importance

    International Nuclear Information System (INIS)

    Lacey, R.W.

    1975-01-01

    A variety of plasmids were isolated physically, and most antibiotic resistance is thought to be plasmid mediated. A number of characters (e.g., resistance to erythromycin or methicillin, and production of pigment) are determined by genes that do not give clear indications of either plasmid or chromosomal location. Although the formation of a particular plasmid is probably, even in bacterial terms, a very rare event, once formed such an element can spread rapidly among the bacterial population. The spectacular increase in the incidence of penicillinase-producing hospital strains in the late 1940's could have been due in part to this process. Evidence is stronger, however, for the intercell transfer of recently isolated plasmids coding for resistance to fusidic acid (and penicillinase production), or for neomycin, or for tetracycline resistance. Study of bacterial plasmids can resolve fundamental biochemical problems, and give some insight into the life of the cell at the molecular level. But the immediate application of the study of staphylococcal plasmids may be directed towards improving the effectiveness of antibiotic therapy. The most important aspect of future anti-staphylococcal chemotherapy should thus be the limitation of the use of antibiotics, particularly for application to the skin and nose. (U.S.)

  19. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  20. Antimicrobial Resistance

    Science.gov (United States)

    ... can prevent and manage antimicrobial resistance. It is collaborating with partners to strengthen the evidence base and ... on the global action plan. WHO has been leading multiple initiatives to address antimicrobial resistance: World Antibiotic ...

  1. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix.

    Directory of Open Access Journals (Sweden)

    Ana Belén Flórez

    Full Text Available In spite of a global concern on the transfer of antibiotic resistances (AR via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18, Leuconostoc citreum (11, Leuconostoc lactis (2, Weissella hellenica (2, and Leuconostoc carnosum (1. Atypical resistances were found for kanamycin (17 strains, tetracycline and chloramphenicol (two strains each, and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each. Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B gene was amplified. Hybridization experiments proved erm(B and tet(S to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B and tet(S, but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4 and virginiamycin [vat(E] resistance were further found. The erm(B gene but not tet(S was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the

  2. Exploração mineira, memória e resistência: as retóricas ecológicas populares no conflito entre pequenos proprietários rurais e indústria mineira no centro de Portugal Mining, memory and resistance: popular ecological rhetoric in the conflict between small rural landowners and the mining industry in the Portuguese inland

    Directory of Open Access Journals (Sweden)

    Pedro Gabriel Silva

    2010-06-01

    Full Text Available Aborda-se um conflito entre pequenos proprietários rurais e uma empresa mineira durante a década de 1970 numa aldeia do interior, região ao centro de Portugal. Analisa-se a oposição popular à extração mineira a partir da memória social da destruição dos recursos agrários e da paisagem. A par da conjuntura política dos anos de 1970, explora-se o papel dos elementos ecológicos na estruturação da retórica e ação resistente. O artigo resulta de uma investigação que combina os marcos antropológico e histórico, onde a abordagem etnográfica enlaça a pesquisa documental em arquivos de empresas, estatais e locais.A conflict between small rural landowners and a mining company during the 1970's in a Portuguese inland hamlet is to be analyzed. Local opposition to mining is to be comprehended in the scope of social memory building after the perception of landscape destruction in the past. Besides the political background of the 1970's, ecological elements are explored to understand resistant rhetoric and action. This paper results from an investigation that combines anthropological and historical theories, where the ethnographic approach embraces the documentary research in companies, state and local archives.

  3. Telithromycin resistance in Streptococcus pneumoniae is conferred by a deletion in the leader sequence of erm(B) that increases rRNA methylation

    DEFF Research Database (Denmark)

    Wolter, Nicole; Smith, Anthony M; Farrell, David J

    2008-01-01

    A telithromycin-resistant clinical isolate of Streptococcus pneumoniae (strain P1501016) has been found to contain a version of erm(B) that is altered by a 136-bp deletion in the leader sequence. By allele replacement mutagenesis, a second strain of S. pneumoniae (PC13) with a wild-type erm(B) gene...... was transformed to the telithromycin-resistant phenotype by introduction of the mutant erm(B) gene. Whereas the wild-type PC13 strain showed slight telithromycin resistance only after induction by erythromycin (telithromycin MIC increased from 0.06 to 0.5 microg/ml), the transformed PC13 strain is constitutively...... resistant (MIC of 16 mug/ml). Expression of erm(B) was quantified by real-time reverse transcription-PCR in the presence of erythromycin or telithromycin; erm(B) expression was significantly higher in the transformed PC13 strain than the wild-type strain. Furthermore, the transformed strain had...

  4. [Distribution of anaerobes in periodontal abscess and its resistance to antibiotics].

    Science.gov (United States)

    He, Jun-lin; Yu, Li-ying; Chen, Jia-zhen

    2012-12-01

    To isolate and culture the predominant anaerobes from the periodontal abscesses, and to test the antibiotic susceptibility and drug resistant genes of the strains. The isolated strains were identified by both API20A biochemical method and polymerase chain reaction (PCR) method. The antibiotic susceptibility test was performed by agar dilution method. The resistant genes of the drug-resistant strains obtained were screened by PCR. The anaerobes were detected in 48% (28/58) of the samples and Prevotella melaninogenica (Pm) was mostly identified in 43% (12/28). API20A biochemical method had 82% (23/28) agreement with the 16SrRNA method in identification rate. Anaerobes were resistant to metronidazole, clindamycin and cefmetazole. The erythromycin-resistant methylase genes F (ermF) gene was detected in three of eight clindamycin resistant strains. None of them was found coded on bacterial plasmids. However, no metronidazole resistant gene was detected on drug resistant strains. Pm was the predominant species dectected in the periodontal abscess of the patients. The antibiotic agents should be used based on the genotypes and general condition of the patients.

  5. Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal.

    Science.gov (United States)

    Macedo, Ana S; Freitas, Ana R; Abreu, Cristina; Machado, Elisabete; Peixe, Luísa; Sousa, João C; Novais, Carla

    2011-01-31

    Untreated drinking water is frequently overlooked as a source of antibiotic resistance in developed countries. To gain further insight on this topic, we isolated the indicator bacteria Enterococcus spp. from water samples collected in wells, fountains and natural springs supplying different communities across Portugal, and characterized their antibiotic resistance profile with both phenotypic and genetic approaches. We found various rates of resistance to seven antibiotic families. Over 50% of the isolates were resistant to at least ciprofloxacin, tetracyclines or quinupristin-dalfopristin and 57% were multidrug resistant to ≥3 antibiotics from different families. Multiple enterococcal species (E. faecalis, E. faecium, E. hirae, E. casseliflavus and other Enterococcus spp) from different water samples harbored genes encoding resistance to tetracyclines, erythromycin or gentamicin [tet(M)-46%, tet(L)-14%, tet(S)-5%, erm(B)-22%, aac(6´)-Ie-aph(2″)-12%] and putative virulence factors [gel-28%, asa1-16%]. The present study positions untreated drinking water within the spectrum of ecological niches that may be reservoirs of or vehicles for antibiotic resistant enterococci/genes. These findings are worthy of attention as spread of antibiotic resistant enterococci to humans and animals through water ingestion cannot be dismissed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Small hydro

    International Nuclear Information System (INIS)

    Bennett, K.; Tung, T.

    1995-01-01

    A small hydro plant in Canada is defined as any project between 1 MW and 15 MW but the international standard is 10 MW. The global market for small hydro development was considered good. There are some 1000 to 2000 MW of generating capacity being added each year. In Canada, growth potential is considered small, primarily in remote areas, but significant growth is anticipated in Eastern Europe, Africa and Asia. Canada with its expertise in engineering, manufacturing and development is considered to have a good chance to take advantage of these growing markets

  7. Antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Marianne Frieri

    2017-07-01

    Full Text Available Summary: Antimicrobial resistance in bacterial pathogens is a challenge that is associated with high morbidity and mortality. Multidrug resistance patterns in Gram-positive and -negative bacteria are difficult to treat and may even be untreatable with conventional anti