WorldWideScience

Sample records for small cluster ions

  1. Small cluster ions from source of negative ions by cesium sputtering

    CERN Document Server

    Wang, X M; Shao, L; Liu, J R; Chu, W K

    2002-01-01

    We investigated the delivery of small cluster ions using a source of negative ions by cesium sputtering (SNICS). The negative cluster ions of B sub n , C sub n , Si sub n , Co sub n , Cu sub n , Ge sub n , Au sub n , GeB sub n and SiB sub n have been extracted by SNICS. Adequate beam current of some small clusters was obtained by changing several parameters for cluster ion yield. After a comprehensive study of the operation parameters, such as target material selection, target geometry, sputtering voltage and current, the small cluster ion current can be increased by several orders of magnitude, with little change on the monomer ion yield.

  2. Structures and energetics of small lead cluster ions.

    Science.gov (United States)

    Kelting, Rebecca; Otterstätter, Robin; Weis, Patrick; Drebov, Nedko; Ahlrichs, Reinhart; Kappes, Manfred M

    2011-01-14

    By a combination of gas phase ion mobility measurements and relativistic density functional theory calculations with inclusion of spin-orbit coupling, we assign structures of lead cluster cations and anions in the range between 4 and 15 atoms. We find a planar rhombus for the tetramer, a trigonal bipyramid for the pentamer, and a pentagonal bipyramid for the heptamer, independent of charge state. For the hexamer, the cation and anion structures differ: we find an octahedron for the anion while the cation consists of fused tetrahedra. For the octamer, we find in both cases structures based on the pentagonal bipyramid motif plus adatom. For the larger clusters investigated we always find different structures for cations and anions. For example, Pb(12)(-) is confirmed to be a hollow icosahedron while Pb(12)(+) is a truncated filled icosahedron. Pb(13)(+) is a filled icosahedron but Pb(13)(-) is a hollow icosahedron with the additional atom capping a face. In order to get experimental information on the relative stabilities, we investigated the collision induced dissociation mass spectra for the different cluster sizes and charge states, and observe a strong correlation with the calculated fragmentation energies. Up to n = 13 the main fragmentation channel is atom loss; for the larger cluster sizes we observe fission into two large fragments. This channel is dominant for larger anions, less pronounced but clearly present for the cations.

  3. Thermodynamic modeling of the formation and stability of small tin clusters and their ions

    International Nuclear Information System (INIS)

    Kodlaa, A.; Suliman, A.

    2005-01-01

    Based on the results of previous quantum-chemical study of electronic structure properties for neutral and single positively and negatively charged thin clusters in the size range of N 2-17 atoms, and on the thermodynamic laws, we have studied the thermodynamic properties of tin clusters and their ions. The characteristic amounts (cohesive enthalpy, formation enthalpy, fragmentation enthalpy, entropy and free enthalpy) for the formation and stability of these clusters at different temperatures were calculated. From the results, which are presented and discussed in this work, one can observe the following: The tin clusters Sn N (N=2-17) and their cations Sn + N and anions Sn - N are formed in the gas phase, and this agrees with experimental results. The clusters Sn 3 and Sn 1 0 are the most stable clusters of all. Here we also, find a correspondence with the results of the experimental studies. Our results go beyond that since we have found Sn 1 5 is also specially stable. By this thermodynamic study we could evaluate approximately the formation and stability of small neutral, single positively and negatively charged tin clusters. It has also allowed us to study the effects of the temperature on the formation and stability of these clusters. The importance of such study is not only what mentioned above, but it is also the first thermodynamic study for modeling the formation and stability of small tin clusters. (author)

  4. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  5. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Arnold, C.C.

    1994-08-01

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C 6 - /C 6 , Si n - /Si n (n = 2, 3, 4), Ge 2 - /Ge 2 , In 2 P - /In 2 P,InP 2 - /InP 2 , and Ga 2 As - . The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I - ·CH 3 I S N 2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C 6 , as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C 6 - spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ∼40 cm -1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C 6 , and the open shell of the anion

  6. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Caroline Chick [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C6-/C6, Sin-/Sin (n = 2, 3, 4), Ge2-/Ge2, In2P-/In2P,InP2-/InP2, and Ga2As-. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I-•CH3I SN2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C6, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C6- spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ~40 cm-1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C6, and the open shell of the anion.

  7. Surface Collisions of Small Cluster Ions at Incident Energies 10-102 eV

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2004-01-01

    Roč. 233, - (2004), s. 361-371 ISSN 1387-3806 R&D Projects: GA MŠk ME 561 Grant - others:XE(CZ) EURATOM-IPP.CR Institutional research plan: CEZ:AV0Z4040901 Keywords : surface collisions * cluster ions * unimolecular dissociation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  8. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  9. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uhlik, Filip [Charles Univ., Prague (Czech Republic); Moucka, Filip [Purkinje Univ. (Czech Republic); Nezbeda, Ivo [Purkinje Univ. (Czech Republic); Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-16

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  10. On small clusters

    International Nuclear Information System (INIS)

    Bernardes, N.

    1984-01-01

    A discussion is presented of zero-point motion effects on the binding energy of a small cluster of identical particles interacting through short range attractive-repulsive forces. The model is appropriate to a discussion of both Van der Waals as well as nuclear forces. (Author) [pt

  11. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  12. On the application of the weak-beam technique to the determination of the sizes of small point-defect clusters in ion-irradiated copper

    International Nuclear Information System (INIS)

    Jenkins, M. L.

    1998-01-01

    We have made an analysis of the conditions necessary for the successful use of the weak-beam technique for identifying and characterizing small point-defect clusters in ion-irradiated copper. The visibility of small defects was found to depend only weakly on the magnitude of the beam-convergence. In general, the image sizes of small clusters were found to be most sensitive to the magnitude of Sa with the image sizes of some individual defects changing by large amounts with changes as small as 0.025 nm -1 . The most reliable information on the true defect size is likely to be obtained by taking a series of 5-9 micrographs with a systematic variation of deviation parameter from 0.2-0.3 nm -1 . This procedure allows size information to be obtained down to a resolution limit of about 0.5 nm for defects situated throughout a foil thickness of 60 nm. The technique has been applied to the determination of changes in the sizes of small defects produced by a low-temperature in-situ irradiation and annealing experiment

  13. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.

    Science.gov (United States)

    Fan, Xiaofeng; Zheng, W T; Kuo, Jer-Lai; Singh, David J

    2013-08-28

    We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed.

  14. Cluster Ions and Atmospheric Processes

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    We investigate the properties and possible roles of naturally occurring ions under at- mospheric conditions. Among other things, the formation of stable charged molecular clusters represents the initial stages of aerosol nucleation [e.g., Keesee and Castle- man, 1982], while the conversion of vapor to aggregates is the first step in certain atmospheric phase transitions [e.g. Hamill and Turco, 2000]. We analyze the stability and size distributions of common ionic clusters by solving the differential equations describing their growth and loss. The necessary reaction rate coefficients are deter- mined using kinetic and thermodynamic data. The latter are derived from direct labo- ratory measurements of equilibrium constants, from the classical charged liquid drop model applied to large aggregates (i.e., the Thomson model [Thomson, 1906]), and from quantum mechanical calculations of the thermodynamic potentials associated with the cluster structures. This approach allows us to characterize molecular clusters across the entire size range from true molecular species to larger aggregates exhibiting macroscopic behavior [D'Auria, 2001]. Cluster systems discussed in this talk include the proton hydrates (PHs) and nitrate-water and nitrate-nitric acid series [D'Auria and Turco, 2001]. These ions have frequently been detected in the stratosphere and tropo- sphere [e.g., Arnold et al., 1977; Viggiano and Arnold, 1981]. We show how the pro- posed hybrid cluster model can be extended to a wide range of ion systems, including non-proton hydrates (NPHs), mixed-ligand clusters such as nitrate-water-nitric acid and sulfate-sulfuric acid-water, as well as more exotic species containing ammonia, pyridine and other organic compounds found on ions [e.g., Eisele, 1988; Tanner and Eisele, 1991]. References: Arnold, F., D. Krankowsky and K. H. Marien, First mass spectrometric measurements of posi- tive ions in the stratosphere, Nature, 267, 30-32, 1977. D'Auria, R., A study of ionic

  15. The structure of small metal clusters

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Pettersson, L. G. M.

    1986-01-01

    One metal atom surrounded by its 12 nearest neighbors is considered for both D(3d) (face-centered cubic-like) and D(3h) (hexagonal close-packed-like) geometries. For Al and Be, the neutral cluster and the positive and negative ions are considered for idealized (all bonds equal) and distorted geometries. The D(3d) geometry is found to be the lowest for Be13, while the D(3h) geometry is lower for Al13. This is the reverse of what is expected based upon the bulk metal structures, Be(hcp) and Al(fcc). Al13 is found to have only small distortions, while Be13 shows large distortions for both the D(3d) and D(3h) geometries. The ions have geometries which are similar to those found for the neutral systems. Both all-electron and effective core potential calculations were carried out on the X13 clusters; the agreement is very good.

  16. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  17. Some properties of ion and cluster plasma

    International Nuclear Information System (INIS)

    Gudzenko, L.I.; Derzhiev, V.I.; Yakovlenko, S.I.

    1982-01-01

    The aggregate of problems connected with the physics of ion and cluster plasma is qualitatively considered. Such a plasma can exist when a dense gas is ionized by a hard ionizer. The conditions for the formation of an ion plasma and the difference between its characteristics and those of an ordinary electron plasma are discussed; a solvated-ion model and the distribution of the clusters with respect to the number of solvated molecules are considered. The recombination rate of the positively and negatively charged clusters is roughly estimated. The parameters of a ball-lightning plasma are estimated on the basis of the cluster model

  18. Some properties of ion and cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gudzenko, L.I.; Derzhiev, V.I.; Yakovlenko, S.I.

    1982-11-01

    The aggregate of problems connected with the physics of ion and cluster plasma is qualitatively considered. Such a plasma can exist when a dense gas is ionized by a hard ionizer. The conditions for the formation of an ion plasma and the difference between its characteristics and those of an ordinary electron plasma are discussed; a solvated-ion model and the distribution of the clusters with respect to the number of solvated molecules are considered. The recombination rate of the positively and negatively charged clusters is roughly estimated. The parameters of a ball-lightning plasma are estimated on the basis of the cluster model.

  19. Small size ion pumps

    International Nuclear Information System (INIS)

    Cyranski, R.; Kiliszek, Cz.R.; Marks, J.; Sobolewski, A.; Magielko, H.

    2001-01-01

    This paper describes some designs of the two versions ion pumps and their range operation for various magnetic fields. The first version is made with different cell size in the anode element and titanium cathode operating in magnetic field from 600 to 650 Gs and the second version with the same anode element but differential Ti/Ta cathode working in magnetic field above 1200 Gs

  20. First-Principles Investigation on Ionization Strength, Volume Expansion, and Water Rotational Rigidity of Small Water Cluster Systems Formed around Sodium(I), Calcium(II), and Iron(II) Ions

    Science.gov (United States)

    Kuncoro, Handoko Setyo; Sakaue, Mamoru; Nakanishi, Hiroshi; Kasai, Hideaki; Dipojono, Hermawan Kresno

    2011-02-01

    Some ionic effects on small water cluster systems formed around sodium(I), calcium(II), and iron(II) cations have been investigated using the density functional theory. By assuming that the numbers of water molecules in the first and the second water layers are 6 and 12, respectively, it is shown that (i) the Ca(II) aqueous cluster shrinks and its volume becomes similar to that of a pure (H2O)18 cluster whereas the Fe(II) and Na(I) aqueous clusters expand; (ii) owing to the water dipole--dipole interactions induced by the ion in the second water layer binding, the ionization strength of the Ca(II) aqueous cluster is close to that of Fe(II) but sufficiently higher than that of Na(I); (iii) the isotropicity of s-type Ca(II) and Na(I) cation orbitals as the cause of the reduction in water rotational rigidity in the ion--water bonding has been clarified by analyzing the charge transfer and non interacting kinetic energy. By considering the three ionic effects, we predict that the Ca(II) ion is one of the more competitive water cationic impurities in the PEMFC membrane.

  1. Production of negative hydrogen ions from accelerated cluster ions

    International Nuclear Information System (INIS)

    Becker, E.W.; Falter, H.D.; Hagena, O.F.; Henkes, W.; Klingelhoefer, R.; Moser, H.O.; Obert, W.; Poth, I.

    1976-11-01

    Cluster ion acceleration is a method particularly well suited to produce neutral beams of high particle current density at energies of the order of 1 keV/atom. Since this is the energy required for converting hydrogen atoms or molecules into negative ions in a cesium vapour cell, it is proposed to use cluster ions for the production of negative ion beams of high current density. The system is envisaged as a tandem accelerator with a terminal voltage of 1 MV. (orig.) [de

  2. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  3. Optical response of small magnesium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    We predict strong enhancement in the photoabsorption of small Mg clusters in the region of 4–5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. Photoabsorption spectra for neutral Mg clusters consisting of up to N = 11 atoms have been calculated using an ab init...

  4. Hydrogenated carbon clusters produced by highly charged ion impact on solid C-84

    NARCIS (Netherlands)

    Schlatholter, T; Newman, MW; Niedermayr, TR; Machicoane, GA; McDonald, JW; Schenkel, T; Hoekstra, R; Hamza, AV

    2000-01-01

    The emission of small (hydrogenated) carbon cluster ions: CnHm+ (n = 2-22) upon highly charged Xeq+ (q = 20- 14) impact on C-84 surfaces is studied by means of time-of-flight secundary ion mass spectrometry. The respective stage of hydrogenation/protonation of a certain carbon cluster ion C-n(+) is

  5. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...

  6. Tissue molecular ion imaging by gold cluster ion bombardment.

    Science.gov (United States)

    Touboul, David; Halgand, Fréderic; Brunelle, Alain; Kersting, Reinhard; Tallarek, Elke; Hagenhoff, Birgit; Laprévote, Olivier

    2004-03-15

    The use of gold cluster focused ion beams produced by a liquid metal ion gun in a TOF-SIMS mass spectrometer is shown to dramatically enhance secondary ion emission of phospholipids and peptides. The method has been successfully tested with cells grown onto plastic slips and with mouse brain slices, without any treatment of the samples. Very reliable time-of-flight mass spectra are acquired with a low primary ion dose of a few 10(7) ions, and high lateral resolution molecular ion images are obtained for heavy ions of great biological interest. This approach offers new opportunities in pharmacological and biological research fields by localizing compounds of interest such as drugs or metabolites in tissues.

  7. Fullerene nanostructure design with cluster ion impacts

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  8. Spectrometer for cluster ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Ryuto, H., E-mail: ryuto@kuee.kyoto-u.ac.jp; Sakata, A.; Takeuchi, M.; Takaoka, G. H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510 (Japan); Musumeci, F. [Department of Physics and Astronomy, Catania University, Catania 95123 (Italy); INFN Laboratori Nazionali del Sud, Catania 95123 (Italy)

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  9. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  10. Defect characteristics by boron cluster ion implantation

    International Nuclear Information System (INIS)

    Aoki, Takaaki; Matsuo, Jiro; Takaoka, Gikan; Toyoda, Noriaki; Yamada, Isao

    2003-01-01

    Cluster ion implantation using decaborane (B 10 H 14 ) has been proposed as a shallow implantation technique for LSI devices with gate lengths of several-tens nanometers. Experiments and computer simulations of low-energy boron monomers and decaborane clusters implantation were performed. Molecular dynamics simulations of B 10 cluster implantation have shown similar implant depth but different damage density and damage structure compared to monomer (B 1 ) ion implantation with the same energy-per-atom. For monomer implantation, point-defects such as vacancy-interstitial pairs are mainly formed. On the other hand, B 10 generates large numbers of defects within a highly-amorphised region at the impact location. This difference in damage structure produced during implantation is expected to cause different annihilation processes

  11. On the Clustering of Europa's Small Craters

    Science.gov (United States)

    Bierhaus, E. B.; Chapman, C. R.; Merline, W. J.

    2001-01-01

    We analyze the spatial distribution of Europa's small craters and find that many are too tightly clustered to result from random, primary impacts. Additional information is contained in the original extended abstract.

  12. Photoabsorption of small sodium and magnesium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    We predict the strong enhancement in the photoabsorption of small Mg clusters in the region of 4-5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. The photoabsorption spectra for neutral Mg clusters consisting of up to N=11 atoms have been calculated using it a...... deformation is analysed. The reliability of the used calculation scheme has been proved by performing the test calculation for a number of sodium clusters and the comparison of the results obtained with the results of other methods and experiment....

  13. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-07

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis.

  14. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  15. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  16. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T⊥/T∥>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  17. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  18. How are small endohedral silicon clusters stabilized?

    Science.gov (United States)

    Avaltroni, Fabrice; Steinmann, Stephan N; Corminboeuf, Clémence

    2012-11-21

    Clusters in the (Be, B, C)@Si(n)((0,1,2+)) (n = 6-10) series, isoelectronic to Si(n)(2-), present multiple symmetric structures, including rings, cages and open structures, which the doping atom stabilizes using contrasting bonding mechanisms. The most striking feature of these clusters is the absence of electron transfer (for Be) or even the inversion (for B and C) in comparison to classic endohedral metallofullerenes (e.g. from the outer frameworks towards the enclosed atom). The relatively small cavity of the highly symmetric Si(8) cubic cage benefits more strongly from the encapsulation of a boron atom than from the insertion of a too large beryllium atom. Overall, the maximization of multicenter-type bonding, as visualized by the Localized Orbital Locator (LOL), is the key to the stabilization of the small Si(n) cages. Boron offers the best balance between size, electronegativity and delocalized bonding pattern when compared to beryllium and carbon.

  19. Range and damage distribution in cluster ion implantation

    International Nuclear Information System (INIS)

    Yamada, I.; Matsuo, J.; Jones, E.C.; Takeuchi, D.; Aoki, T.

    1997-01-01

    Cluster ion implantation is an attractive alternative to conventional ion implantation, particularly for shallow junction formation. It is easy to obtain high current ion beams with low equivalent energy using cluster ion beams. The implanted boron distribution in 5 keV B 10 H 14 implanted Si is markedly shallower than that in 5 keV BF 2 ion implanted Si. The implanted depth is less than 0.04 μm, indicating that cluster ion implantation is capable of forming shallow junctions. The sheet resistance of 3 keV B 10 H 14 implanted samples falls below 500 Ω/sq after annealing at 1,000 C for 10s. Shallow implantation can be realized by a high energy cluster beam without space-charge problems in the incident beam. Defect formation, resulting from local energy deposition and multiple collisions, is unique for cluster ions. The thickness of the damaged layer formed by cluster ion bombardment increases with the size of the cluster, if implant energy and ion dose remain constant. This is one of the nonlinear cluster effects, which may allow some control over the implant damage distributions that accompany implanted ions, and which have been shown to have a great effect on dopant redistribution during annealing

  20. Endogenous Small RNA Clusters in Plants

    Directory of Open Access Journals (Sweden)

    Yong-Xin Liu

    2014-04-01

    Full Text Available In plants, small RNAs (sRNAs usually refer to non-coding RNAs (ncRNAs with lengths of 20–24 nucleotides. sRNAs are involved in the regulation of many essential processes related to plant development and environmental responses. sRNAs in plants are mainly grouped into microRNAs (miRNAs and small interfering RNAs (siRNAs, and the latter can be further classified into trans-acting siRNAs (ta-siRNAs, repeat-associated siRNAs (ra-siRNAs, natural anti-sense siRNAs (nat-siRNAs, etc. Many sRNAs exhibit a clustered distribution pattern in the genome. Here, we summarize the features and functions of cluster-distributed sRNAs, aimed to not only provide a thorough picture of sRNA clusters (SRCs in plants, but also shed light on the identification of new classes of functional sRNAs.

  1. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Tomita, M.; Yatagai, F.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  2. Advanced surface polishing using gas cluster ion beams

    Science.gov (United States)

    Insepov, Z.; Hassanein, A.; Norem, J.; Swenson, D. R.

    2007-08-01

    The gas cluster ion beam (GCIB) treatment can be an important treatment for mitigation of the Q-slope in superconducting cavities. The existing surface smoothening methods were analyzed and a new surface polishing method was proposed based on employing extra-large gas cluster ions (X-GCIB).

  3. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  4. Electrostatic effects on clustering and ion dynamics in ionomer melts

    Science.gov (United States)

    Ma, Boran; Nguyen, Trung; Pryamitsyn, Victor; Olvera de La Cruz, Monica

    An understanding of the relationships between ionomer chain morphology, dynamics and counter-ion mobility is a key factor in the design of ion conducting membranes for battery applications. In this study, we investigate the influence of electrostatic coupling between randomly charged copolymers (ionomers) and counter ions on the structural and dynamic features of a model system of ionomer melts. Using coarse-grained molecular dynamics (CGMD) simulations, we found that variations in electrostatic coupling strength (Γ) remarkably affect the formation of ion-counter ion clusters, ion mobility, and polymer dynamics for a range of charged monomer fractions. Specifically, an increase in Γ leads to larger ionic cluster sizes and reduced polymer and ion mobility. Analysis of the distribution of the radius of gyration of the clusters further reveals that the fractal dimension of the ion clusters is nearly independent from Γ for all the cases studied. Finally, at sufficiently high values of Γ, we observed arrested heterogeneous ions mobility, which is correlated with an increase in ion cluster size. These findings provide insight into the role of electrostatics in governing the nanostructures formed by ionomers.

  5. Method and apparatus for the production of cluster ions

    Science.gov (United States)

    Friedman, Lewis; Beuhler, Robert J.

    1988-01-01

    A method and apparatus for the production of cluster ions, and preferably isotopic hydrogen cluster ions is disclosed. A gas, preferably comprising a carrier gas and a substrate gas, is cooled to about its boiling point and expanded through a supersonic nozzle into a region maintained at a low pressure. Means are provided for the generation of a plasma in the gas before or just as it enters the nozzle.

  6. Rapid mass segregation in small stellar clusters

    Science.gov (United States)

    Spera, Mario; Capuzzo-Dolcetta, Roberto

    2017-12-01

    In this paper we focus our attention on small-to-intermediate N-body systems that are, initially, distributed uniformly in space and dynamically `cool' (virial ratios Q=2T/|Ω| below ˜0.3). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N-body simulations of isolated clusters by means of HiGPUs, our direct summation N-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N (128 ≤ N ≤1,024) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.

  7. Mass Analyses of Cluster Ion Beams by Wien Filter

    Science.gov (United States)

    Yano, Katsuki; Be, Suck Hee

    1980-06-01

    Distributions of mass of cluster ion beams were investigated by using a Wien filter with permanent magnets, which is 200 mm in length. Resolving powers of the Wien filter in the mass range of 103 to 106 a.m.u. were estimated. The Wien filter is useful for studies of clusters having 102-104 molecules/cluster. Argon cluster beams were ionized up to about ten charges when ionizing current was 15 mA. There were two different mass groups in hydrogen cluster beams produced, even at gas temperature of 77.3 K.

  8. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    Science.gov (United States)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  9. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yen-Ming; Hsu, Shih-Ting; Tseng, Yu-Hsien; Yeh, Te-Fu; Hou, Sheng-Shu; Jan, Jeng-Shiung; Lee, Yuh-Lang; Teng, Hsisheng

    2018-02-13

    This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li + -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li + -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proton-bound cluster ions in ion mobility spectrometry

    Science.gov (United States)

    Ewing, R. G.; Eiceman, G. A.; Stone, J. A.

    1999-01-01

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  11. Onset of Coulomb explosion in small silicon clusters exposed to strong-field laser pulses

    Science.gov (United States)

    Sayres, S. G.; Ross, M. W.; Castleman, A. W., Jr.

    2012-05-01

    It is now well established that, under intense laser illumination, clusters undergo enhanced ionization compared to their isolated atomic and molecular counterparts being subjected to the same pulses. This leads to extremely high charge states and concomitant Coulomb explosion. Until now, the cluster size necessary for ionization enhancement has not been quantified. Here, we demonstrate that through the comparison of ion signal from small covalently bound silicon clusters exposed to low intensity laser pulses with semi-classical theory, their ionization potentials (IPs) can be determined. At moderate laser intensities the clusters are not only atomized, but all valence electrons are removed from the cluster, thereby producing up to Si4+. The effective IPs for the production of the high charge states are shown to be ˜40% lower than the expected values for atomic silicon. Finally, the minimum cluster size responsible for the onset of the enhanced ionization is determined utilizing the magnitude of the kinetic energy released from the Coulomb explosion.

  12. Energetics and Dynamics of Decaying Cluster Ions

    Czech Academy of Sciences Publication Activity Database

    Gluch, K.; Fedor, J.; Matt-Leubner, S.; Parajuli, R.; Mair, C.; Stamatovic, A.; Echt, O.; Lifshitz, C.; Harvey, J.; Hagelberg, F.; Herman, Zdeněk; Probst, M.; Scheier, P.; Märk, T. D.

    2003-01-01

    Roč. 24, 1/3 (2003), s. 131-136 ISSN 1434-6060 R&D Projects: GA ČR GA203/00/0632 Grant - others:European Commission(XE) Euroatom Institutional research plan: CEZ:AV0Z4040901 Keywords : surface-induced reactions * kinetics-energy release * polyatomic ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.612, year: 2003

  13. Magic numbers and isotopic effect of ion clusters

    International Nuclear Information System (INIS)

    Wang Guanghou

    1989-04-01

    The magic numbers and isotopic effect as well as stable configurations in relation to the charge state of the clusters are discussed. Ionic (atomic) clusters are small atomic aggregates, a physical state between gas and solid states, and have many interesting properties, some of them are more or less similar to those in nuclei

  14. Detection of gold cluster ions by ion-to-ion conversion using a CsI-converter

    International Nuclear Information System (INIS)

    Nguyen, V.-T.; Novilkov, A.C.; Obnorskii, V.V.

    1997-01-01

    Gold cluster ions in the m/z range of 10 4 -2 x 10 6 u were produced by bombarding a thin film of gold with 252 Cf-fission fragments. The gold covering a C-Al substrate formed islets having a mean diameter of 44 A. Their size- and mass-distribution was determined by means of electron microscopy. The main task was to measure the m/z distribution of the cluster ions ejected from the sample surface. For this purpose we built a time-of-flight (TOF) mass spectrometer, which could be used as a linear TOF instrument or, alternatively, as a tandem-TOF instrument being equipped with an ion-to-ion converter. Combining the results obtained in both modes, it turned out that the linear TOF instrument equipped with micro-channel plates had a mean detection efficiency for 20 keV cluster ions of about 40%. In the tandem mode, the cluster ions hit a CsI converter with energies of 40z keV (z = charge state), from where secondary ions - mainly Cs + and (CsI) n Cs + cluster ions - were ejected. These ions were used to measure the TOF spectrum of the gold cluster ions. The detection efficiency of the cluster ions was found to vary in the available mass range from 99.7% to 96.5%. The complete mass distribution between 4 x 10 4 and 4 x 10 6 u was determined and compared with the corresponding mass distribution of the gold islets covering the substrate. (orig.)

  15. Structure and properties of small sodium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2002-01-01

    and the results of other theoretical work. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials, and frequencies...

  16. Small Levitating Ordered Droplet Clusters: Stability, Symmetry, and Voronoi Entropy.

    Science.gov (United States)

    Fedorets, Alexander A; Frenkel, Mark; Bormashenko, Edward; Nosonovsky, Michael

    2017-11-16

    A method to generate levitating monodisperse microdroplet clusters with an arbitrary number of identical droplets is presented. Clusters with 1-28 droplets levitate over a locally heated water layer in an ascending vapor-air jet. Due to the attraction to the center of the heated area combined with aerodynamic repulsion between the droplets, the clusters form structures that are quite diverse and different from densest packing of hard spheres. The clusters self-organize into stable and reproducible configurations dependent on the number of droplets while independent of the droplets' size. The central parts of larger clusters reproduce the shape of smaller clusters. The ability to synthesize stable clusters with a given number of droplets is important for tracing droplets, which is crucial for potential applications such as microreactors and for chemical analysis of small volumes of liquid.

  17. Structural properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  18. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    Science.gov (United States)

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine.

  19. Formation of sputtered silver clusters under bombardment with SF sub 5 sup + ions

    CERN Document Server

    Ghalab, S; Maksimov, S E; Mazarov, P; Tugushev, V I; Dzhemilev, N K; Wucher, A

    2002-01-01

    The formation of Ag sub n clusters and Ag sub n sup + cluster ions under bombardment of a silver surface with SF sub 5 sup + and Xe sup + projectile ions was investigated experimentally. In order to obtain information about the relative abundance of clusters among the flux of sputtered particles independent of their charge state, mass spectra of both secondary ions and sputtered neutral particles were recorded. The neutral species were post-ionized prior to mass analysis by means of photo-ionization using an intense UV laser at a wavelength of 193 nm. It is found that measured Ag sub n sup + signals increase significantly if SF sub 5 sup + projectiles are used instead of rare gas (Ar sup + or Xe sup +) ions of the same kinetic impact energy. The signals of neutral Ag atoms and Ag sub n clusters, on the other hand, exhibit only a relatively small increase, thus indicating that the enhancement observed for the secondary ions is predominantly caused by an increased ionization probability of sputtered particles u...

  20. ARE SMALL-FIRM CLUSTERS EMERGENT PHENOMENA? EVIDENCE FROM ZIMBABWE’S SMALL FURNITURE- MANUFACTURING FIRMS

    Directory of Open Access Journals (Sweden)

    Godfrey MUPONDA

    2014-07-01

    Full Text Available The purpose of this study was to explore the reasons behind the rapid growth and apparent dynamism of Zimbabwe’s small-firm industrial clusters. The hypothesis behind the study was that these small-firm clusters are emergent phenomena. The study analysed the capital utilisation techniques of small firms located in a large industrial cluster in order to determine the factors that lead to the collective efficiency of such firms. The study found that, in comparison with large, stock exchange-listed firms, the cluster environment enables the small firm to operate from a relatively small capital base and also to use its capital more efficiently in creating revenues and profits. The individual firm does not have to invest its capital in a large assets base as this is done by a specialised group of firms within the cluster. Thus, the cluster has the characteristics of an emergent phenomenon.

  1. The Evolution of Embedded Small Clusters

    OpenAIRE

    Capuzzo-Dolcetta, R.; Sori, F.

    1996-01-01

    A young open cluster is a 2-phase system: an ensemble of stars move in a gaseous medium (the mother molecular cloud). The dynamics and thermodynamics of the system, and so its evolution and final fate (is it stable or unstable?), strongly depends on the mutual feedback between gas and stars. We present an approach which consists in a (simplified) model where stars (N-bodies) move within a gaseous spherical molecular cloud. The two components influence each other through gravity and mass loss....

  2. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  3. Integrated spectral study of small angular diameter galactic open clusters

    Science.gov (United States)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  4. Small gold clusters on graphene, their mobility and clustering: A DFT study

    OpenAIRE

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V.

    2010-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendenc...

  5. Development of Wien filter for small ion gun of surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Hong, Jonggi; Choi, Myoung Choul; Won, Mi-Sook; Lee, Byoung-Seob, E-mail: bslee@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)

    2016-02-15

    The gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute. The objective of the first stage of the project is the generation of argon beams with a GCIB system [A. Kirkpatrick, Nucl. Instrum. Methods Phys. Res., Sect. B 206, 830–837 (2003)] that consists of a nozzle, skimmer, ionizer, acceleration tube, separation system, transport system, and target. The Wien filter directs the selected cluster beam to the target system by exploiting the velocity difference of the generated particles from GCIB. In this paper, we present the theoretical modeling and three-dimensional electromagnetic analysis of the Wien filter, which can separate Ar{sup +}{sub 2500} clusters from Ar{sup +}{sub 2400} to Ar{sup +}{sub 2600} clusters with a 1-mm collimator.

  6. Development of Wien filter for small ion gun of surface analysis

    Science.gov (United States)

    Bahng, Jungbae; Hong, Jonggi; Choi, Myoung Choul; Won, Mi-Sook; Lee, Byoung-Seob

    2016-02-01

    The gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute. The objective of the first stage of the project is the generation of argon beams with a GCIB system [A. Kirkpatrick, Nucl. Instrum. Methods Phys. Res., Sect. B 206, 830-837 (2003)] that consists of a nozzle, skimmer, ionizer, acceleration tube, separation system, transport system, and target. The Wien filter directs the selected cluster beam to the target system by exploiting the velocity difference of the generated particles from GCIB. In this paper, we present the theoretical modeling and three-dimensional electromagnetic analysis of the Wien filter, which can separate Ar+2500 clusters from Ar+2400 to Ar+2600 clusters with a 1-mm collimator.

  7. Cluster-jet targets for laser induced ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, S.; Bonaventura, D.; Hergemoeller, A.K.; Koehler, E.; Taeschner, A.; Khoukaz, A. [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Buescher, M.; Schlueter, F. [Peter Gruenberg Institut (PGI), FZ Juelich (Germany); Engin, I. [Institut fuer Kernphysik, (IKP), FZ Juelich (Germany)

    2014-07-01

    The directed ion acceleration induced by high-energy laser pulses is a strongly increasing research field. In such experiments ultra-short laser pulses focussed on a target create a plasma, in which strong secondary electric fields can accelerate protons and ions to multi-MeV energies. A major drawback of the commonly used targets, like gas-jets or foils, is their low density or the need to be replaced after each laser pulse. An innovative perspective for high-flux and high-repetition-rate experiments is the application of a cluster-jet source, which continuously produces a flux of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. Therefore, a cluster-jet target was built up and set successfully into operation at the University of Muenster and will be used for experiments on laser and plasma physics at the University of Duesseldorf. Systematic measurements were done to determine the target beam thickness, possible beam structures, the stability, and the position within the scattering chamber to ensure the ideal requirements for the experiments. For this purpose, the cluster beam was illuminated by a diode laser 33 cm behind the Laval nozzle and observed by a CCD camera. The results on the cluster beam properties are presented and discussed.

  8. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions.

    Science.gov (United States)

    Johnson, Grant E; Priest, Thomas; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au(11)L(5)(3+), L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au(11)L(5)(3+) cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic acid (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto carefully selected substrates. © 2011 American Chemical Society

  9. Nonlinear phenomenon in nanostructures creation by fast cluster ions

    Science.gov (United States)

    Moslem, W. M.; El-Said, A. S.; Sabry, R.; Shalouf, A.; El-Labany, S. K.; Bahlouli, H.

    2017-01-01

    The development of accelerators technology offers a new window for the creation of surface nanostructures in an efficient and accurate way. The use of 30 MeV C60 cluster ions enables the creation of nano-hillocks of size larger than the ones produced by GeV monoatomic ions. The physical mechanism underlying the realization of such nanostructures is elucidated using a plasma expansion approach. Numerical analysis showed that increasing the ionic temperature (number density) ratios would lead to decrease (increase) the nano-hillocks height.

  10. Clustering and segregation of small vacancy clusters near tungsten (0 0 1) surface

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Xu, Yichun; Zhang, Yange; Jiang, Yan; Hao, Congyu; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Wang, Zhiguang

    2018-01-01

    Nanoporous metals have been shown to exhibit radiation-tolerance due to the trapping of the defects by the surface. However, the behavior of vacancy clusters near the surface is not clear which involves the competition between the self-trapping and segregation of small vacancy clusters (Vn) nearby the surface. In this study, we investigated the energetic and kinetic properties of small vacancy clusters near tungsten (0 0 1) surface by combining molecular statics (MS) calculations and object Kinetic Monte Carlo (OKMC) simulations. Results show that vacancies could be clustered with the reduced formation energy and migration energy of the single vacancy around a cluster as the respective energetic and kinetic driving forces. The small cluster has a migration energy barrier comparable to that for the single vacancy; the migration energy barriers for V1-5 and V7 are 1.80, 1.94, 2.17, 2.78, 3.12 and 3.11 eV, respectively. Clusters and become unstable near surface (0 0 1) and tend to dissociate into the surface. At the operation temperature of 1000 K, the single vacancy, V2, 2 V 3 V3 and V4 were observed to segregate to the surface within a time of one hour. Meanwhile, larger clusters survived near the surface, which could serve as nucleating center for voids near the surface. Our results suggest that under a low radiation dose, surface (0 0 1) could act as a sink for small vacancy clusters, alleviating defect accumulation in the material under a low radiation dose. We also obtained several empirical expressions for the vacancy cluster formation energy, binding energy, and trapping radius as a function of the number of vacancies in the cluster.

  11. Upgrading the Lyon cluster ion accelerator by a radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Moser, H.O.; Schempp, A.

    1987-02-01

    The design is presented of an RFQ with variable final energy suitable to post-accelerate cluster ions from the Lyon electrostatic cluster-ion accelerator in the mass ranges from 1 to 25 μ and 1 to 50 μ to kinetic energies of 1.32-2.5 MeV and 2.64-5.0 MeV for cw and pulsed operation, respectively. Furthermore, a beam line is described which matches the electrostatically preaccelerated beam to the RFQ by use of electrostatic quadrupole triplets. When used without RFQ this beam line serves to improve beam parameters on the target, such as the particle flux density or beam divergence. The estimated costs of this project are about DM 345 000.- or FF 1 200 000.- without VAT. (orig.) [de

  12. Progress Toward Innovations in Cryogenic Ion Cluster Spectrometers

    Science.gov (United States)

    Howdieshell, Casey J.; Garand, Etienne

    2017-06-01

    Cryogenic Ion Vibrational Spectroscopy (CIVS) is a useful technique that yields rich information about non-covalent interactions in various systems including catalytic complexes, small biologically relevant molecules, and solvent networks. Current instrumentation demands high production costs and large laboratory facilities. We have designed an affordable and compact instrument that is capable of current CIVS experiments. This setup utilizes an ion funnel and a Linear Trap Quadrupole (LTQ) which improves the ion density and allows for spectroscopic interrogation directly in the trap. Preliminary results and future innovations will be discussed.

  13. Ultra-small rhenium clusters supported on graphene

    Science.gov (United States)

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  14. Structure and stability of small H clusters on graphene

    DEFF Research Database (Denmark)

    Sljivancanin, Zeljko; Andersen, Mie; Hammer, Bjørk

    2011-01-01

    The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis......-clusters) or having the H atoms on both sides in an alternating manner (trans-clusters). The most stable cis-clusters found have H atoms in ortho- and para-positions with respect to each other (two H’s on neighboring or diagonally opposite carbon positions within one carbon hexagon), while the most stable trans......-clusters found have H atoms in ortho-trans-positions with respect to each other (two H’s on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13–22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number...

  15. Diffusion escape through a cluster of small absorbing windows

    Energy Technology Data Exchange (ETDEWEB)

    Holcman, D [Department of Mathematics, Weizmann Institute of Science, Rehovot 76100 (Israel); Schuss, Z [Department of Mathematics, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2008-04-18

    We study the first eigenvalue of the Laplace equation in a bounded domain in R{sup d} (d=2,3) with mixed Neumann-Dirichlet (Zaremba) boundary conditions. The Neumann condition is imposed on most of the boundary and the Dirichlet boundary consists of a cluster of small windows. When the windows are well separated the first eigenvalue is asymptotically the sum of eigenvalues of mixed problems with a single Dirichlet window. However, when two or more Dirichlet windows cluster tightly together they interact nonlinearly. We compare our asymptotic approximation of the eigenvalue to the escape rate of simulated Brownian particles through the small windows.

  16. Interaction of aromatic molecules with small gold clusters

    Science.gov (United States)

    Molina, Luis M.; López, María. J.; Alonso, Julio A.

    2017-09-01

    Ab initio density functional simulations have been performed to study the adsorption of aromatic molecules (benzene and toluene) on small Aun clusters. The calculations reveal a strong interaction between gold and π electrons of benzene, accompanied by a small electronic charge transfer from benzene to gold. We report a variety of binding conformations, with varying degrees of contact between the carbon atoms in benzene and the cluster. Therefore, the interaction between the aromatic part of molecules involved in the synthesis of fine chemicals catalyzed by gold must not be neglected, and could play an important role during some reaction stages.

  17. Ion-beam induced transformations in nanoscale multilayers: Evolution of clusters with preferred length scales

    Science.gov (United States)

    Bera, S.; Satpati, B.; Goswami, D. K.; Bhattacharjee, K.; Satyam, P. V.; Dev, B. N.

    2006-04-01

    Ion-irradiation-induced modifications of a periodic Pt/C multilayer system containing a small amount of Fe have been analyzed by transmission electron microscopy and grazing incidence x-ray diffraction (GIXRD) studies. The multilayer stack with 16 Pt/C layer pairs (period of 4.23 nm) was fabricated on a glass substrate. A 2 MeV Au2+ ion beam was rastered on the sample to obtain uniformly irradiated strips with fluences from 1×1014 to 1×1015 ions/cm2. Ion irradiation has been found to cause preferential migration of Fe towards Pt layers [Bera et al., Nucl. Instrum. Methods Phys. Res. B 212, 530 (2003)]. Cross-sectional transmission electron microscopy (XTEM) shows considerable atomic redistribution for irradiation at the highest ion fluence (1×1015 ions/cm2). This structure is composed of small clusters. Phase separation and cluster formation processes are discussed. Periodic multilayers have periodicity only in the direction normal to the multilayer surface. However, Fourier transform (FT) of the XTEM images of the sample irradiated at the highest fluence shows extra off-normal Fourier components of superlattice periodicities arising due to ion irradiation. These extra spots in the FT are due to preferential length scales in intercluster separation in three dimensions. With a proper understanding of this phenomenon it may be possible to fabricate useful three-dimensional self-assembled structures of nanoclusters. Our high resolution transmission electron microscopy and GIXRD results reveal the formation of an FePt alloy. As FePt is a magnetic alloy, our observation raises the possibility of fabrication of ion-beam induced magnetic nanocluster lattices.

  18. Ion-beam induced transformations in nanoscale multilayers: Evolution of clusters with preferred length scales

    International Nuclear Information System (INIS)

    Bera, S.; Satpati, B.; Goswami, D. K.; Bhattacharjee, K.; Satyam, P. V.; Dev, B. N.

    2006-01-01

    Ion-irradiation-induced modifications of a periodic Pt/C multilayer system containing a small amount of Fe have been analyzed by transmission electron microscopy and grazing incidence x-ray diffraction (GIXRD) studies. The multilayer stack with 16 Pt/C layer pairs (period of 4.23 nm) was fabricated on a glass substrate. A 2 MeV Au 2+ ion beam was rastered on the sample to obtain uniformly irradiated strips with fluences from 1x10 14 to 1x10 15 ions/cm 2 . Ion irradiation has been found to cause preferential migration of Fe towards Pt layers [Bera et al., Nucl. Instrum. Methods Phys. Res. B 212, 530 (2003)]. Cross-sectional transmission electron microscopy (XTEM) shows considerable atomic redistribution for irradiation at the highest ion fluence (1x10 15 ions/cm 2 ). This structure is composed of small clusters. Phase separation and cluster formation processes are discussed. Periodic multilayers have periodicity only in the direction normal to the multilayer surface. However, Fourier transform (FT) of the XTEM images of the sample irradiated at the highest fluence shows extra off-normal Fourier components of superlattice periodicities arising due to ion irradiation. These extra spots in the FT are due to preferential length scales in intercluster separation in three dimensions. With a proper understanding of this phenomenon it may be possible to fabricate useful three-dimensional self-assembled structures of nanoclusters. Our high resolution transmission electron microscopy and GIXRD results reveal the formation of an FePt alloy. As FePt is a magnetic alloy, our observation raises the possibility of fabrication of ion-beam induced magnetic nanocluster lattices

  19. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    Science.gov (United States)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  20. Development of small scale cluster computer for numerical analysis

    Science.gov (United States)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  1. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  2. Structures of small mixed krypton-xenon clusters.

    Science.gov (United States)

    Nagasaka, Masanari; Kosugi, Nobuhiro; Rühl, Eckart

    2012-06-21

    Structures of small mixed krypton-xenon clusters of different compositions with an average size of 30-37 atoms are investigated. The Kr 3d(5/2) and Xe 4d(5/2) surface core level shifts and photoelectron intensities originating from corner, edge, and face/bulk sites are analyzed by using soft x-ray photoelectron spectroscopy. Structural models are derived from these experiments, which are confirmed by theoretical simulation taking induced dipole interactions into account. It is found that one or two small Xe cores are partly embedded in the surface of the Kr clusters. These may grow and merge leading to a phase separation between the two rare gas moieties in mixed clusters with increasing the Xe content.

  3. The small-scale clustering properties of dwarf galaxies

    Science.gov (United States)

    Vader, J. P.; Sandage, Allan

    1991-01-01

    Two results on the small-scale clustering properties of dwarf galaxies are reported, which were identified in the vicinity of early-type Shapley-Ames galaxies on high-resolution photographic plates. The first result indicates that dwarf galaxies display the same trend of stronger clustering toward earlier morphological type on small scales as their giant counterparts on larger scales. It is suggested that early-type dwarfs can be used as dynamical probes of dark halos around early-type giant galaxies and as tracers of the dynamical evolution of such halos in dense environments. The second result pertains to the trend of increasing early-type dwarf frequency per early-type giant with environment richness previously established for rich groups. It is found that a minimum value of isolated early-type galaxies is approximately 0.25, as compared to a maximum of approximately 8 in rich environments like the Virgo Cluster.

  4. Computational approaches for efficiently modelling of small atmospheric clusters

    DEFF Research Database (Denmark)

    Elm, Jonas; Mikkelsen, Kurt Valentin

    2014-01-01

    the basis set used in the geometry and frequency calculation from 6-311++G(3df,3pd) → 6-31++G(d,p) implies a significant speed-up in computational time and only leads to small errors in the thermal contribution to the Gibbs free energy and subsequent coupled cluster single point energy calculation....

  5. Computer simulations of small semiconductor and metal clusters

    International Nuclear Information System (INIS)

    Andreoni, W.

    1991-01-01

    A brief survey is presented of recent simulations of small clusters, made with both ab-initio and classical approaches, with particular emphasis on the application of the Car-Parrinello method. The discussion mainly focusses on the structural properties of a variety of materials and on the effects of temperature. (orig.)

  6. Dissociative recombination of small molecular ions

    International Nuclear Information System (INIS)

    Mul, P.M.

    1981-01-01

    In this thesis an analysis is given of merged electron-ion beam experiment and work on dissociative recombination of molecular ions and electrons is described. Chapter II covers a brief introduction of the theory of dissociative recombination. In chapter III, a description is given of the merged electron-ion beam experiment and a method is described which allows the determination of the mean angle between the electron and ion trajectories in a merged electron-ion beam experiment. In chapter IV a paper on the three dominant atmospheric diatomic ions NO + , O 2 + and N 2 + is presented and in chapter V the dissociative recombination for N 2 H + and N 2 D + is discussed. In chapter VI two papers on the polyatomic ions of the carbon-containing molecular ions are presented, and in chapter VII a letter with some results of the work presented in more detail in the chapters IV, V and VI is presented. The magnitude and the energy dependence of the cross-section measured by the merged beam technique and by other techniques is compared and discussed. (Auth.)

  7. Non-linear effect of copper cluster ions induced damage in silicon

    CERN Document Server

    Wang, X M; Shao, L; Liu, J R; Chu, W K

    2002-01-01

    We have observed a strong non-linear effect in copper cluster ions induced damage in silicon. Copper cluster ions Cu sub n (n=1,2,...,7) were extracted from a source of negative ions by cesium sputtering. P-type silicon wafers were irradiated with copper cluster ions at an atomic dosage range of 8x10 sup 1 sup 2 to 1x10 sup 1 sup 5 atoms/cm sup 2 at the energy of 6 keV/atom. The quantitative characterization of the cluster ion induced damage was performed by Rutherford backscattering spectrometry/channeling analysis. Comparison with analytical overlapping model shows very good agreement.

  8. Study of clusters using negative ion photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuexing [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs-. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  9. Ion beam synthesis of Mn/Sb clusters in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steinert, M; Wesch, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Undisz, A; Rettenmayr, M [Institut fuer Materialwissenschaft und Werkstofftechnologie, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany); Nunes, W C; Borges, R P; Godinho, M [Centro de Fisica da Materia Condensada, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Rubinger, R M; Carmo, M C; Sobolev, N A, E-mail: michael.steinert@uni-jena.d, E-mail: werner.wesch@uni-jena.d [Departamento de Fisica and I3N, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2009-02-07

    In order to investigate the formation of Mn/Sb clusters embedded in crystalline silicon, sequential ion implantation with fluences of 1 x 10{sup 16} at cm{sup -2} and 2 x 10{sup 16} at cm{sup -2}, respectively, was used to incorporate Mn and Sb ions at high concentrations into Si(0 0 1). Based on investigations with Rutherford backscattering spectroscopy (RBS) and corresponding channelling measurements (RBS/c), we report on a temperature dependent redistribution of the implanted species during the rapid thermal annealing process governed by the radiation-induced defects. Additionally performed cross-sectional TEM analyses, including EDX measurements, clearly show the presence of hexagonal shaped elementary Sb precipitates as well as compound clusters consisting of Mn and Sb, which are aligned to the crystal structure of the host silicon. In electron magnetic resonance measurements many samples exhibit broad resonance bands persisting up to approximately 60 K. For out-of-plane rotations, the bands show a weak angular dependence of the resonance field but a strong angular dependence of the intensity. Zero-field-cooled and field-cooled magnetization curves were measured on selected samples with a SQUID magnetometer between 10 and 400 K at different applied fields. The curves show a weak magnetic signal generated by different magnetic phases while at least one can be ascribed to superparamagnetic nanoparticles of MnSb.

  10. Small-scale galaxy clustering in the eagle simulation

    Science.gov (United States)

    Artale, M. Celeste; Pedrosa, Susana E.; Trayford, James W.; Theuns, Tom; Farrow, Daniel J.; Norberg, Peder; Zehavi, Idit; Bower, Richard G.; Schaller, Matthieu

    2017-09-01

    We study present-day galaxy clustering in the eagle cosmological hydrodynamical simulation. eagle's galaxy formation parameters were calibrated to reproduce the redshift z = 0.1 galaxy stellar mass function, and the simulation also reproduces galaxy colours well. The simulation volume is too small to correctly sample large-scale fluctuations and we therefore concentrate on scales smaller than a few mega parsecs. We find very good agreement with observed clustering measurements from the Galaxy And Mass Assembly (GAMA) survey, when galaxies are binned by stellar mass, colour or luminosity. However, low-mass red galaxies are clustered too strongly, which is at least partly due to limited numerical resolution. Apart from this limitation, we conclude that eagle galaxies inhabit similar dark matter haloes as observed GAMA galaxies, and that the radial distribution of satellite galaxies, as a function of stellar mass and colour, is similar to that observed as well.

  11. Surface Processing and Modification of Polymers by Water Cluster Ion Beam

    Science.gov (United States)

    Ryuto, H.; Takeuchi, M.; Ichihashi, G.; Sommani, P.; Takaoka, G. H.

    2011-01-01

    A water cluster ion beam was irradiated on a poly(methyl methacrylate) (PMMA) surface to examine the possibility of applying the water cluster ion beam technique to the surface processing and modification of polymers. The sputtering yields of PMMA substrates irradiated with water cluster ion beams increased with acceleration voltage and dose of the water cluster ion beam. The threshold acceleration voltage of sputtering was approximately 3 kV. The X-ray photoelectron spectroscopy (XPS) analysis of the PMMA surface irradiated with the water cluster ion beam suggested the degradation of the PMMA side chains. The XPS spectrum of the surface of the sputtered particle catcher at 45° backward direction showed approximately the same shape as the XPS spectrum of the PMMA surface irradiated with the water cluster ion beam.

  12. Small gold clusters on graphene, their mobility and clustering: a DFT study.

    Science.gov (United States)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-05-25

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au(4)(D) cluster is the ground state structure, whereas the Y-shaped Au(4)(Y) becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au(3). All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au(1-4) on graphene along the C-C bonds.

  13. Small gold clusters on graphene, their mobility and clustering: a DFT study

    International Nuclear Information System (INIS)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au 4 D cluster is the ground state structure, whereas the Y-shaped Au 4 Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au 3 . All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au 1-4 on graphene along the C-C bonds.

  14. Small gold clusters on graphene, their mobility and clustering: a DFT study

    Science.gov (United States)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V.

    2011-05-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au4D cluster is the ground state structure, whereas the Y-shaped Au4Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au3. All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au1 - 4 on graphene along the C-C bonds.

  15. Ultra-small Ag clusters in zeolite A4: Antibacterial and thermochromic applications

    Science.gov (United States)

    Horta-Fraijo, P.; Cortez-Valadez, M.; Flores-Lopez, N. S.; Britto Hurtado, R.; Vargas-Ortiz, R. A.; Perez-Rodriguez, A.; Flores-Acosta, M.

    2018-03-01

    The physical and chemical properties of metal clusters depend on their atomic structure, therefore, it is important to determine the lowest-energy structures of the clusters in order to understand and utilize their properties. In this work, we use the Density Functional Theory (DFT) at the generalized gradient approximation level Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence) to determine some of the structural, electronic and vibrational properties of the planar silver clusters (Agn clusters n = 2-24). Additionally, the study reports the experimental synthesis of small silver clusters in synthetic zeolite A4. The synthesis was possible using the ion exchange method with some precursors like silver nitrate (AgNO3) and synthetic zeolite A4. The silver clusters in zeolite powder underwent thermal treatment at 450 °C to release the remaining water or humidity on it. The morphology of the particles was determined by Transmission Electron microscopy. The nanomaterials obtained show thermochromic properties. The structural parameters were correlated theoretically and experimentally.

  16. Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes

    International Nuclear Information System (INIS)

    Cabria, I.; Lopez, M. J.; Alonso, J. A.; Amovilli, C.; March, N. H.

    2006-01-01

    The electrostrictive response of small carbon clusters, hydrocarbon molecules, and carbon nanotubes is investigated using the density functional theory. For ringlike carbon clusters, one can get insight on the deformations induced by an electric field from a simple two-dimensional model in which the positive charge of the carbon ions is smeared out in a circular homogeneous line of charge and the electronic density is calculated for a constant applied electric field within a two-dimensional Thomas-Fermi method. According to the Hellmann-Feynman theorem, this model predicts, for fields of about 1 V/A ring , only a small elongation of the ring clusters in the direction of the electric field. Full three-dimensional density functional calculations with an external electric field show similar small deformations in the ring carbon clusters compared to the simple model. The saturated benzene and phenanthrene hydrocarbon molecules do not experience any deformation, even under the action of relatively intense (1 V/A ring ) electric fields. In contrast, finite carbon nanotubes experience larger elongations (∼2.9%) induced by relatively weak (0.1 V/A ring ) applied electric fields. Both C-C bond length elongation and the deformation of the honeycomb structure contribute equally to the nanotube elongation. The effect of the electric field in hydrogen terminated nanotubes is reduced with respect to the nanotubes with dangling bonds in the edges

  17. Theoretical study of small Mo clusters and molecular nitrogen adsorption on Mo clusters

    Science.gov (United States)

    Lei, Xue-Ling

    2010-10-01

    This paper studies the small molybdenum clusters of Mon (n = 2-8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n = 7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo—N—N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N-N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.

  18. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Zu Xiulan; Yang Haisu; Xiong Riheng

    2003-01-01

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  19. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, David; Cristallo, Sergio; Piersanti, Luciano [Osservatorio Astronomico di Teramo, INAF, I-64100 Teramo (Italy); Bromley, Stefan T. [Departament de Cincia de Materials i Química Fisica and Institut de Química Terica i Computacional (IQTCUB),Universitat de Barcelona, E-08028 Barcelona (Spain)

    2017-05-10

    Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.

  20. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    Science.gov (United States)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-08-01

    Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li.

  1. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  2. Near-Infrared Spectroscopy of Small Protonated Water Clusters

    Science.gov (United States)

    Wagner, J. Philipp; McDonald, David C., II; McCoy, Anne B.; Duncan, Michael A.

    2017-06-01

    Small protonated water clusters and their argon tagged analogues of the general formula H^{+}(H_{2}O)_{n}Ar_{m} have been generated in a pulsed electric discharge source. Clusters containing n=1-8 water molecules were mass-selected and their absorptions in the near-infrared were probed with a tunable Nd/colonYAG pumped OPA/OPA laser system in the region from 4850-7350 cm^{-1}. A doublet corresponding to overtones of the free O-H stretches of the external waters was observed around 7200 cm^{-1} that was continuously decreasing in intensity with increasing cluster size. Broad, mostly featureless absorptions were found around 5300 cm^{-1} associated with stretch/bend combinations and with the hydrogen bonded waters in the core of the clusters. Vibrational assignments were substantiated by comparison to anharmonic frequency computations via second-order vibrational perturbation theory (VPT2) at the MP2/aug-cc-pVTZ level of theory.

  3. Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures

    Science.gov (United States)

    Angelié, C.; Soudan, J.-M.

    2017-05-01

    The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes

  4. Ionization and Coulomb explosion of small uranium oxide clusters

    International Nuclear Information System (INIS)

    Ross, Matt W; Castleman, A W Jr

    2012-01-01

    Femtosecond pulses are used to study the strong-field ionization and subsequent Coulomb explosion of small uranium oxide clusters. The resulting high atomic charge states are explored as a function of laser intensity and compared to ionization rates calculated using semi-classical tunneling theory with sequential ionization potential values. The gap in laser intensity between saturation intensity values for the 7s, 6d, and 5f orbitals are identified and quantified. Extreme charge states of oxygen up to O 4+ are observed indicating multiple ionization enhancement processes occurring within the clusters. The peak splittings of the atomic charge states are explored and compared to previous results on transition metal oxide species. Participation of the 5f orbitals in bonding is clearly identified based on the saturation intensity dependence of oxygen to uranium metal.

  5. Upgrading Traditional Technologies in Small-Scale Industry Clusters: Collaboration and Innovation Adoption in Indonesia

    NARCIS (Netherlands)

    Sandee, H.M.; Rietveld, P.

    2001-01-01

    There is by now sufficient evidence that small-scale industry clusters matter in developing countries. This article intends to contribute to the discussion on cluster transformation by focusing on innovation adoption in a roof tile cluster in Indonesia. Clustering allows small-scale enterprises to

  6. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    International Nuclear Information System (INIS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-01-01

    Highlights: • We study the interaction between Si clusters with pristine and defective graphene. • We find that the binding strength of Si clusters on graphene can be enhanced to different degrees after introducing various defects. • It is found that both graphene and Si cluster in the Si/graphene composites can preserve their Li uptake ability. - Abstract: Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<−0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li

  7. Particle modeling of transport of α-ray generated ion clusters in air

    International Nuclear Information System (INIS)

    Tong, Lizhu; Nanbu, Kenichi; Hirata, Yosuke; Izumi, Mikio; Miyamoto, Yasuaki; Yamaguchi, Hiromi

    2006-01-01

    A particle model is developed using the test-particle Monte Carlo method to study the transport properties of α-ray generated ion clusters in a flow of air. An efficient ion-molecule collision model is proposed to simulate the collisions between ion and air molecule. The simulations are performed for a steady state of ion transport in a circular pipe. In the steady state, generation of ions is balanced with such losses of ions as absorption of the measuring sensor or pipe wall and disappearance by positive-negative ion recombination. The calculated ion current to the measuring sensor agrees well with the previous measured data. (author)

  8. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  9. Production of Liquid Cluster Ions by Nozzle Beam Source with and without He Gas

    International Nuclear Information System (INIS)

    Takaoka, G. H.; Ryuto, H.; Okada, T.; Sugiyama, K.

    2008-01-01

    We developed a new type of cluster ion source which could produce various kinds of liquid clusters such as water, methanol, ethanol and octane clusters. When the vapor pressure was larger than one atm, the water and ethanol clusters could be produced by an adiabatic expansion phenomenon without adding He gas. The peak size of the cluster ions increased with the increase of the vapor pressures. When the source temperature was at room temperature, the water and ethanol clusters were also produced by adding He gas. In another case of producing liquid clusters such as methanol and octane clusters, He gas was added to mix up with vapors of liquid materials. When the He gas pressure was larger than a few atms, the methanol and octane clusters were produced at a vapor pressure of two atm. The peak size increased with increase of the vapor pressure as well as the He gas pressure.

  10. A study of defect cluster formation in vanadium by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Shirao, Yasuyuki; Morishita, Kazunori [Tokyo Univ. (Japan)

    1996-10-01

    Formation of defect clusters in thin foils of vanadium was investigated by heavy ion irradiation. In the very thin region of the specimens less than 20 nm, vacancy clusters were formed under gold ion irradiation, while very few clusters were detected in the specimens irradiated with 200 and 400 keV self-ions up to 1 x 10{sup 16} ions/m{sup 2}. The density of vacancy clusters were found to be strongly dependent on ion energy. Only above the critical value of kinetic energy transfer density in vanadium, vacancy clusters are considered to be formed in the cascade damage from which interstitials can escape to the specimen surface in the very thin region. (author)

  11. Range of plasma ions in cold cluster gases near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Quevedo, H.J. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A., E-mail: abonasera@comp.tamu.edu [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Donovan, M.; Dyer, G.; Gaul, E. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Guardo, G.L. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Gulino, M. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Libera Universita' Kore, 94100 Enna (Italy); La Cognata, M.; Lattuada, D. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Palmerini, S. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Pizzone, R.G.; Romano, S. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Smith, H. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Trippella, O. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Anzalone, A.; Spitaleri, C. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-05-18

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid–gas phase transition. - Highlights: • We present experimental results obtained at the UT Petawatt laser facility, Austin, TX. • The ion range is strongly modified for cluster gases as compared to its value in a homogeneous system. • Large fluctuations are found if the cluster gas is prepared near the liquid–gas phase transition region.

  12. Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets

    CERN Document Server

    Miskovic, Z L; Goodman, F O; Wang, Y N

    2002-01-01

    Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size.

  13. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  14. Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: m-kawa@ecei.tohoku.ac.jp; Araki, Rei; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University (Japan)

    2009-04-15

    Indwelling catheters made of silicone elastomers sometimes cause serious infections owing to their poor biocompatibility. It is believed that these infections can be prevented by coating the silicone surface with apatite, which has excellent biocompatibility. If the surface of the silicone elastomer is in advance modified to have an apatite-forming ability, apatite can be coated on the modified silicone surface by soaking it in an aqueous solution such as a simulated body fluid (SBF) supersaturated with respect to apatite. In this study, silicone substrates were irradiated by four types of ion beams (Ar cluster, Ar cluster and monomer (Ar CM), O{sub 2} cluster, and O{sub 2} cluster and monomer (O{sub 2} CM) ion beams) at an acceleration voltage of 7 kV and a dose of 1 x 10{sup 15} ions/cm{sup 2}, and subsequently soaked in CaCl{sub 2} solution. The apatite-forming abilities of the substrates were examined using a metastable calcium phosphate solution whose ion concentration was 1.5 times that of SBF (1.5 SBF). Silicon oxide (SiO{sub x}) clusters were formed on the silicone surface and the hydrophilicity of the substrates was improved by the irradiation, irrespective of the ion species used. The irradiation with O{sub 2} CM ion beams resulted in the highest apatite-forming ability among the analyzed ion beams.

  15. Features of polyatomic ion emission under sputtering of a silicon single crystal by Au sub m sup - cluster ions

    CERN Document Server

    Akhunov, S; Rasulev, U K

    2003-01-01

    Comparative studies of the emission of secondary cluster Si sub n sup + ions (n=1-11) and polyatomic Si sub n X sub l Y sub k sup + ions (X, Y are Au, B, C, N), as well as doubly charged Si sup 2 sup + ions under bombardment of single crystalline silicon by cluster Au sub m sup - (m=1-5) ions with energy E sub 0 =4-18 keV have been carried out. High non-additivity enhancement of the yield of the Si sub n sup + ions and most polyatomic ones has been observed with an increase of the number of atoms in the projectiles. For Si sup 2 sup + ions the negative non-additive effect has been observed. The increase in the yield of impurity-containing cluster Si sub n X sup + ions allows for an increase by a factor of 100-1000 for the sensitivity of the SIMS analysis of the Au, B, C, N impurities in Si with the use of cluster ions as primary and secondary ones.

  16. Study of cluster ion emission from self assembled monolayers of alkanethiols under keV ion bombardment

    OpenAIRE

    Arezki, Bahia

    2007-01-01

    This work focuses on the emission processes of metal-organic clusters MmMen, (M is the organic molecule and Me the metal atom) ejected from self assembled monolayers (SAMs) of alkanethiols on gold after keV ion bombardment. These aggregates are often observed upon energetic ion bombardment of strongly bound molecules like SAMs. The explanation of this effect remains elusive, especially for large clusters as those observed in our study. The emission of these clusters is investigated using ToF-...

  17. Dependence of surface smoothing, sputtering and etching phenomena on cluster ion dosage

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    The dependence of surface smoothing and sputtering phenomena of Si (1 0 0) solid surfaces irradiated by CO sub 2 cluster ions on cluster-ion dosage was investigated using an atomic force microscope. The flux and total ion dosage of impinging cluster ions at the acceleration voltage of 50 kV were fixed at 10 sup 9 ions/cm sup 2 s and were scanned from 5x10 sup 1 sup 0 to 5x10 sup 1 sup 3 ions/cm sup 2 , respectively. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5x10 sup 1 sup 1 ions/cm sup 2 , which caused that the irradiated surface became rough from 0.4 to 1.24 nm in root-mean-square roughness (sigma sub r sub m sub s). At the boundary of the ion dosage of 10 sup 1 sup 2 ions/cm sup 2 , the density of the induced hillocks was decreased and sigma sub r sub m sub s was about 1.21 nm, not being deteriorated further. At the dosage of 5x10 sup 1 sup 3 ions/cm sup 2 , the induced hillocks completely disappeared and the surface became very flat as much as sigma...

  18. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  19. Cluster emission at pre-equilibrium stage in Heavy Nuclear Reactions. A Model considering the Thermodynamics of Small Systems

    International Nuclear Information System (INIS)

    Bermudez Martinez, A.; Damiani, D.; Guzman Martinez, F.; Rodriguez Hoyos, O.; Rodriguez Manso, A.

    2015-01-01

    Cluster emission at pre-equilibrium stage, in heavy ion fusion reactions of 12 C and 16 O nuclei with 116 Sn, 208 Pb, 238 U are studied. the energy of the projectile nuclei was chosen at 0.25GeV, 0.5GeV and 1GeV. A cluster formation model is developed in order to calculate the cluster size. Thermodynamics of small systems was used in order to examine the cluster behavior inside the nuclear media. This model is based on considering two phases inside the compound nucleus, on one hand the nuclear media phase, and on the other hand the cluster itself. The cluster acts like an instability inside the compound nucleus, provoking an exchange of nucleons with the nuclear media through its surface. The processes were simulated using Monte Carlo methods. We obtained that the cluster emission probability shows great dependence on the cluster size. This project is aimed to implement cluster emission processes, during the pre-equilibrium stage, in the frame of CRISP code (Collaboration Rio-Sao Paulo). (Author)

  20. Galectin-4 and small intestinal brush border enzymes form clusters

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B

    1997-01-01

    that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half...... lacking a N-terminal signal peptide for membrane translocation, was discovered in these complexes as well, and in gradient centrifugation brush border enzymes and galectin-4 formed distinct soluble high molecular weight clusters. Immunoperoxidase cytochemistry and immunogold electron microscopy showed...... the amount of galectin-4 to be in the microvillar fraction, the rest being associated with insoluble intracellular structures. A direct association between the lectin and aminopeptidase N was evidenced by a colocalization along microvilli in double immunogold labeling and by the ability of an antibody...

  1. Angular distributions of particles sputtered from multicomponent targets with gas cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Ieshkin, A.E. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Ermakov, Yu.A., E-mail: yuriermak@yandex.ru [Skobeltsyn Nuclear Physics Research Institute, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Chernysh, V.S. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2015-07-01

    The experimental angular distributions of atoms sputtered from polycrystalline W, Cd and Ni based alloys with 10 keV Ar cluster ions are presented. RBS was used to analyze a material deposited on a collector. It has been found that the mechanism of sputtering, connected with elastic properties of materials, has a significant influence on the angular distributions of sputtered components. The effect of non-stoichiometric sputtering at different emission angles has been found for the alloys under cluster ion bombardment. Substantial smoothing of the surface relief was observed for all targets irradiated with cluster ions.

  2. Luminescent ultra-small gold nanoparticles obtained by ion implantation in silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Maurizio, C.; Kalinic, B.; Scian, C. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Dorsoduro 2137, I-30123 Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy)

    2014-05-01

    The room temperature photoluminescence properties of ultra-small Au nanoclusters (made by 5–10 atoms) obtained by ion implantation in silica are presented. The results show a broad and intense luminescent emission in three different spectral regions around 750 nm, 980 nm and 1150 nm. The luminescence properties of the molecule-like Au clusters have been also correlated to the energy-transfer process to Er{sup 3+} ions in Au–Er co-implanted silica samples. A partial quenching of the 980 nm component is observed due to the Er{sup 3+} absorption level at 980 nm that acts as a de-excitation channel through which the photon energy is transferred from the Au nanoclusters to the Er ions, eventually producing the Er-related emission at 1.5 microns.

  3. MODELING THE VERY SMALL SCALE CLUSTERING OF LUMINOUS RED GALAXIES

    International Nuclear Information System (INIS)

    Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.; Masjedi, Morad

    2010-01-01

    We model the small-scale clustering of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey. Specifically, we use the halo occupation distribution formalism to model the projected two-point correlation function of LRGs on scales well within the sizes of their host halos (0.016 h -1 Mpc ≤ r ≤ 0.42 h -1 Mpc). We start by varying P(N|M), the probability distribution that a dark matter halo of mass M contains N LRGs, and assuming that the radial distribution of satellite LRGs within halos traces the Navarro-Frenk-White (NFW) dark matter density profile. We find that varying P(N|M) alone is not sufficient to match the small-scale data. We next allow the concentration of satellite LRG galaxies to differ from that of dark matter and find that this is also not sufficient. Finally, we relax the assumption of an NFW profile and allow the inner slope of the density profile to vary. We find that this model provides a good fit to the data and the resulting value of the slope is -2.17 ± 0.12. The radial density profile of satellite LRGs within halos is thus not compatible with that of the underlying dark matter, but rather is closer to an isothermal distribution.

  4. Mass spectrometric probes of metal cluster distributions and metastable ion decay

    International Nuclear Information System (INIS)

    Parks, E.K.; Liu, K.; Cole, S.K.; Riley, S.J.

    1988-01-01

    The study of metal clusters has provided both an opportunity and a challenge to the application of mass spectrometry. These days the most often-used technique for cluster generation - laser vaporization - leads to extensive distributions of cluster sizes, from one to perhaps thousands of atoms, and most studies reported to date use excimer laser ionization and time-of-flight mass spectrometry for cluster detection. Our apparatus is a simple one-stage TOF design employing Wiley-McLauren spatial focusing and a one-meter drift tube. In a second apparatus employing a pulsed valve in the cluster source, we see asymmetric broadening of niobium cluster mass peaks under multiphoton ionization conditions, indicating metastable decay of parent cluster ions. Other studies of niobium clusters have shown no such asymmetric peaks. 2 figs

  5. Galectin-4 and small intestinal brush border enzymes form clusters.

    Science.gov (United States)

    Danielsen, E M; van Deurs, B

    1997-11-01

    Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin lacking a N-terminal signal peptide for membrane translocation, was discovered in these complexes as well, and in gradient centrifugation brush border enzymes and galectin-4 formed distinct soluble high molecular weight clusters. Immunoperoxidase cytochemistry and immunogold electron microscopy showed that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half the amount of galectin-4 to be in the microvillar fraction, the rest being associated with insoluble intracellular structures. A direct association between the lectin and aminopeptidase N was evidenced by a colocalization along microvilli in double immunogold labeling and by the ability of an antibody to galectin-4 to coimmunoprecipitate aminopeptidase N and sucrase-isomaltase. Furthermore, galectin-4 was released from microvillar, right-side-out vesicles as well as from mucosal explants by a brief wash with 100 mM lactose, confirming its extracellular localization. Galectin-4 is therefore secreted by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly "trapped" by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border enzymes prevents it from being released from the enterocyte into the intestinal lumen.

  6. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  7. The development of C60 and gold cluster ion guns for static SIMS analysis

    International Nuclear Information System (INIS)

    Hill, R.; Blenkinsopp, P.W.M.

    2004-01-01

    We have designed and tested two primary ion beam systems for the generation of polyatomic beams for high mass SIMS. These are a gold cluster ion gun and a C 60 ion gun. The two systems offer different performance benefits in terms of spatial resolution, mass range and ion yields. The gold system provides a general purpose tool with beams suitable for high spatial resolution and beams suitable for high mass range SIMS; the C 60 system provides outstanding ion yields, especially at high mass. We present results of sputter yield measurements for C 60 bombardment of silicon. These suggest that C 60 sputters with very high efficiency

  8. Optical thin film formation by gas-cluster ion beam assisted deposition

    International Nuclear Information System (INIS)

    Katsumata, H.; Matsuo, J.; Nishihara, T.; Minami, E.; Yamada, I.; Tachibana, T.; Yamada, K.; Adachi, M.

    1999-01-01

    We have developed a gas cluster ion beam assisted deposition system for high-quality optical thin film formation (SiO 2 and TiO 2 etc.) with high packing density. Cluster ions can transport thousands of atoms per ion with very low energy per constituent atoms. Consequently, densification of films, which is commonly required for optical coatings, can be achieved without the introduction of increased surface roughness and irradiation-induced defects, which are critical issues for conventional ion assisted deposition processes. In this work maximizing the intensity of gas-cluster ion beam current is discussed based upon a few experiments increasing the neutral cluster beam intensity and designing an ionizer for achieving an efficient transportation of the cluster ion beam. As a result, we successfully obtained a high intensity gas-cluster ion current up to ∼30 μA, which is one order of magnitude larger than that obtained so far. TiO 2 films were grown on Si substrates by electron beam evaporation of TiO 2 at ambient temperature under O 2 -cluster ion bombardment with acceleration energies (V acc ) up to 12 keV. Refractive index, n of the films was increased steeply to n=∼2.30 above V acc =4 keV. Water-soaking tests for 12 hrs of the samples revealed that an increase in n values due to moisture absorption becomes smaller with increasing V acc , which suggests that the films become more dense with increasing V acc from optical point of view

  9. Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions.

    Science.gov (United States)

    Tempez, Agnès; Schultz, J A; Della-Negra, S; Depauw, J; Jacquet, D; Novikov, A; Lebeyec, Y; Pautrat, M; Caroff, M; Ugarov, M; Bensaoula, H; Gonin, M; Fuhrer, K; Woods, Amina

    2004-01-01

    Secondary ion mass spectrometry (SIMS) for biomolecular analysis is greatly enhanced by the instrumental combination of orthogonal extraction time-of-flight mass spectrometry with massive gold cluster primary ion bombardment. Precursor peptide molecular ion yield enhancements of 1000, and signal-to-noise improvements of up to 20, were measured by comparing SIMS spectra obtained using Au(+) and massive Au(400) (4+) cluster primary ion bombardment of neat films of the neuropeptide fragment dynorphin 1-7. Remarkably low damage cross-sections were also measured from dynorphin 1-7 and gramicidin S during prolonged bombardment with 40 keV Au(400) (4+). For gramicidin S, the molecular ion yield increases slightly as a function of Au(400) (4+) beam fluence up to at least 2 x 10(13) Au(400) (4+)/cm(2). This is in marked contrast to the rapid decrease observed when bombarding with ions such as Au(5) (+) and Au(9) (+). When gramicidin S is impinged with Au(5) (+), the molecular ion yield decreases by a factor of 10 after a fluence of only 8 x 10(12) ions/cm(2). Comparison of these damage cross-sections implies that minimal surface damage occurs during prolonged Au(400) (4+) bombardment. Several practical analytical implications are drawn from these observations. Copyright 2004 John Wiley & Sons, Ltd.

  10. Ionization and fragmentation of water clusters by fast highly charged ions

    International Nuclear Information System (INIS)

    Adoui, L; Cassimi, A; Gervais, B; Grandin, J-P; Guillaume, L; Maisonny, R; Legendre, S; Tarisien, M; Lopez-Tarifa, P; Alcami, M; Martin, F; Politis, M-F; Penhoat, M-A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni 25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H 9 O + 4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H 2 O) n H + , that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  11. submitter The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a ...

  12. Small angle neutron scattering measurements of magnetic cluster sizes in magnetic recorging disks

    CERN Document Server

    Toney, M

    2003-01-01

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  13. Thermodynamics of small clusters of atoms: A molecular dynamics simulation

    DEFF Research Database (Denmark)

    Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J

    1974-01-01

    The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...

  14. Improved tandem mass spectrometer coupled to a laser vaporization cluster ion source

    Science.gov (United States)

    Förstel, Marko; Jaeger, Bertram K. A.; Schewe, Wolfgang; Sporkhorst, Philipp H. A.; Dopfer, Otto

    2017-12-01

    We describe two improvements to an existing tandem mass spectrometer coupled to a laser vaporization cluster ion source suitable for photodissociation spectroscopy: (i) cooling of the cluster source nozzle and (ii) mass selection prior to the photodissociation region via replacing an octupole ion guide by a quadrupole mass spectrometer. The improved sensitivity and transmission enable the production of larger heteroatomic clusters as well as rare gas solvated clusters. We present two examples demonstrating the new capabilities of the improved setup. In the first application, cooling of the cluster source nozzle produces Si+Arn and Si2+Arn cluster cations with n = 1-25. Magic numbers are extracted from the mass spectrum by applying a transmission function obtained via simulations. In the second example, the vibronic photodissociation spectrum of cold Au4+ cluster ions is recorded with unprecedented detail, resolution, and sensitivity. Such high-resolution optical excitation spectra of metal cluster cations may serve as a benchmark for the performance of Franck-Condon simulations based on quantum chemical calculations for excited states.

  15. Coherent Structures at Ion Scales in Fast Solar Wind: Cluster Observations

    Science.gov (United States)

    Perrone, D.; Alexandrova, O.; Roberts, O. W.; Lion, S.; Lacombe, C.; Walsh, A.; Maksimovic, M.; Zouganelis, I.

    2017-11-01

    We investigate the nature of magnetic turbulent fluctuations, around ion characteristic scales, in a fast solar wind stream, by using Cluster data. Contrarily to slow solar wind, where both Alfvénic (δ {b}\\perp \\gg δ {b}\\parallel ) and compressive (δ {b}\\parallel \\gg δ {b}\\perp ) coherent structures are observed, the turbulent cascade of fast solar wind is dominated by Alfvénic structures, namely, Alfvén vortices, with a small and/or finite compressive part, with the presence also of several current sheets aligned with the local magnetic field. Several examples of vortex chains are also recognized. Although an increase of magnetic compressibility around ion scales is observed also for fast solar wind, no strongly compressive structures are found, meaning that the nature of the slow and fast winds is intrinsically different. Multispacecraft analysis applied to this interval of fast wind indicates that the coherent structures are almost convected by the flow and aligned with the local magnetic field, I.e., their normal is perpendicular to {\\boldsymbol{B}}, which is consistent with a two-dimensional turbulence picture. Understanding intermittency and the related generation of coherent structures could provide a key insight into the nonlinear energy transfer and dissipation processes in magnetized and collisionless plasmas.

  16. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS experiment

    Directory of Open Access Journals (Sweden)

    H. Rème

    2001-09-01

    Full Text Available On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+ from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF, giving the mass per charge composition with medium (22.5° angular resolution, and a Hot Ion Analyser (CIS2/HIA, which does not offer mass resolution but has a better angular resolution (5.6° that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions

  17. Theoretical studies of the electronic structure of small metal clusters

    Science.gov (United States)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  18. Experimental study of the fragmentation of water clusters induced by multiply charged ions

    International Nuclear Information System (INIS)

    Maisonny, R.

    2011-01-01

    This work deals with the fragmentation of neutral water clusters induced by collisions with slow and swift multiply charged ions. Strong projectile charge dependence is found for all of the fragmentation patterns in the charge transfer regime. When increasing the projectile charge (from q = 2 to q = 20), we observe a modification of the scenario of the fragmentation dynamics with a transition from a partial dissociation to a full cluster explosion. We observe that water clusters are more strongly heated by Xe 20+ than by He 2+ . These results are in contrast to the generally accepted idea that highly charged ions are an efficient tool to ionize the target at large impact parameters without a huge amount of energy transfer. The results obtained with high energy projectiles Ni 25+ i.e. in the ionization regime, are very similar than those obtained with low velocity Xe 20+ i.e. in the charge transfer regime. These results suggest that even if the primary mechanism is different, the 'same' electrons are into play and ejected from the target. In this work, we have also produced size-selected protonated water clusters by the coupling of an Electro-Spray Ion source together with a quadrupole mass filter. In order to perform, in the next future, collisions between these size-selected water clusters and projectile ions, we designed and realized a new experimental device which allows us to produce intense singly charged ions beams. (author) [fr

  19. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    Science.gov (United States)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  20. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  1. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Size-restricted proton transfer within toluene-methanol cluster ions.

    Science.gov (United States)

    Chiang, Chi-Tung; Shores, Kevin S; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L; Garvey, James F

    2008-11-20

    To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.

  3. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  4. Correlation between molecular secondary ion yield and cluster ion sputtering for samples with different stopping powers

    Science.gov (United States)

    Heile, A.; Muhmann, C.; Lipinsky, D.; Arlinghaus, H. F.

    2012-07-01

    In static SIMS, the secondary ion yield, defined as detected ions per primary ion, can be increased by altering several primary ion parameters. For many years, no quantitative predictions could be made for the secondary ion yield enhancement of molecular ions. For thick samples of organic compounds, a power dependency of the secondary ion yield on the sputtering yield was shown. For this article, samples with thick molecular layers and (sub-)monolayers composed of various molecules were prepared on inorganic substrates such as silicon, silver, and gold, and subsequently analyzed. For primary ion bombardment, monoatomic (Ne+, Ar+, Ga+, Kr+, Xe+, Bi+) as well as polyatomic (Bin+, Bin++) primary ions were used within an energy range of 10-50 keV. The power dependency was found to hold true for the different samples; however, the exponent decreased with increasing stopping power. Based on these findings, a rule of thumb is proposed for the prediction of the lower limit of the secondary ion yield enhancement as a function of the primary ion species. Additionally, effects caused by the variation of the energy deposition are discussed, including the degree of molecular fragmentation and the non-linear increase of the secondary ion yield when polyatomic primary ions are used.

  5. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Czech Academy of Sciences Publication Activity Database

    Souček, Jan; Escoubet, C. P.

    2011-01-01

    Roč. 29, - (2011), s. 1049-1060 ISSN 0992-7689 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror mode waves * trapped particles * magnetosheath ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.842, year: 2011 http://www.ann-geophys.net/29/1049/2011/angeo-29-1049-2011.pdf

  6. Functionalization of silicon crystal surface by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Jastrabík, Lubomír; Vorlíček, Vladimír; Chvostová, Dagmar; Potůček, Zdeněk; Narumi, K.; Naramoto, H.

    2012-01-01

    Roč. 12, č. 12 (2012), s. 9136-9141 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : cluster impacts * silicon * surface * quantum dots * light emission Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2012

  7. Molecular growth in clusters of polycyclic aromatic hydrocarbons induced by collisions with ions

    International Nuclear Information System (INIS)

    Delaunay, Rudy

    2016-01-01

    This thesis concerns the experimental study of the interaction between low energy ions (keV range) and neutral isolated molecules or clusters of polycyclic aromatic hydrocarbons (PAH) in the gas phase. The use of ionising radiations on these complex molecular systems of astrophysical interest allowed to highlight processes of statistical fragmentation, corresponding to the redistribution of the energy through the degrees of freedom of the target, and non-statistical fragmentation, linked to binary collisions of the ions on the nuclei of the target. A mechanism of intermolecular growth in clusters of PAH is observed. It is associated to the ultrafast (≤ ps) formation of fragments inside the clusters following binary collisions. The presence of a molecular environment around the fragments formed during the interaction may initiate a process of reactivity between the fragments and the molecules of the clusters. More precisely, the study focusses on the importance of the electronic stopping power SE and the nuclear stopping power SN of the projectile ion. It shows that the molecular growth is enhanced when SN is higher than SE. This can be explained by the fact that the deposit of energy is mainly due to the interaction with the nuclei of the target. The process of growth has been observed for all the molecules of PAH studied during this thesis and also for nitrogenated analogues of the molecule of anthracene. This demonstrates that molecular growth may be efficiently induced by collisions of low energy ions with clusters of PAH. (author) [fr

  8. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  9. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    International Nuclear Information System (INIS)

    Ozcan, Ahmet S.; Lavoie, Christian; Jordan-Sweet, Jean; Alptekin, Emre; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-01-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  10. Acceleration of cluster and molecular ions by TIARA 3 MV tandem accelerator

    CERN Document Server

    Saitoh, Y; Tajima, S

    2000-01-01

    We succeeded in accelerating molecular and cluster ions (B sub 2 sub - sub 4 , C sub 2 sub - sub 1 sub 0 , O sub 2 , Al sub 2 sub - sub 4 , Si sub 2 sub - sub 4 , Cu sub 2 sub - sub 3 , Au sub 2 sub - sub 3 , LiF, and AlO) to MeV energies with high-intensity beam currents by means of a 3 MV tandem accelerator in the TIARA facility. These cluster ions were generated by a cesium sputter-type negative ion source. We tested three types of carbon sputter cathodes in which graphite powder was compressed with different pressures. The pressure difference affected the generating ratio of clusters generated to single atom ions extracted from the source and it appeared that the high-density cathode was suitable. We also investigated the optimum gas pressure for charge exchange in the tandem high-voltage terminal. Clusters of larger size tend to require lower pressure than do smaller ones. In addition, we were able to obtain doubly charged AlO molecular ions. (authors)

  11. Mass-spectrometric study of ion clustering in alkali-metal hydroxide vapor: cluster-ion energy and structural characteristics

    International Nuclear Information System (INIS)

    Kudin, L.S.; Butman, M.F.; Krasnov, K.S.

    1986-01-01

    Various positive and negative ions have been recorded in the equilibrium vapors from alkali-metal hydroxides: M/sup +/-/, OH - , O - , MO - , MOH - , and X/sup +/-/ (MOH)/sub n/, where X = M/sup +/-/, OH - , n = 1-6. The equilibrium constants have been measured for X/sup +/-/(MOH)/sub n/ = x/sup +/-/ + nMOH(k), n = 1-3, and the enthalpies of reaction have been determined, from which the enthalpies of formation and dissociation energies of X/sup +/-/ (MOH)/sub n/ have been calculated. The relative stabilities of the ions in the series from Na to Cs are examined

  12. Formation and metastable decomposition of unprotonated ammonia cluster ions upon femtosecond ionization

    International Nuclear Information System (INIS)

    Buzza, S.A.; Wei, S.; Purnell, J.; Castleman, A.W. Jr.

    1995-01-01

    The formation and metastable dissociation mechanism of unprotonated ammonia cluster ions, (NH 3 ) + n , produced by multiphoton ionization (MPI) at 624 nm and a nominal pulse width of 350 fs, are investigated through a reflectron time-of-flight (TOF) mass spectrometric technique. Detection of the unprotonated ions after femtosecond and nanosecond multiphoton ionization under various intensity conditions is explained. The role of the energy of the ionizing photons, and the observation of these ions after femtosecond MPI is examined. The formation of the unprotonated series is found to be a function of intensity in the case of ionization on the nanosecond time scale, but not so for the femtosecond time domain. The results can be explained in terms of ionization mechanisms and ionizing pulse durations. The findings of the present study suggest that the unprotonated ions are trapped behind the barrier to intracluster proton transfer and/or concomitant NH 2 loss. The studies of metastable decomposition also reveal that the unprotonated ammonia cluster ions dissociate in the field-free region of the TOF by losing an NH 2 radical rather than via the evaporative loss of NH 3 as occurs for protonated clusters. Additionally, isotopic investigations of the unimolecular decay reveal a strong dependence on the conditions of cluster formation. The cluster formation condition dependence of the unimolecular decay is further investigated by altering formation temperatures and observing the consequences reflected by changes in the spontaneous metastable decay rate constant. This is a unique example of a cluster system whose metastable dissociation does not obey an evaporative ensemble model

  13. Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres

    Science.gov (United States)

    Jarrold, Martin F.; Bower, J. Eric

    1992-06-01

    The mobilities of size selected silicon cluster ions, Si+n (n=10-60), have been measured using injected ion drift tube techniques. Two families of isomers have been resolved by their different mobilities. From comparison of the measured mobilities with the predictions of a simple model, it appears that clusters larger than Si+10 follow a prolate growth sequence to give sausage-shaped geometries. A more spherical isomer appears for clusters with n>23, and this isomer completely dominates for unannealed clusters with n>35. Annealing converts the sausage-shaped isomer into the more spherical form for n>30. Activation energies for this ``sausage-to-sphere'' structural transition have been estimated for several cluster sizes and are ˜1.2-1.5 eV. We have examined the chemical reactivity of the sausages and spheres towards both C2H4 and O2. With C2H4 large differences in reactivity of the isomers were found, with the spherical isomer often being more reactive than the sausage form by more than an order of magnitude. With O2 the variations in reactivity were smaller. Despite the substantial differences in reactivity observed for the two isomers in the cluster size regime where both forms coexist, examination of a broader range of cluster sizes shows that there is not a systematic change in reactivity associated with the geometry change.

  14. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum.

    Science.gov (United States)

    Waddell, Erin E; Frisch-Daiello, Jessica L; Williams, Mary R; Sigman, Michael E

    2014-09-01

    Gas chromatography-mass spectrometry (GC-MS) data of ignitable liquids in the Ignitable Liquids Reference Collection (ILRC) database were processed to obtain 445 total ion spectra (TIS), that is, average mass spectra across the chromatographic profile. Hierarchical cluster analysis, an unsupervised learning technique, was applied to find features useful for classification of ignitable liquids. A combination of the correlation distance and average linkage was utilized for grouping ignitable liquids with similar chemical composition. This study evaluated whether hierarchical cluster analysis of the TIS would cluster together ignitable liquids of the same ASTM class assignment, as designated in the ILRC database. The ignitable liquids clustered based on their chemical composition, and the ignitable liquids within each cluster were predominantly from one ASTM E1618-11 class. These results reinforce use of the TIS as a tool to aid in forensic fire debris analysis. © 2014 American Academy of Forensic Sciences.

  15. Evolution of mass and energy distributions of secondary ions during cluster fragmentation

    International Nuclear Information System (INIS)

    Dzhemilev, N.Kh.

    2006-01-01

    The role of the monomolecular fragmentation of Cu n + , Ag n + and Au n + in shaping of kinetic energy spectra of secondary ions detected by the SIMS detector is studied. The bombardment of targets is carried out by Xe + ion beam with the energy of 8.5 keV. The energy spectra of secondary Cu n + , Ag n + and Au n + (n = 1 - 6) ions obtained at sputtering are analyzed. The particular attention is given to such parameters as the maximum energy E m and the half-height energy E 0.5 of secondary sputtered ions. It is shown that as the number of atoms in an ion increases, the parameters E m and E 0.5 by ions with the even number of atoms are periodically more than by odd ones. The values of E n and E 0.5 for Cu 2 + , Ag 2 + and Au 2 + ions exceed analogous parameters in comparison with Cu + , Ag + and Au + correspondingly. These anomalies are explained by the superposition of true secondary ion spectra and spectra of fragment ions evaporated from metastable cluster ions (tertiary emission) [ru

  16. ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT

    Energy Technology Data Exchange (ETDEWEB)

    Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Retinò, A. [Laboratoire de Physique des Plasmas, CNRS/Ecole Polytechnique/UPMC, Palaiseau (France); Dandouras, I., E-mail: andreas.johlander@irfu.se [Université Paul Sabatier Toulouse III, Toulouse (France)

    2016-01-20

    Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) and obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas.

  17. The chemistry of nitrogen oxides on small size-selected cobalt clusters, Con+

    International Nuclear Information System (INIS)

    Anderson, Marie L.; Lacz, Agnieszka; Drewello, Thomas; Derrick, Peter J.; Woodruff, D. Phil; Mackenzie, Stuart R.

    2009-01-01

    Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co n + (n=4-30), with nitric oxide, NO, and nitrous oxide, N 2 O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N 2 O, most clusters generate the monoxides Co n O + without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co n + +N 2 O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

  18. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS experiment

    Directory of Open Access Journals (Sweden)

    H. Rème

    Full Text Available On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+ from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF, giving the mass per charge composition with medium (22.5° angular resolution, and a Hot Ion Analyser (CIS2/HIA, which does not offer mass resolution but has a better angular resolution (5.6° that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics.

    Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions

  19. Event-by-Event Cluster Analysis of Final States from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Fialkowski, K.; Wit, R.

    1999-01-01

    We present an event-by-event analysis of the cluster structure of final multihadron states resulting from heavy ion collisions. A comparison of experimental data with the states obtained from Monte Carlo generators is shown. The analysis of the first available experimental events suggests that the method is suitable for selecting some different types of events. (author)

  20. Solar wind dependence of ion parameters in the Earth's magnetospheric region calculated from CLUSTER observations

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2008-03-01

    Full Text Available Moments calculated from the ion distributions (~0–40 keV measured by the Cluster Ion Spectrometry (CIS instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005. Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS and the Cluster Active Archive (CAA. Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1 compared to periods of slow solar wind (100–400 km s−1. The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.

  1. Micellized sequestered silver atoms and small silver clusters

    International Nuclear Information System (INIS)

    Borgarello, E.; Lawless, D.; Serpone, N.; Pelizzetti, E.; Meisel, D.

    1990-01-01

    Pulse radiolysis was used to examine the nature of the silver species obtained when an aqueous solution containing sequestered Ag + ions was reduced by hydrated electrons in the presence of a surfactant macrocyclic crown ether, labeled L, and/or a maltoside surfactant. The initially formed product is the Ag 0 (L) species which rapidly loses its ligand (half-life ≤5 μs) and reacts with another Ag + (L) ion to form Ag 2 + (L). The latter species decays by a bimolecular process to form the Ag 4 2+ (L) n species at a faster rate than its ligand free analogue. Ultimately, colloidal metallic silver, (Ag) n , forms which is stabilized by the surfactant moieties. No long-term stability to the reduced monomolecular species could be obtained

  2. Determination of interstellar pickup ion distributions in the solar wind with SOHO and Cluster

    Directory of Open Access Journals (Sweden)

    E. Möbius

    Full Text Available Over the last 10 years, the experimental basis for the study of the local interstellar medium has been substantially enhanced by the direct detection of interstellar pickup ions and of interstellar neutral helium within the heliosphere. Pickup ions can be studied for a wide range of interstellar species. However, currently the accuracy of the method to determine the parameters of the interstellar medium, namely neutral density, temperature and relative velocity, is hampered by two problems: (1 In most cases the crucial ionization rates are not available from simultaneous measurements and (2 the transport of the pickup ions in the interplanetary medium substantially modifies the measured spatial distribution of the ions. In this study we will discuss how the enhanced capabilities of the instrumentation on SOHO and Cluster in combination with ongoing efforts to model the pickup ion distributions will lead to a significant improvement over the coming years.

  3. Determination of interstellar pickup ion distributions in the solar wind with SOHO and Cluster

    Directory of Open Access Journals (Sweden)

    E. Möbius

    1996-05-01

    Full Text Available Over the last 10 years, the experimental basis for the study of the local interstellar medium has been substantially enhanced by the direct detection of interstellar pickup ions and of interstellar neutral helium within the heliosphere. Pickup ions can be studied for a wide range of interstellar species. However, currently the accuracy of the method to determine the parameters of the interstellar medium, namely neutral density, temperature and relative velocity, is hampered by two problems: (1 In most cases the crucial ionization rates are not available from simultaneous measurements and (2 the transport of the pickup ions in the interplanetary medium substantially modifies the measured spatial distribution of the ions. In this study we will discuss how the enhanced capabilities of the instrumentation on SOHO and Cluster in combination with ongoing efforts to model the pickup ion distributions will lead to a significant improvement over the coming years.

  4. Compositions and structures of niobium oxide cluster ions, NbmOn±, (m = 2-12), revealed by ion mobility mass spectrometry.

    Science.gov (United States)

    Wu, Jenna W J; Moriyama, Ryoichi; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2017-09-20

    Herein, the compositions and geometrical structures of niobium oxide cluster ions were studied and compared with those of the lighter Group 5 counterpart vanadium oxide cluster ions by ion-mobility mass spectrometry (IM-MS). As a result of collision-induced dissociation in IM-MS, the compositions were found to be dependent on an odd and even number of niobium atoms, whereby the ions with (NbO 2 )(Nb 2 O 5 ) (m-1)/2 + and (NbO 3 )(Nb 2 O 5 ) (m-1)/2 - were identified as stable compositions for an odd number of Nb atoms, whereas (Nb 2 O 5 ) m/2 ± and (Nb 2 O 6 )(Nb 2 O 5 ) (m-2)/2 - were identified as stable compositions for an even number of Nb atom clusters. Furthermore, structural transitions were observed between m = 8 and 9 for cluster cations and m = 7 and 8 for cluster anions for experimental collision cross-sections (CCSs), which were determined from the arrival times in the ion-mobility measurements. Quantum chemical calculations were conducted on several structural candidates of these compositions for m = 2-12. For cluster cations with the sizes between m = 2 and 8 and cluster anions with m = 2-7, the structures were found to be similar to those of vanadium oxide cluster ions upon comparing the experimental CCSs with the theoretical CCSs of optimized structures. As compared to the vanadium oxide cluster ions, niobium oxide cluster cations with m ≥ 9 and anions with m ≥ 8 consisted of structures where some niobium atoms had more than five oxygen-atom coordination; thus, compact structures could be achieved in the case of niobium oxide cluster ions.

  5. Investigation of secondary cluster ion emission from self-assembled monolayers of alkanethiols on gold with ToF-SIMS

    International Nuclear Information System (INIS)

    Schroeder, M.; Sohn, S.; Arlinghaus, H.F.

    2004-01-01

    Self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems for studying the emission processes of secondary ions from thin organic layers on metal substrates under keV ion bombardment. In this experimental study, we focus on the emission processes of gold-hexadecanethiolate cluster ions, which are not well understood yet. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements on SAMs of hexadecanethiols (HDT, CH 3 -(CH 2 ) 15 -SH) on gold substrates. The gold-hexadecanethiolate cluster ions Au x M y - show intense peaks in mass spectra of negatively charged secondary ions under 10 keV Ar + bombardment. Around the corresponding peaks, a characteristic peak pattern of additional ions is observed. We analyzed the contribution of different cluster ions formed by an attachment or a loss of several hydrogen atoms and their isotope patterns to the individual peaks of the peak pattern. We found two different types of gold-hexadecanethiolate cluster ions. The first type has only one parent ion with no hydrogen atom attached. The second type has two parent ions, one without attachment of hydrogen atoms and another with one additional hydrogen atom. Moreover, we found a universally valid sum formula, which predicts the most intense peak in the peak pattern of all gold-hexadecanethiolate cluster ions analyzed

  6. Laser-induced cluster-ions from thin foils of metals and semiconductors

    International Nuclear Information System (INIS)

    Fuerstenau, N.; Hillenkamp, F.

    1981-01-01

    Interaction of focused, very high-energy pulses of UV laser light of some 10 8 W cm -2 with thin foils of metals and semiconductors induces solid-gas phase-transitions and ionization of microvolumes of the target material. Mass-spectrometric analysis of the microplasma reveals singly ionized cluster-ions as final products of the interaction processes. Cluster-ion distributions are measured and compared with those obtained in thermal evaporation, high-frequency spark and SIMS experiments. The distributions are shown to be characteristic of the investigated material. While some of their features can be understood in terms of theories of cluster stability, other qualities, also observed in SIMS and evaporation experiments, are thought to be due to the partially non-equilibrium character of the solid-gas phase-transition. Furthermore, estimations concerning parameters of the laser-induced microplasma can be drawn from the distributions. (orig.)

  7. On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry

    NARCIS (Netherlands)

    Zook, D.R; Bruins, A.P.

    The ion transmission in Electrospray (Ionspray) Mass Spectrometry (ESMS) was studied in order to examine the instrumental factors potentially contributing to observed ESMS linear dynamic range (LDR) limitations. A variety of means used for the investigation of ion transmission demonstrated that a

  8. Ion-streaming induced order transition in three-dimensional dust clusters

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael

    2012-01-01

    Dust dynamics simulations utilizing a dynamical screening approach are performed to study the effect of ion-streaming on the self-organized structures in a three-dimensional spherically confined complex (dusty) plasma. Varying the Mach number M, the ratio of ion drift velocity to the sound velocity, the simulations reproduce the experimentally observed cluster configurations in the two limiting cases: at M = 0 strongly correlated crystalline structures consisting of nested spherical shells (Yukawa balls) and, for M ⩾ 1, flow-aligned dust chains, respectively. In addition, our simulations reveal a discontinuous transition between these two limits. It is found that already a moderate ion drift velocity (M ≈ 0.1 for the plasma conditions considered here) destabilizes the highly ordered Yukawa balls and initiates an abrupt melting transition. The critical value of M is found to be independent of the cluster size. (paper)

  9. Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation

    Science.gov (United States)

    Frege, Carla; Ortega, Ismael K.; Rissanen, Matti P.; Praplan, Arnaud P.; Steiner, Gerhard; Heinritzi, Martin; Ahonen, Lauri; Amorim, António; Bernhammer, Anne-Kathrin; Bianchi, Federico; Brilke, Sophia; Breitenlechner, Martin; Dada, Lubna; Dias, António; Duplissy, Jonathan; Ehrhart, Sebastian; El-Haddad, Imad; Fischer, Lukas; Fuchs, Claudia; Garmash, Olga; Gonin, Marc; Hansel, Armin; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kirkby, Jasper; Kürten, Andreas; Lehtipalo, Katrianne; Leiminger, Markus; Mauldin, Roy Lee; Molteni, Ugo; Nichman, Leonid; Petäjä, Tuukka; Sarnela, Nina; Schobesberger, Siegfried; Simon, Mario; Sipilä, Mikko; Stolzenburg, Dominik; Tomé, António; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Robert; Xiao, Mao; Yan, Chao; Ye, Penglin; Curtius, Joachim; Donahue, Neil M.; Flagan, Richard C.; Kulmala, Markku; Worsnop, Douglas R.; Winkler, Paul M.; Dommen, Josef; Baltensperger, Urs

    2018-01-01

    It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1-2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of α-pinene at 5 °C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and -25 °C). Most negative HOM clusters include a nitrate (NO3-) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH4+) ion, and the spectra are characterized by mass bands that differ in their molecular weight by ˜ 20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (-25 °C), the presence of C30 clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.

  10. Structural characterization of small Xe clusters using their 5s correlation satellite electron spectrum.

    Science.gov (United States)

    Patanen, Minna; Nicolas, Christophe; Liu, Xiao-Jing; Travnikova, Oksana; Miron, Catalin

    2013-07-07

    The Xe 5s photoelectron spectrum and 5p(4)nl correlation satellites have been studied in small Xe clusters of an average size of about 15 atoms. The satellite structures are interpreted with the help of the atomic Xe lines. Transition energy shifts between the atomic and the corner/edge/face/bulk components in clusters are divided into polarization screening and exchange interaction energy. Interestingly enough, the ratios between corner/edge/face/bulk polarization screening and exchange interaction energies are found to reflect the ratios of the coordination numbers of corner/edge/face/bulk atoms in these small icosahedral cluster structures.

  11. Clustering Methods with Qualitative Data: A Mixed Methods Approach for Prevention Research with Small Samples

    Science.gov (United States)

    Henry, David; Dymnicki, Allison B.; Mohatt, Nathaniel; Allen, James; Kelly, James G.

    2016-01-01

    Qualitative methods potentially add depth to prevention research, but can produce large amounts of complex data even with small samples. Studies conducted with culturally distinct samples often produce voluminous qualitative data, but may lack sufficient sample sizes for sophisticated quantitative analysis. Currently lacking in mixed methods research are methods allowing for more fully integrating qualitative and quantitative analysis techniques. Cluster analysis can be applied to coded qualitative data to clarify the findings of prevention studies by aiding efforts to reveal such things as the motives of participants for their actions and the reasons behind counterintuitive findings. By clustering groups of participants with similar profiles of codes in a quantitative analysis, cluster analysis can serve as a key component in mixed methods research. This article reports two studies. In the first study, we conduct simulations to test the accuracy of cluster assignment using three different clustering methods with binary data as produced when coding qualitative interviews. Results indicated that hierarchical clustering, K-Means clustering, and latent class analysis produced similar levels of accuracy with binary data, and that the accuracy of these methods did not decrease with samples as small as 50. Whereas the first study explores the feasibility of using common clustering methods with binary data, the second study provides a “real-world” example using data from a qualitative study of community leadership connected with a drug abuse prevention project. We discuss the implications of this approach for conducting prevention research, especially with small samples and culturally distinct communities. PMID:25946969

  12. Clustering Methods with Qualitative Data: a Mixed-Methods Approach for Prevention Research with Small Samples.

    Science.gov (United States)

    Henry, David; Dymnicki, Allison B; Mohatt, Nathaniel; Allen, James; Kelly, James G

    2015-10-01

    Qualitative methods potentially add depth to prevention research but can produce large amounts of complex data even with small samples. Studies conducted with culturally distinct samples often produce voluminous qualitative data but may lack sufficient sample sizes for sophisticated quantitative analysis. Currently lacking in mixed-methods research are methods allowing for more fully integrating qualitative and quantitative analysis techniques. Cluster analysis can be applied to coded qualitative data to clarify the findings of prevention studies by aiding efforts to reveal such things as the motives of participants for their actions and the reasons behind counterintuitive findings. By clustering groups of participants with similar profiles of codes in a quantitative analysis, cluster analysis can serve as a key component in mixed-methods research. This article reports two studies. In the first study, we conduct simulations to test the accuracy of cluster assignment using three different clustering methods with binary data as produced when coding qualitative interviews. Results indicated that hierarchical clustering, K-means clustering, and latent class analysis produced similar levels of accuracy with binary data and that the accuracy of these methods did not decrease with samples as small as 50. Whereas the first study explores the feasibility of using common clustering methods with binary data, the second study provides a "real-world" example using data from a qualitative study of community leadership connected with a drug abuse prevention project. We discuss the implications of this approach for conducting prevention research, especially with small samples and culturally distinct communities.

  13. The fabrication and modification of capillary polymer monoliths for the separation of small ions

    OpenAIRE

    Moyna, Aine

    2012-01-01

    The fabrication and modification of polymer monoliths, in capillary formats, for the separation of small ions is presented. The separation of small ions using polymer monoliths has limitations and this work aims to investigate increasing the ion exchange capacity using photo-grafting techniques. Chapter 1.0 includes a comprehensive review on the use of capillary ion chromatography including advancements made in capillary instrumentation, stationary phases and detection devices. This chapter a...

  14. Energetics and dynamics of the neutralization of clustered ions in ammonia and water vapour

    International Nuclear Information System (INIS)

    Sennhauser, E.S.; Armstrong, D.A.

    1978-01-01

    The energetics and dynamics of neutralization reactions of clustered ions in ammonia and water vapour have been analysed. Neutralization rate coefficients were calculated for the ions in ammonia and for H + .(H 2 O)sub(n) combining with various clustered anions in water vapour up to densities of 4 x 10 19 molecule cm -3 at 390 K. In the case of ammonia, calculations were also performed at 298 K. For all systems, fractional contributions of the neutralization coefficients for specific cluster sizes to the overall coefficient αsub(eff) were evaluated. The computed value of αsub(eff) for NH 3 was in reasonable agreement with experimental data in the [NH 3 ] range 0.3 to 4 x 10 19 molecule cm -3 , and general trends stemming from the effects of increasing ion mass were pointed out. Calculations of energies of individual cluster sizes indicate possible neutralization reaction mechanisms. With some exception, proton transfer is the only possible path and no H atoms should be formed. This is in general agreement with literature results for water vapour at approximately 390 K and with [H 2 O] >= 2 x 10 x 10 19 molecule cm -3 . (author)

  15. Stability of water clusters on hydronium ions formed under the conditions of radioactive contamination of the atmosphere

    International Nuclear Information System (INIS)

    Shevkunov, S.V.

    1998-01-01

    The hydronium ion hydrate shell H 3 O + , formed by addition of water molecule to proton is studied with the purpose of explaining the experimentally observed noticeable accumulation of ions by the atmosphere radioactive contamination. The results of computerized simulation of water clusters on hydronium ions testify to the clearly expressed stabilizing role of the proton electrical field

  16. Small Column Ion Exchange Design and Safety Strategy

    International Nuclear Information System (INIS)

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-01-01

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV(reg s ign)IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  17. Ion-Size-Dependent Formation of Mixed Titanium/Lanthanide Oxo Clusters

    Science.gov (United States)

    Artner, Christine; Kronister, Stefan; Czakler, Matthias; Schubert, Ulrich

    2014-01-01

    The mixed-metal oxo clusters LnTi4O3(OiPr)2(OMc)11 (Ln = La, Ce; OMc = methacrylate), Ln2Ti6O6(OMc)18(HOiPr) (Ln = La, Ce, Nd, Sm) and Ln2Ti4O4(OMc)14(HOMc)2 (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion. PMID:25866471

  18. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    International Nuclear Information System (INIS)

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.; Geisler, D.; Leiton, R.; Carraro, G.; Costa, E.; Grocholski, A. J.; Sarajedini, A.

    2014-01-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.

  19. Galectin-4 and small intestinal brush border enzymes form clusters

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B

    1997-01-01

    to galectin-4 to coimmunoprecipitate aminopeptidase N and sucrase-isomaltase. Furthermore, galectin-4 was released from microvillar, right-side-out vesicles as well as from mucosal explants by a brief wash with 100 mM lactose, confirming its extracellular localization. Galectin-4 is therefore secreted...... that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half...

  20. Kinetic energy distributions of molecular and cluster ions sputtered from self-assembled monolayers of octanethiol on gold

    International Nuclear Information System (INIS)

    Arezki, Bahia; Delcorte, Arnaud; Bertrand, Patrick

    2002-01-01

    Self-assembled monolayers (SAMs) of alkanethiols are an ideal model system to study the mechanisms that lead to emission of organic species under keV ion bombardment. In this contribution, we focus on the emission processes of gold-molecule cluster ions, which are not fully understood yet. To gain insights into these processes, monolayers of octanethiol CH 3 (CH 2 ) 7 SH adsorbed on gold are investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). First, the static SIMS conditions are verified using the degradation of the SAM signals as a function of ion fluence. Second, the kinetic energy distributions (KEDs) of fragment, parent and cluster ions ejected upon 15 keV Ga + ion bombardment are measured. The peak maxima, FWHMs and high energy tails of the distributions are analyzed for Au-thiolate clusters, as well as thiol fragments. After calibration of the energy spectra using monoatomic ions, we find that the KEDs of all the clusters containing the thiolate molecule peak at about 1.2 eV. Besides, the distributions of the gold-molecule cluster ions including Au(M-H) 2 - , the most intense cluster peak in the spectrum, are significantly narrower than that of the hydrocarbon fragments

  1. CLUSTERIZATION – A FACTOR OF EFFICIENCY IN SMALL AND MEDIUM HOSPITALITY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Zorica Krželj-Čolović

    2016-12-01

    Full Text Available In the modern global economy that is constantly changing and causing constant threats and challenges, various forms of association and networking enterprises are of growing importance. Considering that small and medium enterprises are drivers of economic growth and employment, they should be the most dynamic and most efficient segment of the economy. The same is true for the hospitality industry, where small and medium hospitality enterprises are the main providers of the tourism offer. The lack of networks in clusters of small and medium hospitality enterprises in Croatia is the cause of the unsatisfactory level of competitiveness and quality of hotel facilities with negative implications for economic and social development. The beginning of clustering in Croatia could be a good way to increase the economic efficiency of Croatian small and medium hospitality enterprises. The aim of this paper is to present clustering as a factor that affects the quality of small and medium hospitality enterprises by increasing their competitiveness in the tourism market which is becoming an important element for their business efficiency. For the purposes of the research, a survey was carried out on a sample of 72 small and medium hospitality enterprises in the period from June to September 2012. The survey results have shown that clusterization is a factor of efficiency in small and medium hospitality enterprises.

  2. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  3. About applicability of thermodynamic parameters to small drops and clusters

    Science.gov (United States)

    Kharlamov, G. V.; Onischuk, A. A.; Vosel, S. V.; Purtov, P. A.

    2012-11-01

    In our paper the results of molecular dynamics calculations of nanodrops are presented. The density profiles, the Irving-Kirkwood pressure tensors, the chemical potentials of the systems, the equimolar radii of the drops and the radii of tension, the mechanical and thermodynamic surface tensions have been calculated. It is shown that both the mechanical and thermodynamic surface tensions decrease with the decrease of the equimolar radius of the drop and reach zero at the same R0 depending on temperature. With the further equimolar radius decrease the surface tension becomes negative. It means that such droplet is metastable and that the notion of the macroscopic surface tension cannot be applied to such small drops. The dependence of the ratio of the drop surface tension to the surface tension of the flat liquid-vapor interface on the ratio of the drop equimolar radius to R0 is a universal function.

  4. About applicability of thermodynamic parameters to small drops and clusters

    International Nuclear Information System (INIS)

    Kharlamov, G V; Onischuk, A A; Vosel, S V; Purtov, P A

    2012-01-01

    In our paper the results of molecular dynamics calculations of nanodrops are presented. The density profiles, the Irving-Kirkwood pressure tensors, the chemical potentials of the systems, the equimolar radii of the drops and the radii of tension, the mechanical and thermodynamic surface tensions have been calculated. It is shown that both the mechanical and thermodynamic surface tensions decrease with the decrease of the equimolar radius of the drop and reach zero at the same R 0 depending on temperature. With the further equimolar radius decrease the surface tension becomes negative. It means that such droplet is metastable and that the notion of the macroscopic surface tension cannot be applied to such small drops. The dependence of the ratio of the drop surface tension to the surface tension of the flat liquid-vapor interface on the ratio of the drop equimolar radius to R 0 is a universal function.

  5. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  6. Diamond-like carbon and nanocrystalline diamond film surfaces sputtered by argon cluster ion beams

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Artemenko, Anna; Jelínek, Miroslav

    2016-01-01

    Roč. 68, Sep (2016), s. 37-41 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : diamond-like carbon * nanocrystalline diamond * argon cluster ion beam * XPS * C sp2 * C sp3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.561, year: 2016

  7. Tracing electron-ion recombination in nanoplasmas produced by extreme-ultraviolet irradiation of rare-gas clusters.

    Science.gov (United States)

    Schütte, B; Campi, F; Arbeiter, M; Fennel, Th; Vrakking, M J J; Rouzée, A

    2014-06-27

    We investigate electron-ion recombination in nanoplasmas produced by the ionization of rare-gas clusters with intense femtosecond extreme-ultraviolet (XUV) pulses. The relaxation dynamics following XUV irradiation is studied using time-delayed 790-nm pulses, revealing the generation of a large number of excited atoms resulting from electron-ion recombination. In medium-sized Ar-Xe clusters, these atoms are preferentially created in the Xe core within 10 ps after the cluster ionization. The ionization of excited atoms serves as a sensitive probe for monitoring the cluster expansion dynamics up to the ns time scale.

  8. Molecular depth profiling and imaging using cluster ion beams with femtosecond laser postionization

    International Nuclear Information System (INIS)

    Willingham, D.; Kucher, A.; Winograd, N.

    2008-01-01

    The emergence of cluster ion sources as viable SIMS probes has opened new possibilities for detection of neutral molecules by laser postionization. Previous studies have shown that with atomic bombardment multiphoton ionization using high-power femtosecond pulses leads to photofragmentation. The large amount of photofragmentation can be mostly attributed to high amounts of internal energy imparted to the sputtered molecules during the desorption process. Several pieces of preliminary data suggest that molecules subjected to cluster beam bombardment are desorbed with lower internal energies than those subjected to atomic beam bombardment. Lower energy molecules may then be less likely to photodissociate creating less photofragments in the laser postionization spectra. Here we present data taken from coronene films prepared by physical vapor deposition comparing a 40 keV C 60 + ion source with a 20 keV Au + ion source, which supports this hypothesis. Furthermore, the depth profiling capabilities of cluster beams may be combined with laser postionization to obtain molecular depth profiles by monitoring the neutral flux. In addition, imaging and depth profiling may be combined with atomic force microscopy (AFM) to provide three-dimensional molecular images.

  9. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  10. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    International Nuclear Information System (INIS)

    Ramsey, A.A.; Thorson, M.R.

    2010-01-01

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  11. Field Observation of the Green Ocean Amazon. Neutral Cluster Air Ion Spectrometer (NAIS) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Petaja, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Backman, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manninen, H. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wimmer, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The neutral cluster and air ion spectrometer (NAIS) was deployed to the T3 site for Intensive Operations Periods 1 and 2 (IOP1 and IOP2). The NAIS is an instrument that measures aerosol particle and ion number size distributions in the mobility diameter range of 0.8 to 42 nm, corresponding to electrical mobility range between 3.2 and 0.0013 cm2 V-1 s-1. New particle formation (NPF) events were detected using the NAIS at the T3 field site during IOP1 and IOP2. Secondary NPF is a globally important source of aerosol number. To fully explain atmospheric NPF and subsequent growth, we need to directly measure the initial steps of the formation processes in different environments, including rain forest. Particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation.

  12. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  13. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate.

    Science.gov (United States)

    Akter, Asma; Biella, Paolo; Klecka, Jan

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.

  14. Interactions of small platinum clusters with the TiC(001) surface

    International Nuclear Information System (INIS)

    Mao, Jianjun; Li, Shasha; Chu, Xingli; Yang, Zongxian

    2015-01-01

    Density functional theory calculations are used to elucidate the interactions of small platinum clusters (Pt n , n = 1–5) with the TiC(001) surface. The results are analyzed in terms of geometric, energetic, and electronic properties. It is found that a single Pt atom prefers to be adsorbed at the C-top site, while a Pt 2 cluster prefers dimerization and a Pt 3 cluster forms a linear structure on the TiC(001). As for the Pt 4 cluster, the three-dimensional distorted tetrahedral structure and the two-dimensional square structure almost have equal stability. In contrast with the two-dimensional isolated Pt 5 cluster, the adsorbed Pt 5 cluster prefers a three-dimensional structure on TiC(001). Substantial charge transfer takes place from TiC(001) surface to the adsorbed Pt n clusters, resulting in the negatively charged Pt n clusters. At last, the d-band centers of the absorbed Pt atoms and their implications in the catalytic activity are discussed

  15. All-Electron Scalar Relativistic Calculations on the Adsorption of Small Gold Clusters Toward Methanol Molecule.

    Science.gov (United States)

    Kuang, Xiang-Jun; Wang, Xin-Qiang; Liu, Gao-Bin

    2015-02-01

    Under the framework of DFT, an all-electron scalar relativistic calculation on the adsorption of Aun (n = 1-13) clusters toward methanol molecule has been performed with the generalized gradient approximation at PW91 level. Our calculation results reveal that the small gold cluster would like to bond with oxygen of methanol molecule at the edge of gold cluster plane. After adsorption, the chemical activities of hydroxyl group and methyl group are enhanced to some extent. The even-numbered AunCH3OH cluster with closed-shell electronic configuration is relatively more stable than the neighboring odd-numbered AunCH3OH cluster with open-shell electronic configuration. All the AunCH3OH clusters prefer low spin multiplicity (M = 1 for even-numbered AuNCH3OH clusters, M = 2 for odd-numbered AunCH3OH clusters) and the magnetic moments are mainly contributed by gold atoms. The odd-even alterations of magnetic moments and electronic configurations can be observed clearly and may be simply understood in terms of the electron pairing effect.

  16. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T. [Department of Physics, Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  17. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    Science.gov (United States)

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-01

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1-10 mm3) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 106 and 1.6 × 107 neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  18. Photon and secondary ion emission from keV cluster bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, R.G. [Texas A& M Univ., College Station, TX (United States)

    1994-12-31

    CsI clusters (Cs{sub n}I{sup {minus}}{sub n+1} n = 0 to 4) in the keV energy range (15 to 45 keV) have been used to bombard CsI targets in time-of-flight mass spectrometry experiments to study the relationships between secondary ion and photon emissions. Single ions and photons were detected simultaneously from the impact of single projectiles. The secondary ion yields from the polyatomic projectiles are proportional to the projectile momentum. The photon yields are roughly proportional to both the electronic and the nuclear stopping powers. The photon emission from the bulk of the CsI targets is attributed to excitonic processes.

  19. All-electron scalar relativistic calculation of water molecule adsorption onto small gold clusters.

    Science.gov (United States)

    Kuang, Xiang-Jun; Wang, Xin-Qiang; Liu, Gao-Bin

    2011-08-01

    An all-electron scalar relativistic calculation was performed on Au( n )H(2)O (n = 1-13) clusters using density functional theory (DFT) with the generalized gradient approximation at PW91 level. The calculation results reveal that, after adsorption, the small gold cluster would like to bond with oxygen and the H(2)O molecule prefers to occupy the single fold coordination site. Reflecting the strong scalar relativistic effect, Au( n ) geometries are distorted slightly but still maintain a planar structure. The Au-Au bond is strengthened and the H-O bond is weakened, as manifested by the shortening of the Au-Au bond-length and the lengthening of the H-O bond-length. The H-O-H bond angle becomes slightly larger. The enhancement of reactivity of the H(2)O molecule is obvious. The Au-O bond-lengths, adsorption energies, VIPs, HLGs, HOMO (LUMO) energy levels, charge transfers and the highest vibrational frequencies of the Au-O mode for Au( n )H(2)O clusters exhibit an obvious odd-even oscillation. The most favorable adsorption between small gold clusters and the H(2)O molecule takes place when the H(2)O molecule is adsorbed onto an even-numbered Au( n ) cluster and becomes an Au( n )H(2)O cluster with an even number of valence electrons. The odd-even alteration of magnetic moments is observed in Au( n )H(2)O clusters and may serve as material with a tunable code capacity of "0" and "1" by adsorbing a H(2)O molecule onto an odd or even-numbered small gold cluster.

  20. Removal of cadmium ions from aqueous solution using very small ...

    African Journals Online (AJOL)

    Solvent extraction is an energy-efficient technology which uses two immiscible phases. In this regard, solvents like hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate based ionic liquids have been used. The hydrophilicity of the metal ions is a challenge to use this method. Coordinating the metal ions by ...

  1. Effects of manganese doping on the structure evolution of small-sized boron clusters

    Science.gov (United States)

    Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming

    2017-07-01

    Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n  =  10-20 and Q  =  0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n  ⩽  13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n  ⩾  19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.

  2. On the Electronic and Atomic Structures of Small Au-N(-) (N=4-14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study

    International Nuclear Information System (INIS)

    Hakkinen, Hannu; Yoon, Bokwon; Landman, Uzi; Li, Xi; Zhai, Hua-Jin; Wang, Lai S.

    2003-01-01

    We report a joint experimental and theoretical study of the electronic and atomic structures of small gold clusters with up to 14 atoms. Well-resolved photoelectron spectra were obtained for Au-N(-) (N= 1-14) at several photon energies. Even-odd alternations were observed, where the even-sized clusters (except Au-10(-)) exhibit an energy gap between the lowest binding energy peak and the rest of the spectrum, indicating that all the neutral even-sized clusters have closed shells. The Au-10(-) spectrum reveals the existence of isomers, with the ground-state cluster exhibiting an extremely high electron binding energy. Evidence of multiple isomers was also observed in the spectra of N= 4, 8, 12, and 13. The structures of the gold cluster anions in the range N= 4-14 were investigated using first-principles simulations. A striking feature of the anionic clusters in this range is the occurrence of planar ground-state structures, which were predicted in earlier theoretical studies (Hakkinen, H.; et al. Phys. Rev. Lett. 2002, 89, 033401) and observed in ion-mobility experiments (Furche, F.; et al. J. Chem. Phys. 2002, 117, 6982) and the existence of close-lying isomers. The calculated electron detachment energies and density of states were compared with the measured data, which confirmed the ground-state structures of the anions. It is found that the main isomers observed experimentally indeed consist of planar clusters up to Au-12(-), Whereas for Au-13(-) and Au-14(-) the theoretical results from three-dimensional isomers agree better with the experiment, providing further support for the 2D to 3D structural transition at Au-12(-), as concluded from previous ion mobility experiments. We also find that small neutral clusters exhibit a tendency to form two-dimensional structures up to a size of 13 atoms

  3. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

    Science.gov (United States)

    Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun

    2014-04-15

    Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. A magnetic nanoparticle-clustering biosensor for blu-ray based optical detection of small-molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    -cost instruments limit the advancement of MNP-based assays. We report here a novel MNP-clustering small-molecule assay on an optical readout platform to overcome the limitations aforementioned with the following improvements. First, a facile MNP-clustering assay applicable to diverse small-molecules was realized......In magnetic nanoparticle (MNP)-clustering assays, a target molecule is bound to multiple receptors tethered onto MNPs, triggering MNP-clustering and leading to changes in the size of clusters. However, sandwich-type clustering requires multiple binding-sites on a target molecule, which is often...... unavailable for small-molecules. Furthermore, measuring magnetic properties as signals is not intrinsically selective regarding MNP-cluster size. Thus, the detection of few MNP-clusters is readily interfered by background signals from predominantly-existing single MNPs. Additionally, bulky and high...

  5. Computer modeling and electron microscopy of silicon surfaces irradiated by cluster ion impacts

    CERN Document Server

    Insepov, Z; Santeufemio, C; Jones, K S; Yamada, I

    2003-01-01

    A hybrid molecular dynamics model has been applied for modeling impacts of Ar and decaborane clusters, with energies ranging from 25 to 1500 eV/atom, impacting Si surfaces. Crater formation, sputtering, and the shapes of craters and rims were studied. Our simulation predicts that on a Si(1 0 0), craters are nearly triangular in cross-section, with the facets directed along the close-packed (1 1 1) planes. The Si(1 0 0) craters exhibit four fold symmetry. The craters on Si(1 1 1) surface are well rounded in cross-section and the top-view shows a complicated six fold or triangular image. The simulation results for individual gas cluster impacts were compared with experiments at low dose (10 sup 1 sup 0 ions/cm sup 2 charge fluence) for Ar impacts into Si(1 0 0) and Si(1 1 1) substrate surfaces. Atomic force microscopy and cross-sectional high-resolution transmission electron microscope imaging of individual gas cluster ion impacts into Si(1 0 0) and Si(1 1 1) substrate surfaces revealed faceting properties of t...

  6. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  7. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    International Nuclear Information System (INIS)

    Aimoto, K.; Aoyagi, S.; Kato, N.; Iida, N.; Yamamoto, A.; Kudo, M.

    2006-01-01

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au + and Au 3 + bombardment in comparison with Ga + excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au + and Ga + as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au 3 + bombardment caused intensity enhancement about 100-2600 compared with Ga + bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au 3 + , compared with Au + , therefore, was estimated to be about 10-45

  8. Smoothing of ZnO films by gas cluster ion beam

    International Nuclear Information System (INIS)

    Chen, H.; Liu, S.W.; Wang, X.M.; Iliev, M.N.; Chen, C.L.; Yu, X.K.; Liu, J.R.; Ma, K.; Chu, W.K.

    2005-01-01

    Planarization of wide-band-gap semiconductor ZnO surface is crucial for thin-film device performance. In this study, the rough initial surfaces of ZnO films deposited by r.f. magnetron sputtering on Si substrates were smoothed by gas cluster ion beams. AFM measurements show that the average surface roughness (R a ) of the ZnO films could be reduced considerably from 16.1 nm to 0.9 nm. Raman spectroscopy was used to monitor the structure of both the as-grown and the smoothed ZnO films. Rutherford back-scattering in combination with channeling effect was used to study the damage production induced by the cluster bombardment

  9. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  10. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  11. LiH−(2Σ+) attached to small clusters of 4He: A stochastic analysis

    International Nuclear Information System (INIS)

    Marinetti, F.; Gianturco, F.A.

    2012-01-01

    Graphical abstract: 3D view of the cluster LiH ∧ --He8. The three-dimensional probability densities come from DMC calculations. The He isosurface (cyan) contains about the 95% of the total He density, while the Li (orange) and H (grey) isosurfaces include respectively about the 66% and 64% of their own total density. Highlights: ► Binding strength and spatial features of small 4 He clusters doped by LiH − have been studied. ► The latter is found to be very weakly bound to either one or several bosonic He atoms. ► The calculations show that anionic partners experienced repulsive interactions with He atoms. ► The shallow, attractive wells are responsible for weakly binding the dopant. - Abstract: Diffusion Monte Carlo (DMC), after Variational Monte Carlo (VMC), calculations are carried out to assess the possible binding and the spatial collocation of the negatively charged LiH − molecule as a single dopant in small clusters of 4 He. The number of cluster adatoms is extended to N = 15 and the bosonic, quantum solvent is found to stabilize as a nearly independent cluster with the dopant molecule sitting on its surface. The spatial features displayed by such weakly bound series of complexes are discussed and analyzed.

  12. Anion photoelectron spectroscopy of small indium phosphide clusters (InxP-y; x,y=1--4)

    International Nuclear Information System (INIS)

    Xu, C.; de Beer, E.; Arnold, D.W.; Arnold, C.C.; Neumark, D.M.

    1994-01-01

    Small indium phosphide clusters having 2--8 atoms are studied using anion photoelectron spectroscopy of In x P - y (x,y=1--4). From these spectra, the electron affinities are determined. Both ground and low-lying excited electronic states of the neutral clusters are observed. An electronic gap is shown in the even cluster anion spectra

  13. Study on interaction of swift cluster ion beam with matter and irradiation effect (Joint research)

    International Nuclear Information System (INIS)

    Saito, Yuichi; Shibata, Hiromi

    2010-07-01

    This review covers results of the 'Study of interaction on swift cluster ion beam with matter and irradiation effect' supported by the Interorganization Atomic Energy Research Program from 2006FY to 2008FY. It is composed of a research abstract for each sub-group with viewgraphs which were presented at the group meeting held on March 2009 or 'Meeting of High LET radiation -From fundamental study among physics, chemistry and biology to medical applications-' sponsored by Japan Society of Radiation Chemistry, cosponsored by this research group. (author)

  14. Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes.

    Science.gov (United States)

    Cuerva, Miguel; García-Fandiño, Rebeca; Vázquez-Vázquez, Carlos; López-Quintela, M Arturo; Montenegro, Javier; Granja, Juan R

    2015-11-24

    Subnanometric noble metal clusters, composed by only a few atoms, behave like molecular entities and display magnetic, luminescent and catalytic activities. However, noncovalent interactions of molecular metal clusters, lacking of any ligand or surfactant, have not been seen at work. Theoretically attractive and experimentally discernible, van der Waals forces and noncovalent interactions at the metal/organic interfaces will be crucial to understand and develop the next generation of hybrid nanomaterials. Here, we present experimental and theoretical evidence of noncovalent interactions between subnanometric metal (0) silver clusters and aromatic rings and their application in the preparation of 1D self-assembled hybrid architectures with ditopic peptide nanotubes. Atomic force microscopy, fluorescence experiments, circular dichroism and computational simulations verified the occurrence of these interactions in the clean and mild formation of a novel peptide nanotube and metal cluster hybrid material. The findings reported here confirmed the sensitivity of silver metal clusters of small atomicity toward noncovalent interactions, a concept that could find multiple applications in nanotechnology. We conclude that induced supramolecular forces are optimal candidates for the precise spatial positioning and properties modulation of molecular metal clusters. The reported results herein outline and generalize the possibilities that noncovalent interactions will have in this emerging field.

  15. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany

    2016-09-09

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.

  16. The complex of measures on inclusion of small businesses in innovation clusters

    Directory of Open Access Journals (Sweden)

    A. V. Kupchinsky

    2016-01-01

    Full Text Available Modern practice of managing and its display in scientific publications demonstrate that development of world economy with all evidence proves the major role and the importance of sector of small business structures in national economy. In the modern world the national economy in many respects began to be determined by the balanced and sustainable development of the small business structures recognized now as conductors and creators of new opening and technologies, moreover, as the strategic instrument of the structural transformations of a modern economic system of the country often directed to high-quality increase in efficiency of reproduction process of regional economy. Now in Russia the level of development of an innovative entrepreneurship is very low. It is possible to state lack of properly created institutional environment for development of a small entrepreneurship in the innovative sphere. Clasterisation represents process of consolidation of a number of the organizations of various industries for increase in competitiveness, implementation of innovations, effective development and receipt of other benefits. According to separation of economy on real and virtual, the possibility of creation of both real, and virtual clusters increases. Creation and development of regional clusters will help to create the necessary level of activity of small business structures in innovative activities that will favorably affect increase in competitiveness of both regional, and national economy. The package of measures including measures for involvement of small business structures in clusters is developed for development of a cluster initiative and increase in innovative development of the region. Application of this program will allow to reach synergy effect at the expense of high degree of concentration and cooperation of small business structures and increase in effectiveness of their activities.

  17. A DFT study of the interaction of elemental mercury with small neutral and charged silver clusters

    Science.gov (United States)

    Sun, Lushi; Zhang, Anchao; Su, Sheng; Wang, Hua; Liu, Junli; Xiang, Jun

    2011-12-01

    Mercury adsorption on small neutral and charged Ag n clusters has been investigated by using DFT method. The results show that frontier molecular orbital theory is a useful tool to predict the selectivity of Hg adsorption. The binding energies of Hg on the cations are generally greater than those on the corresponding neutral and anionic clusters. NBO analysis indicates the electron flow in the neutral and charged complexes is mainly from the s orbital of Ag to the s orbital of Hg. For neutral and anionic complexes, electron transfer also occurs from p orbital of Hg to s orbital of Ag.

  18. Ion Clusters in Nucleation Experiments in the CERN Cloud Chamber: Sulfuric Acid + Ammonia + Dimethyl Amine + Oxidized Organics

    Science.gov (United States)

    Worsnop, D. R.; Schobesberger, S.; Bianchi, F.; Ehrhart, S.; Junninen, H.; Kulmala, M. T.

    2012-12-01

    Nucleation from gaseous precursors is an important source of aerosol particles in the atmosphere. The CLOUD experiment at CERN provides exceptionally clean and well-defined experimental conditions for studies of atmospheric nucleation and initial growth, in a 26 m3 stainless-steel chamber. In addition, the influence of cosmic rays on nucleation and nanoparticle growth can be simulated by exposing the chamber to a pion beam produced by the CERN Proton Synchrotron. A key to understanding the mechanism by which nucleation proceeds in the CLOUD chamber is the use of state-of-the-art instrumentation, including the Atmospheric Pressure interface Time-Of-Flight (APi-TOF) mass spectrometer. The APi-TOF is developed by Tofwerk AG, and Aerodyne Research, Inc., and typically obtains resolutions between 4000 and 6000 Th/Th and mass accuracies APi-TOF detected ion clusters that could directly be linked to nucleation. The composition of these ion clusters could be determined based on their exact masses and isotopic patterns. Aided by the chamber's cleanliness and the possibility of enhancing ion concentrations by using CERN's pion beam, a remarkably large fraction of the ion spectra could be identified, even for more complex chemical systems studied. For the ammonia-sulfuric acid-water system, for instance, growing clusters containing ammonia (NH3) and sulfuric acid (H2SO4) were observed up to 3300 Th. Adding dimethyl amine and/or pinanediol into the CLOUD chamber, altered the chemical compositions of the observed ion clusters accordingly. Cluster growth then included mixtures of sulfuric acid and dimethyl amine and/or a wide range of pinanediol oxidation products. The initial growth of clusters/particles was studied from smallest clusters upwards, using a range of employed instrumentation. Condensation particle counters (such as the Particle Size Magnifier, PSM, by Airmodus Oy), for instance, were specially modified to obtain aerosol number size distributions down to the size

  19. Ionic fragmentation channels in electron collisions of small molecular ions

    International Nuclear Information System (INIS)

    Hoffmann, Jens

    2009-01-01

    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD + , H 3 + and HF + has been studied. In the case of HD + the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H 3 + it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF + was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)

  20. Ion induced dipole clusters H(n)- (3 ≤ n-odd ≤ 13): density functional theory calculations of structure and energy.

    Science.gov (United States)

    Huang, Lulu; Matta, Chérif F; Massa, Lou

    2011-11-17

    We investigate anew the possible equilibrium geometries of ion induced dipole clusters of hydrogen molecular ions, of molecular formula H(n)(-) (3 ≤ n-odd ≤ 13). Our previous publications [Sapse, A. M.; et al. Nature 1979, 278, 332; Rayez, J. C.; et al., J. Chem. Phys. 1981, 75, 5393] indicated these molecules would have a shallow minimum and adopt symmetrical geometries that accord with the valence shell electron pair repulsion (VSEPR) rules for geometries defined by electron pairs surrounding a central point of attraction. These earlier calculations were all based upon Hartree-Fock (HF) calculations with a fairly small basis of atomic functions, except for the H3(-) ion for which configuration interaction (CI) calculations were carried out. A related paper [Hirao, K.; et al., Chem. Phys. 1983, 80, 237] carried out similar calculations on the same clusters, finding geometries similar to our earlier calculations. However, although that paper argued that the stabilization energy of negative ion clusters H(n)(-) is small, vibration frequencies for the whole set of clusters was not reported, and so a definitive assertion of a true equilibrium was not present. In this paper we recalculate the energetics of the ion induced dipole clusters using density function theory (DFT) B3LYP method calculations in a basis of functions (6-311++G(d,p)). By calculating the vibration frequencies of the VSEPR geometries, we prove that in general they are not true minima because not all the resulting frequencies correspond to real values. By searching the energy surface of the B3LYP calculations, we find the true minimum geometries, which are surprising configurations and are perhaps counterintuitive. We calculate the total energy and binding energy of the new geometries. We also calculate the bond paths associated with the quantum theory of atoms in molecules (QTAIM). The B3LYP/6-311++G(d,p) results, for each molecule, deliver bond paths that radiate between each polarized H2

  1. Relative dispersion of clustered drifters in a small micro-tidal estuary

    Science.gov (United States)

    Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.

    2017-07-01

    Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.

  2. Understanding gold-thiolate cluster emission from self-assembled monolayers upon kiloelectronvolt ion bombardment.

    Science.gov (United States)

    Arezki, B; Delcorte, A; Garrison, B J; Bertrand, P

    2006-04-06

    This article focuses on the emission of organometallic clusters upon kiloelectronvolt ion bombardment of self-assembled monolayers. It is particularly relevant for the elucidation of the physical processes underlying secondary ion mass spectrometry (SIMS). The experimental system, an overlayer of octanethiols on gold, was modeled by classical molecular dynamics, using a hydrocarbon potential involving bonding and nonbonding interactions (AIREBO). To validate the model, the calculated mass and energy distributions of sputtered atoms and molecules were compared to experimental data. Our key finding concerns the emission mechanism of large clusters of the form MxAuy up to M6Au5 (where M is the thiolate molecule), which were not observed under sub-kiloelectronvolt projectile bombardment. Statistically, they are predominantly formed in high-yield events, where many atoms, fragments, and (supra)molecular species are desorbed from the surface. From the microscopic viewpoint, these high-yield events mostly stem from the confinement of the projectile and recoil atom energies in a finite microvolume of the sample surface. As a result of the high local energy density, molecular aggregates desorb from an overheated liquidlike region surrounding the impact point of the projectile.

  3. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  4. ELECTROMAGNETIC THERMAL INSTABILITY WITH MOMENTUM AND ENERGY EXCHANGE BETWEEN ELECTRONS AND IONS IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Nekrasov, Anatoly K.

    2011-01-01

    Thermal instability in an electron-ion magnetized plasma, which is relevant in the intragalactic medium of galaxy clusters, solar corona, and other two-component plasma objects, is investigated. We apply the multicomponent plasma approach where the dynamics of all species are considered separately through electric field perturbations. General expressions for the dynamical variables obtained in this paper can be applied over a wide range of astrophysical and laboratory plasmas also containing neutrals and dust grains. We assume that background temperatures of electrons and ions are different and include the energy exchange in thermal equations for electrons and ions along with the collisional momentum exchange in equations of motion. We take into account the dependence of collision frequency on density and temperature perturbations. The cooling-heating functions are taken for both electrons and ions. A condensation mode of thermal instability has been studied in the fast sound speed limit. We derive a new dispersion relation including different electron and ion cooling-heating functions and other effects mentioned above and find its simple solutions for growth rates in limiting cases. We show that the perturbations have an electromagnetic nature and demonstrate the crucial role of the electric field perturbation along the background magnetic field in the fast sound speed limit. We find that at the conditions under consideration, condensation must occur along the magnetic field while the transverse scale sizes can be both larger and smaller than the longitudinal ones. The results obtained can be useful for interpretating observations of dense cold regions in astrophysical objects.

  5. Guided basin-hopping search of small boron clusters with density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melacca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework.

  6. Guided basin-hopping search of small boron clusters with density functional theory

    International Nuclear Information System (INIS)

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-01-01

    The search for the ground state structures of Boron clusters has been a difficult computational task due to the unique metalloid nature of Boron atom. Previous research works had overcome the problem in the search of the Boron ground-state structures by adding symmetry constraints prior to the process of locating the local minima in the potential energy surface (PES) of the Boron clusters. In this work, we shown that, with the deployment of a novel computational approach that incorporates density functional theory (DFT) into a guided global optimization search algorithm based on basin-hopping, it is possible to directly locate the local minima of small Boron clusters in the PES at the DFT level. The ground-state structures search algorithm as proposed in this work is initiated randomly and needs not a priori symmetry constraint artificially imposed throughout the search process. Small sized Boron clusters so obtained compare well to the results obtained by similar calculations in the literature. The electronic properties of each structures obtained are calculated within the DFT framework

  7. Equilibrium geometries, electronic structure and magnetic properties of small manganese clusters

    Science.gov (United States)

    Nayak, S. K.; Rao, B. K.; Jena, P.

    1998-12-01

    The equilibrium geometries, electronic structure and magnetic properties of small Mn clusters consisting of up to five atoms have been calculated self-consistently using first principles molecular orbital theory. The electron-electron interaction has been accounted for using the local spin density and generalized gradient approximation to the density functional theory. The atomic orbitals forming the molecular orbital have been represented separately by Gaussian and numerical basis sets. Two different computer codes (Gaussian 94 and DMOL) were used to check the numerical consistency of our calculations. 0953-8984/10/48/009/img1 is found to be a weakly bound van der Waals molecule and its binding energy depends sensitively on the choice of basis set as well as the form of the exchange-correlation potential. The binding energies are less sensitive to these approximations in larger clusters. The binding improves with cluster size, but remains significantly lower than those in other transition metal clusters. The equilibrium geometries are fairly compact and symmetric although other isomers with distorted geometries and with nearly the same energy as that of the ground state do exist for 0953-8984/10/48/009/img2. The clusters also exhibit a variety of low-lying spin multiplicities, but the ground state spin configuration is ferromagnetic with a magnetic moment of 0953-8984/10/48/009/img3. This not only contrasts with its bulk behaviour which is antiferromagnetic, but also differs from the behaviour in other transition-metal clusters where the magnetic moments/atom are always less than the free-atom value. The results are compared with available experiments on matrix isolated Mn clusters.

  8. Density functional study of the interaction of carbon monoxide with small neutral and charged silver clusters.

    Science.gov (United States)

    Zhou, Jia; Li, Zhen-Hua; Wang, Wen-Ning; Fan, Kang-Nian

    2006-06-08

    CO adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n = 1-7) has been studied with use of the PW91PW91 density functional theory (DFT) method. The adsorption of CO on-top site, among various possible sites, is energetically preferred irrespective of the charge state of the silver cluster. The cationic silver clusters generally have a greater tendency to adsorb CO than the anionic and neutral silver ones, except for n = 3 and 4, and the binding energies reach a local minimum at n = 5. The binding energies on the neutral clusters, instead, reach a local maximum at n = 3, which is about 0.87 eV, probably large enough to be captured in the experiments. Binding of CO to the silver clusters is generally weaker than that to the copper and gold counterparts at the same size and charge state. This is due to the weaker orbital interaction between silver and CO, which is caused by the larger atomic radius of the silver atom. In contrast, Au atoms with a larger nuclear charge but a similar atomic radius to silver owing to the lanthanide contraction are able to have a stronger interaction with CO.

  9. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters.

    Science.gov (United States)

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, Andries; Hasegawa, Yasuchika

    2016-11-15

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at higher temperatures. Here we report a new strategy to reduce back energy transfer losses. Nonanuclear lanthanide clusters containing terbium and gadolinium ions, Tb n Gd 9-n clusters ([Tb n Gd 9-n (μ-OH) 10 (butylsalicylate) 16 ] + NO 3 - , n = 0, 1, 2, 5, 8, 9), were synthesized to investigate the effect of energy transfer between Tb(III) ions on back energy transfer. The photophysical properties of Tb n Gd 9-n clusters were studied by steady-state and time-resolved spectroscopic techniques and revealed a longer emission lifetime with increasing number of Tb(III) ions in Tb n Gd 9-n clusters. A kinetic analysis of temperature dependence of the emission lifetime show that the energy transfer between Tb(III) ions competes with back energy transfer. The experimental results are in agreement with a theoretical rate equation model that confirms the role of energy transfer between Tb(III) ions in reducing back energy transfer losses. The results provide a new strategy in molecular design for improving the luminescence efficiency in lanthanide complexes which is important for potential applications as luminescent materials.

  10. N-(1-naphthyl) ethylenediamine dinitrate: a new matrix for negative ion MALDI-TOF MS analysis of small molecules.

    Science.gov (United States)

    Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu

    2012-09-01

    An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules (m/z negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range (m/z matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.

  11. Ab initio GW quasiparticle calculation of small alkali-metal clusters

    CERN Document Server

    Ishii, S; Louie, S G; Ohno, K

    2001-01-01

    Quasiparticle energies of small alkali-metal clusters are evaluated from first principles by means of the GW approximation with the generalized plasmon-pole model. An all-electron mixed-basis approach, in which wave function is represented as a linear combination of both plane waves and atomic orbitals, is adopted in the calculation. Obtained quasiparticle energies (ionization potential and electron affinity) are in good agreement with experimental data.

  12. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    Science.gov (United States)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  13. ToF-SIMS analysis of a fluorocarbon-grafted PET with a gold cluster ion source

    International Nuclear Information System (INIS)

    Zhu Zhengmao; Kelley, Michael J.

    2006-01-01

    Cluster ions have been recognized as a superb primary species in time of flight secondary ion mass spectroscopy (ToF-SIMS) compared with monatomic primary ions, as they significantly enhance the secondary ion yields from bulk samples. Self-assembled monolayers provide an important system for studying the fundamental mechanism involved in the yield enhancement. We used a gold cluster ion source to analyze a new type of self-assembled monolayer: a fluorocarbon-grafted polyethylene terephthalate. In addition to the structure details, which helped to understand the grafting mechanism, ToF-SIMS analysis revealed that fluorocarbon secondary ion yield enhancements by cluster ions were due to the enhanced sputter efficiency. A larger information depth may also be expected from the enhancement. Both mathematical definitions of damage cross-section and disappearance cross-section were revisited under a new context. Another cross-section parameter, sputter cross-section, was introduced to differentiate the beam induced sputter process from damage process

  14. Generation of “bastard” molecular ions from van der Waals clusters: Arn(C2Cl4)m+ ions, suspected interlopers in collection of solar neutrinos

    OpenAIRE

    Buelow, S. J.; Worsnop, D. R.; Herschbach, D. R.

    1981-01-01

    Gaseous molecular ions containing argon and perchlorethylene, Arn(C2Cl4)m+ in which n ≥ 1-29 and m ≥ 1-4, are produced by electron bombardment of van der Waals clusters formed by expanding an Ar/C2Cl4 mixture through a supersonic nozzle. Previous attempts to observe such ions in a high-pressure mass spectrometer were not successful, as with many other (“bastard”) ions that similarly lack a stable chemically bound neutral parent molecule. This is probably due to dissociation induced by the lar...

  15. Coherent structures at ion scales in fast and slow solar wind: Cluster observations

    Science.gov (United States)

    Perrone, D.; Alexandrova, O.; Zouganelis, Y.; Roberts, O.; Lion, S.; Escoubet, C. P.; Walsh, A. P.; Maksimovic, M.; Lacombe, C.

    2017-12-01

    Spacecraft measurements generally reveal that solar wind electromagnetic fluctuations are in a state of fully-developed turbulence. Turbulence represents a very complex problem in plasmas since cross-scale coupling and kinetic effects are present. Moreover, the intermittency phenomenon, i.e. the manifestation of the non-uniform and inhomogeneous energy transfer and dissipation in a turbulent system, represents a very important aspect of the solar wind turbulent cascade. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to Alfvén vortex-like structures and current sheets. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures around ion characteristic scales, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field. Moreover, some of them propagate in the plasma rest frame in the direction perpendicular to the local field. Finally, a further analysis on the electron and ion velocity distributions shows a high variability; in particular, close to coherent structures the electron and ion distribution functions appear strongly deformed and far from the thermodynamic equilibrium. Possible interpretations of the observed structures and their role in the heating process of the plasma are also discussed.

  16. Structuring molecular hydrogen around ionic dopants: Li(+) cations in small pH(2) clusters.

    Science.gov (United States)

    Ponzi, A; Marinetti, F; Gianturco, Franco A

    2009-05-28

    The formation of clusters of molecular hydrogen around a cationic charge, the Li(+) ion, is modelled by treating the global interaction as a sum of potentials where the Li(+)-H(2) forces come from a full anisotropic potential energy surface produced earlier in our group. The H(2)-H(2) interaction is taken from the literature and treated as a spherical potential between structureless bosonic solvent molecules of para-H(2) (pH(2)). The optimization of geometries and the minimum energy values are obtained via a genetic algorithm treatment whose structures are modified at the end to include a modelling of quantum effects. The results of hydrogen clustering around the cationic dopant indicate the presence of marked shell structures which are initially completed by the octahedral arrangement of the first six solvent partners, while the next shells are dominated by the mainly dispersive interaction among pH(2) molecules and show, in larger clusters, less structured solvent collocations around the ionic impurity.

  17. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? : Part 1: Reagent ion generation and chemical control of ion populations

    NARCIS (Netherlands)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric

  18. Emission processes of molecule-metal cluster ions from self-assembled monolayers of octanethiols on gold and silver

    International Nuclear Information System (INIS)

    Arezki, B.; Delcorte, A.; Bertrand, P.

    2004-01-01

    In this contribution, we focus on the emission processes of molecule-metal cluster ions from self-assembled monolayers (SAMs) of octanethiols CH 3 (CH 2 ) 7 SH on gold and silver. To improve our understanding of these complex phenomena, mass spectra and kinetic energy distributions (KEDs) of these two systems have been measured and compared using time-of-flight-SIMS under 15 keV Ga + bombardment. First, the spectra obtained from SAMs/Ag exhibit positive (M-H) m Ag m+1 + and negative (M-H) m Ag m-1 - cluster ions that are generally more intense than the (M-H) m Au n - observed for SAMs/Au. This trend is attributed to the electronegativity difference between S and these two metals resulting in a more ionic Ag-S bond. Second, our results show that, like for the SAM/Au system already investigated, unimolecular dissociation of Ag-thiolate clusters in the acceleration section of the spectrometer is an important formation mechanism. The fraction of the (M-H) m Ag n +,- aggregates formed in the vacuum via this process is even significantly higher than that of the (M-H) m Au n - cluster ions. This suggests that the cluster ions ejected from SAMs/Ag are less stable than those ejected from SAMs/Au. It is also observed that the high energy parts of the KEDs are steeper than for gold, which is probably due to the same phenomenon

  19. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  20. Multiple Populations in the Old and Massive Small Magellanic Cloud Globular Cluster NGC 121

    Science.gov (United States)

    Dalessandro, E.; Lapenna, E.; Mucciarelli, A.; Origlia, L.; Ferraro, F. R.; Lanzoni, B.

    2016-10-01

    We used a combination of optical and near-UV Hubble Space Telescope photometry and FLAMES/ESO-VLT high-resolution spectroscopy to characterize the stellar content of the old and massive globular cluster (GC) NGC 121 in the Small Magellanic Cloud (SMC). We report on the detection of multiple stellar populations, the first case in the SMC stellar cluster system. This result enforces the emerging scenario in which the presence of multiple stellar populations is a distinctive-feature of old and massive GCs regardless of the environment, as far as the light-element distribution is concerned. We find that second-generation (SG) stars are more centrally concentrated than first-generation (FG) ones. More interestingly, at odds with what is typically observed in Galactic GCs, we find that NGC 121 is the only cluster so far to be dominated by FG stars that account for more than 65% of the total cluster mass. In the framework where GCs were born with 90%-95% of FG stars, this observational finding would suggest that either NGC 121 experienced a milder stellar mass-loss with respect to Galactic GCs or it formed a smaller fraction of SG stars. Based on observations collected with NASA/ESA HST, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555 and collected at the ESO-VLT under the program 086.D-0665.

  1. A review of R-packages for random-intercept probit regression in small clusters

    Directory of Open Access Journals (Sweden)

    Haeike Josephy

    2016-10-01

    Full Text Available Generalized Linear Mixed Models (GLMMs are widely used to model clustered categorical outcomes. To tackle the intractable integration over the random effects distributions, several approximation approaches have been developed for likelihood-based inference. As these seldom yield satisfactory results when analyzing binary outcomes from small clusters, estimation within the Structural Equation Modeling (SEM framework is proposed as an alternative. We compare the performance of R-packages for random-intercept probit regression relying on: the Laplace approximation, adaptive Gaussian quadrature (AGQ, penalized quasi-likelihood, an MCMC-implementation, and integrated nested Laplace approximation within the GLMM-framework, and a robust diagonally weighted least squares estimation within the SEM-framework. In terms of bias for the fixed and random effect estimators, SEM usually performs best for cluster size two, while AGQ prevails in terms of precision (mainly because of SEM's robust standard errors. As the cluster size increases, however, AGQ becomes the best choice for both bias and precision.

  2. Magnetism of small Cr clusters: Structure, magnetic order and electron correlation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Diaz, Pedro; Chavez, Jose Luis Ricardo; Dorantes Davila, Jesus; Pastor, Gustavo [Institut fuer Theoretische Physik, Universitaet Kassel (Germany)

    2010-07-01

    The magnetic properties of small Cr{sub N} clusters (N{<=}6) are investigated in the framework of density-functional theory (DFT). The interplay between electron correlations, cluster structure and magnetic order is quantified by performing fully non-collinear spin-unrestricted calculations. Results obtained using the spin-polarized local density approximation (LDA) and the generalized-gradient approximation (GGA) are contrasted. A dimer-based growth pattern is found in all considered low-lying isomers, with very short equilibrium bond lengths (typically d{sub eq}{sup GGA}=1.55-1.65 A) alternating with relative long ones (typically d{sub eq}{sup GGA}=2.75-2.85 A). Strong local magnetic moments vector {mu}{sub i} are obtained for the relaxed geometries which show a collinear magnetic order with antiparallel (parallel) alignment of the vector {mu}{sub i} along the short (long) bonds. Despite quantitative differences, both LDA and GGA functionals yield collinear ground-state solutions for the fully relaxed structures, non-collinear spin arrangements are found only for particular highly symmetric (non dimerized) geometries. The present work demonstrates that the magnetic frustration in compact Cr clusters, is solved by dimerization rather than by non-collinearity of the local moments. Finally, implications of the present trends for the ground-state structure and magnetism of larger Cr{sub N} clusters are discussed.

  3. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa

    2014-01-15

    The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.

  4. Identification and Mapping of Readiness of Micro and Small Coffee Industry Cluster Development

    Directory of Open Access Journals (Sweden)

    Lya Aklimawati

    2015-12-01

    Full Text Available Cluster development of micro and small-scaled coffee industry is an effortto improve the economy of community by utilizing local resources. This studywas aimed to identify phase of cluster growth through determinant factors ofindustrial cluster growth; to assess a linkage between economy players in theindustrial cluster; and to identify strength, weakness, opportunity, and threat incoffee industry development. This research was carried out in Sumberwringin,Bondowoso District, East Java. Survey method through direct observation andinterviews were conducted in this study. Data collected included primary andsecondary data. Number of respondents were 25 industry players selected byjudgement sampling method. The data were analyzed by exploratory descriptivewith content analysis method. This research concluded that industrial clusterstudied was still in phase of formation and initiative (embryo and its growthpattern followed Pattern III. Interrelationship between core industries has notbeen established, while linkage between core industries and supporting industrieshad already well-established. Strength and opportunity in coffee industrydevelopment included raw materials availability, market segment growth. Smalland micro enterprises credit facility, supporting facility, and labor availability.Constraints and threat faced by coffee industry included limited market access,in adequate machineries, limited working capital, raw materials quality, inconsistentproduct quality, credit claim, and competitors.

  5. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    Science.gov (United States)

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.

  6. Surface Modification of Silicone Rubber for Adhesion Patterning of Mesenchymal Stem Cells by Water Cluster Ion Beam

    Science.gov (United States)

    Sommani, Piyanuch; Ichihashi, Gaku; Ryuto, Hiromichi; Tsuji, Hiroshi; Gotoh, Yasuhito; Takaoka, Gikan H.

    2011-01-01

    Biocompatibility of silicone rubber sheet (SR) was improved by the water cluster ion irradiation for adhesion patterning of mesenchymal stem cells (MSCs). The water cluster ions were irradiated at acceleration voltage of 6 kV and doses of 1014-1016 ions/cm2. The effect of ion dose on changes in wettability and surface atomic bonding state was observed. Compared to the unirradiated SR, about four-time smoother surface on the irradiated one was observed. Water contact angle decreased with an increase in the ion dose up to 1×1015 ions/cm2. With an increase in ion dose, XPS showed decrease of atomic carbon due to lateral sputtering effect and increase of atomic oxygen due to surface oxidation. After 7 days in vitro culture, the complete adhesion pattern of the rat MSCs was obtained on the irradiated SR at dose of 1×1015 ions/cm2, corresponding to the low contact angle of 87°. At low dose, the partial pattern on the irradiated region was observed instead.

  7. Controllable fabrication of amorphous Si layer by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vorlíček, Vladimír; Dejneka, Alexandr; Chvostová, Dagmar; Jäger, Aleš; Vacík, Jiří; Jastrabík, Lubomír; Naramoto, H.; Narumi, K.

    2013-01-01

    Roč. 98, SI (2013), s. 49-55 ISSN 0042-207X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : energetic cluster s * silicon * surface modification * amorphization * nanostructure * Raman scattering * ion channeling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.426, year: 2013 http://ac.els-cdn.com/S0042207X13001759/1-s2.0-S0042207X13001759-main.pdf?_tid=04e9c946-21dd-11e3-b076-00000aacb361&acdnat=1379672070_859355b2850a09ac74bc8ff413e35dda

  8. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    Science.gov (United States)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  9. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl 4 ] (2-) Ions.

    Science.gov (United States)

    Schiavo, Loredana; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Carotenuto, Gianfranco

    2016-01-01

    Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4](2-) ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.

  10. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  11. Clustering of nitrogen ions in weakly ionized gas mixtures Physical chemistry of planetary atmospheres (Titan, earth)

    Science.gov (United States)

    Speller, C. V.

    The formation of N2 clusters in N2/CH4, N2/C2H2, and N2/O2 mixtures is investigated experimentally, and the implications of the results for the chemistry of the Titan and earth atmospheres are considered. The ions produced in a reaction chamber at pressure 1-700 torr and temperature 100-300 K by alpha irradiation (40 microcurie/sq cm from Am-241) are bled through a 50-micron-diameter hole, focused and accelerated by three plane electrostatic lenses to an injection energy of about 3 eV, and analyzed in a 4-pole mass spectrometer operating at pressures between 1 ntorr and 100 microtorr. The thermochemical constants of the association reactions are computed, and the results are presented in graphs, diagrams, and tables. The results are shown to support the hypothesis of Capone et al. (1981), that H2CN(+)N2 may play an intermediary role in the formation of the Titan atmosphere, and a similar role for H2CN(+)(N2)2 is suggested. The contribution of O4(+)N2 to the formation of hydrated ions in the earth stratosphere is estimated as negligible.

  12. Studies of Interactions of Positive Helium Ions with Small Neutrals at Temperatures Below 50K

    Science.gov (United States)

    Schauer, Martin Michael

    1990-01-01

    Interactions of He^+ ions with small neutrals are important because of their fundamental nature and applicability to other areas of research. In the past, very little work has been done on such systems at very low temperatures (T Boehringer and Arnold (1986) and Johnsen, Chen, and Biondi (1980). A new method of detecting the ions in the trap was also developed and implemented. The Fourier Transform Ion Z-resonance (FTIZR) technique took advantage of an induced coherence in the oscillations of the ions in the trap. This method allowed for measurement of faster ion -neutral reactions. This method was demonstrated by studying the non -resonant charge transfer process ^3He ^+{+}^4He{toatop >=ts}^3He{+}^4He^+. These measurements confirmed that the forward reaction is endothermic by about 1.1 meV.

  13. Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering

    Directory of Open Access Journals (Sweden)

    L. A. Bulavin

    2015-07-01

    Full Text Available The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3 - 1.8 % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter.

  14. Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Tomchuk, O.V.; Avdeev, M.V.

    2015-01-01

    The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3/1.8) % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter

  15. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments

    Czech Academy of Sciences Publication Activity Database

    Castrovilli, M. C.; Markush, P.; Bolognesi, P.; Rousseau, P.; Maclot, S.; Cartoni, A.; Delaunay, R.; Domaracka, A.; Kočišek, Jaroslav; Huber, B. A.; Avaldi, L.

    2017-01-01

    Roč. 19, č. 30 (2017), s. 19807-19814 ISSN 1463-9076 Institutional support: RVO:61388955 Keywords : fragmentation * nano-hydrated 5BrU clusters * low energy carbon ions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  16. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments

    Czech Academy of Sciences Publication Activity Database

    Castrovilli, M. C.; Markush, P.; Bolognesi, P.; Rousseau, P.; Maclot, S.; Cartoni, A.; Delaunay, R.; Domaracka, A.; Kočišek, Jaroslav; Huber, B. A.; Avaldi, L.

    2017-01-01

    Roč. 19, č. 30 (2017), s. 19807-19814 ISSN 1463-9076 Institutional support: RVO:61388955 Keywords : fragmentation * nano -hydrated 5BrU clusters * low energy carbon ions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  17. Solar wind dependence of ion parameters in the Earth's magnetospheric region calculated from CLUSTER observations

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2008-03-01

    Full Text Available Moments calculated from the ion distributions (~0–40 keV measured by the Cluster Ion Spectrometry (CIS instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005. Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS and the Cluster Active Archive (CAA. Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1 compared to periods of slow solar wind (100–400 km s−1. The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.

  18. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    Science.gov (United States)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  19. Structural calculations and experimental detection of small Ga mS n clusters using time-of-flight mass spectrometry

    Science.gov (United States)

    BelBruno, J. J.; Sanville, E.; Burnin, A.; Muhangi, A. K.; Malyutin, A.

    2009-08-01

    Ga mS n clusters were generated by laser ablation of a solid sample of Ga 2S 3. The resulting molecules were analyzed in a time-of-flight mass spectrometer. In addition to atomic species, the spectra exhibited evidence for the existence of GaS3+, GaS4+, GaS5+, and GaS6+ clusters. The potential neutral and cationic structures of the observed Ga mS n clusters were computationally investigated using a density-functional approach. Reference is made to the kinetic pathways required for production of clusters from the starting point of the stoichiometric molecule or molecular ion. Cluster atomization enthalpies are compared with bulk values from the literature.

  20. Relaxation effects in ionic mobility and cluster formation: negative ions in SF{sub 6} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A M; De Urquijo, J; Hinojosa, G [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, PO Box 48-3, 62251, Cuernavaca, Mor. (Mexico); Hernandez-Avila, J L [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo 180, 02200 Mexico, D.F. (Mexico); Basurto, E, E-mail: juarez@fis.unam.m [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Av. San Pablo 180, 02200 Mexico, D.F. (Mexico)

    2010-06-15

    The relaxation effects of the ionic mobility and the formation of negative-ion clusters in SF{sub 6} are studied in this work. For this purpose, we have measured the mobility of negative ions in SF{sub 6} over the pressure range 100-800 Torr at a fixed value of density-normalized electric field, E/N, of 20 Td (1 Townsend = 10{sup -17} V cm{sup 2}). The data obtained show a clear dependence of the negative-ion drift velocity on drift distance. It is observed that the drift velocity (mobility) reaches a steady-state value only for drift distances above 2 cm, over the studied pressure range. In addition to this, we have observed that the ionic mobility depends strongly on the gas pressure. An explanation of this dependence of the ionic mobility on gas pressure is given in terms of a negative-ion clustering formation process. It was found that the assumption of a linear dependence of the cluster ion mass on pressure provides a satisfactory explanation for the observed mobilities.

  1. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn (N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ̄N increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed. © 2013 Elsevier B.V.

  2. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... while CuCoNO, Co3NO, Cu3CoNO, Cu2Co3NO, Cu3Co3NO and Cu6CoNO clusters display stronger chemical stability. Magnetic and electronic properties are also discussed. The magnetic moment is affected by charge transfer and the spd hybridization. Keywords. CumConNO (m + n = 2–7) clusters; ...

  3. Scale invariant SURF detector and automatic clustering segmentation for infrared small targets detection

    Science.gov (United States)

    Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong

    2017-06-01

    The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.

  4. Clustering Information of Non-Sampled Area in Small Area Estimation of Poverty Indicators

    Science.gov (United States)

    Sundara, V. Y.; Kurnia, A.; Sadik, K.

    2017-03-01

    Empirical Bayes (EB) is one of indirect estimates methods which used to estimate parameters in small area. Molina and Rao has been used this method for estimates nonlinear small area parameter based on a nested error model. Problems occur when this method is used to estimate parameter of non-sampled area which is solely based on synthetic model which ignore the area effects. This paper proposed an approach to clustering area effects of auxiliary variable by assuming that there are similarities among particular area. A simulation study was presented to demonstrate the proposed approach. All estimations were evaluated based on the relative bias and relative root mean squares error. The result of simulation showed that proposed approach can improve the ability of model to estimate non-sampled area. The proposed model was applied to estimate poverty indicators at sub-districts level in regency and city of Bogor, West Java, Indonesia. The result of case study, relative root mean squares error prediction of empirical Bayes with information cluster is smaller than synthetic model.

  5. Application of ion beam irradiated ePTFE to repair small vessel injuries

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan) and Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)]. E-mail: norikichi@ionbeams.riken.jp; Suzuki, Y. [Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ujiie, H. [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666 (Japan); Hori, T. [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666 (Japan); Iwaki, M. [Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, T. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2007-04-15

    In surgery, bleeding from small injured vessels often requires prompt hemostasis without occlusion. This study evaluated the usefulness of 0.06 mm thick ion beam irradiated ePTFE sheets to repair small holes in vessels. Both surfaces of ePTFE sheets were irradiated with a 150 keV-Ar{sup +} beam with fluences of 5 x 10{sup 14} ions/cm{sup 2}. A small hole up to 2 mm in diameter was created in the common carotid artery of a rabbit. The defect was wrapped with an ion beam irradiated or non-irradiated ePTFE sheet. Fibrin glue was used to fix the ePTFE sheets to the common carotid artery. Hemostasis was instantly obtained with ion beam irradiated ePTFE but was rather difficult when using a non-irradiated ePTFE sheet. Three weeks after implantation, no occlusion was observed. Histological examination showed that the ePTFE sheets functioned as a scaffold for vessel wall regeneration. Thin ion beam irradiated ePTFE would be useful in vascular surgery.

  6. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Stephenson Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom); Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D. [School of Civil Engineering and Geosciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)

    2016-07-15

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  7. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    International Nuclear Information System (INIS)

    Sano, Naoko; Barlow, Anders J.; Cumpson, Peter J.; Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D.

    2016-01-01

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  8. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  9. Gold-thiolate cluster emission from SAMs under keV ion bombardment: Experiments and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Arezki, B.; Delcorte, A.; Chami, A.C.; Garrison, B.J.; Bertrand, P.

    2003-01-01

    In this contribution the emission of gold-molecule cluster ions from self-assembled monolayers (SAMs) of alkanethiols on gold is investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Layers of alkanethiols [CH 3 (CH 2 ) n SH] with various chain lengths (n=8, 12, 16) have been chosen because they form well-ordered molecular monolayers on gold. First, we compare and interpret the yields and energy spectra of gold-thiolate cluster ions, obtained for different thiol sizes. Our results show that the unimolecular dissociation of larger aggregates in the acceleration section of the spectrometer constitutes a significant formation channel for gold-molecule clusters. Second, we present preliminary results of molecular dynamics simulations performed in order to improve our understanding of the cluster emission processes. These calculations have been conducted using 8 keV projectiles and a long-range term in the hydrocarbon potential in order to account for the van der Waals forces between the thiol chains

  10. Protocol for digital intervention for effective health promotion of small children - a cluster randomized trial.

    Science.gov (United States)

    Pakarinen, Anni; Flemmich, Magda; Parisod, Heidi; Selänne, Laura; Hamari, Lotta; Aromaa, Minna; Leppänen, Ville; Löyttyniemi, Eliisa; Smed, Jouni; Salanterä, Sanna

    2018-03-08

    This article introduces the protocol of a study aiming to evaluate the effectiveness of digital WellWe intervention in supporting the participation of families with small children in the promotion of their health. Early childhood is a meaningful period for building a strong base for good health. Parents play a key role in affecting the health behaviour and psychosocial development of their children. A family-centred approach makes it possible to support families' individual health literacy needs and empower them to take actions towards promoting healthier behaviour. However, there are a lack of family-centred digital health interventions intended for parents and their small children. The study is designed as a two-arm cluster, randomized, controlled trial with a four-month follow-up. The data is being collected from 200 families with a four-year old child. Cluster randomization is being performed at the municipality level. Municipalities (N=4) located in Southwest Finland, comprising child health clinics (N=15) with their family clients, were randomly allocated to either an intervention (WellWe intervention) or a control group (usual care). The outcome measures include parental self-efficacy for healthy behaviours, mindfulness in parenting and the family-centred approach of the extensive health examination. Data collection is being performed at baseline, after the intervention and at a four-month follow-up. The results from this study will make it possible to determine whether this new method can be recommended for implementation in child health clinic settings to support the participation of families with small children in promoting their health. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Ion beams provided by small accelerators for material synthesis and characterization

    Science.gov (United States)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  12. Reference masses for precision mass spectrometry design and implementation of a Pierce geometry to the cluster Ion source at ISOLTRAP

    CERN Document Server

    Lommen, Jonathan

    At the mass spectrometer ISOLTRAP carbon clusters ($^{12}$Cn, 1$\\leqslant$n$\\leqslant$25) are provided as reference masses, which are of particular importance in higher mass ranges (m $\\geqslant$ 200u). In this mass range the measurlment uncertainty is increasingly dominated by the difference of the reference mass and the mass of the ion of interest. Using carbon clusters instead of the common $^{133}$Cs ions, this difference decreases. The carbon clusters are produced in a laser ion source which has been improved in the frame of this thesis. The fluctuations of the count rate have been investigated as a function of the laser energy. Furthermore, the energy density at the target has been increased by implementation of a telescope into the laser beam line, which leads to a more narrow energy distribution of the ions. Through the exact adjustment of timing and length of a pulsed cavity an energy range with constant count rate could be selected. In order to provide ideal starting conditions during and after the ...

  13. Master Equation Studies of Collision-Induced Processes of Large Hydrocarbon Ions and Clusters

    National Research Council Canada - National Science Library

    Troe, Jurgen

    2003-01-01

    .... Calibrating collisional stabilization against measured fragmentation rates, collisional energy transfer of excited ions is shown to proceed at the ion-molecule collision rate with average energies...

  14. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy.

    Science.gov (United States)

    Touboul, David; Brunelle, Alain; Halgand, Frédéric; De La Porte, Sabine; Laprévote, Olivier

    2005-07-01

    Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism.

  15. piRNA analysis framework from small RNA-Seq data by a novel cluster prediction tool - PILFER.

    Science.gov (United States)

    Ray, Rishav; Pandey, Priyanka

    2017-12-19

    With the increasing number of studies focusing on PIWI-interacting RNA (piRNAs), it is now pertinent to develop efficient tools dedicated towards piRNA analysis. We have developed a novel cluster prediction tool called PILFER (PIrna cLuster FindER), which can accurately predict piRNA clusters from small RNA sequencing data. PILFER is an open source, easy to use tool, and can be executed even on a personal computer with minimum resources. It uses a sliding-window mechanism by integrating the expression of the reads along with the spatial information to predict the piRNA clusters. We have additionally defined a piRNA analysis pipeline incorporating PILFER to detect and annotate piRNAs and their clusters from raw small RNA sequencing data and implemented it on publicly available data from healthy germline and somatic tissues. We compared PILFER with other existing piRNA cluster prediction tools and found it to be statistically more accurate and superior in many aspects such as the robustness of PILFER clusters is higher and memory efficiency is more. Overall, PILFER provides a fast and accurate solution to piRNA cluster prediction. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. cluster

    Indian Academy of Sciences (India)

    has been investigated electrochemically in positive and negative microenvironments, both in solution and in film. Charge nature around the active centre ... in plants, bacteria and also in mammals. This cluster is also an important constituent of a ..... selection of non-cysteine amino acid in the active centre of Rieske proteins.

  17. Green function study of quantum transport in ultra-small devices with embedded atomistic clusters

    International Nuclear Information System (INIS)

    Barker, J R; Martinez, A; Svizhenko, A; Anantram, A; Asenov, A

    2006-01-01

    Transport in limiting scale MOSFET transistors will be strongly influenced by quantum effects and the presence of atomistic scattering centres either intentionally or un-intentionally present in the channel and the device environs. The scattering in such systems is non-asymptotic and the selfaveraging conditions of the Kohn-Luttinger theorem fail so that a self-energy for impurity scattering does not exist. Atomistic scattering must therefore be treated non-perturbatively. Previously it has been shown that quantized micro-vortices may occur at definite energies in the current flow contributing to both the blocking effect and to effective mobility. The present study uses the Glasgow and NASA NEGF simulators to study vortex formation and tunnelling through small clusters of atomistic impurities arranged with various configurations within the 5 nm wide by 12 nm long channel of a Double Gate MOSFET. The I-V characteristics and the threshold voltage are severely affected by the distribution of the charges in the channel. A variety of different geometry atomistic clusters have been studied. Examination of the energy dependent current density allows an evaluation of the admixture of strong quantum flows such as micro-vortices to the net current. It is found that the threshold voltage and conductance are strongly dependent on the impurity configuration. The I-V characteristics are monotonic in most cases due to the strong thermal smoothing that prevents resolution of the mode structure

  18. Determination of ionization energies of small silicon clusters with vacuum?ultraviolet (VUV) radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Leone, Stephen R.; Duncan, Michael A.; Ahmed, Musahid

    2009-09-23

    In this work we report on single photon vacuum ultraviolet photoionization of small silicon clusters (n=1-7) produced via laser ablation of Si. The adiabatic ionization energies (AIE) are extracted from experimental photoionization efficiency (PIE) curves with the help of Frank?Condon simulations, used to interpret the shape and onset of the PIE curves. The obtained AIEs are (all energies are in eV): Si (8.13+-0.05), Si2 (7.92+-0.05), Si3 (8.12+-0.05), Si4 (8.2+-0.1), Si5 (7.96+-0.07), Si6 (7.8+-0.1), and Si7 (7.8+-0.1). Most of the experimental AIE values are in good agreement with ab initio electronic structure calculations. To explain observed deviations between the experimental and theoretical AIEs for Si4 and Si6, a theoretical search of different isomers of these species is performed. Electronic structure calculations aid in the interpretation of the a2PIu state of Si2+ dimer in the PIE spectrum. Time dependent density functional theory (TD-DFT) calculations are performed to reveal the energies of electronically excited states in the cations for a number of Si clusters.

  19. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  20. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  1. The binding of CO molecule with small Wn(n = 2-9) clusters: a DFT investigation

    Science.gov (United States)

    Sun, Xiyuan; Du, Jiguang

    2014-08-01

    The hybrid DFT functional has been utilized to investigate CO adsorption on small W n ( n = 2-9) clusters. The reactivity-selectivity descriptor Δf( r) is proved to be an appropriate tool for predicting the local adsorption site. Our results indicate that the binding of CO to tungsten cluster prefers terminal adsorption mode except for W3 trimer. The Wiberg bond index can predict the interaction between W atoms and CO molecule to a good accuracy using a linear fit. The dependency on number of adsorbate and charge state of host clusters is also investigated. The high CO coverage seriously weakens the W-CO interaction. The anion cluster reveals the stronger interaction with CO molecule than cation and neutral ones. Moreover, the interesting coverage-dependence is revealed for anion cluster.

  2. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism

    International Nuclear Information System (INIS)

    Gardet, G.

    1995-01-01

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)

  3. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  4. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    Science.gov (United States)

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters.

  5. Numerical modeling of a small recirculating induction accelerator for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Barnard, J.J.; Friedman, A.; Grote, D.P.; Lund, S.M.; Newton, M.A.; Fessenden, T.J.; Yu, S.S.

    1994-01-01

    A series of small-scale experiments has been proposed to study critical physics issues of a circular induction accelerator for heavy-ion fusion. Because the beam dynamics will be dominated by space charge, the experiments require careful design of the lattice and acceleration schedule. A hierarchy of codes has been developed for modeling the experiments at different levels of detail. The codes are discussed briefly, and examples of the output are presented

  6. Influence of capture to excited states of multiply charged ion beams colliding with small molecules

    International Nuclear Information System (INIS)

    Montenegro, P; Monti, J M; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-01-01

    Electron capture by multiply charged ions impacting on small molecules is theoretically investigated. Particular attention is paid to the case of biological targets. The interest is focused on the importance of the transition to excited final states which can play a dominant role on the total capture cross sections. Projectiles at intermediate and high collision energies are considered. Comparison with existing experimental data is shown. (paper)

  7. Optimization and control of a small angle ion source using an adaptive neural network controller

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.K.; Mead, W.C.; Bowling, P.S.; Jones, R.D.; Barnes, C.W.

    1993-09-01

    This project developed an automated controller based on an artificial neural network and evaluated its applicability in a real-time environment. This capability was developed within the context of a small angle negative ion source on the Discharge Test Stand at Los Alamos. The controller processes information obtained from the beam current waveform, developing a figure of merit (fom) to determine the ion source operating conditions. The fom is composed of the magnitude of the beam current, the stability of operation, and the quietness of the beam. Using no knowledge of operating conditions, the controller begins by making of rough scan of the four-dimensional operating surface. This surface uses as independent variables the anode and cathode temperatures, the hydrogen flow rate, and the arc voltage. `Me dependent variable is the fom described above. Once the rough approximation of the surface has been determined, the network formulates a model from which it determines the best operating point. The controller takes the ion source to that operating point for a reality check. As real data is fed in, the model of the operating surface is updated until the neural network`s model agrees with reality. The controller then uses a gradient ascent method to optimize the operation of the ion source. Initial tests of the controller indicate that it is remarkably capable. It has optimized the operation of the ion source on six different occasions bringing the beam to excellent quality and stability.

  8. Performance and role of the breast lesion excision system (BLES) in small clusters of suspicious microcalcifications.

    Science.gov (United States)

    Scaperrotta, Gianfranco; Ferranti, Claudio; Capalbo, Emanuela; Paolini, Biagio; Marchesini, Monica; Suman, Laura; Folini, Cristina; Mariani, Luigi; Panizza, Pietro

    2016-01-01

    To assess the diagnostic performance of the BLES as a biopsy tool in patients with ≤ 1 cm clusters of BIRADS 4 microcalcifications, in order to possibly avoid surgical excision in selected patients. This is a retrospective study of 105 patients undergone to stereotactic breast biopsy with the BLES. It excises a single specimen containing the whole mammographic target, allowing better histological assessment due to preserved architecture. Our case series consists of 41 carcinomas (39%) and 64 benign lesions (61%). Cancer involved the specimen margins in 20/41 cases (48.8%) or was close to them (≤ 1 mm) in 14 cases (34.1%); margins were disease-free in only 7 DCIS (17.1%). At subsequent excision of 39/41 malignant cases, underestimation occurred for 5/32 DCIS (15.6%), residual disease was found in 15/39 cancers (38.5%) and no cancer in 19/39 cases (48.7%). For DCIS cases, no residual disease occurred for 66.7% G1-G2 cases and for 35.3% G3 cases (P=0.1556) as well as in 83.3%, 40.0% and 43.8% cases respectively for negative, close and positive BLES margins (P=0.2576). The BLES is a good option for removal of small clusters of breast microcalcifications, giving better histological interpretation, lower underestimation rates and possibly reducing the need of subsequent surgical excision in selected patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. OGLE Collection of Star Clusters. New Objects in the Magellanic Bridge and the Outskirts of the Small Magellanic Cloud

    Science.gov (United States)

    Sitek, M.; Szymański, M. K.; Udalski, A.; Skowron, D. M.; Kostrzewa-Rutkowska, Z.; Skowron, J.; Karczmarek, P.; Cieślar, M.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Mróz, P.; Pawlak, M.; Poleski, R.; Ulaczyk, K.

    2017-12-01

    The Magellanic System (MS) encompasses the nearest neighbors of the Milky Way, the Large (LMC) and Small (SMC) Magellanic Clouds, and the Magellanic Bridge (MBR). This system contains a diverse sample of star clusters. Their parameters, such as the spatial distribution, chemical composition and age distribution yield important information about the formation scenario of the whole Magellanic System. Using deep photometric maps compiled in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV) we present the most complete catalog of star clusters in the Magellanic System ever constructed from homogeneous, long time-scale photometric data. In this second paper of the series, we show the collection of star clusters found in the area of about 360 square degrees in the MBR and in the outer regions of the SMC. Our sample contains 198 visually identified star cluster candidates, 75 of which were not listed in any of the previously published catalogs. The new discoveries are mainly young small open clusters or clusters similar to associations.

  10. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    Science.gov (United States)

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  11. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    Science.gov (United States)

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  12. Small Sample Performance of Bias-corrected Sandwich Estimators for Cluster-Randomized Trials with Binary Outcomes

    Science.gov (United States)

    Li, Peng; Redden, David T.

    2014-01-01

    SUMMARY The sandwich estimator in generalized estimating equations (GEE) approach underestimates the true variance in small samples and consequently results in inflated type I error rates in hypothesis testing. This fact limits the application of the GEE in cluster-randomized trials (CRTs) with few clusters. Under various CRT scenarios with correlated binary outcomes, we evaluate the small sample properties of the GEE Wald tests using bias-corrected sandwich estimators. Our results suggest that the GEE Wald z test should be avoided in the analyses of CRTs with few clusters even when bias-corrected sandwich estimators are used. With t-distribution approximation, the Kauermann and Carroll (KC)-correction can keep the test size to nominal levels even when the number of clusters is as low as 10, and is robust to the moderate variation of the cluster sizes. However, in cases with large variations in cluster sizes, the Fay and Graubard (FG)-correction should be used instead. Furthermore, we derive a formula to calculate the power and minimum total number of clusters one needs using the t test and KC-correction for the CRTs with binary outcomes. The power levels as predicted by the proposed formula agree well with the empirical powers from the simulations. The proposed methods are illustrated using real CRT data. We conclude that with appropriate control of type I error rates under small sample sizes, we recommend the use of GEE approach in CRTs with binary outcomes due to fewer assumptions and robustness to the misspecification of the covariance structure. PMID:25345738

  13. Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory

    NARCIS (Netherlands)

    Cremer, Dieter; Kraka, Elfi; Filatov, Michael

    2008-01-01

    Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative

  14. Understanding responsible innovation in small producers’ clusters in Northern Vietnam : A grounded theory approach to globalization and poverty alleviation

    NARCIS (Netherlands)

    Voeten, J.J.

    2012-01-01

    The PhD thesis explores new economic dynamics within poor small producers’ clusters in craft villages in northern Vietnam; a country in full economic swing after market economy reforms and opening up to the world. The central research question of the thesis - positioned in current debates about

  15. Emergence of small-world anatomical networks in self-organizing clustered neuronal cultures.

    Directory of Open Access Journals (Sweden)

    Daniel de Santos-Sierra

    Full Text Available In vitro primary cultures of dissociated invertebrate neurons from locust ganglia are used to experimentally investigate the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. At all the different stages of the culture's development, identification of neurons' and neurites' location by means of a dedicated software allows to ultimately extract an adjacency matrix from each image of the culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main network's characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graph's micro- and meso-scale properties emerge. Finally, we identify the main physical processes ruling the culture's morphological transformations, and embed them into a simplified growth model qualitatively reproducing the overall set of experimental observations.

  16. Island-size distributions in submonolayer epitaxial growth: Influence of the mobility of small clusters

    International Nuclear Information System (INIS)

    Bartelt, M.C.; Guenther, S.; Kopatzki, E.; Behm, R.J.; Evans, J.W.

    1996-01-01

    We examine the influence of dimer mobility on the size distribution of two-dimensional islands formed by irreversible nucleation and growth during deposition. We first characterize the transition in scaling of the mean island density with increasing dimer mobility, from the classic form described by Venables [Philos. Mag. 27, 697 (1973)] to the modified form for open-quote open-quote rapid close-quote close-quote mobility described by Villain et al. [J. Phys. (France) I 2, 2107 (1992)]. The corresponding transition in the asymptotic scaling function describing the shape of the island-size distribution is then also characterized. In addition, we contrast the mean-field form of the scaling function for rapid dimer mobility with that for zero mobility. Analysis of experimental data for Au/Au(100), Fe/Fe(100), Cu/Cu(100), and Pt/Pt(111) homoepitaxy reveals no clear evidence for a regime of modified island density scaling due to rapid dimer mobility. However, for Fe/Fe(100) below 400 K, we argue that mobility of small clusters significantly influences the shape of the island-size distribution, even before it affects the mean island density. copyright 1996 The American Physical Society

  17. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    Science.gov (United States)

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔHCOS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O COS + H 2 O + H 2 SO 4 -H 2 O COS + H 2 O+(H 2 SO 4 ) 2 . Kinetic simulations show that the addition of H 2 SO 4 can increase the reaction rate constants. Consequently, adding an appropriate amount of sulfuric acid promotes the catalytic hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Dynamic study of small metallic clusters]; Estudio Dinamico de Pequenos Agregados Metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M.J. [Valladolid Univ. (Spain). Dept. de Fisica Teorica; Jellinek, J. [Argonne National Lab., IL (United States)

    1995-12-31

    We present a brief introduction to computer simulation techniques (particularly to classical molecular dynamics) and their application to the study of the thermodynamic properties of a material system. The basic concepts are illustrated in the study of structural and energetic properties such as the liquid-solid transition and the fragmentation of small clusters of nickel. [Espanol] Presentamos una breve introducci{acute o}n de las t{acute e}cnicas de simulaci{acute o}n por ordenador (en particular de la Din{acute a}mica Molecular cl{acute a}sica) y de su aplicaci{acute o}n al estudio de las propiedades termodin{acute a}micas de un sistema material. Los conceptos b{acute a}sicos se ilustran en el estudio de las propieades estructurales y energ{acute e}ticas, as{acute i} como de la transici{acute o}n de fase s{acute o}lido-l{acute i}quido y de las fragmentaciones de peque{tilde n}os agregados de n{acute i}quel.

  19. Study of structure and spectroscopy of water–hydroxide ion clusters ...

    Indian Academy of Sciences (India)

    Experimen- talists are interested in determining the bonding,1–18 structure and spectroscopy of these systems and the- oreticians have contributed to the logical explanation of experimental findings. There are different types of systems ranging from atomic clusters, especially noble gas clusters (modelled by Lennard Jones ...

  20. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    International Nuclear Information System (INIS)

    Hassan, N.M.

    2000-01-01

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The cesium (Cs-137) and technetium (Tc-99) ion exchange removal is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as anionic pertechnetate ) from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Tech nology Center2 demonstrated the conceptualized flow sheet parameters with an Envelope C sample from Hanford Tank 241-AN-107. Those experiments also included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc

  1. Small-angle scattering of ions or atoms by atomic hydrogen

    International Nuclear Information System (INIS)

    Franco, V.

    1982-01-01

    A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies

  2. Electron-ion plasma dynamics in the presence of highly charged dust-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Djebli, Mourad, E-mail: mdjebli@usthb.dz; Benkhelifa, El-Amine [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2015-05-15

    Electron-ion plasma expansion is studied in the presence of positively (negatively) highly charged uniformly distributed dust particles, considered as impurities. For that purpose, a multi-fluid model is used, where the charged impurities characteristics are included in Poisson's equation. We found that ion acceleration is enhanced by the presence of positively charged dust. The latter leads to spiky structures in the ion front which have a higher amplitude as the charge increases. The charged impurities have a significant effect when the combination of their charge and density is greater than a critical value which depends on ion to electron temperature ratio.

  3. CLUSTER AS A MODEL OF SUSTAINABLE COMPETITIVENESS OF SMALL AND MEDIUM ENTERPRENEURSHIP IN THE TOURIST MARKET

    Directory of Open Access Journals (Sweden)

    Kresimir Mikinac

    2010-12-01

    when there is a need of adjusting to a new value system in the European tourist market, where knowledge and innovation are becoming the backbone of competitive advantage, the implementation of a clusterization model in the tourist market can have a positive impact on the increase of economic efficiency of small and medium enterprises gaining their maximum from the environment in which those companies operate

  4. Theory of homogeneous condensation from small nuclei. I. Modified Mayer theory of physical clusters

    International Nuclear Information System (INIS)

    Lockett, A.M. III

    1980-01-01

    A theory of physical clusters is developed within the framework of the Theory of Imperfect Gases. Physical monomers and clusters are redefined diagrammatically thereby removing the unphysical nature of the usual Mayer clusters while retaining essentially all of the desirable features of the Mayer theory. The resulting formulation is simple, unambiguous, and well suited for incorporation into a kinetic theory of condensation which is computationally tractable

  5. Direct experimental evidence for a negative heat capacity in the liquid-to-gas like phase transition in hydrogen cluster ions backbending of the caloric curve

    CERN Document Server

    Gobet, F; Carré, M; Farizon, B; Farizon, M; Gaillard, M J; Maerk, T D; Scheier, P

    2002-01-01

    By (i) selecting specific decay reactions in high energy collisions (60 keV/amu) of hydrogen cluster ions with a helium target (utilizing event-by-event data of a recently developed multi-coincidence experiment) and by (ii) deriving corresponding temperatures for these microcanonical cluster ensembles (analyzing the respective fragment distributions) we are able to construct caloric curves for ii sub 3 sup + (ii sub 2) sub m cluster ions (6 <= m <= 14). All individual curves and the mean of these curves show a backbending in the plateau region thus constituting direct evidence for a negative microcanonical heat capacity in the liquid-to-gas like transition of these finite systems.

  6. LiH{sup -}({sup 2}{Sigma}{sup +}) attached to small clusters of {sup 4}He: A stochastic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marinetti, F. [Department of Chemistry and CNISM, University of Rome La Sapienza (Italy); Gianturco, F.A., E-mail: fa.gianturco@caspur.it [Department of Chemistry and CNISM, University of Rome La Sapienza (Italy)

    2012-05-03

    Graphical abstract: 3D view of the cluster LiH{sup Logical-And }--He8. The three-dimensional probability densities come from DMC calculations. The He isosurface (cyan) contains about the 95% of the total He density, while the Li (orange) and H (grey) isosurfaces include respectively about the 66% and 64% of their own total density. Highlights: Black-Right-Pointing-Pointer Binding strength and spatial features of small {sup 4}He clusters doped by LiH{sup -} have been studied. Black-Right-Pointing-Pointer The latter is found to be very weakly bound to either one or several bosonic He atoms. Black-Right-Pointing-Pointer The calculations show that anionic partners experienced repulsive interactions with He atoms. Black-Right-Pointing-Pointer The shallow, attractive wells are responsible for weakly binding the dopant. - Abstract: Diffusion Monte Carlo (DMC), after Variational Monte Carlo (VMC), calculations are carried out to assess the possible binding and the spatial collocation of the negatively charged LiH{sup -} molecule as a single dopant in small clusters of {sup 4}He. The number of cluster adatoms is extended to N = 15 and the bosonic, quantum solvent is found to stabilize as a nearly independent cluster with the dopant molecule sitting on its surface. The spatial features displayed by such weakly bound series of complexes are discussed and analyzed.

  7. Industrial clusters and social networks and their impact on the performance of micro- and small-scale enterprises: evidence from the handloom sector in Ethiopia

    NARCIS (Netherlands)

    Ali, M.A.

    2012-01-01

    This study empirically investigates how clustering and social networks affect the performance of micro- and small-scale enterprises by looking at the evidence from Ethiopia. By contrasting the performance of clustered micro enterprises with that of dispersed ones, it was first shown that clustering

  8. Coulomb frustration of the multiphoton ionization of metallic clusters under intense EUV FEL evidenced by ion spectrometry

    International Nuclear Information System (INIS)

    Mazza, T; Devetta, M; Milani, P; Motomura, K; Liu, X-J; Fukuzawa, H; Yamada, A; Nagaya, K; Iwayama, H; Sugishima, A; Mizoguchi, Y; Saito, N; Coreno, M; Nagasono, M; Tono, K; Togashi, T; Kimura, H; Okunishi, M; Fennel, Th; Senba, Y

    2015-01-01

    Free electron laser light sources delivering high intensity pulses of short wavelength radiation are opening novel possibilities for the investigation of matter at the nanoscale and for the discovery and understanding of new physical processes occurring at the exotic transient states they make accessible. Strong ionization of atomic constituents of a nano-sized sample is a representative example of such processes and the understanding of ionization dynamics is crucial for a realistic description of the experiments. We report here on multiple ionization experiments on free clusters of titanium, a high cohesive energy metal. The time of flight ion spectra reveal a saturation of the cluster ionization at ∼10 16 photons per pulse per cm 2 . Our results also show a clear lack of any explosion process, opposite to what is observed for a rare-gas cluster under similar conditions. A simple and generalized multi-step ionization model including Coulomb frustration of the photoemission process effectively reproduces with a good agreement the main features of the experimental observation and points to an interpretation of the data involving a substantial energy deposition into the cluster through electronic system heating upon scattering events within photoemission. (paper)

  9. In-situ small/wide-angle neutron scattering studies of the cluster structure in polyelectrolyte membrane for fuel cells

    International Nuclear Information System (INIS)

    Nakano, Tomohiro; Kaneko, Michiyo; Otomo, Toshiya; Kamiyama, Takashi; Sugiyama, Masaaki; Fukunaga, Toshiharu; Kanno, Ryoji; Yamamoto, Satoru; Hyodo, Shiaki

    2007-01-01

    Proton conductivity of Nafion membrane is varied by humidity and it has been thought to be affected by the cluster structure of the membrane. We applied Small-Angle Scattering technique under humidity-controlled atmosphere with X-ray (SAXS) and neutron (SANS) to clarify the relationship between the cluster structure and molecular structure in two types of Nafion membrane, N115 and NE151F, which have different equivalent weight (EW). The proton conductivity of N115 is higher than that of NE151F. By these two measurements, three different sized periodic structures were observed in the Nafion membrane. Contrast variation method (D/H=60/40, 75/25, 80/20, 90/10) was also applied in SANS experiments and it was suggested that two of three peaks are originated from two different sizes of water clusters. A distinguishing peak at q=0.2[A -1 ], which shifts to lower q region by humidity increase, was reproduced by a simulation of Dissipative Particle Dynamics (DPD): the shifts of the peak was interpreted as the swelling of cluster structure. The size of the cluster calculated from the peak position is positively correlated with the proton conductivity. Finally, the effect of EW on the proton conductivity of Nafion membrane was briefly discussed from the point of its cluster structure. (author)

  10. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm).

    Science.gov (United States)

    Sun, Shengtong; Chevrier, Daniel M; Zhang, Peng; Gebauer, Denis; Cölfen, Helmut

    2016-09-26

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Radiation enhanced copper clustering processes in Fe-Cu alloys during electron and ion irradiations as measured by electrical resistivity

    International Nuclear Information System (INIS)

    Ishino, S.; Chimi, Y.; Bagiyono; Tobita, T.; Ishikawa, N.; Suzuki, M.; Iwase, A.

    2003-01-01

    To study the mechanism of radiation-enhanced clustering of copper atoms in Fe-Cu alloys, in situ electrical resistivity measurements are performed during irradiation with 100 MeV carbon ions and with 2 MeV electrons at 300 K. Two kinds of highly pure Fe-Cu alloys with Cu content of 0.02 and 0.6 wt% are used. The results are summarized as follows: - Although there is a steep initial resistivity increase below about 10 μdpa, the resistivity steadily decreases after this initial transient in Fe-0.6wt%Cu alloy, while in Fe-0.02wt%Cu alloy, the resistivity either decreases slowly or stays almost constant. The rate of change in resistivity depends on copper concentration. - The rate of change in resistivity per dpa is larger for electron irradiation than for ion irradiation. - Change in dose rate from 10 -8 to 10 -9 dpa/s slightly enhances the rate of resistivity change per dpa. The decrease in resistivity with dose is considered to be due to clustering or precipitation of copper atoms. The initial abrupt increase in resistivity is too large to be accounted for by initial introduction of point defects before copper clustering. Tentatively the phenomenon is explained as due to the formation of embryos of copper precipitates with a large strain field around them. Quantitative evaluation of the results using resistivity contribution of a unit concentration of Frenkel pairs and that of copper atoms gives an important conclusion that more than one copper atom are removed from solid solution by one Frenkel pair. The clustering efficiency is surprisingly high in the present case compared with the ordinary radiation-induced or radiation-enhanced precipitation processes

  12. Clustering of multi-parametric functional imaging to identify high-risk subvolumes in non-small cell lung cancer.

    Science.gov (United States)

    Even, Aniek J G; Reymen, Bart; La Fontaine, Matthew D; Das, Marco; Mottaghy, Felix M; Belderbos, José S A; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-12-01

    We aimed to identify tumour subregions with characteristic phenotypes based on pre-treatment multi-parametric functional imaging and correlate these subregions to treatment outcome. The subregions were created using imaging of metabolic activity (FDG-PET/CT), hypoxia (HX4-PET/CT) and tumour vasculature (DCE-CT). 36 non-small cell lung cancer (NSCLC) patients underwent functional imaging prior to radical radiotherapy. Kinetic analysis was performed on DCE-CT scans to acquire blood flow (BF) and volume (BV) maps. HX4-PET/CT and DCE-CT scans were non-rigidly co-registered to the planning FDG-PET/CT. Two clustering steps were performed on multi-parametric images: first to segment each tumour into homogeneous subregions (i.e. supervoxels) and second to group the supervoxels of all tumours into phenotypic clusters. Patients were split based on the absolute or relative volume of supervoxels in each cluster; overall survival was compared using a log-rank test. Unsupervised clustering of supervoxels yielded four independent clusters. One cluster (high hypoxia, high FDG, intermediate BF/BV) related to a high-risk tumour type: patients assigned to this cluster had significantly worse survival compared to patients not in this cluster (p = 0.035). We designed a subregional analysis for multi-parametric imaging in NSCLC, and showed the potential of subregion classification as a biomarker for prognosis. This methodology allows for a comprehensive data-driven analysis of multi-parametric functional images. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Application of relativistic coupled cluster linear response theory to helium-like ions embedded in plasma environment

    Science.gov (United States)

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Sinha Mahapatra, Uttam; Mukherjee, P. K.

    2011-08-01

    Ionization potential and low lying 1S0\\longrightarrow1P1 excitation energies (EE) of highly stripped He-like ions C4 +, Al11 +, and Ar16 + embedded in plasma environment are calculated for the first time using the state-of-the-art coupled cluster (CC)-based linear response theory (LRT) with the four-component relativistic spinors and compared with available experimental data from laser plasma experiments. Debye's screening model is used to estimate the effect of plasma on the ions within the relativistic and non-relativistic framework. The transition energies computed at the CCLRT level using the Debye model agree well with experiment and with other available theoretical data. To our knowledge, no prior CCLRT calculations within the Dirac-Fock framework are available for these systems. Our calculated transition energies for helium-like ions are in accord with experiment; we trust that our predicted EE might be acceptably good for the systems considered. Our preliminary result indicates that CCLRT with the four-component relativistic spinors appears to be a valuable tool for studying the atomic systems where accurate treatments of correlation effects play a crucial role in shaping the spectral lines of ions subjected to plasma environment.

  14. Adsorption of small NaCl clusters on surfaces of silicon nanostructures

    International Nuclear Information System (INIS)

    Amsler, Maximilian; Alireza Ghasemi, S; Goedecker, Stefan; Neelov, Alexey; Genovese, Luigi

    2009-01-01

    We have studied possible adsorption geometries of neutral NaCl clusters on the disordered surface of a large silicon model tip used in non-contact atomic force microscopy. The minima hopping method was used to determine low energy model tip configurations as well as ground state geometries of isolated NaCl clusters. The combined system was treated with density functional theory. Alkali halides have proven to be strong structure seekers and tend to form highly stable ground state configurations whenever possible. The favored adsorption geometry for four Na and four Cl atoms was found to be an adsorption of four NaCl dimers due to the formation of Cl-Si bonds. However, for larger NaCl clusters, the increasing energy required to dissociate the cluster into NaCl dimers suggests that adsorption of whole clusters in their isolated ground state configuration is preferred.

  15. Comparison of dose measurements in CT using a novel semiconductor detector and a small ion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Paschoal, Cinthia M. M. [Departamento de Engenharia Civil, Universidade Estadual Vale do Acarau, Sobral-CE, CEP 62040-370, (Brazil); Ferreira, Fernanda Carla L. [Departamento de Fisica, Universidade Federal do Sul e Sudeste do Para, Maraba-PA, CEP 68500-970, (Brazil); Santos, Luiz A. P. [Departamento de Fisica, Universidade Federal de Sergipe (UFS), Sao Cristovao-SE, CEP 49100-000, (Brazil); Souza, Divanizia N. [Departamento de Fisica, Universidade Federal de Sergipe (UFS), Sao Cristovao-SE, CEP 49100-000, (Brazil)

    2015-07-01

    The advance of multislice computed tomography (CT) has become inadequate the currently dosimetric protocol used in CT. Instead of dosimetry based on the measurement of CTDI using a pencil ion chamber of 100 m of length, it was proposed the use of a small ion chamber (IC) and the calculating the dose equilibrium (Deq) at the location of the chamber. The objective of this work was to compare the performance of a short IC and a commercial photodiode to measure the accumulated dose at the center of the scan length L, DL(0), and to obtain the equilibrium dose Deq using the two detectors. The result for L=100 mm was compared with the result of a pencil chamber. The results indicate that the commercial photodiode is suitable to measure the accumulated dose at the center of the scan length L as compared with the ion chambers. This methodology allows measurements of the accumulated dose for any desired scan length, allowing measuring the equilibrium dose Deq if the phantom is long enough to allow it. (authors)

  16. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  17. Molecular depth profiling of trehalose using a C{sub 60} cluster ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wucher, Andreas [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany)], E-mail: andreas.wucher@uni-due.de; Cheng Juan; Winograd, Nicholas [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-12-15

    Molecular depth profiling of organic overlayers was performed using a mass selected fullerene ion beam in conjunction with time-of-flight (TOF-SIMS) mass spectrometry. The characteristics of depth profiles acquired on a 300-nm trehalose film on Si were studied as a function of the impact kinetic energy and charge state of the C{sub 60} projectile ions. We find that the achieved depth resolution depends only weakly upon energy.

  18. Ab initio study of small Au n Pd- (n=1-5) cluster anions

    International Nuclear Information System (INIS)

    Guo Jianjun; Shi Jian; Yang Jixian; Die Dong

    2007-01-01

    Ab initio method based on density-functional theory has been used to investigate the Au n Pd - (n=1-5) cluster anions. The possible stable geometrical configurations with their electronic states are determined, and the energy gaps between the HOMO and LUMO of the ground states are investigated. Our results show that the one excess electron is strong enough to modify the known growth pattern of the neutral Au n Pd clusters, and indicate that the larger is the Au n Pd cluster, the smaller are the distortions by the one excess electron

  19. Theoretical studies of the global minima and polarizabilities of small lithium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Zhao, Ya-Fan; Hammond, Jeffrey R.; Bylaska, Eric J.; Apra, Edoardo; van Dam, Hubertus JJ; Li, Jun; Govind, Niranjan; Kowalski, Karol

    2016-01-16

    Lithium clusters Lin (n=1-20) have been investigated with density functional theory (DFT) and coupled—cluster (CC) methods. The global-minimum structures are located via an improved basin---hopping algorithm and the lowest energy Lin isomers are confirmed with DFT geometry optimizations, CCSD(T) energy calculations, and by comparing simulated and experimental polarizabilities. The tetrahedral Li4 structure is found to be the basic building block of lithium clusters Lin (n=6-20). Simulated polarizabilities, including thermal effects at room temperature, are in good agreement with measured isotropic polarizabilities.

  20. Proximity gettering technology for advanced CMOS image sensors using carbon cluster ion-implantation technique. A review

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Kazunari; Kadono, Takeshi; Okuyama, Ryousuke; Shigemastu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Koga, Yoshihiro; Okuda, Hidehiko [SUMCO Corporation, Saga (Japan)

    2017-07-15

    A new technique is described for manufacturing advanced silicon wafers with the highest capability yet reported for gettering transition metallic, oxygen, and hydrogen impurities in CMOS image sensor fabrication processes. Carbon and hydrogen elements are localized in the projection range of the silicon wafer by implantation of ion clusters from a hydrocarbon molecular gas source. Furthermore, these wafers can getter oxygen impurities out-diffused to device active regions from a Czochralski grown silicon wafer substrate to the carbon cluster ion projection range during heat treatment. Therefore, they can reduce the formation of transition metals and oxygen-related defects in the device active regions and improve electrical performance characteristics, such as the dark current, white spot defects, pn-junction leakage current, and image lag characteristics. The new technique enables the formation of high-gettering-capability sinks for transition metals, oxygen, and hydrogen impurities under device active regions of CMOS image sensors. The wafers formed by this technique have the potential to significantly improve electrical devices performance characteristics in advanced CMOS image sensors. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    Science.gov (United States)

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  2. Mass spectrometric study of carbon cluster formation in laser ablation of graphite at 355 nm

    CERN Document Server

    Koo, Y M; Lee, K H; Jung, K W

    2002-01-01

    The ablation dynamics and cluster formation of C sub n sup + ions ejected from 355 nm laser ablation of a graphite target in vacuum are investigated using a reflectron time-of-flight (RTOF) mass spectrometer. At low laser fluence, odd-numbered cluster ions with 3 =30) are produced at relatively long delay times, indicating that atoms or small carbon clusters aggregate during plume propagation. The dependence of the intensity of ablated C sub n sup + ions on delay time after laser irradiation shows that the most probable velocity of each cluster ion decreases with cluster size.

  3. A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe

    Science.gov (United States)

    Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.

    2018-03-01

    The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).

  4. Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters.

    Science.gov (United States)

    Galitskiy, S A; Artemyev, A N; Jänkälä, K; Lagutin, B M; Demekhin, Ph V

    2015-01-21

    Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li2-8 are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li2 are in a good agreement with the available theoretical data, whereas those computed for Li3-8 clusters can be considered as theoretical predictions.

  5. A full-configuration-interaction nuclear orbital approach and application for small doped He clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, M. P. de, E-mail: delara@iff.csic.es; Aguirre, N. F., E-mail: delara@iff.csic.es; Delgado-Barrio, G., E-mail: delara@iff.csic.es; Villarreal, P., E-mail: delara@iff.csic.es [Instituto de Física Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain); Mitrushchenkov, A. O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-01-22

    An efficient full-configuration-interaction 'nuclear orbital' treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic 'solvent' wave-functions and applied to {sup 3}He{sub N} clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped {sup 3}He{sub N} clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-{sup 3}He{sub N} clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl{sub 2}(X)-({sup 4}He){sub N} clusters, are also shown.

  6. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  7. First-principles study of small palladium clusters on NiAl(1 1 0) alloy surface

    Science.gov (United States)

    Wu, Ping; Cao, Gengyu; Tang, Fuling; Huang, Min

    2013-09-01

    Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1-5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1-5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal-metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.

  8. Generation of vacancy cluster-related defects during single MeV silicon ion implantation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Ž., E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Capan, I. [Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb (Croatia); Siegele, R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Jačimović, R. [Jozef Stefan Institute, 1000 Ljubljana (Slovenia); Forneris, J. [Physics Department and NIS Excellence Centre, University of Torino, INFN – sez. Torino, CNISM – sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Cohen, D.D. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Vittone, E. [Physics Department and NIS Excellence Centre, University of Torino, INFN – sez. Torino, CNISM – sez. Torino, via P. Giuria 1, 10125 Torino (Italy)

    2014-08-01

    Deep Level Transient Spectroscopy (DLTS) has been used to study defects formed in bulk silicon after implantation of 8.3 MeV {sup 28}Si{sup 3+} ions at room temperature. For this study, Schottky diodes prepared from n-type Czohralski-grown silicon wafers have been implanted in the single ion regime up to fluence value of 1 × 10{sup 10} cm{sup −2} utilizing the scanning focused ion microbeam as implantation tool and the Ion Beam Induced Current (IBIC) technique for ion counting. Differential DLTS analysis of the vacancy-rich region in self-implanted silicon reveals a formation of the broad vacancy-related defect state(s) at E{sub c} −0.4 eV. Direct measurements of the electron capture kinetics associated with this trap at E{sub c} −0.4 eV, prior to any annealing do not show an exponential behaviour typical for the simple point-like defects. The logarithmic capture kinetics is in accordance with the theory of majority carrier capture at extended or cluster-related defects. We have detected formation of two deep electron traps at E{sub c} −0.56 eV and E{sub c} −0.61 eV in the interstitial-rich region of the self-implanted silicon, before any annealing. No DLTS signal originating from vacancy-oxygen trap at E{sub c} −0.17 eV, present in the sample irradiated with 0.8 MeV neutrons, has been recorded in the self-implanted sample.

  9. Measurement of small ion beams by thermal ionisation mass spectrometry using new 1013 Ohm resistors

    International Nuclear Information System (INIS)

    Koornneef, J.M.; Bouman, C.; Schwieters, J.B.; Davies, G.R.

    2014-01-01

    Highlights: • First data are presented using 10 13 Ohm resistors connected to Faraday collectors. • 5 prototype 10 13 Ohm resistors were installed in a TRITON-Plus TIMS. • Performance was tested by measuring Sr and Nd isotope ratios on  13 Ohm resistors perform better than ion counting and 10 11 Ohm resistors. • Fourth decimal variability can be resolved for Nd isotope ratios on 10 pg samples. - Abstract: We tested 5 newly manufactured – prototype – 10 13 Ohm resistors in the feedback loop of Faraday cup amplifiers to measure small ion beams by Thermal Ionisation Mass Spectrometry (TIMS). The high Ohmic resistors installed in the TRITON Plus at the VU University Amsterdam theoretically have 10 times lower noise levels relative to the default 10 11 Ohm resistors. To investigate the precision and accuracy of analyses using these new amplifiers we measured Sr and Nd isotopes of reference standards at a range of ion currents (3.2 × 10 −16 to 1 × 10 −12 A, corresponding to intensities of 32 μV to 100 mV on a default 10 11 Ohm amplifier) and on small amounts of material (100 and 10 pg). Internal precision and external reproducibility for Sr and Nd isotope ratios are both better when collected on 10 13 compared 10 12 Ohm resistors and to the default 10 11 Ohm resistors. At an 87 Sr ion current of 3 × 10 −14 A (3 mV on a 10 11 Ohm amplifier) the internal precision (2 SE) of 87 Sr/ 86 Sr is 5 times better for 10 13 Ohm resistors compared to 10 11 Ohm resistors. The external reproducibility (2 SD) at this beam intensity is 9 times better. Multiple 100 and 10 pg Sr standards, ran to exhaustion, yielded low 87 Sr/ 86 Sr compared to the long term average (e.g. 10 pg average = 0.710083 ± 164 (n = 11) instead of 0.710244 ± 12, n = 73). The average off-set for 10 pg standards can be explained by a loading blank contribution of 1.3 pg. In contrast, Nd data on 100 pg and 10 pg samples are accurate suggesting that Nd loading blanks do not compromise the

  10. Probing the structural and electronic properties of small vanadium monoxide clusters.

    Science.gov (United States)

    Wang, Huai-Qian; Li, Hui-Fang; Kuang, Xiao-Yu

    2012-04-21

    The structural evolution and bonding of a series of early transition-metal oxide clusters, V(n)O(q) (n = 3-9, q = 0,-1), have been investigated with the aid of previous photoelectron spectroscopy (PES) and theoretical calculations. For each vanadium monoxide cluster, many low-lying isomers are generated using the Saunders "Kick" global minimum stochastic search method. Theoretical electron detachment energies (both vertical and adiabatic) were compared with the experimental measurements to verify the ground states of the vanadium monoxide clusters obtained from the DFT calculations. The results demonstrate that the combination of photoelectron spectroscopy experiments and DFT calculation is not only powerful for obtaining the electronic and atomic structures of size-selected clusters, but also valuable in resolving structurally and energetically close isomers. The second difference energies and adsorption energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The adsorption energies of one O atom on the anionic (6.64 → 8.16 eV) and neutral (6.41 → 8.13 eV) host vanadium clusters are shown to be surprisingly high, suggesting strong capabilities to activate O by structural defects in vanadium oxides. This journal is © the Owner Societies 2012

  11. Study of structure and spectroscopy of water-hydroxide ion clusters ...

    Indian Academy of Sciences (India)

    In this paper, we explore the use of stochastic optimizer, namely simulated annealing (SA) followed by density function theory (DFT)-based strategy for evaluating the structure and infrared spectroscopy of (H2O) OH− clusters where = 1-6. We have shown that the use of SA can generate both global and local structures of ...

  12. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  13. Thermal Desorption Spectroscopy Study of the Adsorption and Reduction of NO by Cobalt Cluster Ions under Thermal Equilibrium Conditions at 300 K.

    Science.gov (United States)

    Koyama, Kohei; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-09-17

    Adsorption of NO molecules on gas phase cobalt cluster ions, Con(+) (n = 4-9), was investigated in thermal equilibrium with He gas at 300 K. The Con(+) clusters, contrary to the isolated clusters in a vacuum, adsorbed NO without undergoing significant dissociation. Thermal desorption spectroscopy of Con(+)(NO)m indicated that Con(+) clusters with n = 4-6 and n = 7-9 can have four and six adatoms chemisorbed, respectively. Reduction of NO occurred, releasing N2 molecules, to form Con(+)Ok(NO)m-k (k = 2, 4, ...). The reaction mechanism involved the exchange of chemisorbed N atoms with the O atom in NO bound to the clusters. The reactivity of Con(+) (n = 4-9) exhibited periodic n dependence, and Co6(+) and Co9(+) was similar to the case of the isolated Co16(+) clusters holding up to eight adatoms reported by Anderson et al. ( J. Chem. Phys . 2009 , 130 , 10992 - 11000 ).

  14. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    Science.gov (United States)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will

  15. Lithium Ion Batteries Development for CubeSats and SmallSats

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium Ion (Li-Ion) cells are being developed for high-power batteries in space; especially there is a strong need to miniaturize Li-Ion batteries for CubeSat and...

  16. Origin of nanodiamonds from Allende constrained by statistical analysis of C isotopes from small clusters of acid residue by NanoSIMS

    Science.gov (United States)

    Lewis, Josiah B.; Floss, Christine; Gyngard, Frank

    2018-01-01

    Meteoritic nanodiamonds carry noble gases with anomalies in their stable isotopes that have drawn attention to their potentially presolar origin. Measurements of 12C/13C isotope ratios of presolar nanodiamonds are essential to understanding their origins, but bulk studies do not show notable deviations from the solar system 12C/13C ratio. We implemented a technique using secondary ion mass spectrometry with maximized spatial resolution to measure carbon isotopes in the smallest clusters of nanodiamonds possible. We measured C and Si from clusters containing as few as 1000 nanodiamonds, the smallest clusters of nanodiamonds measured to date by traditional mass spectrometry. This allowed us to investigate many possible complex compositions of the nanodiamonds, both through direct methods and statistical analysis of the distributions of observed isotopic ratios. Analysis of the breadth of distributions of carbon isotopic ratios for a number of ∼1000-nanodiamond aggregates indicates that the 12C/13C ratio may be drawn from multiple Gaussian distributions about different isotopic ratios, which implies the presence of presolar material. The mean isotopic ratio is consistent with the solar system value, so presolar components are required to be either low in concentration, or to have a mean ratio close to that of the solar system. Supernovae are likely candidates for the source of such a presolar component, although asymptotic giant branch stars are not excluded. A few aggregates show deviations from the mean 12C/13C ratio large enough to be borderline detections of enrichments in 13C. These could be caused by the presence of a small population of nanodiamonds formed from sources that produce extremely 13C-rich material, such as J-stars, novae, born-again asymptotic giant branch stars, or supernovae. Of these possible sources, only supernovae would account for the anomalous noble gases carried in the nanodiamonds.

  17. Study of structure and spectroscopy of water–hydroxide ion clusters ...

    Indian Academy of Sciences (India)

    tials are present between oxygen atoms. Besides this, the model has charge separation for which it pos- sesses a negative charge (−0.834e) on oxygen and posi- tive charge (0.417e) on hydrogen and to accommodate excess negative charge, the charge on oxygen of OH. − ion is −1.417e. Total potential energy expression ...

  18. Ion clustering in electrospray mass spectrometry of brine and other electrolyte solutions

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2012-01-01

    Roč. 14, č. 18 (2012), s. 6382-6390 ISSN 1463-9076 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : electrolytes * electrospray ion ization * mass spectrometry * solvation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  19. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    International Nuclear Information System (INIS)

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  20. An ecohealth assessment of poultry production clusters (PPCs) for the livelihood and biosecurity improvement of small poultry producers in Asia.

    Science.gov (United States)

    Wang, Libin; Basuno, Edi; Nguyen, Tuan; Aengwanich, Worapol; Ilham, Nyak; Li, Xiaoyun

    2015-01-01

    Poultry production cluster (PPC) programs are key strategies in many Asian countries to engage small commercial poultry producers in high-value production chains and to control infectious poultry diseases. This study assessed the multiple impacts of PPCs through a transdisciplinary ecohealth approach in four Asian countries, and drew the implications for small producers to improve their livelihoods and reduce the risk of spreading infectious diseases in the poultry sector. The data collection combined both quantitative and qualitative methods. It comprised: formal structured household survey questionnaires, measuring the biosecurity level of poultry farms with a biosecurity score card; and key informant interviews. Descriptive statistics were used to process the quantitative data and a content analysis was used to process the qualitative data. This research found that poultry farms in clusters do not necessarily have better economic performance than those outside PPCs. Many farmers in PPCs only consider them to be an advantage for expanding the scale of their poultry operations and improving household incomes, and they are less concerned about-and have limited capacities to-enhancing biosecurity and environmental management. We measured the biosecurity level of farms in PPCs through a 14-item checklist and found that biosecurity is generally very low across all sample sites. The increased flies, mosquitoes, rats, and smells in and around PPCs not only pollute the environment, but also cause social conflicts with the surrounding communities. This research concluded that a poultry cluster, mainly driven by economic objectives, is not necessarily a superior model for the control of infectious diseases. The level of biosecurity in PPCs was found to be low. Given the intensity of poultry operations in PPCs (farms are densely packed into clusters), and the close proximity to residential areas of some PPCs, the risk of spreading infectious diseases, in fact, increases

  1. Chemical degradation of selected Zn-based corrosion products induced by C{sub 60} cluster, Ar cluster and Ar{sup +} ion sputtering in the focus of X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, R., E-mail: roland.steinberger@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sicking, J., E-mail: jens.sicking@bayer.com [Bayer AG, Engineering & Technology, Applied Physics, Chempark Building E 41, 51368 Leverkusen (Germany); Weise, J., E-mail: juliane.weise@physik.tu-freiberg.de [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg (Germany); Duchoslav, J., E-mail: jiri.duchoslav@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Greunz, T., E-mail: theresia.greunz@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Meyer, D.C., E-mail: Dirk-Carl.Meyer@physik.tu-freiberg.de [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg (Germany); Stifter, D., E-mail: david.stifter@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria)

    2017-05-01

    Highlights: • XPS investigations for various sputter concepts on Zn-based corrosions products. • Direct comparison of induced chemical damage for ion and cluster sputtering. • Azimuthal rotation or heavy projectile bombardment was not found to be beneficial. • Ar cluster etching is rated as unsuitable for surface cleaning or depth profiling. • C{sub 60} and Ar{sup +} are applicable for sputtering when degradation is carefully considered. - Abstract: Monoatomic ion sputtering is a common concept for surface sensitive analysis methods to clean surfaces prior investigation or to obtain information from deeper regions. However, severe damage of the materials – linked to preferential sputtering, ion implantation, atomic mixing and in worst case chemical degradation – can affect the validity of the analysis. Hence, the impact of C{sub 60} cluster etching, furthermore, of Ar{sup +} ion bombardment with and without azimuthal sample rotation and also the application of heavy projectiles (Xe{sup +} ions) was investigated to find a concept, which is less destructive or with less critical influence on the chemical nature of the investigated materials. In this work the focus is set on hydrozincite and zinc oxide, two common corrosion products of Zn-based coatings. As a main point, all the obtained results from (i) Ar{sup +} ion, (ii) Ar cluster, and (iii) C{sub 60} cluster etching on the degradation kinetics of hydrozincite were compared with respect to the reached sputter depth. In addition, the sputter rate of all three methods was experimentally determined for ZnO. In total, fully non-destructive conditions could not be found, but valuable knowledge on the type and rate of degradation, which is essential to choose the most suited sputter concept.

  2. Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.

    Science.gov (United States)

    Mateo, David; Eloranta, Jussi; Williams, Gary A

    2015-02-14

    The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).

  3. Cluster expansion of the solvation free energy difference: Systematic improvements in the solvation of single ions

    Science.gov (United States)

    Pliego, Josefredo R.

    2017-07-01

    The cluster expansion method has been used in the imperfect gas theory for several decades. This paper proposes a cluster expansion of the solvation free energy difference. This difference, which results from a change in the solute-solvent potential energy, can be written as the logarithm of a finite series. Similar to the Mayer function, the terms in the series are related to configurational integrals, which makes the integrand relevant only for configurations of the solvent molecules close to the solute. In addition, the terms involve interaction of solute with one, two, and so on solvent molecules. The approach could be used for hybrid quantum mechanical and molecular mechanics methods or mixed cluster-continuum approximation. A simple form of the theory was applied for prediction of pKa in methanol; the results indicated that three explicit methanol molecules and the dielectric continuum lead to a root of mean squared error (RMSE) of only 1.3 pKa units, whereas the pure continuum solvation model based on density method leads to a RMSE of 6.6 pKa units.

  4. THE EVOLUTION OF BIOCHEMICAL OXIDATION OF AMMONIA IONS IN SMALL RIVERS WATER

    Directory of Open Access Journals (Sweden)

    Elena Mosanu

    2010-06-01

    Full Text Available Nitrification is the oxidation of ammonia to nitrate, via nitrite and it occupies a central position within the global nitrogen cycle. Nitrifying bacteria are the organisms capable of converting the most reduced form of nitrogen, ammonia, to the most oxidized form, nitrate, but their activity is influenced by pollution level. Starting with the assumption that pollution of small internal water courses in the Republic of Moldova remained severe (phenols, detergents and copper regularly exceed the MACs the work presented in the paper discusses the evolution of ammonia ions nitrification in the water of river Prut tributaries and its correlation with the content of pollutants in water: surface-active substances, Cu, BOD5, COD and other compounds.

  5. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    Science.gov (United States)

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  6. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  7. Professional cluster management by a small scientific team: challenges, solutions and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Vitor V.A.; Santos, Andre A.C. dos; Cunha, Renan O., E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br, E-mail: roc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The specification, configuration and management of a professional computer cluster are specialized tasks usually hold by well trained teams, often full-time hired computer scientists. However, in many situations and for widely different reasons, these very specific technical tasks must be carried on by no other than the user itself. This is the situation at Centro de Desenvolvimento da Tecnologia Nuclear - and in many nuclear research and educational centres in developing countries - where the scientists are the users of the cluster but also the technical team responsible to keep the system running. This paper presents the process of planning and installing the whole operating system and scientific software of a professional cluster aimed to be used in the nuclear engineering eld from the point of view of its users. The drawbacks of lack of expertise and technical skills to manage such type of technology are opposed to the advantages of freedom to chose the solutions which best t to the problems to be solved. The details of selected methods or technologies chosen for addressing a specific matter are presented together with other possible options, offering a broader view of the whole process of cluster's configuration. Specificities of dealing with closed, restricted and open software, common in the nuclear engineering eld, are also put in perspective. The ideas and solutions presented in this paper can be a valuable reference to other research teams found in a similar situation: being scientists and its own technical staff at the same time. (author)

  8. Professional cluster management by a small scientific team: challenges, solutions and perspectives

    International Nuclear Information System (INIS)

    Silva, Vitor V.A.; Santos, Andre A.C. dos; Cunha, Renan O.

    2017-01-01

    The specification, configuration and management of a professional computer cluster are specialized tasks usually hold by well trained teams, often full-time hired computer scientists. However, in many situations and for widely different reasons, these very specific technical tasks must be carried on by no other than the user itself. This is the situation at Centro de Desenvolvimento da Tecnologia Nuclear - and in many nuclear research and educational centres in developing countries - where the scientists are the users of the cluster but also the technical team responsible to keep the system running. This paper presents the process of planning and installing the whole operating system and scientific software of a professional cluster aimed to be used in the nuclear engineering eld from the point of view of its users. The drawbacks of lack of expertise and technical skills to manage such type of technology are opposed to the advantages of freedom to chose the solutions which best t to the problems to be solved. The details of selected methods or technologies chosen for addressing a specific matter are presented together with other possible options, offering a broader view of the whole process of cluster's configuration. Specificities of dealing with closed, restricted and open software, common in the nuclear engineering eld, are also put in perspective. The ideas and solutions presented in this paper can be a valuable reference to other research teams found in a similar situation: being scientists and its own technical staff at the same time. (author)

  9. Enhancing competitiveness of small and medium enterprises and entrepreneurs through forming of clusters

    Directory of Open Access Journals (Sweden)

    Mitrović Vladimir

    2014-01-01

    Full Text Available Clusters, as a form of self-organization of enterprises and associated institutions, help increase levels of competitiveness of its members by inspiring competition and cooperation. The question of increasing the popularity of clusters is especially important at the present moment when creators of economical politics are focused on finding the leading multinational companies, who's involvement on Serbia's market and starting of production, with a possibility to export it, would create opportunities to take over some of their suppliers by Serbia's SMEs. The analysis of selected European clusters has shown that joining of SMEs into clusters increases their productivity, competitiveness and export capability. Dynamic development of SMEs in Serbia will not be possible without intensified efforts in overcoming the main limitations and impediments, perhaps most importantly insufficient competitiveness and quality of products, poor organization on territorial and branch levels and prolonged amounting of unpaid bills. That is why the government has a defining role to play in creating a healthy competitive ambient, because of all the factors involved on the market, often non-economical factors, as well, and often many elements and institutions, and if the government does not take proper measures it'll create a bad business ambient in which SMEs can't use their full potential.

  10. Operation modes of the FALCON ion source as a part of the AMS cluster tool

    Directory of Open Access Journals (Sweden)

    Girka Oleksii

    2015-06-01

    Full Text Available The paper investigates the options to increase the production yield of temperature compensated surface acoustic wave (SAW devices with a defined range of operational frequencies. The paper focuses on the preparation of large wafers with SiO2 and AlN/Si3N4 depositions. Stability of the intermediate SiO2 layer is achieved by combining high power density UV radiation with annealing in high humidity environment. A uniform thickness of the capping AlN layer is achieved by local high-rate etching with a focused ion beam emitted by the FALCON ion source. Operation parameters and limitations of the etching process are discussed.

  11. Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2017-01-01

    Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.124, year: 2016

  12. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2− Ions

    Directory of Open Access Journals (Sweden)

    Loredana Schiavo

    2016-01-01

    Full Text Available Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2− ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone (PVP as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis has been performed in order to evaluate the structure and oxidation state of nanopalladium.

  13. Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids.

    Science.gov (United States)

    Koyanagi, Takaoki; Leriche, Geoffray; Onofrei, David; Holland, Gregory P; Mayer, Michael; Yang, Jerry

    2016-01-26

    Extremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids. Incorporation of cyclopentane rings into the tetraether lipids did not affect membrane leakage, whereas a cyclohexane ring reduced leakage by an additional 40 %. These results show that mimicking certain structural features of natural archaeal lipids results in improved membrane integrity, which may help overcome limitations of many current lipid-based technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    Science.gov (United States)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  15. O$_2$ adsorption trends on small supported PtNi clusters

    OpenAIRE

    Paz-Borbon, Lauro Oliver; Baletto, Francesca

    2016-01-01

    We present a systematic analysis of molecular oxygen (O$_2$) adsorption trends on bimetallic PtNi clusters and their monometallic counterparts supported on MgO(100), by means of periodic DFT calculations for sizes between 25 up to 58 atoms. O$_2$ adsorption was studied on a variety of inequivalent sites for different structural motifs, such as truncated octahedral (TO), cuboctahedral (CO), icosahedral (Ih) and decahedral (Dh) geometries. We found that O$_2$ prefers to bind on top of two metal...

  16. Small-angle neutron scattering analysis of Mn–C clusters in high-manganese 18Mn–0.6C steel

    International Nuclear Information System (INIS)

    Kang, Mihyun; Shin, Eunjoo; Woo, Wanchuck; Lee, Young-Kook

    2014-01-01

    Nanometer-scale particles (Mn–C clusters) were analyzed quantitatively using small-angle neutron scattering in 18Mn–0.6C (wt.%) austenite high-manganese steel. The size, number, and volume fraction of the particles were determined as a function of strain (0, 5, 15, 30, 45, 50%) at different temperatures (25 and 100 °C). The diameter of the cluster ranges from 2 to 14 nm in the matrix. The total volume fraction of the cluster significantly increases from 2.7 × 10 −6 to 8.7 × 10 −6 as the strain increases. Such clustering phenomenon is correlated to the serration behavior under loading in high-manganese steels. - Highlights: • Show Mn-C clustering as function of strain in 18Mn-0.6C TWIP steel. • Determine the size, number, and volume fraction of clusters quantitatively. • Compare the clustering behavior at 25 and 100 °C

  17. Analyzing the vibrational signatures of thiophenol adsorbed on small gold clusters by DFT calculations.

    Science.gov (United States)

    Tetsassi Feugmo, Conrard Giresse; Liégeois, Vincent

    2013-06-03

    Using density functional theory, we calculate the IR and Raman signatures of the thiophenol (TP) molecule adsorbed on gold clusters by mimicking the different types of adsorption sites, and we analyze these signatures by using advanced tools implemented into the pyvib2 program. First, we follow the evolution of the vibrational normal modes from the isolated TP molecule to those of TP adsorbed on different clusters to highlight the influence of the site of adsorption on the vibrational motions. The use of the overlap matrix between the modes enables mode permutations, mode mixings, and mode splittings to be highlighted, all of which depend not only on the adsorption but also on the type of cluster and its symmetry. Second, the IR and Raman signatures were analyzed by using group coupling matrices and atomic contribution patterns based on the Hug decomposition scheme. Key results include 1) the fact that Raman spectroscopy is more sensitive than IR spectroscopy with respect to the nature of the coordination site, 2) an IR criterion that distinguishes between on-top coordination (onefold coordinated) with respect to the bridge (twofold coordinated) and hexagonal close-packed hollow site coordination (threefold coordinated), and 3) the best agreement to the experimental Raman spectrum with regard to signatures in the 500 to 1200 cm(-1) region is obtained for bridged, twofold coordination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103

  19. Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile TiO2(110)

    DEFF Research Database (Denmark)

    Madsen, Georg; Hammer, Bjørk

    2009-01-01

    The density functional theory is used to examine the electronic structure of small Au clusters, supported on rutile TiO2(110) surfaces having subsurface Ti-interstitials. The interstitials reduce the surface and we find that negatively charged gold clusters are stabilized with respect to the stoi...

  20. Industrial clusters and social networks and their impact on the performance of micro- and small-scale enterprises: evidence from the handloom sector in Ethiopia

    NARCIS (Netherlands)

    Ali, M.A.

    2012-01-01

    This study empirically investigates how clustering and social networks affect the performance of micro- and small-scale enterprises by looking at the evidence from Ethiopia. By contrasting the performance of clustered micro enterprises with that of dispersed ones, it was first shown that

  1. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  2. Anomalous grazing incidence small-angle x-ray scattering studies of Pt nanoparticles formed by cluster deposition

    International Nuclear Information System (INIS)

    Lee, B.; Seifert, S.; Riley, S.J.; Tikhonov, G.Y.; Tomczyk, N.A.; Vajda, S.; Winans, R.E.

    2005-01-01

    The size evolution of platinum nanoparticles formed on a SiO2/Si(111) substrate as a function of the level of surface coverage with deposited clusters has been investigated. The anisotropic shapes of sub-nanometer-size nanoparticles are changed to isotropic on the amorphous substrate as their sizes increased. Using anomalous grazing incidence small-angle x-ray scattering (AGISAXS), the scattering from nanoparticles on the surface of a substrate is well separated from that of surface roughness and fluorescence. We show that AGISAXS is a very effective method to subtract the background and can provide unbiased information about particle sizes of less than 1 nm.

  3. Ion temperature gradient driven turbulence with strong trapped ion resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)

    2014-10-15

    A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

  4. Thermal Performance Analysis For Small Ion-Exchange Cesium Removal Process

    International Nuclear Information System (INIS)

    Lee, S.; King, W.

    2009-01-01

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  5. Automated correlation and classification of secondary ion mass spectrometry images using a k-means cluster method.

    Science.gov (United States)

    Konicek, Andrew R; Lefman, Jonathan; Szakal, Christopher

    2012-08-07

    We present a novel method for correlating and classifying ion-specific time-of-flight secondary ion mass spectrometry (ToF-SIMS) images within a multispectral dataset by grouping images with similar pixel intensity distributions. Binary centroid images are created by employing a k-means-based custom algorithm. Centroid images are compared to grayscale SIMS images using a newly developed correlation method that assigns the SIMS images to classes that have similar spatial (rather than spectral) patterns. Image features of both large and small spatial extent are identified without the need for image pre-processing, such as normalization or fixed-range mass-binning. A subsequent classification step tracks the class assignment of SIMS images over multiple iterations of increasing n classes per iteration, providing information about groups of images that have similar chemistry. Details are discussed while presenting data acquired with ToF-SIMS on a model sample of laser-printed inks. This approach can lead to the identification of distinct ion-specific chemistries for mass spectral imaging by ToF-SIMS, as well as matrix-assisted laser desorption ionization (MALDI), and desorption electrospray ionization (DESI).

  6. Fe-Mo double perovskite: From small clusters to bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, E., E-mail: ecarvajalq@ipn.mx [Instituto Politecnico Nacional, ESIME-Culhuacan, Av. Santa Ana 1000, C.P. 04430 Mexico, D.F. (Mexico); Oviedo-Roa, R. [Programa de Investigacion en Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico); Cruz-Irisson, M. [Instituto Politecnico Nacional, ESIME-Culhuacan, Av. Santa Ana 1000, C.P. 04430 Mexico, D.F. (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, 04510 Mexico, D.F. (Mexico)

    2012-09-20

    To understand the differences in behaviour between up- and down-spin electrons observed in the half-metallic Sr{sub 2}FeMoO{sub 6} double perovskite, the density of states (DOS) was studied for the (FeO{sub 6}){sup -4} and (MoO{sub 6}){sup -6} octahedral clusters using first-principles density functional theory within the generalised gradient approximation (GGA) scheme and the Perdew-Burke-Ernzerhof (PBE) functional. Our results reveal that half-metallic character is present, even starting from an isolated (FeO{sub 6}){sup -4} cluster, and is a consequence of spin decoupling of antibonding hybridisations between iron t{sub 2g} states and oxygen p states (t{sub 2g}{sup a} states), i.e., t{sub 2g}{sup a} states lie below the Highest Occupied Molecular Orbital (HOMO) in the up-spin channel, whereas they lie above the HOMO level in the down-spin channel. The spin-induced shifting between up-spin and down-spin DOS situates the HOMO in such a way that the molecular orbitals oxygen p states (p bands) are fully spin-paired by octet electrons. Thus, the down-spin channel has metallic character because the HOMO lies just at the p bands, and the up-spin channel is semiconducting because the HOMO falls within the energy gap between the t{sub 2g}{sup a} and e{sub g}{sup a} bands. Finally, the (MoO{sub 6}){sup -6} octahedron does not inhibit the perovskite half-metallic character since this cluster has a zero total spin.

  7. Jet-Cooled High Resolution Infrared Spectroscopy of Small Van Der Waals SF_6 Clusters

    Science.gov (United States)

    Asselin, Pierre; Boudon, Vincent; Potapov, Alexey; Bruel, Laurent; Gaveau, Marc-André; Mons, Michel

    2016-06-01

    Using a pulsed slit nozzle multipass absorption spectrometer with a tunable quantum cascade laser we investigated van der Waals clusters involving sulfur hexafluoride in the spectral range near the νb{3} stretching vibration. Different sized homo-complexes were generated in a planar supersonic expansion with typically 0,5 % SF_6 diluted in 6 bar He. Firstly, several rotationally resolved parallel and perpendicular bands of (SF_6)_2, at 934,0 and 956,1 wn (#1 structure) in agreement with Takami et al. but also one band at 933,6 wn (#2 structure) never observed previously, were analyzed in light of a recent theoretical study predicting three nearly isoenergetic isomers of D2d, C2h and C_2 symmetry for the dimer. Furthermore, some broader bands were detected around 938 and 964 wn and assigned to (SF_6)_3 and (SF_6)_4 clusters on the grounds of concentration effects and/or ab initio calculations. Lastly, with 0,5 % rare gas Rg (Rg = Ne, Ar, Kr and Xe) added to the SF_6:He gas mixture, a series of van der Waals (SF_6)_2-Rg hetero-trimers were observed, which display a remarkable linear dependence of the vibrational shift with the polarizability of the rare gas atom provided that the initial SF_6 dimer structure is #2 . In the same time no transitions belonging to the binary complexes SF_6-Rg were found near the νb{3} monomer band. This result suggests a complex thermodynamics within the pulsed supersonic expansion leading to the preponderance of (SF_6)_2-Rg clusters over SF_6-Rg binary systems. R. D. Urban and M. Takami, J. Chem. Phys. 103, 9132 (1995). T. Vazhappily, A. Marjolin and K. D. Jordan, J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.5b09419 (2015).

  8. Rotational structure of small 4He clusters seeded with HF, HCl, and HBr molecules.

    Science.gov (United States)

    Ramilowski, Jordan A; Mikosz, Aleksandra A; Farrelly, David; Fajín, José Luis Cagide; Fernandez, Berta

    2007-12-13

    Diffusion Monte Carlo calculations are performed for ground and excited rotational states of HX(4He)N, complexes with NHBr in a 4He nanodroplet will be smaller than that observed for HF, despite HF's having the largest (by far) gas-phase rotational constant of the three molecules. This suggests that the specifics of the solvation dynamics of a molecule in a 4He cluster are the result of a delicate interplay between the magnitude of the gas-phase rotational constant of the molecule and the anisotropic contributions to the atom-molecule potential energy.

  9. On the electric dipole moments of small sodium clusters from different theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)

    2012-05-03

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: Black-Right-Pointing-Pointer Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. Black-Right-Pointing-Pointer New van der Waals selfconsistent implementation of non-local dispersion interactions. Black-Right-Pointing-Pointer New starting isomeric geometries from extensive search of global minimum structures. Black-Right-Pointing-Pointer Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na{sub n} clusters in the size range 10 < n < 20, recently measured at very low temperature (20 K), are much smaller than predicted by standard density functional methods. On the other hand, the calculated static dipole polarizabilities in that range of sizes deviate non-systematically from the measured ones, depending on the employed first principles approach. In this work we calculate the dipole moments and polarizabilities of a few isomers of Na{sub n} clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible

  10. Density functional studies of small Au clusters adsorbed on α-FeOOH: Structural and electronic properties

    Science.gov (United States)

    Fortunato, Leandro F.; Zubieta, Carolina E.; Fuente, Silvia A.; Belelli, Patricia G.; Ferullo, Ricardo M.

    2016-11-01

    We report a density functional theory (DFT) investigation on the interaction of tiny Aun (n = 1-5) clusters with the bare and hydroxylated (110) surfaces of goethite (α-FeOOH). Both adsorption and atom-by-atom nucleation processes were modeled. The adsorption is shown to be strong on the bare surface and takes place preferentially through the interaction of Au atoms with unsaturated surface oxygen anions, accompanied with an electronic charge transfer from the metal to the support. Au3, Au4 and Au5 planar structures resulted to be particularly stable due to polarization effects; indeed, Coulombic repulsion between basal Au atoms and surface oxygen anions promotes the displacement of the electronic density toward terminal Au atoms producing a Au+δ(basal)/Au-δ(terminal) polarization. On the hydroxylated surface, Au clusters adsorb more weakly with respect to the bare surface, mainly through monocoordinated surface hydroxyl groups and tricoordinated oxygen ions. Concerning the nucleation mechanism, while on the hydroxylated surface the nucleation energy is governed by the spin of the interacting systems, on the bare surface polarization effects seems to play a predominant role.

  11. pMH2, a small plasmid bearing the nif gene cluster of Enterobacter agglomerans 333 as an excisable cassette.

    Science.gov (United States)

    Stumpf, F; Halda, L; Klingmüller, W

    1993-10-01

    A small plasmid containing the entire nif gene cluster of Enterobacter agglomerans 333 as an excisable cassette has been constructed, using pACYC177 as a vector. Two cosmid clones taken from a gene library of E. agglomerans plasmid pEA3 were used as a source of nif genes. A SmaI fragment of peaMS2-2, containing the H,D,K,Y,E,N,X,U,S,V,W,Z,M,L,A and B genes and an ApaI fragment of peaMS2-16 containing nif A,B,Q,F and J were selected to construct pMH2. The resulting plasmid of 33 kb carries the complete nif gene cluster as a nif cassette on a single XbaI fragment. The nif construct pMH2 in Escherichia coli strains has significant nitrogenase activity compared to wild-type E. agglomerans 333. The nif gene cluster construct was found to be very stable.

  12. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    Science.gov (United States)

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2015-06-15

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei.

  13. Density functional studies of small Au clusters adsorbed on α-FeOOH: Structural and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fortunato, Leandro F.; Zubieta, Carolina E. [INQUISUR (UNS-CONICET) and Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca (Argentina); Fuente, Silvia A.; Belelli, Patricia G. [IFISUR (UNS-CONICET) and Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca (Argentina); Ferullo, Ricardo M., E-mail: caferull@criba.edu.ar [INQUISUR (UNS-CONICET) and Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca (Argentina)

    2016-11-30

    Highlights: • On the hydroxylated surface, the adsorption of Au clusters is relatively weak. • Au-oxide interaction induces a polarization of the Au particles on the bare surface. • A predominance of planar (111) arrangements was obtained on both surfaces. • Comparing both surfaces, atom-by-atom nucleation energies show opposite behaviors. - Abstract: We report a density functional theory (DFT) investigation on the interaction of tiny Au{sub n} (n = 1–5) clusters with the bare and hydroxylated (110) surfaces of goethite (α-FeOOH). Both adsorption and atom-by-atom nucleation processes were modeled. The adsorption is shown to be strong on the bare surface and takes place preferentially through the interaction of Au atoms with unsaturated surface oxygen anions, accompanied with an electronic charge transfer from the metal to the support. Au{sub 3}, Au{sub 4} and Au{sub 5} planar structures resulted to be particularly stable due to polarization effects; indeed, Coulombic repulsion between basal Au atoms and surface oxygen anions promotes the displacement of the electronic density toward terminal Au atoms producing a Au{sup +δ}(basal)/Au{sup −δ}(terminal) polarization. On the hydroxylated surface, Au clusters adsorb more weakly with respect to the bare surface, mainly through monocoordinated surface hydroxyl groups and tricoordinated oxygen ions. Concerning the nucleation mechanism, while on the hydroxylated surface the nucleation energy is governed by the spin of the interacting systems, on the bare surface polarization effects seems to play a predominant role.

  14. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    Science.gov (United States)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  15. Comparing denominator degrees of freedom approximations for the generalized linear mixed model in analyzing binary outcome in small sample cluster-randomized trials.

    Science.gov (United States)

    Li, Peng; Redden, David T

    2015-04-23

    Small number of clusters and large variation of cluster sizes commonly exist in cluster-randomized trials (CRTs) and are often the critical factors affecting the validity and efficiency of statistical analyses. F tests are commonly used in the generalized linear mixed model (GLMM) to test intervention effects in CRTs. The most challenging issue for the approximate Wald F test is the estimation of the denominator degrees of freedom (DDF). Some DDF approximation methods have been proposed, but their small sample performances in analysing binary outcomes in CRTs with few heterogeneous clusters are not well studied. The small sample performances of five DDF approximations for the F test are compared and contrasted under CRT frameworks with simulations. Specifically, we illustrate how the intraclass correlation (ICC), sample size, and the variation of cluster sizes affect the type I error and statistical power when different DDF approximation methods in GLMM are used to test intervention effect in CRTs with binary outcomes. The results are also illustrated using a real CRT dataset. Our simulation results suggest that the Between-Within method maintains the nominal type I error rates even when the total number of clusters is as low as 10 and is robust to the variation of the cluster sizes. The Residual and Containment methods have inflated type I error rates when the cluster number is small (<30) and the inflation becomes more severe with increased variation in cluster sizes. In contrast, the Satterthwaite and Kenward-Roger methods can provide tests with very conservative type I error rates when the total cluster number is small (<30) and the conservativeness becomes more severe as variation in cluster sizes increases. Our simulations also suggest that the Between-Within method is statistically more powerful than the Satterthwaite or Kenward-Roger method in analysing CRTs with heterogeneous cluster sizes, especially when the cluster number is small. We conclude that the

  16. Structure of small TiC n clusters: A theoretical study

    International Nuclear Information System (INIS)

    Largo, Laura; Cimas, Alvaro; Redondo, Pilar; Rayon, Victor M.; Barrientos, Carmen

    2006-01-01

    A theoretical study of the TiC n (n = 1-8) clusters has been carried out at the B3LYP/6-311+G(d) level. Molecular properties for three different isomers, namely linear, cyclic, and fan species, have been determined. The fan isomers, where the titanium atom is essentially side-bonded to the entire C n unit, are predicted to be more stable than both linear and cyclic isomers. Only for the largest studied species, TiC 8 , the cyclic isomer is located lower in energy. An even-odd parity effect in the incremental binding energies is observed for the three isomers, n-even species being in general more stable for linear and fan isomers, whereas for the cyclic species n-odd clusters are favoured. A topological analysis of the electronic charge density shows that all cyclic isomers correspond to true monocyclic rings, whereas for the fan species a variety of different connectivities has been observed

  17. Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in small water and HCl clusters.

    Science.gov (United States)

    Samanta, Amit K; Czakó, Gábor; Wang, Yimin; Mancini, John S; Bowman, Joel M; Reisler, Hanna

    2014-08-19

    Water is one of the most pervasive molecules on earth and other planetary bodies; it is the molecule that is searched for as the presumptive precursor to extraterrestrial life. It is also the paradigm substance illustrating ubiquitous hydrogen bonding (H-bonding) in the gas phase, liquids, crystals, and amorphous solids. Moreover, H-bonding with other molecules and between different molecules is of the utmost importance in chemistry and biology. It is no wonder, then, that for nearly a century theoreticians and experimentalists have tried to understand all aspects of H-bonding and its influence on reactivity. It is somewhat surprising, therefore, that several fundamental aspects of H-bonding that are particularly important for benchmarking theoretical models have remained unexplored experimentally. For example, even the binding strength between two gas-phase water molecules has never been determined with sufficient accuracy for comparison with high-level electronic structure calculations. Likewise, the effect of cooperativity (nonadditivity) in small H-bonded networks is not known with sufficient accuracy. An even greater challenge for both theory and experiment is the description of the dissociation dynamics of H-bonded small clusters upon acquiring vibrational excitation. This is because of the long lifetimes of many clusters, which requires running classical trajectories for many nanoseconds to achieve dissociation. In this Account, we describe recent progress and ongoing research that demonstrates how the combined and complementary efforts of theory and experiment are enlisted to determine bond dissociation energies (D0) of small dimers and cyclic trimers of water and HCl with unprecedented accuracy, describe dissociation dynamics, and assess the effects of cooperativity. The experimental techniques rely on IR excitation of H-bonded X-H stretch vibrations, measuring velocity distributions of fragments in specific rovibrational states, and determining product

  18. A study of small molecule ingress into planar and cylindrical materials using ion beam analysis

    International Nuclear Information System (INIS)

    Smith, R.W.

    2001-12-01

    Ion beam analysis techniques have been developed to allow profiling of small molecules diffused into materials at depths ranging from 10 -7 to 10 -1 m. A model DPS/PS/DPS triple-layer film and D( 3 He,p) 4 He nuclear reaction analysis was used to test the applicability of a novel data processing program - the IBA DataFurnace - to nuclear reaction data. The same reaction and program were used to depth profile the diffusion of heavy water into cellophane. A scanning 3 He micro-beam technique was developed to profile the diffusion of small molecules into both planar and cylindrical materials. The materials were exposed to liquids containing deuterium labelled molecules. A cross-section was exposed by cutting the material perpendicular to the surface and this was bombarded by a scanning 3 He micro-beam. Nuclear reaction analysis was used to profile the diffusing molecules, particle induced X-ray emission (in most cases) to locate the matrix and Rutherford backscattering for normalisation. Two-dimensional maps showing the molecular distribution over the cross-section were obtained. From these one-dimensional concentration profiles were produced. Water diffusion was studied into a planar and a cylindrical polymer, three different planar fibre optic grade glasses and both a fibre optic pressure sensor and communication fibre. The diffusion of dye into hair was also investigated. These studies have provided information about the diffusion mechanisms that take place, and where relevant diffusion coefficients have been obtained using either a semi-infinite medium Fickian planar diffusion model or a cylindrical Fickian diffusion model. (author)

  19. Energy dependent modulation of the ulf ion flux oscillations observed at small pitch angles

    International Nuclear Information System (INIS)

    Su, S.; Konradi, A.; Fritz, T.A.

    1979-01-01

    The characteristics of the ultralow frequency oscillations in the ion fluxes observed at small pitch angles by the National Oceanic and Atmospheric Adminstration detector telescopes on board ATS 6 are again examined. The present report concentrates on the dramatic variation of the flux modulations detected in various energy channels during a single event which occurred on February 18, 1975. The wave amplitude is observed to be larger in a higher energy channel with energies from 100 keV to 150 keV and to decrease toward the lower energy channels. The lowest-energy protons (25--33 keV) in general are seldom seen to be oscillating, but in this event they display a low-amplitude oscillation which is 180 0 out of p ase with the adjacent channel. Such energy dependent modulation of the flux oscillation is thought to be a consequence of the wave particle resonant interaction. However, the prediction of the bounce resonant interaction is not consistent with the observations of both the energy dependent variation of the flux amplitudes and a 180 0 change in the oscillation phase in the adjacent low-energy channels that occurred in the February 18, 1975, event. Since the shape of the undisturned particle distribution can also determine the variation of the particle perturbation at various energies, the first-order particle distribution derived in a homogeneous plasma with a uniform magnetic field is examined without any specification of the wave mode. When the average particle distribution during the wave observation is used together with a parallel wave electric field that presumably causes the flux modulation at small pitch angles, a reasonable agreement is found between the variation of flux modulation derived from the slope of the average particle distribution and that from the experimental observation

  20. Thermal Modeling Analysis Of CST Media In The Small Column Ion Exchange Project

    International Nuclear Information System (INIS)

    Lee, S.

    2010-01-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds

  1. RH and H2 production in reactions between ROH and small molybdenum oxide cluster anions.

    Science.gov (United States)

    Waller, Sarah E; Jarrold, Caroline C

    2014-09-18

    To test recent computational studies on the mechanism of metal oxide cluster anion reactions with water [Ramabhadran, R. O.; et al. J. Phys. Chem. Lett. 2010, 1, 3066; Ramabhadran, R. O.; et al. J. Am. Chem. Soc. 2013, 135, 17039], the reactivity of molybdenum oxo–cluster anions, Mo(x)O(y)(–) (x = 1 – 4; y ≤ 3x) toward both methanol (MeOH) and ethanol (EtOH) has been studied using mass spectrometric analysis of products formed in a high-pressure, fast-flow reactor. The size-dependent product distributions are compared to previous Mo(x)O(y)(–) + H2O/D2O reactivity studies, with particular emphasis on the Mo2O(y)(–) and Mo3O(y)(–) series. In general, sequential oxidation, Mo(x)O(y)(–) + ROH → Mo(x)O(y+1)(–) + RH, and addition reactions, Mo(x)O(y)(–) + ROH → Mo(x)O(y+1)RH(–), largely corresponded with previously studied Mo(x)O(y)(–) + H2O/D2O reactions [Rothgeb, D. W., Mann, J. E., and Jarrold, C. C. J. Chem. Phys. 2010, 133, 054305], though with much lower rate constants than those determined for Mo(x)O(y)(–) + H2O/D2O reactions. This finding is consistent with the computational studies that suggested that −H mobility on the cluster–water complex was an important feature in the overall reactivity. There were several notable differences between cluster–ROH and cluster–water reactions associated with lower R–OH bond dissociation energies relative to the HO–H dissociation energy.

  2. Industrial Education. Mini-Course Cluster: Bikes, Electricity, Small Engines. [Grade 9].

    Science.gov (United States)

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides three units to be used in a one semester course in grade 9 on the subjects of bikes, electricity, and small engines. The section on bicycles is divided into two parts, mechanical and power (i.e. motorcycles) and covers the topics of…

  3. Temperature and Size Dependence of Characteristic Hydrogen-Bonded Network Structures with Ion Core Switching in Protonated (Methanol)6-10-(Water)1Mixed Clusters: A Revisit.

    Science.gov (United States)

    Katada, Marusu; Hsu, Po-Jen; Fujii, Asuka; Kuo, Jer-Lai

    2017-07-27

    Hydrogen-bonded network structures and preferential ion core in the protonated methanol-water mixed clusters, H + (methanol) n -(water) 1 (n = 6-10), were explored by a combination of infrared spectroscopy and theoretical calculations. Infrared spectra of the OH stretch region of the clusters were measured at the two different temperature ranges by using Ar-tagging. Stable isomer structures of the clusters were searched by the multiscale modeling approach and temperature dependent infrared spectra were simulated based on the statistical populations of the isomers. The combined experimental and theoretical studies revealed that the characteristic multiring structures begin to form at n = 7 under the low temperature condition and they are preferential at the wide temperature range in n ≥ 8. It was also demonstrated that the preferential ion core type changes from methanol (MeOH 2 + ) to water (H 3 O + ) with increasing cluster size. In n ≤ 8, the observed infrared spectral features partly depend on the monitoring vibrational predissociation channel, and weak correlations between the hydrogen-bonded network structure and preferential dissociation channels were suggested. However, the ion core type does not necessarily correlate to the preferential dissociation channel. This implies that large rearrangement of the hydrogen-bonded network structure occurs prior to the dissociation.

  4. Graphene-supported small transition-metal clusters: A density functional theory investigation within van der Waals corrections

    Science.gov (United States)

    Rêgo, Celso R. C.; Tereshchuk, Polina; Oliveira, Luiz N.; Da Silva, Juarez L. F.

    2017-06-01

    Transition-metal nanoparticles adsorbed on graphene are of great interest due to the unique catalytic and magnetic properties resulting from nanoparticles-graphene interactions. Comparison between the physical properties of such systems and those of the same nanoparticles in the gas phase is especially important. Here we report a systematic density functional investigation of the structural, energetic, and magnetic properties of small Nin, Pdn, and Ptn clusters, comprising from n =1 to 6 atoms, in the gas phase and adsorbed on a graphene monolayer. Our results show that the Ni adatom binds to the graphene hollow site, with -1.47 -meV adsorption energy, while Pd and Pt prefer the bridge sites, with -1.14 - and -1.62 -meV adsorption energies, respectively. This difference is determined by a competition between quantum and classical forces. Ni2 and Pt2 dimers bind perpendicularly on hollow and bridge sites, respectively, while Pd2 lies parallel to the graphene sheet, with each adatom on a bridge site. For larger TMn (TM = Ni , Pd , Pt ; n =3 -6 ) clusters, either two or three atoms bind to bridge graphene sites. In almost all cases the adsorbed clusters retain their gas-phase structures. The exceptions are Ni5 and Pt4, which acquire more compact structures with effective coordination number 12 and 19 % larger than in the gas phase, respectively. As the number of atoms grows, the cluster binds more weakly to the graphene, while its binding energy mounts up. Van der Waals corrections to the plain density functional theory (DFT) total energy raise the adsorption energy, but leave the cluster structure unchanged, in the gas phase or upon adsorption. Bader charge analysis shows that adsorption causes minor charge redistribution: the TM atoms bound to C atoms become positively charged, while the remaining metal atoms acquire negative charge. We have derived an approximate analytical expression for the local densities of states for the d orbitals of Ni , Pd , and Pt adatoms

  5. Isonitrile ligand effects on small-molecule-sequestering in bimetalladodecaborane clusters

    Czech Academy of Sciences Publication Activity Database

    Bould, Jonathan; Londesborough, Michael Geoffrey Stephen; Kennedy, JD.; Macias, R.; Winter, REK.; Císařová, I.; Kubát, Pavel; Lang, Kamil

    2013-01-01

    Roč. 747, december (2013), s. 76-84 ISSN 0022-328X R&D Projects: GA ČR GAP207/11/1577; GA ČR GAP208/10/1678; GA ČR GAP207/11/0705 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Metallaboranes * Small molecule * Sequestration * DFT * Isonitrile * Carbon monoxide Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.302, year: 2013

  6. Generation of new Agm Ten clusters via laser ablation synthesis using Ag-Te nano-composite as precursor. Quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Amato, Filippo; Alberti, Milan; Havel, Josef

    2014-12-30

    Silver tellurides find applications in the development of infrared detection, imaging, magnetics, sensors, memory devices, and optic materials. However, only a limited number of silver tellurides have been described to date. Laser ablation synthesis (LAS) was selected to generate new Ag-Te clusters. Isothermal adsorption was used to study the formation of silver nano-particles-tellurium aggregates. Laser desorption ionization quadrupole ion trap time-of-flight mass spectrometry (LDI-QIT-TOFMS) was used for the generation and analysis of Agm Ten clusters. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to visualize the structure of materials. The stoichiometry of the generated clusters was determined by computer modeling of isotopic patterns. A simple, one-pot method for the preparation of Ag-Te nano-composite was developed and found suitable for LAS of silver tellurides. The LDI of Ag-Te nano-composite leads to the formation of 11 unary and 52 binary clusters. The stoichiometry of the 34 novel Agm Ten clusters is reported here for the first time. LAS with TOFMS detection was proven to be a powerful technique for the generation of silver telluride clusters. Knowledge of the stoichiometry of the generated clusters might facilitate the further development of novel high-tech silver tellurium nano-materials. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies

    Science.gov (United States)

    Guo, Hong; Zheng, Zheng; Zehavi, Idit; Dawson, Kyle; Skibba, Ramin A.; Tinker, Jeremy L.; Weinberg, David H.; White, Martin; Schneider, Donald P.

    2015-01-01

    We present the measurements and modelling of the projected and redshift-space clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Data Release 11. For a volume-limited luminous red galaxy sample in the redshift range of 0.48 existence of galaxy velocity bias. Most notably, central galaxies on average are not at rest with respect to the core of their host haloes, but rather move around it with a 1D velocity dispersion of 0.22^{+0.03}_{-0.04} times that of the dark matter, implying a spatial offset from the centre at the level of ≲1 per cent of the halo virial radius. The luminous satellite galaxies move more slowly than the dark matter, with velocities 0.86^{+0.08}_{-0.03} times those of the dark matter, which suggests that the velocity and spatial distributions of these satellites cannot both be unbiased. The constraints mainly arise from the Fingers-of-God effect at non-linear scales and the smoothing to the Kaiser effect in the translinear regime; the robustness of the results is demonstrated by a variety of tests. We discuss the implications of the existence of galaxy velocity bias for investigations of galaxy formation and cosmology.

  8. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.; Sutherland, B.; Bennett, P. V.; Cutter, N. C.; Sutherland, J. C.

    2011-06-01

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF) followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.

  9. Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    Full Text Available This study aimed to understand the role of myeloid cell clusters in uninvolved regional lymph nodes from early stage non-small cell lung cancer patients.Uninvolved regional lymph node sections from 67 patients with stage I-III resected non-small cell lung cancer were immunostained to detect myeloid clusters, STAT3 activity and occult metastasis. Anthracosis intensity, myeloid cluster infiltration associated with anthracosis and pSTAT3 level were scored and correlated with patient survival. Multivariate Cox regression analysis was performed with prognostic variables. Human macrophages were used for in vitro nicotine treatment.CD68+ myeloid clusters associated with anthracosis and with an immunosuppressive and metastasis-promoting phenotype and elevated overall STAT3 activity were observed in uninvolved lymph nodes. In patients with a smoking history, myeloid cluster score significantly correlated with anthracosis intensity and pSTAT3 level (P<0.01. Nicotine activated STAT3 in macrophages in long-term culture. CD68+ myeloid clusters correlated and colocalized with occult metastasis. Myeloid cluster score was an independent prognostic factor (P = 0.049 and was associated with survival by Kaplan-Maier estimate in patients with a history of smoking (P = 0.055. The combination of myeloid cluster score with either lymph node stage or pSTAT3 level defined two populations with a significant difference in survival (P = 0.024 and P = 0.004, respectively.Myeloid clusters facilitate a pro-metastatic microenvironment in uninvolved regional lymph nodes and associate with occult metastasis in early stage non-small cell lung cancer. Myeloid cluster score is an independent prognostic factor for survival in patients with a history of smoking, and may present a novel method to inform therapy choices in the adjuvant setting. Further validation studies are warranted.

  10. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. Cluster ion beam process technology; 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seido seika hokokusho. Cluster ion beam process technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of cluster ion beams. This technology generates the strong ion beams of atom and molecule clusters, and irradiate them onto the solid surfaces, to create new materials or treat materials. It allows the nano-level treatment. The program for high-current cluster ion beam generation/irradiation technology for industrial purposes attains the target high-current beam of 500{mu}m. It is necessary to establish the optimum cluster size, irradiated energy and ion species for the highly functional surface treatment, for which applicable technologies, e.g., those related to time of flight and molecular dynamics, are developed. Studies on high-current, large-area irradiation technologies are started. The program for material processing technologies involves evaluation of crystalline defects formed during the beam implantation by photoluminescence spectroscopy, and studies on semiconductor surface processing technologies. The surface smoothening technology is investigated to reduce crystalline defects and stress-induced strains for difficult-to-process materials, e.g., SiC and diamond, and the good results are produced. The program for development of superflat/superhard thin film formation technology involves irradiation of the Ar ion beams during the deposition of C{sub 60}(fullerene), to produce the superhard thin film. (NEDO)

  11. Interaction of small hydrocarbon ions and Ar(+) with carbon-fibre-composite surfaces at room temperature

    Czech Academy of Sciences Publication Activity Database

    Keim, A.; Rasul, B.; Endstrasser, N.; Scheier, P.; Märk, T. D.; Herman, Zdeněk

    2011-01-01

    Roč. 306, 2-3 (2011), s. 204-209 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ion-surface collisions * Ar+ and hydrocarbon ions * carbon-fibre-composite surface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.549, year: 2011

  12. Quantum chemical study of the interaction of elemental Hg with small neutral, anionic and cationic Aun (n = 1–6) clusters

    International Nuclear Information System (INIS)

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.

    2013-01-01

    Graphical abstract: Binding energies as a function of cluster size for Au n Hg, Au n Hg + and Au n Hg − complexes. Highlights: ► Hg adsorption of neutral and charged Au n (n = 1–6) clusters has been discussed. ► Size and charged state of cluster significantly affect the Hg adsorption. ► Transfer of electron mainly found from s orbital of Hg to s orbital of Au. - Abstract: Adsorption of elemental mercury (Hg) on small neutral, cationic and anionic gold clusters (Au n , n = 1–6) has been studied by using the density functional theory (DFT). Results of this investigation show that frontier molecular orbital theory is a useful tool to predict the selectivity of Hg adsorption. It is found that adsorption of Hg on neutral, cationic and anionic Au n (n = 1–6) clusters are thermodynamically favorable. The binding energies of Hg on the cationic Au n clusters are greater than those on the neutral and anionic clusters. Natural bond orbital (NBO) analysis indicates that the flow of electrons in the neutral and charged clusters is mainly due to the s orbitals of Hg and Au. Results of NBO analysis also indicate that the binding energy of Hg with Au n clusters is directly proportional to the charge transfer, i.e. greater is the charge transfer, higher is the binding energy

  13. Size-dependent reactions of ammonium bisulfate clusters with dimethylamine.

    Science.gov (United States)

    Bzdek, Bryan R; Ridge, Douglas P; Johnston, Murray V

    2010-11-04

    The reaction kinetics of ammonium bisulfate clusters with dimethylamine (DMA) gas were investigated using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Clusters ranged in size from 1 to 10 bisulfate ions. Although displacement of the first several ammonium ions by DMA occurred with near unit efficiency, displacement of the final ammonium ion was cluster size dependent. For small clusters, all ammonium ions are exposed to incoming DMA molecules, allowing for facile exchange ("surface" exchange). However, with increasing cluster size, an ammonium ion can be trapped in an inaccessible region of the cluster ("core" exchange), thereby rendering exchange difficult. DMA was also observed to add onto existing dimethylaminium bisulfate clusters above a critical size, whereas ammonia did not add onto ammonium bisulfate clusters. The results suggest that as the cluster size increases, di-dimethylaminium sulfate formation becomes more favorable. The results of this study give further evidence to suggest that ambient sub-3 nm diameter particles are likely to contain aminium salts rather than ammonium salts.

  14. The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds

    Science.gov (United States)

    Bitsakis, Theodoros; González-Lópezlira, R. A.; Bonfini, P.; Bruzual, G.; Maravelias, G.; Zaritsky, D.; Charlot, S.; Ramírez-Siordia, V. H.

    2018-02-01

    We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully automated method developed by Bitsakis et al. Our code detects 1319 star clusters in the central 18 deg2 of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240 Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same setup, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300 Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young (≤50 Myr) clusters in both Magellanic Clouds, found where their bars join the H I arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.

  15. Stress Drop and Directivity Patterns Observed in Small-Magnitude (Clusters Near Reno, Nevada

    Science.gov (United States)

    Ruhl, C. J.; Hatch, R. L.; Abercrombie, R. E.; Smith, K.

    2017-12-01

    Recent improvements in seismic instrumentation and network coverage in the Reno, NV area have provided high-quality records of abundant microseismicity, including several swarms and clusters. Here, we discuss stress drop and directivity patterns of small-magnitude seismicity in the 2008 Mw4.9 Mogul earthquake swarm in Reno, NV and in the nearby region of an ML3.2 sequence near Virginia City, NV. In both sequences, double-difference relocated earthquakes cluster on multiple distinct structures consistent with focal mechanism and moment tensor fault plane solutions. Both sequences also show migration potentially related to fluid flow. We estimate corner frequency and stress drop using EGF-derived spectral ratios, convolving earthquake pairs (target*EGF) such that we preserve phase and recover source-time functions (STF) on a station-by-station basis. We then stack individual STFs per station for all EGF-target pairs per target earthquake, increasing the signal-to-noise of our results. By applying an azimuthal- and incidence-angle-dependent stretching factor to STFs in the time domain, we are able to invert for rupture directivity and velocity assuming both unilateral and bilateral rupture. Earthquakes in both sequences, some as low as ML2.1, show strong unilateral directivity consistent with independent fault plane solutions. We investigate and compare the relationship between rupture and migration directions on subfaults within each sequence. Average stress drops for both sequences are 4 MPa, but there is large variation in individual estimates for both sequences. Although this variation is not explained simply by any one parameter (e.g., depth), spatiotemporal variation in the Mogul swarm is distinct: coherent clusters of high and low stress drop earthquakes along the mainshock fault plane are seen, and high-stress-drop foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the

  16. Switch-on of the ion emitters on experiment ASPOC/CLUSTER, recovered from the debris of the ARIANE-V maiden flight disaster

    International Nuclear Information System (INIS)

    Fehringer, M.; Ruedenauer, F.; Arends, H.

    1996-11-01

    Within the project ASPOC, Seibersdorf has developed the ion emitter modules for potential control of the four CLUSTER - satellites. During start of the CLUSTER - mission, the ARIANE - V carrier had to be destroyed at an altitude of 3.8 km, due to a misprogramming of the inertial platform. From the debris of the disaster, three of the four ASPOC - experiments were recovered. Approximately 2 months after the disaster, the ion emitter modules were shipped to Seibersdorf for an investigation of the influence of the extreme stresses on the emitter structures. In spite of the mechanical stresses due to the explosion and the 4 km drop, and in spite of the fact that the emitters were exposed to the damp subtropical environment for about 2 months, all recovered emitters refired in the laboratory at the first attempt. Operating conditions after refiring corresponded closely to the parameters obtained during preflight - testing. (author)

  17. The use of secondary ion mass spectrometry in forensic analyses of ultra-small samples

    Science.gov (United States)

    Cliff, John

    2010-05-01

    It is becoming increasingly important in forensic science to perform chemical and isotopic analyses on very small sample sizes. Moreover, in some instances the signature of interest may be incorporated in a vast background making analyses impossible by bulk methods. Recent advances in instrumentation make secondary ion mass spectrometry (SIMS) a powerful tool to apply to these problems. As an introduction, we present three types of forensic analyses in which SIMS may be useful. The causal organism of anthrax (Bacillus anthracis) chelates Ca and other metals during spore formation. Thus, the spores contain a trace element signature related to the growth medium that produced the organisms. Although other techniques have been shown to be useful in analyzing these signatures, the sample size requirements are generally relatively large. We have shown that time of flight SIMS (TOF-SIMS) combined with multivariate analysis, can clearly separate Bacillus sp. cultures prepared in different growth media using analytical spot sizes containing approximately one nanogram of spores. An important emerging field in forensic analysis is that of provenance of fecal pollution. The strategy of choice for these analyses-developing host-specific nucleic acid probes-has met with considerable difficulty due to lack of specificity of the probes. One potentially fruitful strategy is to combine in situ nucleic acid probing with high precision isotopic analyses. Bulk analyses of human and bovine fecal bacteria, for example, indicate a relative difference in d13C content of about 4 per mil. We have shown that sample sizes of several nanograms can be analyzed with the IMS 1280 with precisions capable of separating two per mil differences in d13C. The NanoSIMS 50 is capable of much better spatial resolution than the IMS 1280, albeit at a cost of analytical precision. Nevertheless we have documented precision capable of separating five per mil differences in d13C using analytical spots containing

  18. A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-like and prefers manganese ion as the cofactor.

    Science.gov (United States)

    Shen, Yulong; Tang, Xiao-Feng; Yokoyama, Hideshi; Matsui, Eriko; Matsui, Ikuo

    2004-01-01

    Family D DNA polymerase (PolD) is a new type of DNA polymerase possessing polymerization and 3'-5' exonuclease activities. Here we report the characterization of the nuclease activity of PolD from Pyrococcus horikoshii. By site-directed mutagenesis, we verified that the putative Mre11-like nuclease domain in the small subunit (DP1), predicted according to computer analysis and structure inference reported previously, is the catalytic domain. We show that D363, H365 and H454 are the essential residues, while D407, N453, H500, H563 and H565 are critical residues for the activity. We provide experimental evidence demonstrating that manganese, rather than magnesium, is the preferable metal ion for the nuclease activity of PolD. We also show that DP1 alone is insufficient to perform full catalysis, which additionally requires the formation of the PolD complex and manganese ion. We found that a 21 amino acid, subunit-interacting peptide of the sequence from cysteine cluster II of the large subunit (DP2) stimulates the exonuclease activity of DP1 and the internal deletion mutants of PolD lacking the 21-aa sequence. This indicates that the putative zinc finger motif of the cysteine cluster II is deeply involved in the nucleolytic catalysis.

  19. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  20. Advanced analysis tool for X-ray photoelectron spectroscopy profiling: Cleaning of perovskite SrTiO{sub 3} oxide surface using argon cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aureau, D., E-mail: damien.aureau@uvsq.fr [Institut Lavoisier de Versailles, (UMR 8180) Université de Versailles-Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Ridier, K. [Institut Lavoisier de Versailles, (UMR 8180) Université de Versailles-Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Groupe d' Étude de la Matière Condensée (UMR 8635) Université de Versailles Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Bérini, B.; Dumont, Y.; Keller, N. [Groupe d' Étude de la Matière Condensée (UMR 8635) Université de Versailles Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Vigneron, J.; Bouttemy, M.; Etcheberry, A. [Institut Lavoisier de Versailles, (UMR 8180) Université de Versailles-Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Fouchet, A. [Groupe d' Étude de la Matière Condensée (UMR 8635) Université de Versailles Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France)

    2016-02-29

    This article shows the comparison between three different ionic bombardments during X-ray photoelectron spectroscopy (XPS) studies of single crystalline SrTiO{sub 3} (STO) substrates. The abrasion using a “cluster argon ion source” is compared with the standard “monoatomic Ar”. The influence of the energy of the monoatomic ions used is clearly demonstrated. While the chemically adsorbed species on the STO surface are removed, such bombardment strongly modifies the surface. A reduction of part of the titanium atoms and the appearance of a different chemical environment for surface strontium atoms are observed. Implantation of argon ions is also detected. Cluster ion etching is used on oxide surface and, in this case only, due to a much lower kinetic energy per atom compared to monoatomic ions, the possibility to remove surface contaminants at the surface without modification of the XP spectra is clearly demonstrated, ensuring that the stoichiometry of the surface is preserved. Such result is crucial for everybody working with oxide surfaces to obtain a non-modified XPS analysis. The progressive effect of this powerful tool allows the monitoring of the removal of surface contamination in the first steps of the bombardment which was not achievable with usual guns. - Highlights: • The effects of three argon etchings are studied as a function of time on SrTiO3 oxide. • A method for obtaining non-modified chemical analysis of oxides is presented. • The soft removal of adsorbed species thanks to argon cluster is demonstrated. • The damages induced on SrTiO3 surface by ionic bombardment are shown. • The influence of the kinetic energy of incoming Ar atoms is examined.

  1. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  2. Triplicate Sodium Iodide Gamma Ray Monitors For The Small Column Ion Exchange Program

    International Nuclear Information System (INIS)

    Couture, A.

    2011-01-01

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ( 137 Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241( 241 Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the 137 Cs full-energy γ-ray peak and the 241 Am alpha peak. The count rate in the gamma peak region will be proportional to the 137 Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical 137 Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing 137 Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF) to be incorporated into grout.

  3. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Study of optical band gap, carbonaceous clusters and structuring in CR-39 and PET polymers irradiated by 100 MeV O 7+ ions

    Science.gov (United States)

    Ramola, R. C.; Chandra, Subhash; Negi, Ambika; Rana, J. M. S.; Annapoorni, S.; Sonkawade, R. G.; Kulriya, P. K.; Srivastava, A.

    2009-01-01

    Commercially purchased CR-39 and PET polymers were irradiated by 100 MeV O 7+ ions of varying fluences, ranging from 1×10 11 to 1×10 13 ions/cm 2. The effects of swift heavy ions (SHI) on the structural, optical and chemical properties of CR-39 and PET polymers were studied using X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The XRD patterns of CR-39 show that the intensity of the peak decreases with increasing ion fluence, which indicates that the semicrystalline structure of polymer changes to amorphous with increasing fluences. The XRD patterns of PET show a slight increase in the intensity of the peaks, indicating an increase in the crystallinity. The UV-visible spectra show the shift in the absorbance edge towards the higher wavelength, indicating the change in band gap. Band gap in PET and CR-39 found to be decrease from 3.87 to 2.91 and 5.3-3.5 eV, respectively. The cluster size also shows a variation in the carbon atoms per cluster that varies from 42 to 96 in CR-39 and from 78 to 139 in PET. The FTIR spectra show an overall reduction in intensity of the typical bands, indicating the degradation of polymers after irradiation.

  5. Measurement of small ion beams by thermal ionisation mass spectrometry using new 10(13) Ohm resistors.

    Science.gov (United States)

    Koornneef, J M; Bouman, C; Schwieters, J B; Davies, G R

    2014-03-28

    We tested 5 newly manufactured - prototype - 10(13)Ohm resistors in the feedback loop of Faraday cup amplifiers to measure small ion beams by Thermal Ionisation Mass Spectrometry (TIMS). The high Ohmic resistors installed in the TRITON Plus at the VU University Amsterdam theoretically have 10 times lower noise levels relative to the default 10(11)Ohm resistors. To investigate the precision and accuracy of analyses using these new amplifiers we measured Sr and Nd isotopes of reference standards at a range of ion currents (3.2×10(-16) to 1×10(-12) A, corresponding to intensities of 32 μV to 100 mV on a default 10(11)Ohm amplifier) and on small amounts of material (100 and 10 pg). Internal precision and external reproducibility for Sr and Nd isotope ratios are both better when collected on 10(13) compared 10(12)Ohm resistors and to the default 10(11)Ohm resistors. At an (87)Sr ion current of 3×10(-14) A (3 mV on a 10(11)Ohm amplifier) the internal precision (2 SE) of (87)Sr/(86)Sr is 5 times better for 10(13)Ohm resistors compared to 10(11)Ohm resistors. The external reproducibility (2 SD) at this beam intensity is 9 times better. Multiple 100 and 10 pg Sr standards, ran to exhaustion, yielded low (87)Sr/(86)Sr compared to the long term average (e.g. 10 pg average=0.710083±164 (n=11) instead of 0.710244±12, n=73). The average off-set for 10 pg standards can be explained by a loading blank contribution of 1.3 pg. In contrast, Nd data on 100 pg and 10 pg samples are accurate suggesting that Nd loading blanks do not compromise the data. The external reproducibility of (143)Nd/(144)Nd on 100 pg samples is 125 ppm and 3.3‰ on 10 pg samples (2 RSD=relative standard deviation, n=10). Thus, variability in Nd and Sr isotope ratios in the 4th decimal place, e.g. (143)Nd/(144)Nd 0.5110-0.5119 or (87)Sr/(86)Sr 0.7100-0.7109, can be resolved in 10 to 100 pg samples provided that the procedural blanks and chemical separation are optimal. For measurements in the beam

  6. ions

    African Journals Online (AJOL)

    (MP2 B2). In order to draw the final conclusion about the content of the isomers of pentaatomic ions in saturated vapor over cesium chloride, we have taken into account the entropy factor. We considered the isomerization reactions which are given below: Cs3Cl2. + (V-shaped) = Cs3Cl2. + (cyclic or bipyramidal). (1). Cs2Cl3.

  7. Effect of sharp maximum in ion diffusivity for liquid xenon

    Science.gov (United States)

    Lankin, A. V.; Orekhov, M. A.

    2016-11-01

    Ion diffusion in a liquid usually could be treated as a movement of an ion cluster in a viscous media. For small ions this leads to a special feature: diffusion coefficient is either independent of the ion size or increases with it. We find a different behavior for small ions in liquid xenon. Calculation of the dependence of an ion diffusion coefficient in liquid xenon on the ion size is carried out. Classical molecular dynamics method is applied. Calculated dependence of the ion diffusion coefficient on its radius has sharp maximums at the ion radiuses 1.75 and 2 Å. Every maximum is placed between two regions with different stable ion cluster configurations. This leads to the instability of these configurations in a small region between them. Consequently ion with radius near 1.75 or 2 Å could jump from one configuration to another. This increases the speed of the diffusion. A simple qualitative model for this effect is suggested. The decomposition of the ion movement into continuous and jump diffusion shows that continuous part of the diffusion is the same as for the ion cluster in the stable region.

  8. Tuning the Adsorption of Elemental Mercury by Small Gas-Phase Palladium Clusters: First-Principles Study.

    Science.gov (United States)

    Kalita, Bulumoni

    2016-10-06

    Density functional theory (DFT) calculations were performed to study the nature of interaction of elemental mercury (Hg) with small palladium clusters (Pd n , n = 1-6) using generalized gradient approximation method. Results of these calculations showed stronger binding of Hg with Pd 2 cluster, which, therefore, was chosen for further investigation as presented in the latter part of the third section of this report. This extended study explains the binding mechanism of Hg with alloys of Pd dimers, PdM (M = Pd, Pt, Cu, Ag, Au) in neutral, cationic, and anionic states. Interaction energy of Hg with palladium dimer follows the trend Pd 2 + > Pd 2 > Pd 2 - . For all of the above PdM complexes, the strength of Hg binding is found to be highest in their cationic states. Mixing of Pt and Au enhances the reactivity of the cationic Pd 2 dimers, decreases it for their neutral counterparts, and does not affect much in the anionic states. Natural bond orbital (NBO) analysis indicates that Hg binding takes place because of the charge transfer from its s-orbitals primarily to the d-orbitals of M atoms followed by back-donation of charges from their s-orbitals to the p-orbitals of Hg atom. Moreover, the amount of charge transfer from Hg(s)→M(d) correlates with the Hg binding energy in Hg-PdM 0,± complexes. Binding of Hg in cationic Hg-PdM complexes conjointly depends on energies of the lowest unoccupied molecular orbitals of the PdM + dimers as well as NBO partial charges on adsorbed Hg.

  9. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1988--July 31, 1989

    International Nuclear Information System (INIS)

    Jena, P.; Rao, B.K.; Khanna, S.N.

    1989-04-01

    Our research during this reporting period has focused on the following two aspects of cluster research. Electronic structure and stability of charged clusters and studies of evolution of magnetic properties with increasing cluster size. Following is a summary of our results

  10. Adsorption of fluids in slitlike pores containing a small amount of mobile ions.

    Science.gov (United States)

    Borówko, M; Bucior, K; Sokołowski, S; Staszewski, T

    2005-11-01

    We apply density functional theory to investigate changes in the phase behavior of a fluid caused by the presence of mobile ions inside the pore. The approach has been based on the fundamental measure density functional theory and on the theory of nonuniform electrolytes developed recently by O. Pizio, A. Patrykiejew, S. Sokołowski [J. Chem. Phys. 121 (2005) 11,957]. We have evaluated capillary condensation phase diagrams for pores of different widths and for different concentrations of confined ions. The calculations have demonstrated that the presence of ions leads to lowering the critical temperature and to an increase of the value of the chemical potential at the capillary condensation point.

  11. Towards relativistic heavy ion collisions 'by small steps towards the stars'

    International Nuclear Information System (INIS)

    Scott, D.K.

    1980-01-01

    Current attempts to search for the exotic processes occurring in relativistic heavy ion collisions are reviewed under the headings; peripheral collisions (peripheral collisions as a function of energy, new features at intermediate energies, ground state correlations, microscopic aspects), central collisions (low energy perspective, time scales in heavy ion collisions, spatial, temporal localization and the onset of the nuclear fireball, models of particle emission in central relativistic collisions, the heart of the matter, multiplicity selection, the emission of composite particles), a search for the exotic (the limits of temperature and pressure, temporal and spatial limits, the limits of nuclear matter and nuclei,). 229 references. (U.K.)

  12. The electronic structures of small Ni(n) (n=2-4) clusters and their interactions with ethylene and triplet oxygen: a theoretical study.

    Science.gov (United States)

    Pakiari, Ali H; Pahlavan, Farideh

    2014-12-15

    Density functional theory (DFT) calculations of small nickel clusters and their interacting systems are carried out using the BLYP and B97-2 methods, after DFT calibration. All bare nickel clusters in this study have high multiplicities and are paramagnetic. Our results for the interactions between ethylene and oxygen with Ni(n) (n=2-4) clusters at different adsorption modes show that for ethylene, π-orientation is preferred, and that oxygen adsorption in a bridge mode is stronger than on-top coordination. Vibrational frequency analysis reveals that the vibrational modes of ethylene π-coordinated to nickel clusters converge toward the corresponding value for surface-bound ethylene, as the cluster size increases from two to four, showing that finite clusters can be used as localized models for ligand adsorption on nickel surfaces. We also calculate DFT global reactivity descriptors, chemical potential and hardness, and use these to predict the relative stability and reactivity of each bare cluster. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Towards relativistic heavy ion collisions by small steps towards the stars

    International Nuclear Information System (INIS)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references

  14. Combining Cluster Analysis and Small Unmanned Aerial Systems (sUAS) for Accurate and Low-cost Bathymetric Surveying

    Science.gov (United States)

    Maples, B. L.; Alvarez, L. V.; Moreno, H. A.; Chilson, P. B.; Segales, A.

    2017-12-01

    Given that classical in-situ direct surveying for geomorphological subsurface information in rivers is time-consuming, labor-intensive, costly, and often involves high-risk activities, it is obvious that non-intrusive technologies, like UAS-based, LIDAR-based remote sensing, have a promising potential and benefits in terms of efficient and accurate measurement of channel topography over large areas within a short time; therefore, a tremendous amount of attention has been paid to the development of these techniques. Over the past two decades, efforts have been undertaken to develop a specialized technique that can penetrate the water body and detect the channel bed to derive river and coastal bathymetry. In this research, we develop a low-cost effective technique for water body bathymetry. With the use of a sUAS and a light-weight sonar, the bathymetry and volume of a small reservoir have been surveyed. The sUAS surveying approach is conducted under low altitudes (2 meters from the water) using the sUAS to tow a small boat with the sonar attached. A cluster analysis is conducted to optimize the sUAS data collection and minimize the standard deviation created by under-sampling in areas of highly variable bathymetry, so measurements are densified in regions featured by steep slopes and drastic changes in the reservoir bed. This technique provides flexibility, efficiency, and free-risk to humans while obtaining high-quality information. The irregularly-spaced bathymetric survey is then interpolated using unstructured Triangular Irregular Network (TIN)-based maps to avoid re-gridding or re-sampling issues.

  15. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Kosugi, Nobuhiro, E-mail: kosugi@ims.ac.j [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2011-01-15

    Surface-site resolved Kr 3d{sub 5/2}{sup -1}5p and 3d{sub 5/2}{sup -1}6p and Xe 4d{sub 5/2}{sup -1}6p and 4d{sub 5/2}{sup -1}7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s{sup -2}5p, 4s{sup -2}6p, and 4s{sup -1}4p{sup -1}5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  16. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Interplay between magnetism, structure and chemical order in small CoPt clusters: Ab initio and model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Reyes, Lucila; Dorantes-Davila, Jesus; Pastor, Gustavo [Institut fuer Theoretische Physik, Universitaet Kassel (Germany)

    2010-07-01

    The magnetic properties of small Co{sub N}Pt{sub M} clusters (N+M{<=}5) are studied using a generalized gradient approximation to the density functional theory (DFT) and a self-consistent tight-binding (SCTB) model. First, we perform a systematic study of all possible different topological geometries, spin-moment configurations and chemical orders in the framework of the DFT. Second, by using the optimal ab initio structures we determine the spin moments, orbital moments and magnetic anisotropy energy within the SCTB method. The DFT calculations yield compact structures with particularly short bond lengths among the Co atoms (d{sub Co-Co}{approx_equal}2.2-2.4 A). Pt doping induces an important enhancement of the Co spin moments {mu}{sub Co} which are about 0.25 {mu}{sub B} larger than {mu}{sub Co} in Co{sub N}. This is mainly due to important charge transfers between the Co and Pt atoms. SCTB calculations show a 15-20 % orbital contribution to the total magnetic moment. Finally, a non trivial dependence of the MAE landscape on Pt concentration is observed.

  18. An Empirical Model for Build-Up of Sodium and Calcium Ions in Small Scale Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Subriyer Nasir

    2011-05-01

    Full Text Available A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and reject streams using Atomic Absorption Spectrophotometer (AAS. Multiple linear regression of natural logarithmic transformation was used to develop the model based on four main parameters that affect the build-up of solute in a small scale of RO namely applied pressure, permeate flux, membrane resistance, and feed concentration. Experimental data obtained in a small scale RO unit were used to develop the empirical model. The predicted values of theoretical build-up of sodium and calcium on membrane surface were found in agreement with experimental data. The deviation in the prediction of build-up of sodium and calcium were found to be 1.4 to 10.47 % and 1.12 to 4.46%, respectively.

  19. The small-molecule Bcl-2 inhibitor HA14-1 sensitizes cervical cancer cells, but not normal fibroblasts, to heavy-ion radiation

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Kataoka, Keiko; Sora, Sakura; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Nakano, Takashi; Kobayashi, Yasuhiko

    2008-01-01

    This is the first study to demonstrate that the small-molecule Bcl-2 inhibitor HA14-1 renders human cervical cancer cells and their Bcl-2 overexpressing radioresistant counterparts, but not normal fibroblasts, more susceptible to heavy ions. Thus, Bcl-2 may be an attractive target for improving the efficacy of heavy-ion therapy

  20. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  1. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  2. Small amplitude ion-acoustic double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Mishra, M. K.; Tiwari, R. S.; Jain, S. K.

    2007-01-01

    Ion-acoustic double layers has been studied in multicomponent plasma with positrons. Using the reductive perturbation method, the modified Korteweg-de Vries (mKdV) equation is derived for the system. The double-layer solution of the mKdV equation is discussed in detail. It is found that there exist two critical concentrations of positrons, α R and α Q , which decide the existence and nature of the ion-acoustic double layers. It is also found that the system supports ion-acoustic double layers only when the positron concentration (α) is less than the critical concentration α R (i.e., α R ). It is also investigated that for the given set of parameter values, if α R Q , the system supports only rarefactive double layers for the values of α lying in the range 0 R . However, for the given set of parameter values α R >α Q , the system supports rarefactive double layers for α Q , and for α>α Q , compressive double layers exist. The present theory also predicts that for a given set of parameter values on increasing the positron concentration, the amplitude of the rarefactive (compressive) double layer decreases (increases), whereas as positron concentration is increased, the width of the rarefactive (compressive) double layer increases (decreases). The effects of positron concentration and temperature ratio on the characteristics of the double layers (namely amplitude and width) are discussed in detail

  3. Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Nagasubramanian, G.; Roth, E.P.

    1998-12-22

    Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. At Sandia National Laboratories we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cell. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. Our impedance data suggest that while the variation in the electrolyte resistance between room temperature and {minus}20 C is negligible the anode electrolyte interfacial resistance increases by an order of magnitude in the same temperature regime. We believe that the solid electrolyte interface (SEI) layer on the carbon anode may be responsible for the increase in cell impedance. We have also evaluated the cells in hybrid mode with capacitors. High-current operation in the hybrid mode allowed fill usage of the Li-ion cell capacity at 25 C and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

  4. Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism.

    Science.gov (United States)

    Rangel, E; Sansores, E; Vallejo, E; Hernández-Hernández, A; López-Pérez, P A

    2016-12-07

    The hydrogen spill-over mechanism was studied by applying Density Functional Theory. We used small palladium clusters to act as the catalyst supported on the substrate (comprised of pyridinic and pyrrolic nitrogen doped graphene), in order to study hydrogen dissociation, migration and diffusion. Charge transfer and strong binding between the catalyst and the substrate lead to dissociated states of H 2 and prevent clusters from detaching and coalescing. In dissociated cases of H 2 on Pd clusters, energy barriers below 0.6 eV were found. Likewise, concerning hydrogen migration from the catalyst to the substrate, energy barrier values of 0.8 eV (pyridinic defect) and 0.5 eV (pyrrolic defect) were apparent in the case of the Pd 4 cluster at full hydrogen saturation. This indicates that hydrogen dissociation and migration may occur spontaneously at room temperature. This result shows that the interaction between the defects and the small metal clusters may explain the role that defects play in hydrogen migration from the catalyst to the substrate. Subsequently, it was found that thermal desorption does not limit chemisorbed hydrogen diffusion on the substrate. This work may thus help to determine experimental strategies with the capacity to enhance hydrogen storage.

  5. The ion–aerosol interactions from the ion mobility and aerosol ...

    Indian Academy of Sciences (India)

    The small ions generated by cosmic rays, and the nucleation mode particles generated probably by photochemical reactions grew in size by condensation of volatile trace gases on them and produced the cluster and intermediate ion modes and the Aitken particle mode in ion/particle spectra. Particles in the size range of ...

  6. Correlated ion stopping in plasmas

    International Nuclear Information System (INIS)

    Zwicknagel, G.; Deutsch, C.

    1997-01-01

    The basic features of correlated ion stopping in plasmas are demonstrated by employing two opposite extremes of cluster structures, a statistical model with a spatial ion distribution of Gaussian shape and the highly regular configuration of N-ion chains and cubic boxes. In the case of the ion chains the resonant character of correlated stopping due to the interference of the excited wake fields is discussed in detail. The general behavior of correlation effects is summarized and its dependence on the ratio of cluster size and interion spacing to the screening length in the plasma, as well as the ratio of the cluster velocity to the mean electron velocity in the target, is stressed out. The validity and applicability of the dielectric response formalism used for describing correlated stopping is critically reviewed. A scheme is presented to extend the linear formalism to weak nonlinear situations that occur, in particular, for small highly charged clusters at moderate or low velocities. For the Gaussian cluster a fit formula is given, which allows a fast and accurate calculation of the enhancement of stopping due to correlation effects and applies for all degrees of degeneracy of the electrons and arbitrary cluster velocities. copyright 1997 The American Physical Society

  7. Structure, stability, and electronic and magnetic properties of small Rh n Mn ( n = 1-12) clusters

    Science.gov (United States)

    Shan, Ru; Suo, Ling; Lv, Jin; Wu, Hai-Shun

    2018-02-01

    The structure, stability, and magnetic properties of Rh n+1 and Rh n Mn clusters ( n = 1-12) are systematically investigated within the framework of the generalized gradient approximation density-functional theory (DFT-GGA). The overall structural evolutionary trend shows that the ground state structures of the Rh n Mn are similar to that of the corresponding pure rhodium clusters except for n = 7, 9, 12, while the Rh7Mn, Rh9Mn and Rh12Mn clusters occur substantially geometry reconstruction. The binding energy of Rh n Mn is decreased with the substitution of one Mn atom, thus indicating that Mn doping can weaken the stability of the Rh clusters. The fragmentation energy and the second-order difference energy of the ground-state Rh n Mn clusters imply that the Rh3Mn, Rh5Mn, Rh8Mn and Rh11Mn clusters are more stable than their neighbors. Compared with corresponding pure Rh n clusters, the Mn atom doping increases the total magnetic moment of the Rh n Mn clusters in various degrees, and the physics origin of such a phenomenon is analyzed in detail based on the average bond length, magnetic coupling, and density of state.

  8. Effects of bimetallic doping on small cyclic and tubular boron clusters: B7M2 and B14M2 structures with M = Fe, Co.

    Science.gov (United States)

    Pham, Hung Tan; Nguyen, Minh Tho

    2015-07-14

    Using density functional theory with the TPSSh functional and the 6-311+G(d) basis set, we extensively searched for the global minima of two metallic atoms doped boron clusters B6M2, B7M2, B12M2 and B14M2 with transition metal element M being Co and Fe. Structural identifications reveal that B7Co2, B7Fe2 and B7CoFe clusters have global minima in a B-cyclic motif, in which a perfectly planar B7 is coordinated with two metallic atoms placed along the C7 axis. The B6 cluster is too small to form a cycle with the presence of two metals. Similarly, the B12 cluster is not large enough to stabilize the metallic dimer within a double ring 2 × B6 tube. The doped B14M2 clusters including B14Co2, B14Fe2 and B14CoFe have a double ring 2 × B7 tubular shape in which one metal atom is encapsulated by the B14 tube and the other is located at an exposed position. Dissociation energies demonstrate that while bimetallic cyclic cluster B7M2 prefers a fragmentation channel that generates the B7 global minimum plus metallic dimer, the tubular structure B14M2 tends to dissociate giving a bimetallic cyclic structure B7M2 and a B@B6 cluster. The enhanced stability of the bimetallic doped boron clusters considered can be understood from the stabilizing interactions between the anti-bonding MOs of metal-metal dimers and the levels of a disk aromatic configuration (for bimetallic cyclic structures), or the eigenstates of the B14 tubular form (in case of bimetallic tubular structure).

  9. SIMS of Organic Materials—Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions

    Science.gov (United States)

    Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.

    2018-02-01

    A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.

  10. Formation of surface nanostructures on rutile (TiO2): comparative study of low-energy cluster ion and high-energy monoatomic ion impact

    Czech Academy of Sciences Publication Activity Database

    Popok, V.N.; Jensen, J.; Vuckovic, S.; Macková, Anna; Trautmann, C.

    2009-01-01

    Roč. 42, - (2009), 205303/1-205303/6 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125 Institutional research plan: CEZ:AV0Z10480505 Keywords : Rutile * cluster implantation * hillocks and craters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.083, year: 2009

  11. Photoexcitation of iodide ion-pyrimidine clusters above the electron detachment threshold: Intracluster electron transfer versus nucleobase-centred excitations

    Science.gov (United States)

    Matthews, Edward; Cercola, Rosaria; Mensa-Bonsu, Golda; Neumark, Daniel M.; Dessent, Caroline E. H.

    2018-02-01

    Laser photodissociation spectroscopy of the I-.thymine (I-.T) and I-.cytosine (I-.C) nucleobase clusters has been conducted for the first time across the regions above the electron detachment thresholds to explore the excited states and photodissociation channels. Although photodepletion is strong, only weak ionic photofragment signals are observed, indicating that the clusters decay predominantly by electron detachment. The photodepletion spectra of the I-.T and I-.C clusters display a prominent dipole-bound excited state (I) in the vicinity of the vertical detachment energy (˜4.0 eV). Like the previously studied I-.uracil (I-.U) cluster [W. L. Li et al., J. Chem. Phys. 145, 044319 (2016)], the I-.T cluster also displays a second excited state (II) centred at 4.8 eV, which we similarly assign to a π-π* nucleobase-localized transition. However, no distinct higher-energy absorption bands are evident in the spectra of the I-.C. Time-dependent density functional theory (TDDFT) calculations are presented, showing that while each of the I-.T and I-.U clusters displays a single dominant π-π* nucleobase-localized transition, the corresponding π-π* nucleobase transitions for I-.C are split across three separate weaker electronic excitations. I- and deprotonated nucleobase anion photofragments are observed upon photoexcitation of both I-.U and I-.T, with the action spectra showing bands (at 4.0 and 4.8 eV) for both the I- and deprotonated nucleobase anion production. The photofragmentation behaviour of the I-.C cluster is distinctive as its I- photofragment displays a relatively flat profile above the expected vertical detachment energy. We discuss the observed photofragmentation profiles of the I-.pyrimidine clusters, in the context of the previous time-resolved measurements, and conclude that the observed photoexcitations are primarily consistent with intracluster electron transfer dominating in the near-threshold region, while nucleobase-centred excitations

  12. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    Science.gov (United States)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  13. Density functional study of structural and electronic properties of small binary Be(n)Cu(m) (n + m = 2~7) clusters.

    Science.gov (United States)

    Li, Si-Cheng; Li, Ying; Wu, Di; Li, Zhi-Ru

    2013-08-01

    The geometrical structures, electronic properties and relative stabilities of small bimetallic Be n Cu m (n + m = 2-7) clusters have been systematically investigated by using a density functional method at the B3PW91 level. In the most stable structures of Be n Cu m , the Be atoms tend to gather together and construct similar configurations to those of pure Be n clusters. Meanwhile, there is a tendency for Cu atoms to segregate toward the Be n cluster surface. The successive binding energies, cohesive energies, second difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness of Be n Cu m are also investigated. All of them demonstrate that the clusters with even number of copper atoms present relatively higher stabilities. The natural population analyses on the Be n Cu m clusters reveal that, the charge transfers from Be to Cu when the average coordination numbers (Nc) of Be atom is less than 3, whereas the charge-transferring direction reverses when Nc(Be) increases.

  14. The spectra of the multicharged argon hollow ions: Observation, modeling and using for diagnostics of the early stage of the heating of clusters by a super high contrast femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Fortov, V. E.; Boldarev, A. S.; Gasilov, V. A.; Chen, L. M.; Zhang, L.; Yan, W. C.; Yuan, D. W.; Mao, J. Y.; Wang, Z. H.; Colgan, J.; Abdallah, J. Jr.; Fukuda, Y.; Hayashi, Y.; Pirozhkov, A.; Kawase, K.; Shimomura, T.; Kiriyama, H. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 bld.2, Moscow, 125412 (Russian Federation) and Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 bld.2, Moscow, 125412 (Russian Federation); Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moscow, 125047 (Russian Federation); Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Los Alamos National Laboratory, NM 87545 Los Alamos (United States); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai Kizugawa, Kyoto 619-0215 (Japan); Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai Kizugawa, Kyoto 619-0215 (Japan); and others

    2012-07-11

    A study is made of the ultra-short laser pulse irradiation of Ar cluster targets. Experiments have been performed with large cluster sizes and using very high laser contrasts, which have allowed clear and unambiguous observation of exotic inner-shell transitions in near-neutral Ar ions. The interaction of the main laser pulse with the unperturbed target is a necessary requirement for observing these lines. Our measurements are supported by kinetics calculations in which a very detailed atomic model is used. The calculations predict all of the spectral features found experimentally, and support the notion that the X-ray emission arises from many ion stages of the Ar plasma, from near-neutral through He-like ions, and from a range of plasma temperatures and densities. Differences between X-ray argon clusters excited at the laser-cluster and laser-droplet interactions have been analyzed. X-ray spectral methods have been proposed to determine the parameters of the plasma formed at the early stages of its evolution. It has been shown that the spectra of hollow ions are the most informative in the first moments of the heating of a cluster, whereas the diagnostics of the late stages can be performed using the conventional lines of multicharged ions.

  15. Observation of energy-time dispersed ion structures in the magnetosheath by CLUSTER: possible signatures of transient acceleration processes at shock

    Directory of Open Access Journals (Sweden)

    P. Louarn

    Full Text Available We analyse energy-time dispersed ion signatures that have been observed by CLUSTER in the dayside magnetosheath. These events are characterized by sudden increases in the ion flux at energies larger than 10 keV. The high energy ions (30 keV are first detected, with the transition to the low energy ions (5 keV lasting about 100 s. These injections are often associated with transient plasma structures of a few minutes in duration, characterized by a hotter, less dense plasma and a diverted flow velocity, thus presenting similarities with "hot flow anomalies". They also involve modifications of the magnetic field direction, suggesting that the shock interacts with a solar wind discontinuity at the time of the event. The injections can originate from the magnetosphere or the shock region. Studying in detail a particular event, we discuss this last hypothesis. We show that the observed energy/time dispersion can be explained by combining a time-of-flight effect with a drift of the source of energetic particles along the shock. We propose that the acceleration results from a Fermi process linked to the interaction of the discontinuity with a quasi-perpendicular shock. This model explains the observed pitch-angle selection of the accelerated particles. The Fermi process acting on the beam of ions reflected from the shock appears to be sufficiently efficient to accelerate over short time scales (less than 30 s particles at energies above 30 keV.

    Key words. Magnetospheric physics (solar-wind-magnetosphere interaction; magnetosheath – Space plasma physics (shock waves

  16. Frustration of direct photoionization of Ar clusters in intense extreme ultraviolet pulses from a free electron laser

    International Nuclear Information System (INIS)

    Iwayama, H; Nagaya, K; Yao, M; Fukuzawa, H; Liu, X-J; Pruemper, G; Ueda, K; Motomura, K; Saito, N; Rudenko, A; Okunishi, M; Shimada, K; Harada, T; Toyoda, M; Yanagihara, M; Yamamoto, M; Ullrich, J; Foucar, L; Czasch, A; Doerner, R

    2009-01-01

    We have measured the kinetic energies of fragment ions from Ar clusters (average cluster size (N)∼ 10-600) exposed to intense extreme ultraviolet free electron laser pulses (λ ∼ 61 nm, I∼ 1.3x 10 11 W cm -2 ). For small clusters ((N)∼ 200. Considering how many photoelectrons can escape from the cluster, it was found that the size dependence of the ion kinetic energy exhibited the frustration of direct photoionization, which resulted from the strong Coulomb potential of the highly ionized cluster.

  17. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Czech Academy of Sciences Publication Activity Database

    Vlček, L.; Uhlík, F.; Moučka, F.; Nezbeda, Ivo; Chialvo, L.

    2015-01-01

    Roč. 119, č. 3 (2015), s. 488-500 ISSN 1089-5639 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * molecular-dynamic simulations * classical drude oscillators Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  18. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness

    Science.gov (United States)

    Paula, S.; Volkov, A. G.; Van Hoek, A. N.; Haines, T. H.; Deamer, D. W.

    1996-01-01

    Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths.

  19. Morphological criteria for comparing effects of X-rays and neon ions on mouse small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Carr, K.E.; Hayes, T.L.; Indran, M.; Bastacky, S.J.; McAlinden, G.; Ainsworth, E.J.; Ellis, S.

    1987-06-01

    Several techniques have been used to assess changes in different parts of mouse small intestine three days after a single dose of either 16.5 Gy X-rays or 11 Gy neon beam. The doses were chosen to be approximately equivalent in terms of their effect on the number of microcolonies present. In qualitative terms, villous damage was seen after both types of radiation exposure: collared crypts, similar to those seen in biopsies taken from patients suffering from coeliac disease, were conspicuous after neon irradiation. In semi quantitative terms the doses used, although estimated from previous work to give biologically equivalent damage, produced a greater drop in microcolony numbers after X-irradiation. This makes all the more important the fact that significantly greater changes were seen after neon irradiation-a greater drop was seen in the number of villous profiles and the number of goblet cells per villus. There was also greater breakdown in the integrity of the villous basement membrane. Different responses after the two types of irradiation are therefore seen in the cryptal and villous compartment. Progress is being made towards identifying and quantitating radiation induced changes in different populations of cells or tissues in the small intestine.

  20. Determining the maximum charging currents of lithium-ion cells for small charge quantities

    Science.gov (United States)

    Grimsmann, F.; Gerbert, T.; Brauchle, F.; Gruhle, A.; Parisi, J.; Knipper, M.

    2017-10-01

    In order to optimize the operating parameters of battery management systems for electric and hybrid vehicles, great interest has been shown in achieving the maximum permissible charging currents during recuperation, without causing a cell damage due to lithium plating, in relation to the temperature, charge quantity and state of charge. One method for determining these recuperation currents is measuring the cell thickness, where excessively high charging currents can be detected by an irreversible increase in thickness. It is not possible to measure particularly small charge quantities by employing mechanic dial indicators, which have a limited resolution of 1 μm. This is why we developed a measuring setup that has a resolution limit of less than 10 nm using a high-resolution contactless inductance sensor. Our results show that the permissible charging current I can be approximated in relation to the charge quantity x by a correlating function I =a /√{(x) } which is compliant with the Arrhenius law. Small charge quantities therefore have an optimization potential for energy recovery during recuperation.

  1. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

    Science.gov (United States)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  2. Communication: electron transfer mediated decay enabled by spin-orbit interaction in small krypton/xenon clusters.

    Science.gov (United States)

    Zobel, J Patrick; Kryzhevoi, Nikolai V; Pernpointner, Markus

    2014-04-28

    In this work we study the influence of relativistic effects, in particular spin-orbit coupling, on electronic decay processes in KrXe2 clusters of various geometries. For the first time it is shown that inclusion of spin-orbit coupling has decisive influence on the accessibility of a specific decay pathway in these clusters. The radiationless relaxation process is initiated by a Kr 4s ionization followed by an electron transfer from xenon to krypton and a final second ionization of the system. We demonstrate the existence of competing electronic decay pathways depending in a subtle way on the geometry and level of theory. For our calculations a fully relativistic framework was employed where omission of spin-orbit coupling leads to closing of two decay pathways. These findings stress the relevance of an adequate relativistic description for clusters with heavy elements and their fragmentation dynamics.

  3. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    Science.gov (United States)

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-01

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy± clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy± clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy+ clusters are more reactive than the anionic species and the final Al2O+ + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy+ clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  4. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters

    NARCIS (Netherlands)

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, A; Hasegawa, Yasuchika

    2016-01-01

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at

  5. Structures and interactions among globular proteins above the isoelectric point in the presence of divalent ions: A small angle neutron scattering and dynamic light scattering study

    Science.gov (United States)

    Kundu, Sarathi; Pandit, Subhankar; Abbas, Sohrab; Aswal, V. K.; Kohlbrecher, J.

    2018-02-01

    Small angle neutron scattering study reveals that at pD ≈ 7.0, above the isoelectric point of the globular protein Bovine Serum Albumin (BSA), in the presence of different divalent ions (Mg2+, Ca2+, Sr2+ and Ba2+), the short-range attractive interaction remains nearly constant and the intermediate-range repulsive interaction decreases with increasing salt concentration up to a certain concentration value but after that remains unchanged. However, for the monovalent ion (Na+), repulsive interaction decreases gradually up to 1 M salt concentration. Dynamic light scattering study shows that for all ions, diffusion coefficient of BSA decreases with increasing salt concentration and then nearly saturates.

  6. Shell-like configuration in O+ ion velocity distribution at high altitudes in the dayside magnetosphere observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    S. Joko

    2004-07-01

    Full Text Available We report shell-like configurations seen in O+ ion velocity distributions. One case was observed above 8RE in radial distance in the dayside magnetosphere, presumably in the mantle region, during the observation period of 09:30-10:00 UT on 12 April 2001 by the CIS instrument on board the Cluster satellite. This shell-like configuration was different from so-called "conics" or "beams": the lower energy (cold population and the higher energy partial shell part were seen together, but there was no obvious signature of heating process. With respect to H+ ion velocity distributions observed simultaneously, transverse heating (so-called in "pan-cake" shape or field-aligned energisation configurations were seen as the result of heating/energisation processes and the upward-going part of the distribution also formed a half spherical thick shell configuration. Concerning O+ ion heating in the case of 12 April 2001, it was obviously observed when the spacecraft passed through the mantle region close to the poleward cusp. As the spacecraft moved toward the dayside cusp shell-like (or dome shape velocity distributions appeared apparently and continued to be observed until the spacecraft reached the magnetopause according to two other different cases (13 February 2001 and 14 April 2001. Two other cases were observed in the Southern Hemisphere and the spacecraft was supposed to pass through the dayside cusp toward the mantle region at higher altitudes (9-11RE. O+ ion velocity distributions in these cases show pre-/post-structured shell-like configurations, depending on the observation sites (mantle or dayside cusp.

  7. Fragmentation of size-selected Xe clusters: Why does the monomer ion channel dominate the Xen and Krn ionization?

    Czech Academy of Sciences Publication Activity Database

    Poterya, Viktoriya; Fárník, Michal; Buck, U.; Bonhomommeneau, D.; Halberstadt, N.

    2009-01-01

    Roč. 280, 1-3 (2009), s. 78-84 ISSN 1387-3806 R&D Projects: GA AV ČR KAN400400651; GA ČR GA203/06/1290 Institutional research plan: CEZ:AV0Z40400503 Keywords : cluster * fragmentation * ionization * molecular beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.117, year: 2009

  8. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS.

    Science.gov (United States)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-04-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.

  9. Small group IIa-VIa clusters and related systems: A theoretical study of physical properties, reactivity, and electronic spectra

    Czech Academy of Sciences Publication Activity Database

    Srnec, Martin; Zahradník, Rudolf

    -, č. 12 (2007), s. 1529-1543 ISSN 1434-1948 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : ab initio calculations * cluster compounds * structural elucidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.597, year: 2007

  10. Small Doped 3 He Clusters: A Systematic Quantum Chemistry Approach to Fermionic Nuclear Wave Functions and Energies

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Krylov, A. I.

    2001-01-01

    Roč. 115, č. 22 (2001), s. 10214-10219 ISSN 0021-9606 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : helium * cluster * quantum chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.147, year: 2001

  11. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters.

    Science.gov (United States)

    Kaplinghat, Manoj; Tulin, Sean; Yu, Hai-Bo

    2016-01-29

    Astrophysical observations spanning dwarf galaxies to galaxy clusters indicate that dark matter (DM) halos are less dense in their central regions compared to expectations from collisionless DM N-body simulations. Using detailed fits to DM halos of galaxies and clusters, we show that self-interacting DM (SIDM) may provide a consistent solution to the DM deficit problem across all scales, even though individual systems exhibit a wide diversity in halo properties. Since the characteristic velocity of DM particles varies across these systems, we are able to measure the self-interaction cross section as a function of kinetic energy and thereby deduce the SIDM particle physics model parameters. Our results prefer a mildly velocity-dependent cross section, from σ/m≈2  cm^{2}/g on galaxy scales to σ/m≈0.1  cm^{2}/g on cluster scales, consistent with the upper limits from merging clusters. Our results dramatically improve the constraints on SIDM models and may allow the masses of both DM and dark mediator particles to be measured even if the dark sector is completely hidden from the standard model, which we illustrate for the dark photon model.

  12. Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients

    Directory of Open Access Journals (Sweden)

    Yuan Hung Lo

    2013-01-01

    Full Text Available Little is known about how small variations in ionic currents and Ca2+ and Na+ diffusion coefficients impact action potential and Ca2+ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004 to 5%–10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca2+ peaks are highly sensitive to 10% increase in L-type Ca2+ current; moderately influenced by 10% increase in Na+-Ca2+ exchanger, Na+-K+ pump, rapid delayed and slow transient outward K+ currents, and Cl− background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca2+ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca2+ channels and Na+-Ca2+ exchanger in between junctional and submembrane spaces while Ca2+-activated Cl−-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca2+, but not in Na+ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca2+ signaling.

  13. Relevance of lysine snorkeling in the outer transmembrane domain of small viral potassium ion channels.

    Science.gov (United States)

    Gebhardt, Manuela; Henkes, Leonhard M; Tayefeh, Sascha; Hertel, Brigitte; Greiner, Timo; Van Etten, James L; Baumeister, Dirk; Cosentino, Cristian; Moroni, Anna; Kast, Stefan M; Thiel, Gerhard

    2012-07-17

    Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, Kcv(ATCV-1) and Kcv(MT325), lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of Kcv(PBCV-1) and N-terminally truncated mutants; the truncated mutants mimic Kcv(ATCV-1) and Kcv(MT325). Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K(+) channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.

  14. Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations

    International Nuclear Information System (INIS)

    Willaime, F.; Fu, C.C.; Marinica, M.C.; Dalla Torre, J.

    2005-01-01

    The stability and mobility of self-interstitials and small interstitial clusters, I n , in α-Fe is investigated by means of calculations performed in the framework of the density functional theory using the SIESTA code. The mono-, di- and tri-interstitials are shown to be made of (parallel) dumbbells and to migrate by nearest-neighbor translation-rotation jumps, according to Johnson's mechanism. The orientation of the dumbbells becomes energetically more favourable for I 5 and larger clusters. The performance of a semi-empirical potential recently developed for Fe, including ab initio self-interstitial data in the fitted properties, is evaluated over the present results. The superiority over previous semi-empirical potentials is confirmed. Finally the impact of the present results on the formation mechanism of loops, observed experimentally in α-Fe is discussed

  15. Fragmentation dynamics of size selected pyrrole clusters prepared by electron impact ionization: Forming a solvated dimer ion core

    Czech Academy of Sciences Publication Activity Database

    Profant, V.; Poterya, Viktoriya; Fárník, Michal; Slavíček, P.; Buck, U.

    2007-01-01

    Roč. 111, č. 49 (2007), s. 12477-12486 ISSN 1089-5639 R&D Projects: GA AV ČR KAN400400651; GA ČR GA203/06/1290 Grant - others:GA ČR GP203/07/P449; University Grant(CZ) 8113-10/257852 Institutional research plan: CEZ:AV0Z40400503 Source of funding: V - iné verejné zdroje Keywords : pyrrole cluster s * structure * dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  16. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    Lee, Changhee; Yoo, Dongwan

    2006-01-01

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  17. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    Science.gov (United States)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  18. Comparing the Consistency of Atom Probe Tomography Measurements of Small-Scale Segregation and Clustering Between the LEAP 3000 and LEAP 5000 Instruments.

    Science.gov (United States)

    Martin, Tomas L; London, Andrew J; Jenkins, Benjamin; Hopkin, Sarah E; Douglas, James O; Styman, Paul D; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    The local electrode atom probe (LEAP) has become the primary instrument used for atom probe tomography measurements. Recent advances in detector and laser design, together with updated hit detection algorithms, have been incorporated into the latest LEAP 5000 instrument, but the implications of these changes on measurements, particularly the size and chemistry of small clusters and elemental segregations, have not been explored. In this study, we compare data sets from a variety of materials with small-scale chemical heterogeneity using both a LEAP 3000 instrument with 37% detector efficiency and a 532-nm green laser and a new LEAP 5000 instrument with a manufacturer estimated increase to 52% detector efficiency, and a 355-nm ultraviolet laser. In general, it was found that the number of atoms within small clusters or surface segregation increased in the LEAP 5000, as would be expected by the reported increase in detector efficiency from the LEAP 3000 architecture, but subtle differences in chemistry were observed which are attributed to changes in the way multiple hit detection is calculated using the LEAP 5000.

  19. Microsolvation of an ionic dopant in small (4)He clusters: OH(+)((3)sigma)((4)He)(N) via genetic algorithm optimizations.

    Science.gov (United States)

    Marinetti, Fabio; Bodo, Enrico; Gianturco, Franco A

    2007-01-08

    The optimized spatial structures of the small clusters (with N up to 33) formed by an increasing number of (4)He atoms, which act as a microsolvent surrounding the OH(+) ionic molecular dopant, are obtained using a sum-of-potentials scheme corrected by three-body (3B) effects. The most stable structures are generated using the type of genetic algorithm described herein, and the sequential formation of regular shell structures is analyzed in detail. Possible quantum corrections for both the solvent distributions and the stable energetics are analyzed and discussed.

  20. Entry of solar-wind ions into the wake of a small body with a magnetic anomaly: A global Vlasov simulation

    Science.gov (United States)

    Umeda, Takayuki; Ito, Yosuke

    2014-04-01

    The interaction between a plasma flow and a small dielectric body with a weak intrinsic global magnetic field is studied by means of a five-dimensional full electromagnetic Vlasov simulation with two configuration spaces and three velocity spaces. In the present study, entry processes of ions into the nightside wake tail are examined. The simulation result shows that the bow shock and the magnetopause are formed on the dayside. However, most of solar-wind ions are reflected at the dayside magnetopause and are picked up by the interplanetary magnetic field. Then, a small part of the reflected ions are taken into the deep wake tail near the body by the E×B cycloid motion.

  1. Structures and dissociation channels of protonated mixed clusters around a small magic number: infrared spectroscopy of ((CH3)3N)n-H(+)-H2O (n = 1-3).

    Science.gov (United States)

    Shishido, Ryunosuke; Kuo, Jer-Lai; Fujii, Asuka

    2012-06-28

    The magic number behavior of ((CH(3))(3)N)(n)-H(+)-H(2)O clusters at n = 3 is investigated by applying infrared spectroscopy to the clusters of n = 1-3. Structures of these clusters are determined in conjunction with density functional theory calculations. Dissociation channels upon infrared excitation are also measured, and their correlation with the cluster structures is examined. It is demonstrated that the magic number cluster has a closed-shell structure, in which the water moiety is surrounded by three (CH(3))(3)N molecules. The ion core (protonated site) of the clusters is found to be (CH(3))(3)NH(+) for n = 1-3, but coexistence of an isomer of the H(3)O(+) ion core cannot be ruled out for n = 3. Large rearrangement of the cluster structures of n = 2 and 3 before dissociation, which has been suggested in the mass spectrometric studies, is confirmed on the basis of the structure determination by infrared spectroscopy.

  2. Experimental studies of the formation of cluster ions formed by corona discharge in an atmosphere containing SO2, NH3, and H2O

    DEFF Research Database (Denmark)

    Hvelplund, Preben; Pedersen, Jens Olaf Pepke; Støchkel, Kristian

    2013-01-01

    Abstract We report on studies of ion-induced nucleation in a corona discharge taking place in an atmosphere containing SO2, NH3, and H2O at standard temperature and pressure. Positive ions such as H3O+(H2O)n, NH4+(H2O)n, and H+(H2SO4)(H2O)n and negative ions such as HSO5-(H2O)n, SO4-(H2O)n, HSO4-(H......5-, which has been observed in many studies, in our experiments is contaminated by O2-(HNO3)(H2O) ions, and this may also have been the case in other experiments. Finally an ion with m/z = 232 (where m is the cluster mass in amu and z is the charge state), capable of attaching H2O...

  3. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  4. CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly magnified by galaxy cluster members

    International Nuclear Information System (INIS)

    Grillo, C.; Christensen, L.; Gobat, R.; Presotto, V.; Balestra, I.; Nonino, M.; Biviano, A.; Mercurio, A.; Rosati, P.; Vanzella, E.; Graves, G.; Lemze, D.; Ford, H.; Bartelmann, M.; Benitez, N.; Bouwens, R.; Bradley, L.; Coe, D.; Broadhurst, T.; Donahue, M.

    2014-01-01

    We present a complex strong lensing system in which a double source is imaged five times by two early-type galaxies. We take advantage in this target of the extraordinary multi-band photometric data set obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program, complemented by the spectroscopic measurements of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift value of 3.7 for the source and confirm spectroscopically the membership of the two lenses to the galaxy cluster MACS J1206.2–0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the two lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersion values of 97 ± 3 and 240 ± 6 km s –1 . Interestingly, the total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, which is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of approximately (1.0 ± 0.5) × 10 9 M ☉ (assuming a Salpeter stellar initial mass function). By combining the total and luminous mass estimates of the two lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 ± 0.21 and 0.80 ± 0.32. Remarkably, with these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are approximately two and three times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales, like massive early-type galaxies and dwarf spheroidals, reveals the potential of studies of this kind for improving our

  5. Using conjoint and cluster analysis in developing new product for micro, small and medium enterprises (SMEs) based on customer preferences (Case study: Lampung province's banana chips)

    Science.gov (United States)

    Kosasih, Wilson; Salomon, Lithrone Laricha; Hutomo, Reynaldo

    2017-08-01

    This paper discusses the development of new products of Micro, Small and Medium Entreprises (SMEs) to identify what attributes are considered by consumers, as well as combinations of attributes that need to be analyzed into the main preferences of consumers. The purpose of this research is to increase the added value and competitiveness of SMEs through product innovation. The object of this study is banana chips produced by SMEs from the province of Lampung which it considered to be unique souvenirs of the province. The research data were collected by distributing questionnaires in Jakarta which has heterogeneous population, in order to develop banana chip's marketing and increase its market share in Indonesia. Data processing was performed using conjoint analysis and cluster analysis. Segmentation was performed using conjoint analysis based on the importance level of attributes and part-worth of level attributes of each cluster. Finally, characteristics and consumer preferences of each cluster will be a consideration in determining the product development and marketing strategies.

  6. Lateral manipulation of small clusters on the Cu and Ag(1 1 1) surfaces with the single-atom and trimer-apex tips: Reliability study

    International Nuclear Information System (INIS)

    Xie Yiqun; Liu Fen; Huang Lei

    2010-01-01

    We study the reliability of the lateral manipulation of small Cu clusters (dimer and trimer) on the flat Cu(1 1 1) surface with both the single-atom and trimer-apex tips and that for the Ag/Ag(1 1 1) system, and compare the results between the two systems as well as with the single-atom manipulation on these surfaces. Manipulations are simulated using molecular statics method with semi-empirical potentials. The dependence of the manipulation reliability on the tip height and tip orientation are investigated. Overall, the manipulation reliability increases with decreasing tip height although it depends obviously on the tip orientation. For the Cu/Cu(1 1 1) system, the manipulation of the dimmer and trimer can be successful with both tips. The manipulation reliability can be improved by the trimer-apex tip, and the tip-height range for the successful manipulation is also broader, as compared to the single-atom apex tip. Differently from the single-atom manipulation, the tip orientation has a noticeable influence on the manipulation reliability even for the single-atom tip due to the stronger tip-cluster and surface-adatom interactions in cluster manipulation. For the Ag/Ag(1 1 1) system, successful manipulations only be achieved with the trimer-apex tip, and the manipulation reliability is worse than that of the Cu/Cu(1 1 1) system, indicating the difference in mechanic properties between the two surfaces at the atomic level.

  7. Photofragment Coincidence Imaging of Small I- (H2O)n Clusters Excited to the Charge-transfer-to-solvent State

    Energy Technology Data Exchange (ETDEWEB)

    Neumark, D. E. Szpunar, K. E. Kautzman, A. E. Faulhaber, and D. M.; Kautzman, K.E.; Faulhaber, A.E.; Faulhaber, A.E.

    2005-11-09

    The photodissociation dynamics of small I{sup -}(H{sub 2}O){sub n} (n = 2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel ({approx}90%) is a 2-body process forming neutral I + (H{sub 2}O){sub n} photofragments, and the minor channel is a 3-body process forming I + (H{sub 2}O){sub n-1} + H{sub 2}O fragments. Both process display translational energy (P(E{sub T})) distributions peaking at E{sub T} = 0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather than to the CTTS state display the same two channels with similar P(E{sub T}) distributions. The observation of similar P(E{sub T}) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited (I(H{sub 2}O){sub n}{sup -})* cluster, or, less probably, that the presence of the excess electron has little effect on the departing I atom.

  8. The application of a Wien filter to mass analysis of heavy clusters from a pulsed supersonic nozzle source

    Science.gov (United States)

    Wrenger, Bu.; Meiwes-Broer, K. H.

    1997-05-01

    A Wien filter is used for the mass analysis of small and large metal cluster ions. As the clusters are produced in a supersonic expansion source, the initial velocity obtained by gasdynamic acceleration significantly influences the measured peak positions and widths. Calculations based on the well-known theory for ions moving in crossed magnetic and electrical fields are extended to ions from supersonic expansions. They allow a mass assignment even for those (big) clusters which cannot explicitly be resolved in the Wien filter spectrum.

  9. Tuning the electronic properties of LaAlO3/SrTiO3 interfaces by irradiating the LaAlO3 surface with low-energy cluster ion beams

    Science.gov (United States)

    Ridier, Karl; Aureau, Damien; Bérini, Bruno; Dumont, Yves; Keller, Niels; Vigneron, Jackie; Etcheberry, Arnaud; Domengès, Bernadette; Fouchet, Arnaud

    2018-01-01

    We have investigated the effects of low-energy ion beam irradiations using argon clusters on the chemical and electronic properties of LaAlO3/SrTiO3 (LAO/STO) heterointerfaces by combining x-ray photoelectron spectroscopy (XPS) and electrical transport measurements. Due to its unique features, we demonstrate that a short-time cluster ion irradiation of the LAO surface induces significant modifications in the chemical properties of the buried STO substrate with (1) a lowering of Ti atoms oxidation states (from Ti4 + to Ti3 + and Ti2 +) correlated to the formation of oxygen vacancies at the LAO surface and (2) the creation of new surface states for Sr atoms. Contrary to what is generally observed by using higher energy ion beam techniques, this leads to an increase of the electrical conductivity at the LAO/STO interface. Our XPS data clearly reveal the existence of dynamical processes on the titanium and strontium atoms, which compete with the effect of the cluster ion beam irradiation. These relaxation effects are in part attributed to the diffusion of the ion-induced oxygen vacancies in the entire heterostructure since an increase of the interfacial metallicity is also evidenced far from the irradiated area. This paper highlights the possibility of tuning the electrical properties of LAO/STO interfaces by surface engineering, confirming experimentally the intimate connection between LAO chemistry and electronic properties of LAO/STO interfaces.

  10. Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa.

    Science.gov (United States)

    van Duijn, Esther; Barbu, Ioana M; Barendregt, Arjan; Jore, Matthijs M; Wiedenheft, Blake; Lundgren, Magnus; Westra, Edze R; Brouns, Stan J J; Doudna, Jennifer A; van der Oost, John; Heck, Albert J R

    2012-11-01

    The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) immune system of bacteria and archaea provides acquired resistance against viruses and plasmids, by a strategy analogous to RNA-interference. Key components of the defense system are ribonucleoprotein complexes, the composition of which appears highly variable in different CRISPR/Cas subtypes. Previous studies combined mass spectrometry, electron microscopy, and small angle x-ray scattering to demonstrate that the E. coli Cascade complex (405 kDa) and the P. aeruginosa Csy-complex (350 kDa) are similar in that they share a central spiral-shaped hexameric structure, flanked by associating proteins and one CRISPR RNA. Recently, a cryo-electron microscopy structure of Cascade revealed that the CRISPR RNA molecule resides in a groove of the hexameric backbone. For both complexes we here describe the use of native mass spectrometry in combination with ion mobility mass spectrometry to assign a stable core surrounded by more loosely associated modules. Via computational modeling subcomplex structures were proposed that relate to the experimental IMMS data. Despite the absence of obvious sequence homology between several subunits, detailed analysis of sub-complexes strongly suggests analogy between subunits of the two complexes. Probing the specific association of E. coli Cascade/crRNA to its complementary DNA target reveals a conformational change. All together these findings provide relevant new information about the potential assembly process of the two CRISPR-associated complexes.

  11. Secondary ion emission from A sup I sup I sup I B sup V compound semiconductors under MeV-energy heavy ion bombardment

    CERN Document Server

    Ninomiya, S; Nagai, M; Nakata, Y; Imai, M; Imanishi, N

    2003-01-01

    Mass and yields of secondary ions emitted from GaP, GaAs, GaSb and InSb targets bombarded by MeV-energy heavy ion have been investigated. Obtained feature of the secondary ion emission depends characteristically on the target species. Molecular and small cluster ions were emitted from the GaP and GaAs targets. On the other hand, pretty large cluster ions were emitted from the GaSb and InSb targets. Yields of clusters from the GaSb target increase with increasing the incident energy and decrease exponentially with the cluster size, while yields from the InSb target keep constant or decrease gently with increasing the incident energy and show the power law dependence on the cluster size. These results show that cluster ions from the GaSb target are formed through a coagulation of small molecules emitted from the target in the selvage region near the surface, and those from the InSb target are emitted directly from the surface as cluster.

  12. Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix.

    Science.gov (United States)

    Lin, Zian; Zheng, Jiangnan; Lin, Guo; Tang, Zhi; Yang, Xueqing; Cai, Zongwei

    2015-08-04

    Ultrathin graphitic carbon nitride (g-C3N4) nanosheets served as a novel matrix for the detection of small molecules by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was described for the first time. In comparison with conventional organic matrices and graphene matrix, the use of g-C3N4 nanosheet matrix showed free matrix background interference and increased signal intensity in the analysis of amino acids, nucleobases, peptides, bisphenols (BPs), and nitropolycyclic aromatic hydrocarbons (nitro-PAHs). A systematic comparison of g-C3N4 nanosheets with positive and negative ion modes revealed that mass spectra produced by g-C3N4 nanosheets in negative ion mode were featured by singly deprotonated ion without matrix interference, which was rather different from the complicated alkali metal complexes in positive ion mode. Good salt tolerance and reproducibility allowed the determination of 1-nitropyrene (1-NP) in sewage, and its corresponding detection limit was lowered to 1 pmol. In addition, the ionization mechanism of the g-C3N4 nanosheets as matrix was also discussed. The work expands its application scope of g-C3N4 nanosheets and provides an alternative approach for small molecules.

  13. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...... are also discussed and are believed to be small, but cannot be excluded. If our results can be extrapolated to conditions that resemble the clean air atmosphere over the Earth's oceans they suggest that ions may dominate the production of small (4nm) aerosols here....

  14. Understanding the site selectivity in small-sized neutral and charged Al(n) (4 ≤ N ≤ 7) clusters using density functional theory based reactivity descriptors: a validation study on water molecule adsorption.

    Science.gov (United States)

    Das, Susanta; Pal, Sourav; Krishnamurty, Sailaja

    2013-09-12

    Aluminum clusters are now technologically important due to their high catalytic activity. Our present study on the small-sized aluminum clusters applies density functional theory (DFT)-based reactivity descriptors to identify potential sites for adsorption and eventual chemical reaction. Depending on symmetry, susceptibility of various type of reactive sites within a cluster toward an impending electrophilic and/or nucleophilic attack is predicted using the reactivity descriptors. In addition, the study devises general rules as to how the size, shape, and charge of the cluster influences the number of available sites for an electrophilic and/or nucleophilic attack. The predictions by reactivity descriptors are validated by performing an explicit adsorption of water molecule on Al clusters with four atoms. The adsorption studies demonstrate that the most stable water-cluster complex is obtained when the molecule is adsorbed through an oxygen atom on the site with the highest relative electrophilicity.

  15. Cluster Deposition and Implantation on/in Graphite

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2013-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects on the surface, modification and processing of surfaces and shallow layers on an atomic scale. In this chapter an overview of research on cluster interaction with graphite is presented....... One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the phenomenon of cluster stopping and the development of scaling law for cluster implantation in graphite. Graphite...... is chosen for surface experiments because it is a good model material; it has an atomically smooth surface that makes it easy to resolve very small deposited clusters or damaged areas. Layered structure of graphite with strong covalent bonds in the graphene sheets and very week van der Waals interactions...

  16. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  17. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    C. P. Escoubet

    2001-09-01

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  18. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Mlynek, A.

    2015-01-01

    with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic...

  19. Concentration of small ions measured at the center of Tokyo, at the summit of Mt. Fuji, and over the Pacific Ocean

    Science.gov (United States)

    Miura, K.; Ueda, S.; Nagaoka, N.; Fukawa, A.; Nagano, K.; Kobayashi, H.; Yasuda, H.; Yajima, K.; Furutani, H.; Uematsu, M.

    2012-12-01

    /Introduction/ It has been proposed that climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. The cause of it is considered as a new particle formation with ion induced nucleation. The ion induced nucleation is occurred under the low concentration of particles and high concentration of ions, but there are a few reports. Then we have observed small ions, aerosol size distributions, radon concentrations, and intensity of cosmic rays at the summit of Mt. Fuji simultaneously. We also observed the similar elements at the center of Tokyo and over the Pacific Ocean. /Methods/ Observations were performed in summer in 2010 and 2011 at the summit (3776m ASL) and in summer in 2011 at Tarobo (1290m ASL), at the base of the Mt. Fuji and from autumn in 2010 to summer 2011 at the center of Tokyo, and from 1st December 2011 to 6th March 2012 on the R/V Hakuho Maru over the Pacific Ocean. Small ions were measured with the Gerdien type meter (COM-3400). The critical mobility was set 0.7 cm2/V/s and we measured positive and negative ions alternately. Size distributions from 4.4 to 5000 nm in diameter were measured with a scanning mobility particle sizer (SMPS, TSI 3936N25 or 3936L22) and an optical particle counter (OPC, RION KR12 or KC01D). Radon concentration was calculated from concentration of radioactive aerosols collected on a filter. Small ions are generated with ionization of air by cosmic rays or radiation from radioactive substances. Small ions are lost by various mechanisms such as ion-ion recombination and ion-aerosol attachment. /Results and Discussion/ Hourly averaged concentration often showed the diurnal pattern of high in the early morning and low in the evening at Kagurazaka, Tarobo, and the summit in 2010. However, the different pattern of low in the early morning and high in the evening was often observed at the summit in 2011. This pattern had observed by some investigaters. New

  20. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    Science.gov (United States)

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  1. N-doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS.

    Science.gov (United States)

    Min, Qianhao; Zhang, Xiaoxia; Chen, Xueqin; Li, Siyuan; Zhu, Jun-Jie

    2014-09-16

    Gas-phase N-doped graphene (gNG) was synthesized by a modified thermal annealing method using gaseous melamine as nitrogen source and then for the first time applied as a matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for small molecule analysis. Unlike the complicated adducts produced in positive ion mode, MS spectra obtained on gNG matrix in negative ion mode was only featured by deprotonated molecule ion peaks without matrix interference. By the gNG assisted desorption/ionization (D/I) process, some applications were carried out on a wide range of low-molecular weight (MW) analytes including amino acids, fatty acids, peptides, anabolic androgenic steroids as well as anticancer drugs, with an extraordinary laser desorption/ionization (LDI) efficiency over traditional α-cyano-4-hydroxycinnamic acid (CHCA) and other carbon-based materials in the negative ion detection mode. By comparison of a series of graphene-based matrixes, two main factors of matrix gNG were unveiled to play a decisive role in assisting negative ion D/I process: a well-ordered π-conjugated system for laser absorption and energy transfer; pyridinic-doped nitrogen species functioning as deprotonation sites for proton capture on negative ionization. The good salt tolerance and high sensitivity allowed further therapeutic monitoring of anticancer drug nilotinib in the spiked human serum, a real case of biology. Signal response was definitely obtained between 1 mM and 1 μM, meeting the demand of assessing drug level in the patient serum. This work creates a new application branch for nitrogen-doped graphene and provides an alternative solution for small molecule analysis.

  2. Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers

    Science.gov (United States)

    Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari

    2018-01-01

    Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.

  3. Molybdenum Cluster Chalcogenides: In Situ X-Ray Studies on the Formation of Cu xMo 6S 8 via Electron/Ion Transfer

    Science.gov (United States)

    Fischer, C.; Gocke, E.; Stege, U.; Schöllhorn, R.

    1993-01-01

    Systematic structural investigation have been performed on the formation of the ternary Chevrel phase system CuxMo6S8 by topotactic intercalation of copper into Mo6S8 via electron/ion transfer reactions. In high-temperature synthesis the homogeneity range of CuxMo6S8 formation corresponds to 1.8 ≤ x ≤ 3.66, while by galvanostatic or potentiostatic reduction of binary Mo6S8 at ambiet temperature in aqueous CuSO4 or aprotic CuCl/Ch3CN electrolyte the terminal rhombohedral phase Cu4Mo6S8 with the maximum number of electrons per Mo6 cluster can be obtained. The phase range 1 ≤ x ≤ 4 of CuxMo6S8 as obtained by galvanostatic reduction of Mo6S8 in aqueous CuSO4 electrolyte has been determined by in situ X-ray experiments. Warburg oxygen manometry has proved to be a new and powerful analytical tool for examination of the Cu content of ternary phase CuxMo6S8. Thermodiffractometry and 63 Cu NMR studies of Cu2Mo6S8 (high-temperature phase) reveal a phase-transition rhombohedral/triclinic in a broad temperature range between 285 and 200 K. Superconducting properties (temperature-dependent ac susceptibility) of high temperature and electrochemically prepared Cu phases are reported.

  4. Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy. A pilot study based on globular cluster NGC 6397

    Science.gov (United States)

    Wendt, Martin; Husser, Tim-Oliver; Kamann, Sebastian; Monreal-Ibero, Ana; Richter, Philipp; Brinchmann, Jarle; Dreizler, Stefan; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC 6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims: We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods: This analysis utilized the fitting residuals of individual stellar spectra of NGC 6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results: This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na I and K I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines.

  5. In vitro co-culture experiments on prostate cancer and small intestine cells irradiated with carbon ions and x-rays

    International Nuclear Information System (INIS)

    Neubeck, C. von; Weyrather, W.-K.; Durante, M.

    2009-01-01

    Intensity modulated radiotherapy (IMRT) delivers the dose in many small irradiation fields of different beam direction to achieve a 3 dimensional tumour conformal dose overlapping with a maximum of normal tissue protection. In 2006 a study was started at GSI to treat prostate cancer patients with a boost irradiation of carbon ions in combination with an IMRT treatment administered at the Uniklinikum Heidelberg. The carbon ions are delivered in two opposing fields. So IMRT irradiation includes more normal tissue than carbon ion treatment but even here parts of the rectum and the bladder are in the irradiated field. This raises the question whether the irradiated tumor cells influence the normal cells (irradiated/ unirradiated) but also whether the normal irradiated cells influences normal tissue in a different way for carbon and photon irradiation. To study this problem, we established an in vitro co-culture model of prostate cancer and small intestine cells of the rat to simulate the patient treatment situation for analyzing tissue reaction exemplary. For characterization of the cells lines the parameters alpha and beta (linear quadratic model) for clonogenic survival were determined for x-rays and for carbon ions of different energies. For co-culture experiments unirradiated and irradiated cells were seeded together and the survival was analyzed

  6. The Oncogenic Small Tumor Antigen of Merkel Cell Polyomavirus Is an Iron-Sulfur Cluster Protein That Enhances Viral DNA Replication.

    Science.gov (United States)

    Tsang, Sabrina H; Wang, Ranran; Nakamaru-Ogiso, Eiko; Knight, Simon A B; Buck, Christopher B; You, Jianxin

    2016-02-01

    Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus

  7. Insights into Free Volume Variations across Ion-Exchange Membranes upon Mixed Solvents Uptake by Small and Ultrasmall Angle Neutron Scattering.

    Science.gov (United States)

    Allioux, Francois-Marie; Garvey, Christopher J; Rehm, Christine; Tardy, Blaise L; Dagastine, Raymond Riley; Hodgson, Peter D; Kong, Lingxue; Dumée, Ludovic Francis

    2017-03-15

    Ion-exchange membranes are composite separation materials increasingly used in a variety of electro-membranes and electrochemical processes. Although promising for solvent reclamation, to date, their main applications are limited to aqueous environments due to physicochemical and microstructural changes of the materials upon exposure to nonaqueous and mixed solvents solutions, affecting long-term stability and separation performance. In the present work, the structural changes of commercial and novel hybrid ion-exchange membranes in mixed methanol/water and ethanol/water solutions are assessed for the first time using ultra- and small-angle neutron scattering techniques. The interface between the ion-exchange functional layer and the mechanical support of the membranes is evaluated in the ultralow-q region, while a broad solvent-dependent peak at the mid-q region was correlated to the microstructural properties which are related to the free volume across the ion-exchange domains and to the materials electrical and nanoscale mechanical properties. The results of this study may offer new opportunities toward the development of an efficient separation process using ion-exchange membranes for the purification of fermentation broths toward biofuel generation.

  8. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    International Nuclear Information System (INIS)

    Friedman, P.G.

    1986-01-01

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for 14 C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV 14 C at 10 -2 counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10 -4 counts/sec and excellent background suppression. With the cyclotron tuned near the 13 CH background peak, to the frequency for 14 C, the detector suppresses the background to 6 x 10 -4 counts/sec. For each 14 C ion the detectors grazing-incidence Al 2 O 3 conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive 12 C, 23 Na, 39 K, 41 K, 85 Rb, 87 Rb, and 133 Cs at 5 to 40 keV, and with 36 keV negative 12 C and 13 CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10 -7 Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode

  9. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

    Science.gov (United States)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-01-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.

  10. Excitations in clusters

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    2001-01-01

    Statistical reaction theory is an important tool for understanding dynamic processes in clusters as well as for extracting information about theirs energetics. The author reviews the statistical reaction theory and establishes formulas concerning cluster evaporation rates, electron emission and radiative cooling. The author recalls a number of useful formulas for describing the electromagnetic properties of small particles, generalizes them and applies them in the case of alkali metal clusters and of silver clusters. The author ends discussing carbon structures, going from small clusters and molecules to fullerenes and nano-tubes. (A.C.)

  11. a Low Background-Rate Detector for Ions in the 5 TO 50 KEV Energy Range to BE Used for Radioisotope Dating with a Small Cyclotron.

    Science.gov (United States)

    Friedman, Peter Gray

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. Small, inexpensive cyclotrons serving this purpose would make the technique accessible to more researchers and inexpensive enough to compare many small samples. To this end we are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for {}^{14 }C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV {}^{14}C at 10^{-2} counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. To meet this challenge we have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10^{-4} counts/sec and excellent background suppression. With the cyclotron tuned near the {}^ {13}CH background peak, to the frequency for {}^{14}C, the detector suppresses the background to 6times 10^{-4} counts/sec. For each {}^{14}C ion the detector's grazing-incidence Al_ 2O _ 3 conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive {}^{12}C, { }^{23}Na, {} ^{39}K, {}^ {41}K, {}^{85 }Rb, {}^{87} Rb, and {}^{133} Cs at 5 to 40 keV, and with 36 keV negative {}^{12}C and {}^{13}CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2times 10^{-7} Torr and be repeatedly exposed to air. The maximum rate is 10^{6.4} ions/sec in

  12. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I: Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions.

    Science.gov (United States)

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-02

    Despite the many efforts to develop efficient protein purification techniques, the isolation of peptides and small proteins on a larger than analytical scale remains a significant challenge. Recovery of small biomolecules from diluted complex biological mixtures, such as human serum, employing porous adsorbents is a difficult task mainly due to the presence of concentrated large biomolecules that can add undesired effects in the system such as blocking of adsorbent pores, impairing diffusion of small molecules, or competition for adsorption sites. Adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide matrix, have been developed and explored in this work to overcome such effects and to preferentially adsorb small molecules while rejecting large ones. In the first part of this work, adsorption studies were performed with small peptides and proteins from synthetic mixtures using controlled access polymer permeation adsorption (CAPPA) media created by effectively grafting PEG on an immobilized metal affinity chromatography (IMAC) agarose resin, where chelating agents and immobilized metal ions were used as the primary affinity binding sites. Synthetic mixtures consisted of bovine serum albumin (BSA) with small proteins, peptides, amino acids (such as histidine or Val⁴-Angiotensin III), and small molecules-spiked human serum. The synthesized hybrid adsorbent consisted of agarose beads modified with iminodiacetic (IDA) groups, loaded with immobilized Cu(II) ions, and PEG. These CAPPA media with grafted PEG on the interior and exterior surfaces of the agarose matrix were effective in rejecting high molecular weight proteins. Different PEG grafting densities and PEG of different molecular weight were tested to determine their effect in rejecting and controlling adsorbent permeation properties. Low grafting density of high molecular weight PEG was found to be as

  13. Ionized cluster beam technology for material science

    International Nuclear Information System (INIS)

    Takagi, Toshinori

    1997-01-01

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized

  14. Formation and growth of molecular clusters containing sulfuric acid, water, ammonia, and dimethylamine.

    Science.gov (United States)

    DePalma, Joseph W; Doren, Douglas J; Johnston, Murray V

    2014-07-24

    The structures and thermochemistry of molecular clusters containing sulfuric acid, water, ammonia, and/or dimethylamine ((CH3)2NH or DMA) are explored using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Clusters are of the general form [(BH(+))n(HSO4(-))n(H2O)y], where B = NH3 or DMA, 2 ≤ n ≤ 8, and 0 ≤ y ≤ 10. Cluster formulas are written based on the computed structures, which uniformly show proton transfer from each sulfuric acid molecule to a base molecule while the water molecules remain un-ionized. Cluster formation is energetically favorable, owing to strong electrostatic attraction among the ions. Water has a minor effect on the energetics of cluster formation, lowering the free energy of formation by ∼ 10% depending on the cluster size and number of water molecules. Cluster growth (addition of one base molecule and one sulfuric acid molecule to a pre-existing cluster) and base substitution (substituting DMA for ammonia) are also energetically favorable processes for both anhydrous and hydrated clusters. However, the effect of water is different for different bases. Hydrated ammonium bisulfate clusters have a more favorable free energy for growth (i.e., incrementing n with fixed y) than anhydrous clusters, while the reverse is observed for dimethylammonium bisulfate clusters, where the free energy for growth is more favorable for anhydrous clusters. The substitution of DMA for ammonia in bisulfate clusters is favorable but exhibits a complex water dependence. Base substitution in smaller bisulfate clusters is enhanced by the presence of water, while base substitution in larger bisulfate clusters is less favorable for hydrated clusters than that for anhydrous clusters. While DMA substitution can stabilize small clusters containing one or a few sulfuric acid molecules, the free energy advantage of forming amine clusters relative to ammonia clusters becomes less

  15. Ion production rate in a boreal forest based on ion, particle and radiation measurements

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2004-01-01

    Full Text Available In this study the ion production rates in a boreal forest were studied based on two different methods: 1 cluster ion and particle concentration measurements, 2 external radiation and radon concentration measurements. Both methods produced reasonable estimates for ion production rates. The average ion production rate calculated from aerosol particle size distribution and air ion mobility distribution measurements was 2.6 ion pairs cm-3s-1, and based on external radiation and radon measurements, 4.5 ion pairs cm-3s-1. The first method based on ion and particle measurements gave lower values for the ion production rates especially during the day. A possible reason for this is that particle measurements started only from 3nm, so the sink of small ions during the nucleation events was underestimated. It may also be possible that the hygroscopic growth factors of aerosol particles were underestimated. Another reason for the discrepancy is the nucleation mechanism itself. If the ions are somehow present in the nucleation process, there could have been an additional ion sink during the nucleation days.

  16. Where do ions solvate?

    Indian Academy of Sciences (India)

    Abstract. We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes ...

  17. Where do ions solvate?

    Indian Academy of Sciences (India)

    We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes ...

  18. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on