WorldWideScience

Sample records for small airway cell

  1. Differential distribution of inflammatory cells in large and small airways in smokers

    NARCIS (Netherlands)

    Battaglia, Salvatore; Mauad, Thais; van Schadewijk, Annemarie M.; Vignola, Antonia M.; Rabe, Klaus F.; Bellia, Vincenzo; Sterk, Peter J.; Hiemstra, Pieter S.

    2007-01-01

    BACKGROUND: Smoking induces structural changes in the airways, and is considered a major factor in the development of airflow obstruction in chronic obstructive pulmonary disease. However, differences in inflammatory cell distribution between large airways (LA) and small airways (SA) have not been

  2. Small airways dysfunction in long-term survivors of pediatric stem cell transplantation

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Mathiesen, Sidsel; Buchvald, Frederik

    2015-01-01

    BACKGROUND: Chronic graft-versus-host disease (cGvHD) in the lungs is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Pulmonary cGvHD is initiated in the peripheral airways, and diagnosis may be delayed by low sensitivity of standard pulmonary function...... performed spirometry, whole-body plethysmography and MBWN2 . From MBWN2 the lung clearance index (LCI) and indices reflecting ventilation inhomogeneity arising close to the acinar lung zone (Sacin ) and in the conductive airway zone (Scond ) were derived. Subjective respiratory morbidity was assessed using...... tests. Multiple breath nitrogen washout (MBWN2 ) is a promising, sensitive method to assess small airways function. This is the first report on MBWN2 in survivors of pediatric HSCT. METHODS: This cross-sectional study undertaken 3-10 years post-HSCT, included 64 patients and 64 matched controls who all...

  3. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    Science.gov (United States)

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK

    2013-01-01

    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells SAECs. Exposure of SAECs to varying concentrations of acrolein caused cell-death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low (5 to 10 μM) but not high (>10 μM) concentrations of acrolein-induced SAECs cell death. AR inhibition protected SAECs from low dose (5 μM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail-moment, and annexin-V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of pro-apoptotic proteins Bax and Bad from cytosol to the mitochondria, and that of Bcl2 and BclXL from mitochondria to cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK, and c-jun were transiently activated in airway epithelial cells by acrolein in a concentration and time-dependent fashion, which were significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. PMID:23770200

  4. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  5. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  6. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. Copyright © 2013 Elsevier Inc. All rights

  7. Dilemmas, Confusion, and Misconceptions Related to Small Airways Directed Therapy

    DEFF Research Database (Denmark)

    Lavorini, Federico; Pedersen, Søren; Usmani, Omar S.

    2017-01-01

    During the past decade, there has been increasing evidence that the small airways (ie, airways < 2 mm in internal diameter) contribute substantially to the pathophysiologic and clinical expression of asthma and COPD. The increased interest in small airways is, at least in part, a result of innova......During the past decade, there has been increasing evidence that the small airways (ie, airways COPD. The increased interest in small airways is, at least in part, a result...... of innovation in small-particle aerosol formulations that better target the distal lung and also advanced physiologic methods of assessing small airway responses. Increasing the precision of drug deposition may improve targeting of specific diseases or receptor locations, decrease airway drug exposure...... benefit, compared with large-particle aerosol treatment. However, a number of questions remain unanswered about the pragmatic approach relevant for clinicians to consider the role of small airways directed therapy in the day-to-day management of asthma and COPD. We thus have tried to clarify the dilemmas...

  8. Small Airway Absorption and Microdosimetry of Inhaled Corticosteroid Particles after Deposition.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2017-10-01

    To predict the cellular-level epithelial absorbed dose from deposited inhaled corticosteroid (ICS) particles in a model of an expanding and contracting small airway segment for different particle forms. A computational fluid dynamics (CFD)-based model of drug dissolution, absorption and clearance occurring in the surface liquid of a representative small airway generation (G13) was developed and used to evaluate epithelial dose for the same deposited drug mass of conventional microparticles, nanoaggregates and a true nanoaerosol. The ICS medications considered were budesonide (BD) and fluticasone propionate (FP). Within G13, total epithelial absorption efficiency (AE) and dose uniformity (microdosimetry) were evaluated. Conventional microparticles resulted in very poor AE of FP (0.37%) and highly nonuniform epithelial absorption, such that <5% of cells received drug. Nanoaggregates improved AE of FP by a factor of 57-fold and improved dose delivery to reach approximately 40% of epithelial cells. True nanoaerosol resulted in near 100% AE for both drugs and more uniform drug delivery to all cells. Current ICS therapies are absorbed by respiratory epithelial cells in a highly nonuniform manner that may partially explain poor clinical performance in the small airways. Both nanoaggregates and nanoaerosols can significantly improve ICS absorption efficiency and uniformity.

  9. Radioaerosol lung imaging in small airways disease

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, T; Dorow, P; Felix, R

    1981-06-01

    Aerosol inhalation lung imaging was performed in 35 asymptomatic smokers who have been selected on the basis of abnormal findings in small airways pulmonary function tests. Qualitative (image inspection) and quantitative (aerosol distribution index = ADI) analysis of the radioaerosol lung patterns was accomplished. Compared to healthy subjects as well as to patients with chronic obstructive lung disease significant differences of mean aerosol distribution homogeneity were observed. A characteristic type of abnormal aerosol pattern, indicating peripheral airways obstruction, was found in 71% of the patients with small airways disease.

  10. Association of Lung Inflammatory Cells with Small Airways Function and Exhaled Breath Markers in Smokers - Is There a Specific Role for Mast Cells?

    Directory of Open Access Journals (Sweden)

    Yvonne Nussbaumer-Ochsner

    Full Text Available Smoking is associated with a mixed inflammatory infiltrate in the airways. We evaluated whether airway inflammation in smokers is related to lung function parameters and inflammatory markers in exhaled breath.Thirty-seven smokers undergoing lung resection for primary lung cancer were assessed pre-operatively by lung function testing including single-breath-nitrogen washout test (sb-N2-test, measurement of fractional exhaled nitric oxide (FeNO and pH/8-isoprostane in exhaled breath condensate (EBC. Lung tissue sections containing cancer-free large (LA and small airways (SA were stained for inflammatory cells. Mucosal (MCT respectively connective tissue mast cells (MCTC and interleukin-17A (IL-17A expression by mast cells was analysed using a double-staining protocol.The median number of neutrophils, macrophages and mast cells infiltrating the lamina propria and adventitia of SA was higher than in LA. Both MCTC and MCT were higher in the lamina propria of SA compared to LA (MCTC: 49 vs. 27.4 cells/mm2; MCT: 162.5 vs. 35.4 cells/mm2; P<0.005 for both instances. IL-17A expression was predominantly detected in MCTC of LA. Significant correlations were found for the slope of phase III % pred. of the sb-N2-test (rs= -0.39, for the FEV1% pred. (rs= 0.37 and for FEV1/FVC ratio (rs=0.38 with MCT in SA (P<0.05 for all instances. 8-isoprostane concentration correlated with the mast cells in the SA (rs=0.44, there was no correlation for pH or FeNO with cellular distribution in SA.Neutrophils, macrophages and mast cells are more prominent in the SA indicating that these cells are involved in the development of small airway dysfunction in smokers. Among these cell types, the best correlation was found for mast cells with lung function parameters and inflammatory markers in exhaled breath. Furthermore, the observed predominant expression of IL-17A in mast cells warrants further investigation to elucidate their role in smoking-induced lung injury, despite the

  11. Small airways disease: time for a revisit?

    Directory of Open Access Journals (Sweden)

    Stockley JA

    2017-08-01

    Full Text Available James A Stockley,1 Brendan G Cooper,1 Robert A Stockley,2 Elizabeth Sapey3 1Department of Lung Function and Sleep, 2Department of Respiratory Medicine, University Hospital Birmingham, 3Institute of Inflammation and Ageing, Centre for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham, UK Abstract: It is increasingly acknowledged that delays in the diagnosis of chronic inflammatory lung conditions have hampered our understanding of pathogenesis and thus our ability to design efficacious therapies. This is particularly true for COPD, where most patients are diagnosed with moderate-to-severe airflow obstruction and little is known about the inflammatory processes present in early disease. There is great interest in developing screening tests that can identify those most at risk of developing COPD before airflow obstruction has developed for the purpose of research and clinical care. Landmark pathology studies have suggested that damage to the small airways precedes the development of airflow obstruction and emphysema and, thus, presents an opportunity to identify those at risk of COPD. However, despite a number of physiological tests being available to assess small airways function, none have been adopted into routine care in COPD. The reasons that tests of small airways have not been utilized widely include variability in test results and a lack of validated reference ranges from which to compare results for some methodologies. Furthermore, population studies have not consistently demonstrated their ability to diagnose disease. However, the landscape may be changing. As the equipment that delivers tests of small airways become more widely available, reference ranges are emerging and newer methodologies specifically seek to address variability and difficulty in test performance. Moreover, there is evidence that while tests of small airways may not be helpful across the full range of established disease severity

  12. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  13. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    Science.gov (United States)

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  14. SLOWLY ADAPTING SENSORY UNITS HAVE MORE RECEPTORS IN LARGE AIRWAYS THAN IN SMALL AIRWAYS IN RABBITS

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2016-12-01

    Full Text Available Sensory units of pulmonary slowly adapting receptors (SARs are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi vs small (bronchioles 0.05. However, the sensory structure contains more SARs in large airways than in small airways (9.6±0.6 vs 3.6±0.3; P<0.0001. Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  15. Impulse Oscillometry and Spirometry Small-Airway Parameters in Mild to Moderate Bronchiectasis.

    Science.gov (United States)

    Guan, Wei-Jie; Yuan, Jing-Jing; Gao, Yong-Hua; Li, Hui-Min; Zheng, Jin-Ping; Chen, Rong-Chang; Zhong, Nan-Shan

    2016-11-01

    Both impulse oscillometry and spirometry can reflect small-airway disorders. The objective of this work was to investigate the diagnostic value of impulse oscillometry and spirometry small-airway parameters and their correlation with radiology, disease severity, and sputum bacteriology in mild to moderate bronchiectasis (bronchiectasis severity index spirometry, and sputum culture were performed. Correlation between small-airway parameters and clinical indices was determined, adjusting for age, sex, body mass index, and smoking history. Sensitivity analyses were repeated when excluding subjects with bronchiectasis severity index ≥9 or HRCT score ≥13. Impulse oscillometry and spirometry small-airway parameters could discriminate mild to moderate bronchiectasis from healthy subjects and correlated significantly with HRCT score and the number of bronchiectatic lobes and the bronchiectasis severity index (all P Spirometry, but not impulse oscillometry, small-airway parameters differed statistically between subjects with isolated peripheral-airway bronchiectasis and those with peripheral plus central-airway bronchiectasis (all P spirometry small-airway parameters have similar diagnostic value in reflecting peripheral-airway disorders and correlate with the HRCT scores, the bronchiectasis severity index, and the number of bronchiectatic lobes in mild to moderate bronchiectasis. Assessment of small-airway parameters should be incorporated in future lung function investigations in bronchiectasis. Copyright © 2016 by Daedalus Enterprises.

  16. Ciclesonide improves measures of small airway involvement in asthma

    NARCIS (Netherlands)

    Cohen, J.; Douma, W. R.; ten Hacken, N. H. T.; Vonk, J. M.; Oudkerk, M.; Postma, D. S.

    Ciclesonide is delivered as a small-particle inhaled corticosteroid and improves lung function and airway hyperresponsiveness. The objective of the present study was to assess whether ciclesonide can specifically improve small airway function in asthma. A total of 16 mild-to-moderate asthma patients

  17. Differential effects of allergen challenge on large and small airway reactivity in mice.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The relative contributions of large and small airways to hyperresponsiveness in asthma have yet to be fully assessed. This study used a mouse model of chronic allergic airways disease to induce inflammation and remodelling and determine whether in vivo hyperresponsiveness to methacholine is consistent with in vitro reactivity of trachea and small airways. Balb/C mice were sensitised (days 0, 14 and challenged (3 times/week, 6 weeks with ovalbumin. Airway reactivity was compared with saline-challenged controls in vivo assessing whole lung resistance, and in vitro measuring the force of tracheal contraction and the magnitude/rate of small airway narrowing within lung slices. Increased airway inflammation, epithelial remodelling and fibrosis were evident following allergen challenge. In vivo hyperresponsiveness to methacholine was maintained in isolated trachea. In contrast, methacholine induced slower narrowing, with reduced potency in small airways compared to controls. In vitro incubation with IL-1/TNFα did not alter reactivity. The hyporesponsiveness to methacholine in small airways within lung slices following chronic ovalbumin challenge was unexpected, given hyperresponsiveness to the same agonist both in vivo and in vitro in tracheal preparations. This finding may reflect the altered interactions of small airways with surrounding parenchymal tissue after allergen challenge to oppose airway narrowing and closure.

  18. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Sateesh Krishnamurthy

    2012-01-01

    Full Text Available The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE or human airway epithelia (HAE grown at the air–liquid interface (ALI, the delivery of a Dicer-substrate small-interfering RNA (DsiRNA duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF, a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi responses.

  19. Waterpipe smoking induces epigenetic changes in the small airway epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew S Walters

    Full Text Available Waterpipe (also called hookah, shisha, or narghile smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05 representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05 change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling. Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

  20. Targeting Phosphoinositide 3-Kinase γ in Airway Smooth Muscle Cells to Suppress Interleukin-13-Induced Mouse Airway Hyperresponsiveness

    Science.gov (United States)

    Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.

    2012-01-01

    We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031

  1. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    Science.gov (United States)

    Donovan, Chantal; Royce, Simon G; Vlahos, Ross; Bourke, Jane E

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  2. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The bacterial endotoxin, lipopolysaccharide (LPS has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  3. Long-term clearance from small airways in subjects with ciliary dysfunction

    Directory of Open Access Journals (Sweden)

    Hjelte Lena

    2006-05-01

    Full Text Available Abstract The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD inhaled 111 Indium labelled Teflon particles of 4.2 μm geometric and 6.2 μm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret24 was higher (p 24 with slow inhalation flow was 73.9 ± 1.9 % compared to 68.9 ± 7.5 % with normal inhalation flow in the three PCD subjects exposed twice. During day 7–21 the three PCD subjects exposed twice cleared 9 % with normal flow, probably representing predominantly alveolar clearance, compared to 19 % with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways.

  4. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Sverrild, Asger; Bergqvist, Anders; Baines, Katherine J

    2016-01-01

    BACKGROUND: Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway...... tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. METHODS: Airway hyperresponsiveness to inhaled mannitol was measured in 23 non......-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. RESULTS...

  5. Risk factors for small pharyngeal airway dimensions in preorthodontic children

    DEFF Research Database (Denmark)

    Anandarajah, Seerone; Dudhia, Raahib; Sandham, Andrew

    2017-01-01

    Objective: To analyze which parameters, gathered from standard orthodontic diagnostic material, were most relevant for identifying small pharyngeal airway dimensions in preorthodontic children. Materials and Methods: The sample was composed of 105 cone beam computed tomography scans of healthy......, skeletal maturity and gender significant associations were found between pharyngeal airway dimensions and craniofacial morphology. Airway volume was positively associated with maxillary and mandibular width (P ... and sagittal jaw relationship were the most relevant factors for minimal cross-sectional area (r2 = 0.16). Conclusion: Pharyngeal airway dimensions were significantly associated with age, skeletal maturity, and craniofacial morphology in all three planes. Children with a reduced mandibular width and increased...

  6. Reduction of Eosinophils in Small Airways by Inhaled Steroids is Insufficient in Patients with Adult Asthma

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2006-01-01

    Conclusions: It was speculated that inhaled CFC-BDP and DP-FP might deposit mainly in large airways and fail to fully reach small airways, consequently allowing eosinophilic inflammation to continue in small airways.

  7. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Powell, Karen S. [Research Resource Facilities, University of Louisville, Louisville, KY (United States); Roberts, Andrew M. [Department of Physiology, University of Louisville, Louisville, KY (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed.

  8. Small airways dysfunction and neutrophilic inflammation in bronchial biopsies and BAL in COPD

    NARCIS (Netherlands)

    Lapperre, Thérèse S.; Willems, Luuk N. A.; Timens, Wim; Rabe, Klaus F.; Hiemstra, Pieter S.; Postma, Dirkje S.; Sterk, Peter J.

    2007-01-01

    BACKGROUND: The single-breath N(2) test (sbN(2)-test) is closely related to small airways pathology in resected lung specimens of smokers. We investigated whether uneven ventilation and airway closure are associated with specific markers of airway inflammation as obtained by bronchial biopsies, BAL,

  9. Small airways dysfunction and neutrophilic inflammation in bronchial biopsies and BAL in COPD

    NARCIS (Netherlands)

    Lapperre, Therese S.; Willems, Luuk N. A.; Timens, Wim; Rabe, Klaus F.; Hiemstra, Pieter S.; Postma, Dirkje S.; Sterk, Peter J.

    Background: The single-breath N-2 test (sbN(2)-test) is closely related to small airways pathology in resected lung specimens of smokers. We investigated whether uneven ventilation and airway closure are associated with specific markers of airway inflammation as obtained by bronchial biopsies, BAIL,

  10. Relation between small airways disease and parenchymal destruction in surgical lung specimens.

    Science.gov (United States)

    Willems, L N; Kramps, J A; Stijnen, T; Sterk, P J; Weening, J J; Dijkman, J H

    1990-01-01

    The relation between small airways disease and parenchymal destruction was investigated in lungs and lobes removed at surgery from 27 patients aged 15-70 years. Eight of the 27 patients were life-long non-smokers. The degree of small airways disease was assessed by semi-quantitative grading (SAD score) and by measuring diameter and wall thickness of membranous bronchioles. Parenchymal destruction was measured in three ways. Firstly, the number of alveolar attachments on membranous bronchioles per millimetre of circumference (AA/mm) was counted; the number of broken attachments was subtracted from the total AA/mm to give the numbers of intact attachments (normal AA/mm). Secondly, a point counting technique was used to give a destructive index (DI). Thirdly, the mean linear intercept (Lm) was determined. Total and normal AA/mm correlated negatively with the SAD score of membranous bronchioles (rs = -0.48 and -0.51) and with wall thickness (rs = -0.37 and -0.45) and DI correlated with wall thickness (rs = 0.5) and with the SAD score of respiratory bronchioles (rs = 0.53). Lm did not correlate with indices of small airway disease and total and normal AA/mm did not correlate with diameter. Multiple regression analyses showed that the correlation of total AA/mm with the SAD score of membranous and respiratory bronchioles and with wall thickness were not confounded by age or smoking. It is concluded that small airways disease is related to destruction of peribronchiolar alveoli, and it is postulated that small airways disease has a direct role in the causation of centrilobular emphysema. PMID:2315880

  11. Native Small Airways Secrete Bicarbonate

    OpenAIRE

    Shamsuddin, A. K. M.; Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidi...

  12. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  13. Multislice helical CT analysis of small-sized airway wall thickness in smokers and patients with bronchial asthma

    International Nuclear Information System (INIS)

    Sekimura, Kenshi; Ito, Harumasa; Nakamura, Yutaka; Kobayashi, Hitoshi; Oikawa, Hirobumi; Inoue, Hiroshi; Ehara, Shigeru; Yamauchi, Kohei

    2010-01-01

    There is accumulating evidence that airway remodeling, which contributes to airway narrowing, plays a role in the pathogenesis of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD). Development of the multislice helical CT (MSCT) with improved spatial resolution has made it possible to obtain more precise imaging of small-sized airways. Small-sized airway wall-thickness was measured using the MSCT scan to analyze small-sized airways of smokers and BA patients, and examine the effects of a β 2 agonists on small-sized airway wall-thickness of BA patients. Thirty-six non-asthmatics who participated in the Health Check Program of Iwate Medical University and 25 patients with asthma were recruited. Amongst the 36 non-asthmatics were 20 healthy never-smokers and 15 smokers. The other 25 asthmatics were recruited from the outpatient clinic at Iwate Medical University. MSCT was performed and the right B10 bronchus was chosen for dimensional analysis. Airway wall thickness was expressed as a percentage of wall area (WA%). WA% of the 7 asthmatics before and 30 mim after procaterol (20μg) inspiration were compared. Small-sized airway wall thickness was significantly increased in smokers and patients with asthma compared to healthy never-smokers, when determined by MSCT. Both %V 50 and %V 25 had significant negative correlations with WA% among the healthy never-smokers and smoker population. Procaterol inspiration reduced WA% in the small airway of patients with asthma. Increase of small-sized airway thickness measured by MSCT scan may reflect peripheral obstructive lesions of smokers and BA patients. (author)

  14. Long-term clearance from small airways in subjects with ciliary dysfunction

    OpenAIRE

    Hjelte Lena; Falk Rolf; Lindström Maria; Philipson Klas; Svartengren Magnus

    2006-01-01

    Abstract The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD) inhaled 111 Indium labelled Teflon particles of 4.2 μm geometric and 6.2 μm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasi...

  15. Small airway function changes and its clinical significance of asthma patients in different clinical phases

    Directory of Open Access Journals (Sweden)

    Yan-Hui Zhou

    2016-11-01

    Full Text Available Objective: To observe the small airways function changes of asthmatic patients in different clinical phases and to discuss its clinical significance. Methods: A total of 127 patients diagnosed as asthma were selected randomly and pulmonary function (PF of them was determined by conventional method. Then they were divided into A, B and C group based on PF results. All 34 patients in A group suffered from acute asthma attack for the first time. All 93 patients in B group had been diagnosed as asthma but in remission phase. C Group was regarded as Control group with 20 healthy volunteers. Then FEV1, FEF50%, FEF75% levels of patients in each group were analyzed, and ΔFEV1, ΔFEF75% and ΔFEF50% levels of patients in each group were compared after bronchial dilation test. Results: It was found that most patients in group A and B had abnormal small airways function, and their small airways function was significantly different compared with that of group C (P<0.01. In addition, except for group C, ΔFEF75%,ΔFEF50% levels in A and B group were improved more significantly than ΔFEV1 levels (P<0.01. Conclusions: Asthma patients in acute phase all have abnormal small airways function. Most asthma patients in remission phase also have abnormal small airways function. After bronchial dilation test, whether patients in acute phase or in remission phase, major and small airways function of them are improved, but improvement of small airways function is weaker than that of major airways. This indicates that asthma respiratory tract symptoms in different phases exists all the time and so therapeutic process is needed to perform step by step.

  16. Targeting the small airways with dry powder adenosine : A challenging concept

    NARCIS (Netherlands)

    van der Wiel, Erica; Lexmond, Anne J; van den Berge, Maarten; Postma, Dirkje S; Hagedoorn, Paul; Frijlink, Henderik W; Farenhorst, Martijn P; de Boer, Anne H; Ten Hacken, Nick H T

    2017-01-01

    Background: Small-particle inhaled corticosteroids (ICS) provide a higher small airway deposition than large-particle ICS. However, we are still not able to identify asthma patients who will profit most from small-particle treatment. Objective: We aimed to identify these patients by selectively

  17. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  18. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    Science.gov (United States)

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  19. Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Taissia G Popova

    Full Text Available Rift valley fever virus (RVFV infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK and downstream transcriptional factors [STAT1 (Y701, ATF2 (T69/71, MSK1 (S360 and CREB (S133]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46 correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473, along with phosphorylation of FOX 01/03 (T24/31 which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication.

  20. Airway responses towards allergens - from the airway epithelium to T cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Hansen, Søren; Würtzen, Peter A

    2015-01-01

    -damaged, healthy epithelium lowers the DCs ability to induce inflammatory T cell responses towards allergens. The purpose of this review is to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2 cell responses...

  1. Increased mast cell density and airway responses to allergic and non-allergic stimuli in a sheep model of chronic asthma.

    Directory of Open Access Journals (Sweden)

    Joanne Van der Velden

    Full Text Available BACKGROUND: Increased mast cell (MC density and changes in their distribution in airway tissues is thought to contribute significantly to the pathophysiology of asthma. However, the time sequence for these changes and how they impact small airway function in asthma is not fully understood. The aim of the current study was to characterise temporal changes in airway MC density and correlate these changes with functional airway responses in sheep chronically challenged with house dust mite (HDM allergen. METHODOLOGY/PRINCIPAL FINDINGS: MC density was examined on lung tissue from four spatially separate lung segments of allergic sheep which received weekly challenges with HDM allergen for 0, 8, 16 or 24 weeks. Lung tissue was collected from each segment 7 days following the final challenge. The density of tryptase-positive and chymase-positive MCs (MC(T and MC(TC respectively was assessed by morphometric analysis of airway sections immunohistochemically stained with antibodies against MC tryptase and chymase. MC(T and MC(TC density was increased in small bronchi following 24 weeks of HDM challenges compared with controls (P<0.05. The MC(TC/MC(T ratio was significantly increased in HDM challenged sheep compared to controls (P<0.05. MC(T and MC(TC density was inversely correlated with allergen-induced increases in peripheral airway resistance after 24 weeks of allergen exposure (P<0.05. MC(T density was also negatively correlated with airway responsiveness after 24 challenges (P<0.01. CONCLUSIONS: MC(T and MC(TC density in the small airways correlates with better lung function in this sheep model of chronic asthma. Whether this finding indicates that under some conditions mast cells have protective activities in asthma, or that other explanations are to be considered requires further investigation.

  2. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    Science.gov (United States)

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  3. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    International Nuclear Information System (INIS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-01-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast

  4. Human mast cell and airway smooth muscle cell interactions: implications for asthma.

    Science.gov (United States)

    Page, S; Ammit, A J; Black, J L; Armour, C L

    2001-12-01

    Asthma is characterized by inflammation, hyperresponsiveness, and remodeling of the airway. Human mast cells (HMCs) play a central role in all of these changes by releasing mediators that cause exaggerated bronchoconstriction, induce human airway smooth muscle (HASM) cell proliferation, and recruit and activate inflammatory cells. Moreover, the number of HMCs present on asthmatic HASM is increased compared with that on nonasthmatic HASM. HASM cells also have the potential to actively participate in the inflammatory process by synthesizing cytokines and chemokines and expressing surface molecules, which have the capacity to perpetuate the inflammatory mechanisms present in asthma. This review specifically examines how the mediators of HMCs have the capacity to modulate many functions of HASM; how the synthetic function of HASM, particularly through the release and expression of stem cell factor, has the potential to influence HMC number and activation in an extraordinarily potent and proinflammatory manner; and how these interactions between HMCs and HASM have potential consequences for airway structure and inflammation relevant to the disease process of asthma.

  5. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  6. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    International Nuclear Information System (INIS)

    Lin, C.-H.; Lai, Y.-L.

    2005-01-01

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H 1 receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C 4 (LTC 4 ) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV 0.1 ) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV 0.1 , indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC 4 and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction

  7. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    Science.gov (United States)

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  8. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    International Nuclear Information System (INIS)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham; Boyaka, Prosper N.; Cormet-Boyaka, Estelle

    2012-01-01

    Highlights: ► Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. ► Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. ► Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. ► Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-κB dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  9. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation

    DEFF Research Database (Denmark)

    Nassini, Romina; Pedretti, Pamela; Moretto, Nadia

    2012-01-01

    The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic...... inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express...... functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells...

  10. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    gene expression in culture systems and certain organs in vivo, barriers to nucleic acid transfer in airway epithelial cells seen with large DNA molecules may also affect the efficiency of in vivo uptake of small nucleic acid molecules.

  11. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease.

    Science.gov (United States)

    Cruz, E A; Reuter, S; Martin, H; Dehzad, N; Muzitano, M F; Costa, S S; Rossi-Bergmann, B; Buhl, R; Stassen, M; Taube, C

    2012-01-15

    Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  13. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    Science.gov (United States)

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs

    Directory of Open Access Journals (Sweden)

    Shingo Suzuki

    2016-01-01

    Full Text Available Cystic fibrosis (CF is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ≃100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.

  15. The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD.

    Science.gov (United States)

    Liu, Xianyan; Hao, Binwei; Ma, Ailing; He, Jinxi; Liu, Xiaoming; Chen, Juan

    Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF- β ) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF- β , along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α -SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF- β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF- β signaling in the pathogenesis of COPD, which warrants further investigation.

  16. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: Estelle.boyaka@osumc.edu [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  17. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  18. Relating small airways to asthma control by using impulse oscillometry in children.

    Science.gov (United States)

    Shi, Yixin; Aledia, Anna S; Tatavoosian, Ahramahzd V; Vijayalakshmi, Shruthi; Galant, Stanley P; George, Steven C

    2012-03-01

    Previous reports suggest that the peripheral airways are associated with asthma control. Patient history, although subjective, is used largely to assess asthma control in children because spirometric results are many times normal values. Impulse oscillometry (IOS) is an objective and noninvasive measurement of lung function that has the potential to examine independently both small- and large-airway obstruction. We sought to determine the utility of IOS in assessing asthma control in children. Asthmatic and healthy children (6-17 years) were enrolled in the study. Spirometric and IOS (resistance of the respiratory system at 5 Hz [R5] and 20 Hz [R20], reactance of the respiratory system at 5 Hz [X5], resonant frequency of reactance [Fres], and area under the reactance curve between 5 Hz and Fres [reactance area {AX}]) values were collected in triplicate before and after a bronchodilator was administered. The physicians were blinded to the IOS measurements and assessed asthma control using American Thoracic Society guidelines. Small-airway IOS measurements, including the difference of R5 and R20 [R5-20], X5, Fres, and AX, of children with uncontrolled asthma (n = 44) were significantly different from those of children with controlled asthma (n = 57) and healthy children (n = 14), especially before the administration of a bronchodilator. However, there was no difference in large-airway IOS values (R20). No differences were found between children with controlled asthma and healthy children in any of the end points. Receiver operating characteristic analysis showed cut points for baseline R5-20 (1.5 cm H(2)O · L(-1) · s) and AX (9.5 cm H(2)O · L(-1)) that effectively discriminated controlled versus uncontrolled asthma (area under the curve, 0.86 and 0.84) and correctly classified more than 80% of the population. Uncontrolled asthma is associated with small-airways dysfunction, and IOS might be a reliable and noninvasive method to assess asthma control in children

  19. acquisition of antigens by airway dendritic cells. do we know enough?

    African Journals Online (AJOL)

    kiama

    These responses are thought to be mediated via dendritic cells, which are located in the basal ... delivery to the DC in the airways. Are the ... feature of inflammatory airway disease, like asthma .... drug delivery and as vectors in delivery of.

  20. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    OpenAIRE

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-01

    Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determi...

  1. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2011-01-01

    Full Text Available Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs. The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP. Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and

  2. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    Science.gov (United States)

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  3. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  4. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    Science.gov (United States)

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  5. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  6. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  7. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    Science.gov (United States)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  8. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics.

    Directory of Open Access Journals (Sweden)

    Sonia R Rosner

    Full Text Available Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.

  9. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model.

    Directory of Open Access Journals (Sweden)

    Konrad Urbanek

    Full Text Available The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce.To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model.GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro.Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties.Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue

  10. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    Science.gov (United States)

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  12. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    International Nuclear Information System (INIS)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-01-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO 2 NPs (size range 4–33 nm), two preparations of CeO 2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm 2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm 2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm 2 , in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO 2 and CeO 2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  13. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  14. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells.

    Science.gov (United States)

    Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter

    2018-04-01

    Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.

  15. Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice.

    Science.gov (United States)

    Laucho-Contreras, Maria E; Taylor, Katherine L; Mahadeva, Ravi; Boukedes, Steve S; Owen, Caroline A

    2015-01-16

    COPD is projected to be the third most common cause of mortality world-wide by 2020((1)). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs((2)). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD((3-5)). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients((6)), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill's stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson's trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD.

  16. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD.

    Science.gov (United States)

    Eapen, Mathew S; McAlinden, Kielan; Tan, Daniel; Weston, Steven; Ward, Chris; Muller, Hans K; Walters, Eugene H; Sohal, Sukhwinder S

    2017-08-01

    The objective of this study was to enumerate total cells and the number of inflammatory cell differentials in large airways (LAs) versus small airways (SAs) of mild-moderate COPD, and against appropriate controls. For LA, we used endobronchial biopsies and for SA resected lung tissues. Immunostaining was enumerated (cells per mm 2 ) for macrophages, neutrophils, CD4 and CD8 T cells in the lamina propria (LP) up to 150 µM deep for LA and full wall thickness for SA. We confirmed hypocellularity in the LA and in the SA wall in smokers and COPD (P cellularity was least in current smokers with COPD (COPD-CS) (P cellularity was similar across smoker/COPD groups. LA neutrophils were decreased in COPD-CS (P wall inflammation in COPD is oversimplified, and contrast with innate inflammatory activation in the lumen, at least in mild-moderate disease. Any abnormalities in airway wall cell differentials are small, although exaggerated in percentage terms. © 2017 Asian Pacific Society of Respirology.

  17. Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Hynds, Robert E; Janes, Sam M

    2017-09-01

    Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.

  18. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  19. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  20. Responses of well-differentiated nasal epithelial cells exposed to particles: Role of the epithelium in airway inflammation

    International Nuclear Information System (INIS)

    Auger, Floriane; Gendron, Marie-Claude; Chamot, Christophe; Marano, Francelyne; Dazy, Anne-Catherine

    2006-01-01

    Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) were exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM 2.5 ). DEP and PM 2.5 (10-80 μg/cm 2 ) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1β secretion and only weak non-reproducible secretion of TNF-α. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM 2.5 . ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-α treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles (≤ 40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM 2.5 . Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response

  1. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  2. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  3. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Science.gov (United States)

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  4. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    Ichinose, Takamichi; Takano, Hirohisa; Miyabara, Yuichi; Sadakaneo, Kaori; Sagai, Masaru; Shibamoto, Takayuki

    2002-01-01

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/W v ) and normal mice (W/W + ). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W + than in W/W v . A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/W v , but not in W/W + . DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/W v . The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/W v by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W +

  5. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  6. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  7. Oxytetracycline Inhibits Mucus Secretion and Inflammation in Human Airway Epithelial Cells.

    Science.gov (United States)

    Shah, Said Ahmad; Ishinaga, Hajime; Takeuchi, Kazuhiko

    2017-01-01

    Oxytetracycline is a broad-spectrum antibiotic, but its nonantibacterial effects in the human respiratory tract are unknown. In this study, the effects of oxytetracycline on mucus secretion and inflammation were examined by PCR and ELISA in the human airway epithelial cell line NCI-H292. Oxytetracycline (10 μg/mL) significantly inhibited TNF-α-induced MUC5AC gene expression and MUC5AC protein levels in NCI-H292 cells. It also downregulated IL-8 and IL-1β gene expression and IL-1β protein levels. Our findings demonstrated that oxytetracycline suppressed mucus production and inflammation in human respiratory epithelial cells, providing further evidence for the usefulness of oxytetracycline for human airway inflammatory diseases. © 2017 S. Karger AG, Basel.

  8. GS143, an IκB ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-01-01

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-κB (NF-κB) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of IκB ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-κB activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that IκB ubiquitination inhibitor may have therapeutic potential against asthma

  9. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice

    2010-01-01

    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  10. Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma

    Directory of Open Access Journals (Sweden)

    Jelena Skuljec

    2017-09-01

    Full Text Available Cellular therapy with chimeric antigen receptor (CAR-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR and a chronic, T helper-2 (Th2 cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.

  11. Paediatric airway management: basic aspects

    DEFF Research Database (Denmark)

    Holm-Knudsen, R J; Rasmussen, L S

    2009-01-01

    Paediatric airway management is a great challenge, especially for anaesthesiologists working in departments with a low number of paediatric surgical procedures. The paediatric airway is substantially different from the adult airway and obstruction leads to rapid desaturation in infants and small...... children. This paper aims at providing the non-paediatric anaesthesiologist with a set of safe and simple principles for basic paediatric airway management. In contrast to adults, most children with difficult airways are recognised before induction of anaesthesia but problems may arise in all children...

  12. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  13. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    Science.gov (United States)

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.

  14. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    Science.gov (United States)

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. Copyright © 2015 the American Physiological Society.

  15. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  16. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    Science.gov (United States)

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  17. Evidence for autocrine and paracrine regulation of allergen-induced mast cell mediator release in the guinea pig airways.

    Science.gov (United States)

    Yu, Li; Liu, Qi; Canning, Brendan J

    2018-03-05

    Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.

  18. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair

    Directory of Open Access Journals (Sweden)

    GM Roomans

    2010-06-01

    Full Text Available Stem/progenitor cells can be used to repair defects in the airway wall, resulting from e.g., tumors, trauma, tissue reactions following long-time intubations, or diseases that are associated with epithelial damage. Several potential sources of cells for airway epithelium have been identified. These can be divided into two groups. The first group consists of endogenous progenitor cells present in the respiratory tract. This group can be subdivided according to location into (a a ductal cell type in the submucosal glands of the proximal trachea, (b basal cells in the intercartilaginous zones of the lower trachea and bronchi, (c variant Clara cells (Clarav-cells in the bronchioles and (d at the junctions between the bronchioles and the alveolar ducts, and (e alveolar type II cells. This classification of progenitor cell niches is, however, controversial. The second group consists of exogenous stem cells derived from other tissues in the body. This second group can be subdivided into: (a embryonic stem (ES cells, induced pluripotent stem (iPS cells, or amniotic fluid stem cells, (b side-population cells from bone marrow or epithelial stem cells present in bone marrow or circulation and (c fat-derived mesenchymal cells. Airway epithelial cells can be co-cultured in a system that includes a basal lamina equivalent, extracellular factors from mesenchymal fibroblasts, and in an air-liquid interface system. Recently, spheroid-based culture systems have been developed. Several clinical applications have been suggested: cystic fibrosis, acute respiratory distress syndrome, chronic obstructive lung disease, pulmonary fibrosis, pulmonary edema, and pulmonary hypertension. Clinical applications so far are few, but include subglottic stenosis, tracheomalacia, bronchiomalacia, and emphysema.

  19. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  20. Dioscorin pre-treatment protects A549 human airway epithelial cells from hydrogen peroxide-induced oxidative stress.

    Science.gov (United States)

    Hsu, Jeng-Yuan; Chu, Jao-Jia; Chou, Ming-Chih; Chen, Ya-Wen

    2013-10-01

    Hydrogen peroxide (H(2)O(2)) is a highly reactive oxygen species involved in lung and bronchial epithelium injury. Increased H(2)O(2) levels have been reported in expired breath condensates of patients with inflammatory airway diseases such as chronic obstructive pulmonary disease. Protecting airway epithelial cells from oxidative stress is an important task in the prevention and management of airway diseases. Previous studies demonstrate that yam (Dioscorea batatas Decne) has antioxidant and anti-trypsin activities. This study evaluated the validity of dioscorin in vitro. The results showed that dioscorin attenuated the alteration of H(2)O(2) on G2/M cell cycle arrest. This might be associated with the activation of IκB and subsequent inactivation of NF-κB. Furthermore, dioscorin suppressed IL-8 secretion and reduced changes of adhesion molecule expressions in H(2)O(2)-injured A549 cells. These results help in understanding the potential of traditional Chinese herbal medicine as treatment for airway inflammatory diseases.

  1. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  2. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  3. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the

  4. Interleukin (IL) 36 gamma induces mucin 5AC, oligomeric mucus/gel-forming expression via IL-36 receptor-extracellular signal regulated kinase 1 and 2, and p38-nuclear factor kappa-light-chain-enhancer of activated B cells in human airway epithelial cells.

    Science.gov (United States)

    Bae, Chang Hoon; Choi, Yoon Seok; Na, Hyung Gyun; Song, Si-Youn; Kim, Yong-Dae

    2018-03-01

    Mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression is significantly increased in allergic and inflammatory airway diseases. Interleukin (IL) 36 gamma is predominantly expressed in airway epithelial cells and plays an important role in innate and adaptive immune responses. IL-36 gamma is induced by many inflammatory mediators, including cytokines and bacterial and viral infections. However, the association between IL-36 gamma and mucin secretion in human airway epithelial cells has not yet been fully investigated. The objective of this study was to determine whether IL-36 gamma might play a role in the regulation of mucin secretion in airway epithelial cells. We investigated the effect and brief signaling pathway of IL-36 gamma on MUC5AC expression in human airway epithelial cells. Enzyme immunoassay, immunoblot analysis, immunofluorescence staining, reverse transcriptase-polymerase chain reaction (PCR), and real-time PCR were performed in mucin-producing human airway epithelial NCI-H292 cells and in human nasal epithelial cells after pretreatment with IL-36 gamma, several specific inhibitors, or small interfering RNAs (siRNA). IL-36 gamma induced MUC5AC expression and activated the phosphorylation of extracellular signal regulated kinase (ERK) 1 and 2, p38, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappa B). IL-36 receptor antagonist significantly attenuated these effects. The specific inhibitor and siRNA of ERK1, ERK2, p38, and NF-kappa B significantly attenuated IL-36 gamma induced MUC5AC expression. These results indicated that IL-36 gamma induced MUC5AC expression via the IL-36 receptor-mediated ERK1/2 and p38/NF-kappa B pathway in human airway epithelial cells.

  5. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  6. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    Science.gov (United States)

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  7. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  8. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  9. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chao-Huei Yang

    2016-01-01

    Full Text Available In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05. Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05 and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2, Akt, and nuclear factor (NF-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  10. Small airway disease after mycoplasma pneumonia in children: HRCT findings and correlation with radiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Jung Eun; Kim, Woo Sun; Kim, In One; Koh, Young Yull; Lee, Hoan Jong; Yeon, Kyung Mo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-04-01

    To assess the high-resolution CT (HRCT) findings of small airway abnormalities after mycoplasma pneumonia and correlate them with the findings of chest radiography performed during the acute and follow-up phases of the condition. We retrospectively evaluated HRCT and chest radiographic findings of 18 patients with clinical diagnosis of small airway disease after mycoplasma pneumonia (M:F=8:10, mean age: 8.3 years, mean time interval after the initial infection; 26 menths). We evaluated the lung parenchymal and bronchial abnormalities on HRCT (n=18). In addition, presence of air-trapping was assessed on expiratory scans (n=13). The findings of HRCT were correlated with those of chest radiography performed during the acute phase of initial infection (n=15) and at the time of CT examination (n=18), respectively. HRCT revealed lung parenchymal abnormalities in 13 patients (72%). A mosaic pattern of lung attenuation was noted in ten patients (10/18, 56%) and air-trapping on expiratory scans was observed in nine (9/13), 69%). In nine of 14 (64%) with negative findings at follow-up chest radiography, one or both of the above parenchymal abnormalities was observed at HRCT. In four patients (27%), parenchymal abnormalities were seen at HRCT in areas considered normal at acute-phase chest radiography. Bronchiectasis or ateclectasis was observed in eight (44%) and four (22%) patients, respectively, at HRCT. The CT features of Swyer-James syndrome such as a unilateral hyperlucent lung with reduced lung volume and attenuated vessels were noted in two patients(11%). HRCT can clearly demonstrate lung parenchymal and bronchial abnormalities of small airway disease after mycoplasma pneumonia in children.

  11. Small airway disease after mycoplasma pneumonia in children: HRCT findings and correlation with radiographic findings

    International Nuclear Information System (INIS)

    Cheon, Jung Eun; Kim, Woo Sun; Kim, In One; Koh, Young Yull; Lee, Hoan Jong; Yeon, Kyung Mo

    2003-01-01

    To assess the high-resolution CT (HRCT) findings of small airway abnormalities after mycoplasma pneumonia and correlate them with the findings of chest radiography performed during the acute and follow-up phases of the condition. We retrospectively evaluated HRCT and chest radiographic findings of 18 patients with clinical diagnosis of small airway disease after mycoplasma pneumonia (M:F=8:10, mean age: 8.3 years, mean time interval after the initial infection; 26 menths). We evaluated the lung parenchymal and bronchial abnormalities on HRCT (n=18). In addition, presence of air-trapping was assessed on expiratory scans (n=13). The findings of HRCT were correlated with those of chest radiography performed during the acute phase of initial infection (n=15) and at the time of CT examination (n=18), respectively. HRCT revealed lung parenchymal abnormalities in 13 patients (72%). A mosaic pattern of lung attenuation was noted in ten patients (10/18, 56%) and air-trapping on expiratory scans was observed in nine (9/13), 69%). In nine of 14 (64%) with negative findings at follow-up chest radiography, one or both of the above parenchymal abnormalities was observed at HRCT. In four patients (27%), parenchymal abnormalities were seen at HRCT in areas considered normal at acute-phase chest radiography. Bronchiectasis or ateclectasis was observed in eight (44%) and four (22%) patients, respectively, at HRCT. The CT features of Swyer-James syndrome such as a unilateral hyperlucent lung with reduced lung volume and attenuated vessels were noted in two patients(11%). HRCT can clearly demonstrate lung parenchymal and bronchial abnormalities of small airway disease after mycoplasma pneumonia in children

  12. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Directory of Open Access Journals (Sweden)

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  13. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model.

    Science.gov (United States)

    Sisler, Jennifer D; Pirela, Sandra V; Friend, Sherri; Farcas, Mariana; Schwegler-Berry, Diane; Shvedova, Anna; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2015-01-01

    The printer is one of the most common office equipment. Recently, it was reported that toner formulations for printing equipment constitute nano-enabled products (NEPs) and contain engineered nanomaterials (ENMs) that become airborne during printing. To date, insufficient research has been performed to understand the potential toxicological properties of printer-emitted particles (PEPs) with several studies using bulk toner particles as test particles. These studies demonstrated the ability of toner particles to cause chronic inflammation and fibrosis in animal models. However, the toxicological implications of inhalation exposures to ENMs emitted from laser printing equipment remain largely unknown. The present study investigates the toxicological effects of PEPs using an in vitro alveolar-capillary co-culture model with Human Small Airway Epithelial Cells (SAEC) and Human Microvascular Endothelial Cells (HMVEC). Our data demonstrate that direct exposure of SAEC to low concentrations of PEPs (0.5 and 1.0 µg/mL) caused morphological changes of actin remodeling and gap formations within the endothelial monolayer. Furthermore, increased production of reactive oxygen species (ROS) and angiogenesis were observed in the HMVEC. Analysis of cytokine and chemokine levels demonstrates that interleukin (IL)-6 and MCP-1 may play a major role in the cellular communication observed between SAEC and HMVEC and the resultant responses in HMVEC. These data indicate that PEPs at low, non-cytotoxic exposure levels are bioactive and affect cellular responses in an alveolar-capillary co-culture model, which raises concerns for potential adverse health effects.

  14. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-01-01

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4 + CD25 + Foxp3 + T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4 + CD25 + Foxp3 + regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune

  15. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood.

    Directory of Open Access Journals (Sweden)

    Maria J Gutierrez

    Full Text Available Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome and examine the changes during rhinovirus (RV infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood.Nasal airway secretions were obtained from children (≤3 yrs. old during PCR-confirmed RV infections (n = 10 and age-matched controls (n = 10. Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC differentiated at air-liquid interface (ALI. Bioinformatics tools were used to determine the unified (nasal and bronchial signature airway secretory miRNAome and changes during RV infection in children.Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV.Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway

  16. Immunoregulation by airway epithelial cells (AECs against respiratory virus infection

    Directory of Open Access Journals (Sweden)

    Yan YAN

    2017-11-01

    Full Text Available The respiratory tract is primary contact site of the body and environment, and it is ventilated by 10-20 thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbes, which contain the disease-causing pathogens. Airway epithelial cells (AECs are known to have innate sensor functions, which are similar to the "professional" immune cells, such as alveolar macrophage and sub- or intra-epithelial dendritic cells (DCs. Thus AECs are able to detect invading microbial danger including different types of respiratory viruses, and mount a potent host response, for example, activating type Ⅰ interferon signaling pathway genes. To avoid chronic inflammation and maintain the immunological homeostasis, the pulmonary system has developed intrinsic mechanisms to control local immune responses. Most recently, the role of AECs in control of local immunity has gained much attention, as 1 AECs express the pattern recognition receptors (PRRs, such as Toll-like receptors, retinoic acid inducible gene Ⅰ (RIG-I-like receptor, and so on, thus AECs are equipped to participate in innate detection of microbial encounter; 2 To keep immunological homeostasis in the respiratory tract, AECs behave not only as innate immune sensors but also as immune modulators in parallel, through modulating the sensitivity of innate immune sensing of both AECs per se and sub- or intra-epithelial immune cells; 3 Loss of modularity capacity of AECs might be involved in the development of chronic airway diseases. In present review, how the AECs act will be intensively discussed in response to respiratory viruses and modulate the local immunity through cis- and trans-factors (direct and indirect factors, as well as the consequence of impairment of this control of local immunity, in the development and exacerbation of airway diseases, such as acute and chronic rhinosinusitis. DOI: 10.11855/j.issn.0577-7402.2017.10.02

  17. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... D Structure Consortium CFTR Folding Consortium Epithelial Stem Cell Consortium Mucociliary Clearance Consortium SUCCESS WITH THERAPIES RESEARCH ... clapping) or vibration to loosen mucus from airway walls. See how different airway clearance techniques work to ...

  18. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    Science.gov (United States)

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  19. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  20. Development of a tool to recognize small airways dysfunction in asthma (SADT).

    Science.gov (United States)

    Schiphof-Godart, Lieke; van der Wiel, Erica; Ten Hacken, Nick H T; van den Berge, Maarten; Postma, Dirkje S; van der Molen, Thys

    2014-11-22

    Small airways dysfunction (SAD) contributes to the clinical expression of asthma. The identification of patients who suffer from SAD is important from a clinical perspective, as targeted therapy may improve patients' well-being and treatment efficacy. We aimed to realize the first step in the development of a simple small airways dysfunction tool (SADT) that may help to identify asthma patients having SAD. Asthma patients with and without SAD were interviewed. Patients were selected to participate in this study based on FEF50% and R5-R20 values from spirometry and impulse oscillometry respectively. Ten in depth interviews and two focus groups revealed that patients with and without SAD perceived differences in symptoms and signs, habits and health related issues. For example, patients with SAD reported to wheeze easily, were unable to breathe in deeply, mentioned more symptoms related to bronchial hyperresponsiveness, experienced more pronounced exercise-induced symptoms and more frequently had allergic respiratory symptoms after exposure to cats and birds. Based on these differences, 63 items were retained to be further explored for the SADT. The first step of the development of the SADT tool shows that there are relevant differences in signs and respiratory symptoms between asthma patients with and without SAD. The next step is to test and validate all items in order to retain the most relevant items to create a short and simple tool, which should be useful to identify asthma patients with SAD in clinical practice.

  1. Role of airway epithelial barrier dysfunction in pathogenesis of asthma.

    Science.gov (United States)

    Gon, Yasuhiro; Hashimoto, Shu

    2018-01-01

    Bronchial asthma is characterized by persistent cough, increased sputum, and repeated wheezing. The pathophysiology underlying these symptoms is the hyper-responsiveness of the airway along with chronic airway inflammation. Repeated injury, repair, and regeneration of the airway epithelium following exposure to environmental factors and inflammation results in histological changes and functional abnormalities in the airway mucosal epithelium; such changes are believed to have a significant association with the pathophysiology of asthma. Damage to the barrier functions of the airway epithelium enhances mucosal permeability of foreign substances in the airway epithelium of patients with asthma. Thus, epithelial barrier fragility is closely involved in releasing epithelial cytokines (e.g., TSLP, IL-25, and IL-33) because of the activation of airway epithelial cells, dendritic cells, and innate group 2 innate lymphoid cells (ILC2). Functional abnormalities of the airway epithelial cells along with the activation of dendritic cells, Th2 cells, and ILC2 form a single immunopathological unit that is considered to cause allergic airway inflammation. Here we use the latest published literature to discuss the potential pathological mechanisms regarding the onset and progressive severity of asthma with regard to the disruption of the airway epithelial function. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  2. BrdU Pulse Labelling In Vivo to Characterise Cell Proliferation during Regeneration and Repair following Injury to the Airway Wall in Sheep

    Directory of Open Access Journals (Sweden)

    B. Yahaya

    2013-01-01

    Full Text Available The response of S-phase cells labelled with bromodeoxyuridine (BrdU in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models.

  3. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  4. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim:  Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions:  Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  5. Targeting small airways in asthma: Improvement in clinical benefit?

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; Lange, Peter

    2010-01-01

    Background and Aim: Disease control is not achieved in a substantial proportion of patients with asthma. Recent advances in aerosol formulations and delivery devices may offer more effective therapy. This review will focus on the importance and potential clinical benefit of targeting the lung...... half the daily dose with no increased risk of systemic effects. Clinical studies of adults with asthma have shown a greater effect of ultrafine ICS, compared with non-ultrafine ICS, on quality of life, small airway patency, and markers of pulmonary and systemic inflammation, but no difference...... with regard to conventional clinical indices of lung function and asthma control. Conclusions: Asthma patients treated with ultrafine ICS, compared with non-ultrafine ICS, have at least similar chance of achieving asthma control at a lower daily dose. Further clinical studies are needed to explore whether...

  6. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  7. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  8. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  9. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  10. ATP7B detoxifies silver in ciliated airway epithelial cells

    International Nuclear Information System (INIS)

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-01-01

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B -/- mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag + /Cu + transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  11. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Science.gov (United States)

    Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.

    2017-01-01

    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought

  12. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Bobby W. S. Li

    2017-12-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than

  13. Functional phenotype of airway myocytes from asthmatic airways

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Ojo, Oluwaseun O.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha

    In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still

  14. Regulated Mucin Secretion from Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Bruce Adler

    2013-09-01

    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  15. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  16. A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening.

    Science.gov (United States)

    An, Steven S; Askovich, Peter S; Zarembinski, Thomas I; Ahn, Kwangmi; Peltier, John M; von Rechenberg, Moritz; Sahasrabudhe, Sudhir; Fredberg, Jeffrey J

    2011-01-13

    A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.

  17. A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening

    Directory of Open Access Journals (Sweden)

    von Rechenberg Moritz

    2011-01-01

    Full Text Available Abstract Background A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20 and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. Methods Using a high-throughput fluorescence polarization (FP assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM. Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. Results Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. Conclusions This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.

  18. Inhaled corticosteroids inhibit substance P receptor expression in asthmatic rat airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Li Miao

    2012-12-01

    Full Text Available Abstract Background Neurokinins (NKs participate in asthmatic airway inflammation, but the effects of NKs on airway smooth muscle cells (ASMCs and those of corticosteroids on NKs are unknown. Methods To investigate the effect of budesonide on substance P (NK-1 receptor (NK-1R expression in the lung and ASMCs, 45 Wistar rats were randomly divided into three groups: control, asthmatic, and budesonide treatment. Aerosolized ovalbumin was used to generate the asthmatic rat model, and budesonide was administered after ovalbumin inhalation. On day 21, bronchial responsiveness tests, bronchoalveolar lavage, and cell counting were conducted. NK-1R protein expression in the lung was investigated by immunohistochemistry and image analysis. Primary rat ASMC cultures were established, and purified ASMCs of the fourth passage were collected for mRNA and protein studies via real-time RT-PCR, immunocytochemistry, and image analysis. Results NK-1R mRNA and protein expression in the budesonide treatment group rat’s lung and ASMCs were less than that in the asthmatic group but greater than that in the control group. Conclusions NK-1R is involved in the pathogenesis of asthma and that budesonide may downregulate the expression of NK-1R in the ASMCs and airways of asthmatic rats, which may alleviate neurogenic airway inflammation.

  19. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c.

    Science.gov (United States)

    Liu, Gang; Cooley, Marion A; Nair, Prema M; Donovan, Chantal; Hsu, Alan C; Jarnicki, Andrew G; Haw, Tatt Jhong; Hansbro, Nicole G; Ge, Qi; Brown, Alexandra C; Tay, Hock; Foster, Paul S; Wark, Peter A; Horvat, Jay C; Bourke, Jane E; Grainge, Chris L; Argraves, W Scott; Oliver, Brian G; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2017-12-01

    Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c -/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c -/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show

  20. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    Science.gov (United States)

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  1. Invariant NKT cells are required for airway inflammation induced by environmental antigens

    OpenAIRE

    Wingender, Gerhard; Rogers, Paul; Batzer, Glenda; Lee, Myung Steve; Bai, Dong; Pei, Bo; Khurana, Archana; Kronenberg, Mitchell; Horner, Anthony A.

    2011-01-01

    Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were dependent on V?14i NKT cells, as vaccinated animals deficient for iNKT cells displayed significantly attenuated immune responses and airway ...

  2. Structural and functional localization of airway effects from episodic exposure of infant monkeys to allergen and/or ozone

    International Nuclear Information System (INIS)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.; Peake, Janice L.; Plopper, Charles G.; Schelegle, Edward S.; Gershwin, Laurel J.; Pinkerton, Kent E.

    2006-01-01

    Both allergen and ozone exposure increase asthma symptoms and airway responsiveness in children. Little is known about how these inhalants may differentially modify airway responsiveness in large proximal as compared to small distal airways. We evaluated whether bronchi and respiratory bronchioles from infant monkeys exposed episodically to allergen and/or ozone differentially develop intrinsic hyperresponsiveness to methacholine and whether eosinophils and/or pulmonary neuroendocrine cells play a role. Infant monkeys were exposed episodically for 5 months to: (1) filtered air, (2) aerosolized house dust mite allergen, (3) ozone 0.5 ppm, or (4) house dust mite allergen + ozone. Studying the function/structure relationship of the same lung slices, we evaluated methacholine airway responsiveness and histology of bronchi and respiratory bronchioles. In bronchi, intrinsic responsiveness was increased by allergen exposure, an effect reduced by bombesin antagonist. In respiratory bronchioles, intrinsic airway responsiveness was increased by allergen + ozone exposure. Eosinophils were increased by allergen and allergen + ozone exposure in bronchi and by allergen exposure in respiratory bronchioles. In both airways, exposure to allergen + ozone resulted in fewer tissue eosinophils than did allergen exposure alone. In bronchi, but not in respiratory bronchioles, the number of eosinophils and neuroendocrine cells correlated with airway responsiveness. We conclude that episodically exposing infant monkeys to house dust mite allergen with or without ozone increased intrinsic airway responsiveness to methacholine in bronchi differently than in respiratory bronchioles. In bronchi, eosinophils and neuroendocrine cells may play a role in the development of airway hyperresponsiveness

  3. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    Science.gov (United States)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  4. The extracellular matrix deposited by asthmatic airway smooth muscle cells in a resting state reflects a healthy matrix

    NARCIS (Netherlands)

    Harkness, Louise; Ashton, Anthony; Burgess, Janette

    2015-01-01

    Introduction: The remodelled asthmatic airway features an altered extracellular matrix (ECM) & increased vasculature. Previous studies found asthmatic (A) airway smooth muscle cells (ASMCs) to deposit an ECM with enhanced bioactivity. These studies however investigated ECM deposited in the presence

  5. Phenotype and Functional Features of Human Telomerase Reverse Transcriptase Immortalized Human Airway Smooth Muscle Cells from Asthmatic and Non-Asthmatic Donors

    NARCIS (Netherlands)

    Burgess, J. K.; Ketheson, A.; Faiz, A.; Rempel, K. A. Limbert; Oliver, B. G.; Ward, J. P. T.; Halayko, A. J.

    2018-01-01

    Asthma is an obstructive respiratory disease characterised by chronic inflammation with airway hyperresponsiveness. In asthmatic airways, there is an increase in airway smooth muscle (ASM) cell bulk, which differs from non-asthmatic ASM in characteristics. This study aimed to assess the usefulness

  6. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  7. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses.

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle

    Full Text Available Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat and Eidolon helvum (Straw-colored fruit bat, were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.

  8. Suppression of Th17-polarized airway inflammation by rapamycin.

    Science.gov (United States)

    Joean, Oana; Hueber, Anja; Feller, Felix; Jirmo, Adan Chari; Lochner, Matthias; Dittrich, Anna-Maria; Albrecht, Melanie

    2017-11-10

    Because Th17-polarized airway inflammation correlates with poor control in bronchial asthma and is a feature of numerous other difficult-to-treat inflammatory lung diseases, new therapeutic approaches for this type of airway inflammation are necessary. We assessed different licensed anti-inflammatory agents with known or expected efficacy against Th17-polarization in mouse models of Th17-dependent airway inflammation. Upon intravenous transfer of in vitro derived Th17 cells and intranasal challenge with the corresponding antigen, we established acute and chronic murine models of Th17-polarised airway inflammation. Consecutively, we assessed the efficacy of methylprednisolone, roflumilast, azithromycin, AM80 and rapamycin against acute or chronic Th17-dependent airway inflammation. Quantifiers for Th17-associated inflammation comprised: bronchoalveolar lavage (BAL) differential cell counts, allergen-specific cytokine and immunoglobulin secretion, as well as flow cytometric phenotyping of pulmonary inflammatory cells. Only rapamycin proved effective against acute Th17-dependent airway inflammation, accompanied by increased plasmacytoid dendritic cells (pDCs) and reduced neutrophils as well as reduced CXCL-1 levels in BAL. Chronic Th17-dependent airway inflammation was unaltered by rapamycin treatment. None of the other agents showed efficacy in our models. Our results demonstrate that Th17-dependent airway inflammation is difficult to treat with known agents. However, we identify rapamycin as an agent with inhibitory potential against acute Th17-polarized airway inflammation.

  9. Simvastatin Inhibits Goblet Cell Hyperplasia and Lung Arginase in a Mouse Model of Allergic Asthma: A Novel Treatment for Airway Remodeling?

    Science.gov (United States)

    Zeki, Amir A.; Bratt, Jennifer M.; Rabowsky, Michelle; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function, and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. The statins are cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting step of cholesterol biosynthesis in the mevalonate pathway. These drugs have been associated with improved respiratory health and ongoing clinical trials are testing their therapeutic potential in asthma. We hypothesized that simvastatin treatment of ovalbumin-exposed mice would attenuate early features of airway remodeling, by a mevalonate-dependent mechanism. BALB/c mice were initially sensitized to ovalbumin, and then exposed to 1% ovalbumin aerosol for 2 weeks after sensitization for a total of six exposures. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) were injected intraperitoneally before each ovalbumin exposure. Treatment with simvastatin attenuated goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme activity, but did not alter airway hydroxyproline content or transforming growth factor-β1. Inhibition of goblet cell hyperplasia by simvastatin was mevalonate-dependent. No appreciable changes to airway smooth muscle cells were observed in any of the control or treatment groups. In conclusion, in an acute mouse model of allergic asthma, simvastatin inhibited early hallmarks of airway remodeling, indicators that can lead to airway thickening and fibrosis. Statins are potentially novel treatments for airway remodeling in asthma. Further studies utilizing sub-chronic or chronic allergen exposure models are needed to extend these initial findings. PMID:21078495

  10. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    Science.gov (United States)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  11. Effect of titanium dioxide nanoparticles (TiO2 NPs) on the expression of mucin genes in human airway epithelial cells.

    Science.gov (United States)

    Kim, Gui Ok; Choi, Yoon Seok; Bae, Chang Hoon; Song, Si-Youn; Kim, Yong-Dae

    2017-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are utilized with growing frequency for a wide variety of industrial applications. Recently, acute and chronic exposures to TiO 2 NPs have been found to induce inflammatory response in the human respiratory tract. However, the effect and mechanism underlying the induction of major airway mucins by TiO 2 NPs have not been elucidated. This study was conducted to characterize the effect of TiO 2 NPs, and the mechanism involved, on the expressions of airway mucins in human airway epithelial cells. In NCI-H292 cells and primary cultures of normal nasal epithelial cells, the effects of TiO 2 NPs and signaling pathway for airway mucin genes were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassays and immunoblot analysis using several specific inhibitors and small interfering RNAs (siRNAs). TiO 2 NPs increased MUC5B expression and activated the phosphorylations of extracellular signal-related kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). U0126 (an ERK1/2 MAPK inhibitor) and SB203580 (a p38 MAPK inhibitor) inhibited TiO 2 NPs-induced MUC5B expression. And knockdown of ERK1, ERK2 and p38 MAPK using siRNAs significantly blocked TiO 2 NPs-induced MUC5B mRNA expression. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by TiO 2 NPs, and knockdown by TLR4 siRNA significantly attenuated TiO 2 NPs-induced MUC5B mRNA expression and the TiO 2 NPs-induced phosphorylations of ERK1/2 and p38 MAPK. These results demonstrate for the first time that TiO 2 NPs induce MUC5B expression via TLR4-dependent ERK1/2 and p38 MAPK signaling pathways in respiratory epithelium.

  12. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  13. The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients.

    Science.gov (United States)

    Pasha, M Asghar; Jourd'heuil, David; Jourd'heuil, Francis; Mahon, Lori; Romero, Francisco; Feustel, Paul J; Evans, Mary; Smith, Thomas; Mitchell, Jesse; Gendapodi, Pradeep; Demeyere-Coursey, Kelly C; Townley, Robert G

    2014-01-01

    Measurement of fractional nitric oxide concentration in exhaled breath (FENO) is a simple, noninvasive method to evaluate eosinophilic airway inflammation. Nitric oxide (NO) arising from peripheral small airways/alveoli (alveolar NO concentration [CalvNO]) can be estimated using multiple flow rates and a two-compartment model of the airways and alveoli. Omalizumab, a monoclonal anti-IgE antibody, is approved for the treatment of allergic asthma and also has been shown to decrease FENO levels. This study investigates the effects of omalizumab, when added to an inhaled corticosteroid (ICS) ± long-acting beta-adrenergic agonist (LABA) treatment, on peripheral small airway/alveolar inflammation reflected by FENO measurements at higher flow rates. We hypothesized that compared with placebo, omalizumab would decrease CalvNO levels in asthmatic patients on ICS ± LABA. Forty-two patients with moderate-to-severe asthma were randomly assigned 2:1 to either omalizumab (n = 29) or placebo treatment (n = 13) for 16 weeks. Selection criteria included moderate-to-severe asthmatic patients on an ICS ± LABA, positive skin test to one or more perennial allergen, screening FENO of >13 ppb, and a baseline IgE of 30-700 IU/mL. FENO measured at multiple flow rates was used to calculate CalvNO over the course of 16 weeks. FENO levels decrease with increasing flow rates (p < 0.05 repeated measures ANOVA) but no differences between the placebo and treatment groups in overall CalvNO levels or in the changes of CalvNO with time were found. Omalizumab did not lower the CalvNO, which could have been caused by the initial low CalvNO in this asthmatic population. The model used may not be completely sufficient and/or sensitive enough to detect small changes in CalvNO.

  14. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways?

    Science.gov (United States)

    Kesimer, Mehmet; Kirkham, Sara; Pickles, Raymond J.; Henderson, Ashley G.; Alexis, Neil E.; DeMaria, Genevieve; Knight, David; Thornton, David J.; Sheehan, John K.

    2009-01-01

    Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products. PMID:18931053

  15. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  16. New frontiers in CT imaging of airway disease

    International Nuclear Information System (INIS)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine; Fetita, Catalin; Preteux, Francoise; Brauner, Michel W.; Lenoir, Stephane

    2002-01-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  17. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    International Nuclear Information System (INIS)

    Yang, T.C.; Holley, W.R.; Curtis, S.B.; Gruenert, D.C.; California Univ., San Francisco, CA

    1990-01-01

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D 0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D 0 value, was about 24 μm 2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm 2 ), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  18. Aerosol deposition in the upper airways of a child

    NARCIS (Netherlands)

    de Jongh, Franciscus H.C.; Rinkel, M.J.G.; Hoeijmakers, Hendrik Willem Marie

    2005-01-01

    In a small child, normally only a small amount of inhaled aerosol particles reaches the lungs because the majority deposits in the upper airways. In this study, the upper airways of a 9- month-old child, based on computed tomography (CT) data, are modeled to serve as input for a computational fluid

  19. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  20. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    Science.gov (United States)

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  1. Effects of two inhaled corticosteroid/long-acting beta-agonist combinations on small-airway dysfunction in mild asthmatics measured by impulse oscillometry

    Directory of Open Access Journals (Sweden)

    Diong B

    2013-08-01

    Full Text Available Bill Diong,1 Kshitiz Singh,2 Rogelio Menendez31School of Engineering, Southern Polytechnic State University, Marietta, GA, USA; 2College of Science and Engineering, Texas Christian University, Fort Worth, TX, USA; 3Allergy and Asthma Research Center of El Paso, El Paso, TX, USABackground: We previously showed that the long-acting beta agonist (LABA salmeterol as inhalation powder or metered-dose inhaler improves lung-function parameters assessed by impulse oscillometry (IOS in 2- to 5-year-old children with reversible-airway disease within 15 minutes.Objective: We studied 12- to 45-year-olds with mild persistent asthma in order to compare the onset and extent of peripheral airway effects following the first dose and after 4 weeks dosing with two inhaled corticosteroid (ICS/LABA combinations: fluticasone propionate/salmeterol 115/21 and budesonide/formoterol 160/4.5.Methods: Thirty subjects with mild persistent asthma using only an as-needed short-acting beta-agonist (albuterol who had at least a 40% change in integrated low-frequency reactance postalbuterol were selected and randomized to receive either fluticasone propionate/salmeterol or budesonide/formoterol (15 subjects each. We collected three to six IOS replicates at baseline, at 5, 20, 40, 60, 120, and 240 minutes postdose at randomization, and after 4 weeks of twice-daily dosing. Blinded investigators calculated IOS frequency-dependent resistance and reactance (R5–R20 and AX, indicative of small-airway dysfunction, and also estimated the peripheral airway resistance (Rp and peripheral airway compliance (Cp, using a respiratory-impedance model.Results: At randomization visits, onset of action was detected as early as 5 minutes (t-test, P < 0.05 after fluticasone propionate/salmeterol by Cp, and within 5 minutes after budesonide/formoterol by R5–R20, AX, Rp, and Cp. However, after 4 weeks of dosing, only Rp was significantly different (from 60 to 120 minutes after fluticasone

  2. The effects of exogenous lipid on THP-1 cells: an in vitro model of airway aspiration?

    Directory of Open Access Journals (Sweden)

    Yvette A. Hayman

    2017-03-01

    Full Text Available Chronic inflammatory diseases of the airways are associated with gastro-oesophageal reflux (GOR and aspiration events. The observation of lipid-laden macrophages (LLMs within the airway may indicate aspiration secondary to GOR. The proposed mechanism, that lipid droplets from undigested or partially digested food are aspirated leading to accumulation in scavenging macrophages, led us to hypothesise that an activated population of LLMs could interact with other immune cells to induce bronchial inflammation. To test this, we generated an in vitro model using differentiated THP-1 cells, which were treated with a high-fat liquid feed. Here, we show that THP-1 cells can take up lipid from the high-fat feed independent of actin polymerisation or CD36-dependent phagocytosis. These cells did not exhibit M1 or M2 polarisation. Gene array analysis confirmed over 8000 genes were upregulated by at least twofold following high fat exposure, and IL-8 was the most upregulated gene. Pathway analysis revealed upregulation of genes known to be involved in chronic obstructive pulmonary disease (COPD pathophysiology. We suggest that aspiration and macrophage phagocytosis may be important mechanisms in the aetiology of diseases such as COPD and cystic fibrosis that are characterised by high levels of IL-8 within the airways.

  3. The effects of exogenous lipid on THP-1 cells: an in vitro model of airway aspiration?

    Science.gov (United States)

    Hayman, Yvette A; Sadofsky, Laura R; Williamson, James D; Hart, Simon P; Morice, Alyn H

    2017-01-01

    Chronic inflammatory diseases of the airways are associated with gastro-oesophageal reflux (GOR) and aspiration events. The observation of lipid-laden macrophages (LLMs) within the airway may indicate aspiration secondary to GOR. The proposed mechanism, that lipid droplets from undigested or partially digested food are aspirated leading to accumulation in scavenging macrophages, led us to hypothesise that an activated population of LLMs could interact with other immune cells to induce bronchial inflammation. To test this, we generated an in vitro model using differentiated THP-1 cells, which were treated with a high-fat liquid feed. Here, we show that THP-1 cells can take up lipid from the high-fat feed independent of actin polymerisation or CD36-dependent phagocytosis. These cells did not exhibit M1 or M2 polarisation. Gene array analysis confirmed over 8000 genes were upregulated by at least twofold following high fat exposure, and IL-8 was the most upregulated gene. Pathway analysis revealed upregulation of genes known to be involved in chronic obstructive pulmonary disease (COPD) pathophysiology. We suggest that aspiration and macrophage phagocytosis may be important mechanisms in the aetiology of diseases such as COPD and cystic fibrosis that are characterised by high levels of IL-8 within the airways.

  4. Mast cell numbers in airway smooth muscle and PC(20)AMP in asthma and COPD

    NARCIS (Netherlands)

    Liesker, J. J. W.; ten Hacken, N. H. T.; Rutgers, S. R.; Zeinstra-Smith, M.; Postma, D. S.; Timens, W.

    Introduction: Most patients with asthma and many patients with COPD show bronchial hyperresponsiveness to adenosine (BHRAMP). BHRAMP may be caused by release of mast cell histamine, which induces smooth muscle contraction. Aim of the study: To evaluate whether mast cell numbers in airway smooth

  5. Mechanisms of mechanical strain memory in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  6. Type 2 innate lymphoid cells-new members of the "type 2 franchise" that mediate allergic airway inflammation.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2012-05-01

    Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Inflammatory cells and airway defense against Aspergillus fumigatus

    NARCIS (Netherlands)

    Kauffman, HF; Tomee, JFC

    The authors offer a summary of the attack strategies of A. fumigatus and interactions with the airway defense system. The possible role of proteolytic enzymes from Aspergillus in the inflammatory response of the airways is also discussed. Evidence is given for the in vivo production of these

  8. SPDEF regulates goblet cell hyperplasia in the airway epithelium

    Science.gov (United States)

    Park, Kwon-Sik; Korfhagen, Thomas R.; Bruno, Michael D.; Kitzmiller, Joseph A.; Wan, Huajing; Wert, Susan E.; Khurana Hershey, Gurjit K.; Chen, Gang; Whitsett, Jeffrey A.

    2007-01-01

    Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo. PMID:17347682

  9. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  10. Mechanical interactions between adjacent airways in the lung.

    Science.gov (United States)

    Ma, Baoshun; Bates, Jason H T

    2014-03-15

    The forces of mechanical interdependence between the airways and the parenchyma in the lung are powerful modulators of airways responsiveness. Little is known, however, about the extent to which adjacent airways affect each other's ability to narrow due to distortional forces generated within the intervening parenchyma. We developed a two-dimensional computational model of two airways embedded in parenchyma. The parenchyma itself was modeled in three ways: 1) as a network of hexagonally arranged springs, 2) as a network of triangularly arranged springs, and 3) as an elastic continuum. In all cases, we determined how the narrowing of one airway was affected when the other airway was relaxed vs. when it narrowed to the same extent as the first airway. For the continuum and triangular network models, interactions between airways were negligible unless the airways lay within about two relaxed diameters of each other, but even at this distance the interactions were small. By contrast, the hexagonal spring network model predicted that airway-airway interactions mediated by the parenchyma can be substantial for any degree of airway separation at intermediate values of airway contraction forces. Evidence to date suggests that the parenchyma may be better represented by the continuum model, which suggests that the parenchyma does not mediate significant interactions between narrowing airways.

  11. Tumor necrosis factor-alpha enhances mRNA expression and secretion of interleukin-6 in cultured human airway smooth muscle cells

    NARCIS (Netherlands)

    S. McKay (Sue); S.J. Hirst (Stuart); M. Bertrand-de Haas (Marion); J.C. de Jongste (Johan); H.C. Hoogsteden (Henk); P.R. Saxena (Pramod Ranjan); H.S. Sharma (Hari)

    2000-01-01

    textabstractAirway smooth muscle (ASM) is considered to be an end-target cell for the effects of mediators released during airway wall inflammation. Several reports suggest that activated ASM may be capable of generating various proinflammatory cytokines. We

  12. Restoration of Patency to Central Airways Occluded by Malignant Endobronchial Tumors Using Intratumoral Injection of Cisplatin.

    Science.gov (United States)

    Mehta, Hiren J; Begnaud, Abbie; Penley, Andrea M; Wynne, John; Malhotra, Paras; Fernandez-Bussy, Sebastian; Cope, Jessica; Shuster, Jonathan J; Jantz, Michael A

    2015-09-01

    Malignant airway obstruction is commonly found in patients with lung cancer and is associated with significant morbidity and mortality. Relieving malignant obstruction may improve symptoms, quality of life, and life expectancy. The objective of this study was to analyze our experience with bronchoscopic endobronchial intratumoral injection of cisplatin for malignant airway obstruction. We conducted a retrospective analysis of patients with malignant airway obstruction treated with bronchoscopic intratumoral injection of cisplatin. Patient characteristics, histology, degree of airway obstruction, procedural methods, treatment cycles, performance status, and therapeutic outcomes were evaluated. Tumor response was analyzed based on bronchoscopic measurements performed on completion the of final treatment session. Adverse events and overall survival were abstracted. Between January 2009 and September 2014, 22 patients (10 men, 12 women; mean age ± SD, 64.4 ± 9.5 yr) were treated with one to four injections of 40 mg of cisplatin mixed in 40 ml of 0.9% NaCl. Treatments were completed 1 week apart. The primary etiologies of airway obstruction included squamous cell carcinoma (n = 11), adenocarcinoma (n = 6), small cell carcinoma (n = 2), large cell undifferentiated carcinoma (n = 1), and metastatic endobronchial cancer (n = 2). Twenty-one of 22 patients were evaluable for response. The majority of patients (15/21, 71.4%) responded to therapy, defined as greater than 50% relative reduction in obstruction from baseline. Treatment response was obtained regardless of tumor histology, concurrent systemic therapy, number of treatment cycles administered, performance status, or use of additional ablative interventions. Responders had significantly improved overall survival as compared with nonresponders, although the difference was small. Severe treatment-related side effects or complications were not observed. Subject to the limitations of a single

  13. Human Lung Mast Cell Products Regulate Airway Smooth Muscle CXCL10 Levels.

    Science.gov (United States)

    Alkhouri, H; Cha, V; Tong, K; Moir, L M; Armour, C L; Hughes, J M

    2014-01-01

    In asthma, the airway smooth muscle (ASM) produces CXCL10 which may attract CXCR3(+) mast/T cells to it. Our aim was to investigate the effects of mast cell products on ASM cell CXCL10 production. ASM cells from people with and without asthma were stimulated with IL-1 β , TNF- α , and/or IFN γ and treated with histamine (1-100  μ M) ± chlorpheniramine (H1R antagonist; 1  μ M) or ranitidine (H2R antagonist; 50  μ M) or tryptase (1 nM) ± leupeptin (serine protease inhibitor; 50  μ M), heat-inactivated tryptase, or vehicle for 4 h or 24 h. Human lung mast cells (MC) were isolated and activated with IgE/anti-IgE and supernatants were collected after 2 h or 24 h. The supernatants were added to ASM cells for 48 h and ASM cell CXCL10 production detected using ELISA (protein) and real-time PCR (mRNA). Histamine reduced IL-1 β /TNF- α -induced CXCL10 protein, but not mRNA, levels independent of H1 and H2 receptor activation, whereas tryptase and MC 2 h supernatants reduced all cytokine-induced CXCL10. Tryptase also reduced CXCL10 levels in a cell-free system. Leupeptin inhibited the effects of tryptase and MC 2 h supernatants. MC 24 h supernatants contained TNF- α and amplified IFN γ -induced ASM cell CXCL10 production. This is the first evidence that MC can regulate ASM cell CXCL10 production and its degradation. Thus MC may regulate airway myositis in asthma.

  14. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Simmons, Steven O.; Silbajoris, Robert; Dailey, Lisa; Cho, Seung-Hyun; Ramabhadran, Ram; Linak, William; Reed, William; Bromberg, Philip A.; Samet, James M.

    2010-01-01

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  15. Evidence of solitary chemosensory cells in a large mammal: the diffuse chemosensory system in Bos taurus airways

    Science.gov (United States)

    Tizzano, Marco; Merigo, Flavia; Sbarbati, Andrea

    2006-01-01

    The diffuse chemosensory system (DCS) of the respiratory apparatus is composed of solitary chemosensory cells (SCCs) that resemble taste cells but are not organized in end organs. The discovery of the DCS may open up new approaches to respiratory diseases. However, available data on mammalian SCCs have so far been collected from rodents, the airways of which display some differences from those of large mammals. Here we investigated the presence of the DCS and of SCCs in cows and bulls (Bos taurus), in which the airway cytology is similar to that in humans, focusing our attention on detection in the airways of molecules involved in the transduction cascade of taste [i.e. α-gustducin and phospholipase C of the β2 subtype (PLCβ2)]. The aim of the research was to extend our understanding of airway chemoreceptors and to compare the organization of the DCS in a large mammal with that in rodents. Using immunocytochemistry for α-gustducin, the taste buds of the tongue and arytenoid were visualized. In the trachea and bronchi, α-gustducin-immunoreactive SCCs were frequently found. Using immunocytochemistry for PLCβ2, the staining pattern was generally similar to those seen for α-gustducin. Immunoblotting confirmed the expression of α-gustducin in the tongue and in all the airway regions tested. The study demonstrated the presence of SCCs in cows and bulls, suggesting that DCSs are present in many mammalian species. The description of areas with a high density of SCCs in bovine bronchi seems to indicate that the view of the DCS as made up of isolated cells totally devoid of ancillary elements is probably an oversimplification. PMID:16928202

  16. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  17. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    2009-08-01

    Full Text Available The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results

  18. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  19. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    International Nuclear Information System (INIS)

    Baconnais, S.; Delavoie, F.; Zahm, J.M.; Milliot, M.; Terryn, C.; Castillon, N.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E.; Balossier, G.

    2005-01-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na + absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na + , Mg 2+ , P, S and Cl - ) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR inh -172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF

  20. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  1. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Science.gov (United States)

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  2. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available The use of electronic cigarettes (e-cigarettes is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV infection.We examined the effects of e-cigarette liquid (e-liquid on pro-inflammatory cytokine (e.g., IL-6 production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1 in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  3. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Mythili Dileepan

    Full Text Available Airway smooth muscle (ASM cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.

  4. Computed tomography dose and variability of airway dimension measurements: how low can we go?

    International Nuclear Information System (INIS)

    Jong, Pim A. de; Long, Frederick R.; Nakano, Yasutaka

    2006-01-01

    Quantitative CT shows promise as an outcome measure for cystic fibrosis (CF) lung disease in infancy, but must be accomplished at a dose as low as reasonably achievable. To determine the feasibility of ultra-low-dose CT for quantitative measurements of airway dimensions. Two juvenile pigs were anesthetized and their lungs scanned at 25 cm H 2 O face-mask pressure in apnoea using beam currents of 5, 10, 20, 40 and 100 mAs. The lumen diameters and wall thicknesses of matched airways (n=22) at each dose were measured by two observers using validated software. Measurement variability at each dose was compared to that at 100 mAs (reference dose) for large and small airways (lumen diameter <2.5 mm). Lowering CT dose (mAs) affected measurement variability for lumen diameter of small and large airways (P<0.001) and for wall thickness of small (P<0.001), but not large (P=0.63), airways. To obtain the same measurement variability at 5 mAs as at 100 mAs, four to six small airways or one to three large airways have to be measured and averaged. Quantitative airway measurements are feasible on images obtained at as low as 5 mAs, but more airways need to be measured to compensate for greater measurement variability. (orig.)

  5. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    Science.gov (United States)

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  6. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    Science.gov (United States)

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dioscorin protects tight junction protein expression in A549 human airway epithelium cells from dust mite damage.

    Science.gov (United States)

    Fu, Lin Shien; Ko, Ying Hsien; Lin, Kuo Wei; Hsu, Jeng Yuan; Chu, Jao Jia; Chi, Chin Shiang

    2009-12-01

    In addition to being an allergen, the trypsin activity of dust mite extract also destroys the tight junctions of bronchial epithelium. Such damage can lead to airway leakage, which increases airway exposure to allergens, irritants, and other pathogens. Dioscorin, the storage protein of yam, demonstrates anti-trypsin activity, as well as other potential anti-inflammatory effects. This study investigated the protective role of dioscorin for tight junctions. The immunofluorescence stains of zonula occludens (ZO-1), E-cadherin (EC) and desmoplakin (DP) proteins were compared. A cultured A549 cell line was used as a control and A549 cells were incubated with mite extract 100 mg/mL for 16 h, with or without dioscorin 100 mg/mL pretreatment for 8 h and with dioscorin 100 mg/mL alone for 16 h. Western blot was performed to detect changes in ZO-1, EC, and DP in the treated A549 cell lines. Loss of tight junction protein expression (ZO-1, EC, DP) was demonstrated after 16-h mite extract incubation. The defect could be restored if cells were pretreated with dioscorin for 8 h. In addition, dioscorin did not cause damage to the A549 cell lines in terms of cell survival or morphology. Western blot showed no change in the amount of tight junction protein under various conditions. Dioscorin is a potential protector of airway damage caused by mite extract.

  8. T cell subsets in human airways prior to and following endobronchial administration of endotoxin

    DEFF Research Database (Denmark)

    Ronit, Andreas; Plovsing, Ronni R; Gaardbo, Julie C

    2015-01-01

    BACKGROUND AND OBJECTIVES: Bronchial instillation of lipopolysaccharide (LPS) provides a reversible model of lung inflammation that may resemble early stages of acute respiratory distress syndrome (ARDS). We investigated the distributions of T-cell subsets in the human airways and sought to deter...

  9. Phenotype and Functional Features of Human Telomerase Reverse Transcriptase Immortalized Human Airway Smooth Muscle Cells from Asthmatic and Non-Asthmatic Donors.

    Science.gov (United States)

    Burgess, J K; Ketheson, A; Faiz, A; Limbert Rempel, K A; Oliver, B G; Ward, J P T; Halayko, A J

    2018-01-16

    Asthma is an obstructive respiratory disease characterised by chronic inflammation with airway hyperresponsiveness. In asthmatic airways, there is an increase in airway smooth muscle (ASM) cell bulk, which differs from non-asthmatic ASM in characteristics. This study aimed to assess the usefulness of hTERT immortalisation of human ASM cells as a research tool. Specifically we compared proliferative capacity, inflammatory mediator release and extracellular matrix (ECM) production in hTERT immortalised and parent primary ASM cells from asthmatic and non-asthmatic donors. Our studies revealed no significant differences in proliferation, IL-6 and eotaxin-1 production, or CTGF synthesis between donor-matched parent and hTERT immortalised ASM cell lines. However, deposition of ECM proteins fibronectin and fibulin-1 was significantly lower in immortalised ASM cells compared to corresponding primary cells. Notably, previously reported differences in proliferation and inflammatory mediator release between asthmatic and non-asthmatic ASM cells were retained, but excessive ECM protein deposition in asthmatic ASM cells was lost in hTERT ASM cells. This study shows that hTERT immortalised ASM cells mirror primary ASM cells in proliferation and inflammatory profile characteristics. Moreover, we demonstrate both strengths and weaknesses of this immortalised cell model as a representation of primary ASM cells for future asthma pathophysiological research.

  10. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology

    Directory of Open Access Journals (Sweden)

    McKiernan PJ

    2013-10-01

    Full Text Available Paul J McKiernan,2 Orla Cunninghamm,1,2 Catherine M Greenem,2 Sally-Ann Cryan1,31School of Pharmacy, Royal College of Surgeons in Ireland, 2Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, 3Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, IrelandAbstract: Cystic fibrosis (CF is an inherited disorder characterized by chronic airway inflammation. microRNAs (miRNAs are endogenous small RNAs which act on messenger (mRNA at a post transcriptional level, and there is a growing understanding that altered expression of miRNA is involved in the CF phenotype. Modulation of miRNA by replacement using miRNA mimics (premiRs presents a new therapeutic paradigm for CF, but effective and safe methods of delivery to the CF epithelium are limiting clinical translation. Herein, polymeric nanoparticles are investigated for delivery of miRNA mimics into CF airway epithelial cells, using miR-126 as a proof-of-concept premiR cargo to determine efficiency. Two polymers, polyethyleneimine (PEI and chitosan, were used to prepare miRNA nanomedicines, characterized for their size, surface (zeta potential, and RNA complexation efficiency, and screened for delivery and cytotoxicity in CFBE41o- (human F508del cystic fibrosis transmembrane conductance regulator bronchial epithelial cells using a novel high content analysis method. RNA extraction was carried out 24 hours post transfection, and miR-126 and TOM1 (target of Myb1 expression (a validated miR-126 target was assessed. Manufacture was optimized to produce small nanoparticles that effectively complexed miRNA. Using high content analysis, PEI-based nanoparticles were more effective than chitosan-based nanoparticles in facilitating uptake of miRNA into CFBE41o- cells and this was confirmed in miR-126 assays. PEI-premiR-126 nanoparticles at low nitrogen/phosphate (N/P ratios resulted in significant knockdown of

  11. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poghosyan, Anna, E-mail: pannagos@yahoo.com; Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J., E-mail: alan.knox@nottingham.ac.uk

    2016-08-05

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  12. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Poghosyan, Anna; Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J.

    2016-01-01

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  13. A mechanical design principle for tissue structure and function in the airway tree.

    Science.gov (United States)

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  14. A mechanical design principle for tissue structure and function in the airway tree.

    Directory of Open Access Journals (Sweden)

    Adam S LaPrad

    Full Text Available With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  15. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  16. Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-κB Pathway in HBE16 Airway Epithelial Cells.

    Science.gov (United States)

    Dong, Shou-jin; Zhong, Yun-qing; Lu, Wen-ting; Li, Guan-hong; Jiang, Hong-li; Mao, Bing

    2015-08-01

    Baicalin, a flavonoid monomer derived from Scutellaria baicalensis called Huangqin in mandarin, is the main active ingredient contributing to S. baicalensis' efficacy. It is known in China that baicalin has potential therapeutic effects on inflammatory diseases. However, its anti-inflammatory mechanism has still not been fully interpreted. We aim to investigate the anti-inflammatory effect of baicalin on lipopolysaccharide (LPS)-induced inflammation in HBE16 airway epithelial cells and also to explore the underlying signaling mechanisms. The anti-inflammatory action of baicalin was evaluated in human airway epithelial cells HBE16 treated with LPS. Airway epithelial cells HBE16 were pretreated with a range of concentrations of baicalin for 30 min and then stimulated with 10 μg/ml LPS. The secretions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in cell culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of IL-6, IL-8, and TNF-α were tested by quantitative real-time polymerase chain reaction (real-time RT-PCR). Furthermore, Western blotting was used to determine whether the signaling pathway NF-κB was involved in the anti-inflammatory action of baicalin. The inflammatory cell model was successfully built with 10 μg/ml LPS for 24 h in our in vitro experiments. Both the secretions and the mRNA expressions of IL-6, IL-8, and TNF-α were significantly inhibited by baicalin. Moreover, the expression levels of phospho-IKKα/β and phospho-NF-κB p65 were downregulated, and the phospho-IκB-α level was upregulated by baicalin. These findings suggest that the anti-inflammatory properties of baicalin may be resulted from the inhibition of IL-6, IL-8, and TNF-α expression via preventing signaling NF-κB pathway in HBE16 airway epithelial cells. In addition, this study provides evidence to understand the therapeutic effects of baicalin on inflammatory diseases in

  17. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.

    Science.gov (United States)

    Singhania, Akul; Wallington, Joshua C; Smith, Caroline G; Horowitz, Daniel; Staples, Karl J; Howarth, Peter H; Gadola, Stephan D; Djukanović, Ratko; Woelk, Christopher H; Hinks, Timothy S C

    2018-02-01

    Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3 + T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133 + PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.

  18. Timothy grass pollen extract-induced gene expression and signalling pathways in airway epithelial cells

    NARCIS (Netherlands)

    Röschmann, K. I. L.; Luiten, S.; Jonker, M. J.; Breit, T. M.; Fokkens, W. J.; Petersen, A.; van Drunen, C. M.

    2011-01-01

    Grass pollen allergy is one of the most common allergies worldwide and airborne allergens are the major cause of allergic rhinitis. Airway epithelial cells (AECs) are the first to encounter and respond to aeroallergens and are therefore interesting targets for the development of new therapeutics.

  19. Timothy grass pollen extract-induced gene expression and signalling pathways in airway epithelial cells

    NARCIS (Netherlands)

    Röschmann, K.I.L.; Luiten, S.; Jonker, M.J.; Breit, T.M.; Fokkens, W.J.; Petersen, A.; van Drunen, C.M.

    2011-01-01

    Background: Grass pollen allergy is one of the most common allergies worldwide and airborne allergens are the major cause of allergic rhinitis. Airway epithelial cells (AECs) are the first to encounter and respond to aeroallergens and are therefore interesting targets for the development of new

  20. Gefitinib, an EGFR Tyrosine Kinase inhibitor, Prevents Smoke-Mediated Ciliated Airway Epithelial Cell Loss and Promotes Their Recovery.

    Directory of Open Access Journals (Sweden)

    Monica Valencia-Gattas

    Full Text Available Cigarette smoke exposure is a major health hazard. Ciliated cells in the epithelium of the airway play a critical role in protection against the noxious effects of inhaled cigarette smoke. Ciliated cell numbers are reduced in smokers which weakens host defense and leads to disease. The mechanisms for the loss of ciliated cells are not well understood. The effects of whole cigarette smoke exposure on human airway ciliated ciliated cells were examined using in vitro cultures of normal human bronchial epithelial cells and a Vitrocell® VC 10® Smoking Robot. These experiments showed that whole cigarette smoke causes the loss of differentiated ciliated cells and inhibits differentiation of ciliated cells from undifferentiated basal cells. Furthermore, treatment with the epidermal growth factor receptor (EGFR tyrosine kinase inhibitor, Gefitinib, during smoke exposure prevents ciliated cell loss and promotes ciliated cell differentiation from basal cells. Finally, restoration of ciliated cells was inhibited after smoke exposure was ceased but was enhanced by Gefitinib treatment. These data suggest that inhibition of EGFR activity may provide therapeutic benefit for treating smoke related diseases.

  1. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    Science.gov (United States)

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Science.gov (United States)

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  3. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes.

    Science.gov (United States)

    Chang, Min-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-12-24

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 10(2) conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5-10 μm) having higher endotoxin levels than did fine particles (0.5-2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21 WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  4. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA and World Allergy Organization (WAO document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA and Global Allergy and Asthma European Network (GA2LEN

    Directory of Open Access Journals (Sweden)

    F. Braido

    2016-10-01

    Full Text Available Abstract Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD has led INTERASMA (Global Asthma Association and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled

  5. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Vos, Nanda; Hijdra, Daniëlle; de Vries, Victor C.; Hoogsteden, Henk C.; Lambrecht, Bart N.

    2003-01-01

    Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed

  6. Anti-Cytotoxic and Anti-Inflammatory Effects of the Macrolide Antibiotic Roxithromycin in Sulfur Mustard-Exposed Human Airway Epithelial Cells

    National Research Council Canada - National Science Library

    Gao1, Radharaman Ray2, Yan Xiao3, Peter E. Barker3 and Prab, Xiugong

    2006-01-01

    .... In this study, the anti-cytotoxic and anti-inflammatory effects of a representative macrolide antibiotic, roxithromycin, were tested in vitro using SM-exposed normal human small airway epithelial (SAE...

  7. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Oguma

    Full Text Available OBJECTIVES: (a To assess the effects of computed tomography (CT scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b to investigate the limitations of accurate quantitative assessment of small airways using CT images. METHODS: An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai, and the wall area percentage (WA%. To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. RESULTS: Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001, and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. CONCLUSIONS: The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner.

  8. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Mao, Lizheng [Jiangsu Asialand Biomed-Technology Co. Ltd., Changzhou, Jiangsu 213164 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China)

    2016-11-15

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes

  9. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    International Nuclear Information System (INIS)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong; Mao, Lizheng; Deng, Linhong

    2016-01-01

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes a

  10. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    Science.gov (United States)

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  11. Preventative effect of an herbal preparation (HemoHIM on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Kim

    Full Text Available HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA. In an in vitro experiment, naive CD4(+ T cells displayed increased Th1 (IFN-γ(+ cell as well as decreased Th2 (IL-4(+ cell differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13 levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight pretreatment (4 weeks. These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  12. PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    2012-01-01

    Full Text Available In asthma, the increase in airway smooth muscle (ASM can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR. Targetting peroxisome proliferator-activated receptor γ (PPARγ, a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ and pioglitazone (PGZ, inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.

  13. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma.

    Science.gov (United States)

    Ionescu, Lavinia I; Alphonse, Rajesh S; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R; Walsh, Kenneth; Thébaud, Bernard

    2012-02-01

    Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.

  14. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  15. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  16. Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease

    NARCIS (Netherlands)

    Qu, N; de Haan, A; Harmsen, MC; Kroese, FGM; de Leij, LFMH; Prop, J

    2003-01-01

    Background. Immune injury to airway epithelium is suggested to play a central role in the pathogenesis of obliterative bronchiolitis (OB) after clinical lung transplantation. In several studies, a rejection model of murine trachea transplants is used, resulting in obliterative airway disease (OAD)

  17. Role of apoptosis in airway epithelium

    International Nuclear Information System (INIS)

    Alenzi, F.Q.

    2009-01-01

    Airway epithelial cells may play an important clinical role in the apoptosis of eosinophils. To study recognition pathways, two types of large bronchial airway epithelial cells were used (LAECs and A549). Both resting, and dexamethasone-stimulated epithelial cells, were used in an inhibition assay. Confocal microscopy was used to demonstrate engulfment of apoptotic eosinophils. Apoptotic eosinophils were recognized and phagocytosed by macrophages, and by LAECs. The ability of LAECs to engulf apoptotic eosinophils was enhanced by dexamethasone and interlukin-1 (IL-1beta). Inhibition by monoclonal antibodies (Mabs) prevented the uptake of apoptotic cells by LAECs. This study therefore suggests that LAECs are capable of recognizing and engulfing apoptotic eosinophils, and that this process is enhanced by IL-1 beta and dexamethasone. (author)

  18. Vocal fold immobility from a primary minor salivary gland small-cell carcinoma: case report.

    Science.gov (United States)

    Witt, Robert L; Wilson, Patrick A

    2009-02-01

    Small-cell carcinoma of a minor salivary gland is a rare and to the best of our knowledge previously unreported cause of vocal fold immobility. We describe the case of a 68-year-old woman who presented with hoarseness, dysphagia, and weight loss. Examination revealed left vocal fold immobility. She had no other obvious abnormality of the upper airway, neck, or skin. Computed tomography and magnetic resonance imaging demonstrated a 4-cm submucosal oropharyngeal mass with extension to the parapharyngeal space and involvement of the carotid sheath and the foramen ovale at the skull base; imaging also revealed cervical adenopathy. Fine-needle aspiration biopsy identified the mass as a small-cell carcinoma, a finding that was confirmed by immunohistochemistry. Extensive tumor invasion and multiple comorbidities precluded an aggressive management strategy, and the patient was treated palliatively. She died of her disease shortly after her diagnosis. Vocal fold immobility of unknown etiology mandates imaging from the skull base to the upper mediastinum.

  19. Alteration of Airway Reactivity and Reduction of Ryanodine Receptor Expression by Cigarette Smoke in Mice.

    Science.gov (United States)

    Donovan, Chantal; Seow, Huei Jiunn; Royce, Simon G; Bourke, Jane E; Vlahos, Ross

    2015-10-01

    Small airways are a major site of airflow limitation in chronic obstructive pulmonary disease (COPD). Despite the detrimental effects of long-term smoking in COPD, the effects of acute cigarette smoke (CS) exposure on small airway reactivity have not been fully elucidated. Balb/C mice were exposed to room air (sham) or CS for 4 days to cause airway inflammation. Changes in small airway lumen area in response to contractile agents were measured in lung slices in situ using phase-contrast microscopy. Separate slices were pharmacologically maintained at constant intracellular Ca(2+) using caffeine/ryanodine before contractile measurements. Gene and protein analysis of contractile signaling pathways were performed on separate lungs. Monophasic contraction to serotonin became biphasic after CS exposure, whereas contraction to methacholine was unaltered. This altered pattern of contraction was normalized by caffeine/ryanodine. Expression of contractile agonist-specific receptors was unaltered; however, all isoforms of the ryanodine receptor were down-regulated. This is the first study to show that acute CS exposure selectively alters small airway contraction to serotonin and down-regulates ryanodine receptors involved in maintaining Ca(2+) oscillations in airway smooth muscle. Understanding the contribution of ryanodine receptors to altered airway reactivity may inform the development of novel treatment strategies for COPD.

  20. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  1. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  2. Inhibition by salmeterol and cilomilast of fluticasone-enhanced IP-10 release in airway epithelial cells.

    Science.gov (United States)

    Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G

    2008-02-01

    The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.

  3. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    Science.gov (United States)

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) 90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  4. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Aaron Chidekel

    2012-01-01

    Full Text Available Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH 90% (HFNC for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n=6/condition. Transepithelial resistance and cell viability decreased over time (P<0.001 between HFNC and dry groups (P<0.001. Total protein secretion increased at 8 hours in the dry group (P<0.001. Secretion of interleukin (IL-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P<0.001. Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  5. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression

    Directory of Open Access Journals (Sweden)

    Cai Zailong

    2011-01-01

    Full Text Available Abstract Background Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4, is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. Methods A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Results Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3 decreased and, myosin regulatory light chain 9 isoform a (MYL-9 increased after Nogo-B knockdown. Conclusions These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert

  6. In vivo models of human airway epithelium repair and regeneration

    Directory of Open Access Journals (Sweden)

    C. Coraux

    2005-12-01

    Full Text Available Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions. The in vivo study of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to reconstitute a functional respiratory epithelium after several weeks. Humanised tracheal xenograft models have been developed in immunodeficient nude and severe combined immunodeficient (SCID mice in order to mimic the natural regeneration process of the human airway epithelium and to analyse the cellular and molecular events involved during the different steps of airway epithelial reconstitution. These models represent very powerful tools for analysing the modulation of the biological functions of the epithelium during its regeneration. They are also very useful for identifying stem/progenitor cells of the human airway epithelium. A better knowledge of the mechanisms involved in airway epithelium regeneration, as well as the characterisation of the epithelial stem and progenitor cells, may pave the way to regenerative therapeutics, allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases, such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.

  7. Peripherally Generated Foxp3+ Regulatory T Cells Mediate the Immunomodulatory Effects of IVIg in Allergic Airways Disease.

    Science.gov (United States)

    Massoud, Amir H; Kaufman, Gabriel N; Xue, Di; Béland, Marianne; Dembele, Marieme; Piccirillo, Ciriaco A; Mourad, Walid; Mazer, Bruce D

    2017-04-01

    IVIg is widely used as an immunomodulatory therapy. We have recently demonstrated that IVIg protects against airway hyperresponsiveness (AHR) and inflammation in mouse models of allergic airways disease (AAD), associated with induction of Foxp3 + regulatory T cells (Treg). Using mice carrying a DTR/EGFP transgene under the control of the Foxp3 promoter (DEREG mice), we demonstrate in this study that IVIg generates a de novo population of peripheral Treg (pTreg) in the absence of endogenous Treg. IVIg-generated pTreg were sufficient for inhibition of OVA-induced AHR in an Ag-driven murine model of AAD. In the absence of endogenous Treg, IVIg failed to confer protection against AHR and airway inflammation. Adoptive transfer of purified IVIg-generated pTreg prior to Ag challenge effectively prevented airway inflammation and AHR in an Ag-specific manner. Microarray gene expression profiling of IVIg-generated pTreg revealed upregulation of genes associated with cell cycle, chromatin, cytoskeleton/motility, immunity, and apoptosis. These data demonstrate the importance of Treg in regulating AAD and show that IVIg-generated pTreg are necessary and sufficient for inhibition of allergen-induced AAD. The ability of IVIg to generate pure populations of highly Ag-specific pTreg represents a new avenue to study pTreg, the cross-talk between humoral and cellular immunity, and regulation of the inflammatory response to Ags. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts.

    Science.gov (United States)

    Pirela, Sandra V; Miousse, Isabelle R; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2016-02-01

    Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. We assessed the biological responses of a panel of human cell lines to PEPs. Three physiologically relevant cell lines--small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)--were exposed to PEPs at a wide range of doses (0.5-100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. The in vitro findings obtained in this study suggest that laser printer-emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders.

  9. Neutrophil Extracellular DNA Traps Induce Autoantigen Production by Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Youngwoo Choi

    2017-01-01

    Full Text Available The hypothesis of autoimmune involvement in asthma has received much recent interest. Autoantibodies, such as anti-cytokeratin (CK 18, anti-CK19, and anti-α-enolase antibodies, react with self-antigens and are found at high levels in the sera of patients with severe asthma (SA. However, the mechanisms underlying autoantibody production in SA have not been fully determined. The present study was conducted to demonstrate that neutrophil extracellular DNA traps (NETs, cytotoxic molecules released from neutrophils, are a key player in the stimulation of airway epithelial cells (AECs to produce autoantigens. This study showed that NETs significantly increased the intracellular expression of tissue transglutaminase (tTG but did not affect that of CK18 in AECs. NETs induced the extracellular release of both tTG and CK18 in a concentration-dependent manner. Moreover, NETs directly degraded intracellular α-enolase into small fragments. However, antibodies against neutrophil elastase (NE or myeloperoxidase (MPO attenuated the effects of NETs on AECs. Furthermore, each NET isolated from healthy controls (HC, nonsevere asthma (NSA, and SA had different characteristics. Taken together, these findings suggest that AECs exposed to NETs may exhibit higher autoantigen production, especially in SA. Therefore, targeting of NETs may represent a new therapy for neutrophilic asthma with a high level of autoantigens.

  10. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    Science.gov (United States)

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    Science.gov (United States)

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  12. High correlation of the response of upper and lower lobe small airway epithelium to smoking.

    Directory of Open Access Journals (Sweden)

    Ben-Gary Harvey

    Full Text Available The distribution of lung disease induced by inhaled cigarette smoke is complex, depending on many factors. With the knowledge that the small airway epithelium (SAE is the earliest site of smoking-induced lung disease, and that the SAE gene expression is likely sensitive to inhaled cigarette smoke, we compared upper vs. lower lobe gene expression in the SAE within the same cigarette smokers to determine if the gene expression patterns were similar or different. Active smokers (n = 11 with early evidence of smoking-induced lung disease (normal spirometry but low diffusing capacity underwent bronchoscopy and brushing of the upper and lower lobe SAE in order to compare upper vs lower lobe genome-wide and smoking-responsive gene expression by microarray. Cluster and principal component analysis demonstrated that, for each individual, the expression of the known SAE smoking-responsive genes were highly correlated in upper and lower lobe pairs, although, as expected, there were differences in the smoking-induced changes in gene expression from individual to individual. These observations support the concept that the heterogeneity observed among smokers in the anatomic distribution of smoking-induced disease are not secondary to the topographic differences in the effects of cigarette smoke on the airway epithelium.

  13. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  14. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    International Nuclear Information System (INIS)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan; Cui, Yong-Yao

    2012-01-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  15. Downregulation of SLC7A7 Triggers an Inflammatory Phenotype in Human Macrophages and Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Bianca Maria Rotoli

    2018-03-01

    Full Text Available Lysinuric protein intolerance (LPI is a recessively inherited aminoaciduria caused by mutations of SLC7A7, the gene encoding y+LAT1 light chain of system y+L for cationic amino acid transport. The pathogenesis of LPI is still unknown. In this study, we have utilized a gene silencing approach in macrophages and airway epithelial cells to investigate whether complications affecting lung and immune system are directly ascribable to the lack of SLC7A7 or, rather, mediated by an abnormal accumulation of arginine in mutated cells. When SLC7A7/y+LAT1 was silenced in human THP-1 macrophages and A549 airway epithelial cells by means of short interference RNA (siRNA, a significant induction of the expression and release of the inflammatory mediators IL1β and TNFα was observed, no matter the intracellular arginine availability. This effect was mainly regulated at transcriptional level through the activation of NFκB signaling pathway. Moreover, since respiratory epithelial cells are the important sources of chemokines in response to pro-inflammatory stimuli, the effect of IL1β has been addressed on SLC7A7 silenced A549 cells. Results obtained indicated that the downregulation of SLC7A7/y+LAT1 markedly strengthened the stimulatory effect of the cytokine on CCL5/RANTES expression and release without affecting the levels of CXCL8/IL8. Consistently, also the conditioned medium of silenced THP-1 macrophages activated airway epithelial cells in terms of CCL5/RANTES expression due to the presence of elevated amount of proinflammatory cytokines. In conclusion, our results point to a novel thus far unknown function of SLC7A7/y+LAT1, that, under physiological conditions, besides transporting arginine, may act as a brake to restrain inflammation.

  16. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  17. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  18. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  19. Human airway organoid engineering as a step toward lung regeneration and disease modeling.

    Science.gov (United States)

    Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine; Tschumperlin, Daniel J

    2017-01-01

    Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    OpenAIRE

    Liu, Q.; Liu, J.; Roschmann, K.I.L.; Egmond, D. van; Golebski, K.; Fokkens, W.J.; Wang, D.; Drunen, C.M. van

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL3...

  1. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma.

    Science.gov (United States)

    Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö

    In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  2. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema......-20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter...... and emphysema, respectively. Conclusions – Airway distensibility decreases significantly with increasing severity of both GOLD status and emphysema, indicating that in COPD the dynamic change in airway calibre during respiration is compromised. Chronic bronchitis and emphysema appear to be interacting...

  3. Invariant NKT cells are required for airway inflammation induced by environmental antigens.

    Science.gov (United States)

    Wingender, Gerhard; Rogers, Paul; Batzer, Glenda; Lee, Myung Steve; Bai, Dong; Pei, Bo; Khurana, Archana; Kronenberg, Mitchell; Horner, Anthony A

    2011-06-06

    Invariant NKT cells (iNKT cells) are a unique subset of T lymphocytes that rapidly carry out effector functions. In this study, we report that a majority of sterile house dust extracts (HDEs) tested contained antigens capable of activating mouse and human iNKT cells. HDEs had adjuvant-like properties in an ovalbumin (OVA)-induced asthma model, which were dependent on Vα14i NKT cells, as vaccinated animals deficient for iNKT cells displayed significantly attenuated immune responses and airway inflammation. Furthermore, the administration of HDEs together with OVA mutually augmented the synthesis of cytokines by Vα14i NKT cells and by conventional CD4(+) T cells in the lung, demonstrating a profound immune response synergy for both Th2 cytokines and IL-17A. These data demonstrate that iNKT cell antigens are far more widely dispersed in the environment than previously anticipated. Furthermore, as the antigenic activity in different houses varied greatly, they further suggest that iNKT cell responses to ambient antigens, particular to certain environments, might promote sensitization to conventional respiratory allergens.

  4. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    Full Text Available The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2 inhibitor or transforming growth factor-β (TGF-β neutralizing antibodies.Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF, eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ and regulatory cytokines (IL-10 and TGF-β in the BALF and lung draining lymph nodes (LLNs. ASCs engraftment caused significant increases in the regulatory T cell (Treg and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation.ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.

  5. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    DEFF Research Database (Denmark)

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...

  6. Persistence of smoking-induced dysregulation of miRNA expression in the small airway epithelium despite smoking cessation.

    Directory of Open Access Journals (Sweden)

    Guoqing Wang

    Full Text Available Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD and lung cancer remains significantly higher compared to healthy nonsmokers. Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE, we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 9 healthy nonsmokers and 10 healthy smokers, before and after they quit smoking for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy nonsmokers (p1.5, with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway being the top identified enriched pathway of the target genes of the persistent dysregulated miRNAs. In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammatory diseases or lung cancer, it is likely that persistent smoking-related changes in SAE miRNAs play a role in the subsequent development of these disorders.

  7. Markers of Airway Remodeling in Bronchopulmonary Diseases

    Directory of Open Access Journals (Sweden)

    O.Ye. Chernyshova

    2014-10-01

    Full Text Available The article presents information about markers of airway remodeling in bronchopulmonary diseases. There is described the influence of matrix metalloproteinases, tissue inhibitor of matrix metalloproteinase, transforming growth factor, collagen autoantibodies III type, endothelin-1 on the processes of morphological airway reconstruction as smooth muscle hypertrophy, enhanced neovascularization, epithelial cell hyperplasia, collagen deposition, compaction of the basal membrane, observed in bronchial asthma.

  8. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buhl, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Cepeda Sarabia, A. M.; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; de Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Fink Wagner, A.; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garcés, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzmán, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Lodrup Carlsen, K. C.; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; de Manuel Keenoy, E.; Masjedi, M. R.; Melen, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Momas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Radier Pontal, F.; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schünemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  9. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  10. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    Science.gov (United States)

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  11. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    Science.gov (United States)

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  12. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae.

    Science.gov (United States)

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C; Melton, Geoffrey; Palmer, Keith T; Andujar, Pascal; Antonini, James M; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2016-02-01

    Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  13. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor.

    Science.gov (United States)

    Willart, M A M; van Nimwegen, M; Grefhorst, A; Hammad, H; Moons, L; Hoogsteden, H C; Lambrecht, B N; Kleinjan, A

    2012-12-01

    Ursodeoxycholic acid (UDCA) is the only known beneficial bile acid with immunomodulatory properties. Ursodeoxycholic acid prevents eosinophilic degranulation and reduces eosinophil counts in primary biliary cirrhosis. It is unknown whether UDCA would also modulate eosinophilic inflammation outside the gastrointestinal (GI) tract, such as eosinophilic airway inflammation seen in asthma. The working mechanism for its immunomodulatory effect is unknown. The immunosuppressive features of UDCA were studied in vivo, in mice, in an ovalbumin (OVA)-driven eosinophilic airway inflammation model. To study the mechanism of action of UDCA, we analyzed the effect of UDCA on eosinophils, T cells, and dendritic cell (DCs). DC function was studied in greater detail, focussing on migration and T-cell stimulatory strength in vivo and interaction with T cells in vitro as measured by time-lapse image analysis. Finally, we studied the capacity of UDCA to influence DC/T cell interaction. Ursodeoxycholic acid treatment of OVA-sensitized mice prior to OVA aerosol challenge significantly reduced eosinophilic airway inflammation compared with control animals. DCs expressed the farnesoid X receptor for UDCA. Ursodeoxycholic acid strongly promoted interleukin (IL)-12 production and enhanced the migration in DCs. The time of interaction between DCs and T cells was sharply reduced in vitro by UDCA treatment of the DCs resulting in a remarkable T-cell cytokine production. Ursodeoxycholic acid-treated DCs have less capacity than saline-treated DCs to induce eosinophilic inflammation in vivo in Balb/c mice. Ursodeoxycholic acid has the potency to suppress eosinophilic inflammation outside the GI tract. This potential comprises to alter critical function of DCs, in essence, the effect of UDCA on DCs through the modulation of the DC/T cell interaction. © 2012 John Wiley & Sons A/S.

  14. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    Science.gov (United States)

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  15. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Carla M. P. Ribeiro

    2017-01-01

    Full Text Available Cystic fibrosis (CF pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR. This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.

  16. The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide.

    Science.gov (United States)

    Perry, Mark M; Tildy, Bernadett; Papi, Alberto; Casolari, Paolo; Caramori, Gaetano; Rempel, Karen Limbert; Halayko, Andrew J; Adcock, Ian; Chung, Kian Fan

    2018-05-09

    COPD is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease caused, in part, by the aberrant function of airway smooth muscle (ASM). We have previously demonstrated that hydrogen sulfide (H 2 S) can inhibit ASM cell proliferation and CXCL8 release, from cells isolated from non-smokers. We examined the effect of H 2 S upon ASM cells from COPD patients. ASM cells were isolated from non-smokers, smokers and patients with COPD (n = 9). Proliferation and cytokine release (IL-6 and CXCL8) of ASM was induced by FCS, and measured by bromodeoxyuridine incorporation and ELISA, respectively. Exposure of ASM to H 2 S donors inhibited FCS-induced proliferation and cytokine release, but was less effective upon COPD ASM cells compared to the non-smokers and smokers. The mRNA and protein expression of the enzymes responsible for endogenous H 2 S production (cystathionine-β-synthase [CBS] and 3-mercaptopyruvate sulphur transferase [MPST]) were inhibited by H 2 S donors. Finally, we report that exogenous H 2 S inhibited FCS-stimulated phosphorylation of ERK-1/2 and p38 mitogen activated protein kinases (MAPKs), in the non-smoker and smoker ASM cells, with little effect in COPD cells. H 2 S production provides a novel mechanism for the repression of ASM proliferation and cytokine release. The ability of COPD ASM cells to respond to H 2 S is attenuated in COPD ASM cells despite the presence of the enzymes responsible for H 2 S production.

  17. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    Full Text Available Abstract Background There have been few reports on the role of Fc receptors (FcRs and immunoglobulin G (IgG in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO and C57BL/6 (WT mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA. Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL. Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates

  18. Absence of Foxp3+ regulatory T cells during allergen provocation does not exacerbate murine allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Abdul Mannan Baru

    Full Text Available Regulatory T cells (Tregs play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC-transgenic Foxp3-DTR (DEREG mice we demonstrate that the absence of Foxp3(+ Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3(+ Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics.

  19. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  20. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane ...

  1. Inherent and antigen-induced airway hyperreactivity in NC mice

    Directory of Open Access Journals (Sweden)

    Tetsuto Kobayashi

    1999-01-01

    Full Text Available In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those strains in vivo. NC mice again showed comparable airway reactivity to that seen in A/J mice and a significantly greater reactivity than that seen in BALB/c and C57BL/6 mice. To investigate the effects of airway inflammation on airway reactivity to acetylcholine in vivo, NC and BALB/c mice were sensitized to and challenged with antigen. Sensitization to and challenge with antigen induced accumulation of inflammatory cells, especially eosinophils, in lung and increased airway reactivity in NC and BALB/c mice. These results indicate that NC mice exhibit inherent and antigen-induced airway hyperreactivity. Therefore, NC mice are a suitable strain to use in investigating the mechanisms underlying airway hyperreactivity and such studies will provide beneficial information for understanding the pathophysiology of asthma.

  2. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis

    Science.gov (United States)

    We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iron homeostas...

  3. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    Directory of Open Access Journals (Sweden)

    Nava Pat

    2011-03-01

    Full Text Available Abstract Background Is Impulse Oscillometry System (IOS a valuable tool to measure respiratory system function in Children? Asthma (A is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC and augmented RIC (aRIC models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B and post- bronchodilation (post-B conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H and Small Airway-Impaired (SAI. The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp and peripheral resistance (Rp tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle" showed good correlations. Conclusions What are the most useful IOS and model parameters? In

  4. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    Science.gov (United States)

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  5. Sleep apnea is associated with bronchial inflammation and continuous positive airway pressure-induced airway hyperresponsiveness.

    Science.gov (United States)

    Devouassoux, Gilles; Lévy, Patrick; Rossini, Eliane; Pin, Isabelle; Fior-Gozlan, Michèle; Henry, Mireille; Seigneurin, Daniel; Pépin, Jean-Louis

    2007-03-01

    Obstructive sleep apnea syndrome (OSA) is associated with systemic and upper airway inflammation. Pharyngeal inflammation has a potential role in upper airway collapse, whereas systemic inflammation relates to cardiovascular morbidity. However, the presence of an inflammatory involvement of lower airway has been poorly investigated. The aim of the study was to demonstrate an inflammatory process at the bronchial level in patients with OSA and to analyze effects of continuous positive airway pressure (CPAP) application and humidification on bronchial mucosa. The study was conducted by using sequential induced sputum for cell analysis and IL-8 production, nitric oxide exhalation measurement, and methacholine challenge before and after CPAP. Bronchial neutrophilia and a high IL-8 concentration were observed in untreated OSA compared with controls (75% +/- 20% vs 43% +/- 12%, P Obstructive sleep apnea syndrome is associated with bronchial inflammation. Our data demonstrate CPAP effect on the development of AHR, possibly facilitated by the pre-existing inflammation. Both issues should be evaluated during long-term CPAP use. Results showing a spontaneous bronchial inflammation in OSA and the development of a CPAP-related AHR require a long-term follow-up to evaluate consequences on chronic bronchial obstruction.

  6. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    Science.gov (United States)

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  7. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Davis, C.W.; Boucher, R.C.

    1994-01-01

    exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties......- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall....

  8. Radiographic anatomy and pathology of the child's airway

    International Nuclear Information System (INIS)

    Gay, B.B. Jr.

    1987-01-01

    The laryngotracheal airway has been considered the ''bottle-neck'' of the lungs. Any compromise of this already rather small pathway can easily result in a life-threatening situation. Rapid, accurate diagnosis is essential for proper clinical management of a compromised airway. Radiologic studies play a major role in the clinical investigation of patients with serious airway problems. There are notable differences between the anatomy of the upper airway of the adult and that of the young child or infant. In the infant, however, some differences in the radiographic patterns must be kept in mind. In the first 6 months of life, the adenoid shadow is not well defined and is normally absent until 1 month of age. During swallowing there is a lack of air in the pharynx with elevation of the larynx. Air may be seen in the cervical esophagus. All of these physiologic variations must be considered when interpreting radiographs of the neck in the young child

  9. Covered Balloon-Expanding Stents in Airway Stenosis.

    Science.gov (United States)

    Majid, Adnan; Kheir, Fayez; Chung, Jey; Alape, Daniel; Husta, Bryan; Oh, Scott; Folch, Erik

    2017-04-01

    The balloon-expanding stents are widely available but rarely described for use within the tracheobronchial tree. This report describes our experience with these stents in airway stenosis particularly as a lobar salvage therapy. This was a retrospective review of all records in which the balloon-expanding stents were used at a tertiary medical center. Ages, sex, location of stenosis, etiology of stenosis, stent size, duration of stent placement and associated interventions for airway stenosis were recorded. Patient's self-reported respiratory symptoms, dyspnea scale, and radiographic imaging at baseline and after stent placement were also reported. Twenty-one Atrium iCAST stents were inserted in 18 patients with malignant and benign airway disease. The median age was 69.5 years (interquartile range, 53.5 to 74). Most stents (n=20, 95%) were deployed in the lobar airways. There was a significant improvement in the modified Medical Research Council dyspnea scale from median of 3 to 2 (Pstent placement was achieved in 15 patients (83%). No deaths were related to airway stenting complications. Adverse events related to stents included migration (n=2, 9.5%), granulation tissue formation (n=2, 9.5%) and mucus plugging (n=1, 4.8%). Lobar stenting with balloon-expanding metallic stents appears feasible, safe and improves symptoms as well as radiographic atelectasis in patients with lobar airway stenosis in this small case series. Larger studies are needed to confirm this observation and to address long-term safety.

  10. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  11. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  12. Long-term Outcome of Short Metallic Stents for Lobar Airway Stenosis.

    Science.gov (United States)

    Fruchter, Oren; Abed El Raouf, Bayya; Rosengarten, Dror; Kramer, Mordechai R

    2017-07-01

    Whereas stents are considered an excellent treatment for proximal central major airway stenosis, the value of stenting for distal lobar airway stenosis is still controversial. Our aim was to explore the short-term and long-term outcome of metallic stents placed for benign and malignant lobar airway stenosis. Between July 2007 and July 2014, 14 patients underwent small airway stent insertion. The clinical follow-up included serial semiannual physical examinations, pulmonary function tests, imaging, and bronchoscopy. The etiologies for airway stenosis were: early post-lung transplantation bronchial stenosis (N=5), sarcoidosis (N=1), amyloidosis (N=1), anthracofibrosis (N=1), right middle lobe syndrome due to external lymph node compression (N=1), lung cancer (N=4), and stenosis of the left upper lobe of unknown etiology (N=1). Stents were placed in the right upper lobe bronchus (N=2), right middle lobe bronchus (N=6), left upper lobe bronchus (N=4), linguar bronchus (N=1), and left lower lobe bronchus (N=1). The median follow-up period ranged from 2 to 72 months (median 18 mo). Immediate relief of symptoms was achieved in the vast majority of patients (13/14, 92%). Out of 10 patients with benign etiology for stenosis, 9 (90%) experienced sustained and progressive improvement in pulmonary function tests and clinical condition. We describe our positive experience with small stents for lobar airway stenosis; further prospective trials are required to evaluate the value of this novel modality of treatment.

  13. The effects of interleukin-8 on airway smooth muscle contraction in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Safka Katherine

    2008-12-01

    Full Text Available Abstract Background Many cystic fibrosis (CF patients display airway hyperresponsiveness and have symptoms of asthma such as cough, wheezing and reversible airway obstruction. Chronic airway bacterial colonization, associated with neutrophilic inflammation and high levels of interleukin-8 (IL-8 is also a common occurrence in these patients. The aim of this work was to determine the responsiveness of airway smooth muscle to IL-8 in CF patients compared to non-CF individuals. Methods Experiments were conducted on cultured ASM cells harvested from subjects with and without CF (control subjects. Cells from the 2nd to 5th passage were studied. Expression of the IL-8 receptors CXCR1 and CXCR2 was assessed by flow cytometry. The cell response to IL-8 was determined by measuring intracellular calcium concentration ([Ca2+]i, cell contraction, migration and proliferation. Results The IL-8 receptors CXCR1 and CXCR2 were expressed in both non-CF and CF ASM cells to a comparable extent. IL-8 (100 nM induced a peak Ca2+ release that was higher in control than in CF cells: 228 ± 7 versus 198 ± 10 nM (p 20 in CF than in control cells. In addition, MLC20 expression was also increased in CF cells. Exposure to IL-8 induced migration and proliferation of both groups of ASM cells but was not different between CF and non-CF cells. Conclusion ASM cells of CF patients are more contractile to IL-8 than non-CF ASM cells. This enhanced contractility may be due to an increase in the amount of contractile protein MLC20. Higher expression of MLC20 by CF cells could contribute to airway hyperresponsiveness to IL-8 in CF patients.

  14. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR, an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs and mouse lung fibroblasts (mLFs.Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s of airway remodeling.In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.

  15. Secreted osteopontin is highly polymerized in human airways and fragmented in asthmatic airway secretions.

    Directory of Open Access Journals (Sweden)

    Mehrdad Arjomandi

    Full Text Available Osteopontin (OPN is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING family and a cytokine with diverse biologic roles. OPN undergoes extensive post-translational modifications, including polymerization and proteolytic fragmentation, which alters its biologic activity. Recent studies suggest that OPN may contribute to the pathogenesis of asthma.To determine whether secreted OPN (sOPN is polymerized in human airways and whether it is qualitatively different in asthma, we used immunoblotting to examine sOPN in bronchoalveolar lavage (BAL fluid samples from 12 healthy and 21 asthmatic subjects (and in sputum samples from 27 healthy and 21 asthmatic subjects. All asthmatic subjects had mild to moderate asthma and abstained from corticosteroids during the study. Furthermore, we examined the relationship between airway sOPN and cellular inflammation.We found that sOPN in BAL fluid and sputum exists in polymeric, monomeric, and cleaved forms, with most of it in polymeric form. Compared to healthy subjects, asthmatic subjects had proportionately less polymeric sOPN and more monomeric and cleaved sOPN. Polymeric sOPN in BAL fluid was associated with increased alveolar macrophage counts in airways in all subjects.These results suggest that sOPN in human airways (1 undergoes extensive post-translational modification by polymerization and proteolytic fragmentation, (2 is more fragmented and less polymerized in subjects with mild to moderate asthma, and (3 may contribute to recruitment or survival of alveolar macrophages.

  16. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  17. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    Science.gov (United States)

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  18. Temporal and Spatial Expression of Transforming Growth Factor-β after Airway Remodeling to Tobacco Smoke in Rats

    Science.gov (United States)

    Hoang, Laura L.; Nguyen, Yen P.; Aspeé, Rayza; Bolton, Sarah J.; Shen, Yi-hsin; Wang, Lei; Kenyon, Nicholas J.; Smiley-Jewell, Suzette

    2016-01-01

    Airway remodeling is strongly correlated with the progression of chronic obstructive pulmonary disease (COPD). In this study, our goal was to characterize progressive structural changes in site-specific airways, along with the temporal and spatial expression of transforming growth factor (TGF)-β in the lungs of male spontaneously hypertensive rats exposed to tobacco smoke (TS). Our studies demonstrated that TS-induced changes of the airways is dependent on airway generation and exposure duration for proximal, midlevel, and distal airways. Stratified squamous epithelial cell metaplasia was evident in the most proximal airways after 4 and 12 weeks but with minimal levels of TGF-β–positive epithelial cells after only 4 weeks of exposure. In contrast, epithelial cells in midlevel and distal airways were strongly TGF-β positive at both 4 and 12 weeks of TS exposure. Airway smooth muscle volume increased significantly at 4 and 12 weeks in midlevel airways. Immunohistochemistry of TGF-β was also found to be significantly increased at 4 and 12 weeks in lymphoid tissues and alveolar macrophages. ELISA of whole-lung homogenate demonstrated that TGF-β2 was increased after 4 and 12 weeks of TS exposure, whereas TGF-β1 was decreased at 12 weeks of TS exposure. Airway levels of messenger RNA for TGF-β2, as well as platelet-derived growth factor-A, granulocyte-macrophage colony–stimulating factor, and vascular endothelial growth factor-α, growth factors regulated by TGF-β, were significantly decreased in animals after 12 weeks of TS exposure. Our data indicate that TS increases TGF-β in epithelial and inflammatory cells in connection with airway remodeling, although the specific role of each TGF-β isoform remains to be defined in TS-induced airway injury and disease. PMID:26637070

  19. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, Eric J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Goldsmith, W. Travis [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Shimko, Michael J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A. [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Fedan, Jeffrey S. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States)

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione

  20. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    International Nuclear Information System (INIS)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2015-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R t ) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na + transport, without affecting Cl − transport or Na + ,K + -pump activity. R t was unaffected. Na + transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione into acetoin and 2-OH-3-pentanone.

  1. Mast cell-dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma.

    Science.gov (United States)

    Zoltowska Nilsson, A M; Lei, Y; Adner, M; Nilsson, G P

    2018-03-01

    Interleukin-33 (IL-33) and its receptor ST2 have been influentially associated with the pathophysiology of asthma. Due to the divergent roles of IL-33 in regulating mast cell functions, there is a need to further characterize IL-33/ST2-dependent mast cell responses and their significance in the context of asthma. This study aimed to investigate how IL-33/ST2-dependent mast cell responses contribute to the development of airway hyperresponsiveness (AHR) and airway inflammation in a mouse model of house dust mite (HDM)-induced asthma. Mast cell-deficient C57BL/6-Kit W-sh (Wsh) mice engrafted with either wild-type (Wsh + MC-WT) or ST2-deficient bone marrow-derived mast cells (Wsh + MC-ST2KO) were exposed to HDM delivered intranasally. An exacerbated development of AHR in response to HDM was seen in Wsh + MC-ST2KO compared with Wsh + MC-WT mice. The contribution of this IL-33/ST2-dependent mast cell response to AHR seems to reside within the smaller airways in the peripheral parts of the lung, as suggested by the isolated yet marked effect on tissue resistance. Considering the absence of a parallel increase in cellular inflammation in bronchoalveolar lavage fluid (BALF) and lung, the aggravated AHR in Wsh + MC-ST2KO mice seems to be independent of cellular inflammation. We observed an association between the elevated AHR and reduced PGE 2 levels in BALF . Due to the protective properties of PGE 2 in airway responses, it is conceivable that IL-33/ST2-dependent mast cell induction of PGE 2 could be responsible for the dampening effect on AHR. In conclusion, we reveal that IL-33/ST2-dependent mast cell responses can have a protective, rather than causative role, in the development of AHR.

  2. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  3. Airway stents

    Science.gov (United States)

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  4. Activation of calcitonin gene-related peptide receptor during ozone inhalation contributes to airway epithelial injury and repair.

    Science.gov (United States)

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2009-10-01

    The authors investigated the importance of the neuropeptide, calcitonin gene-related peptide (CGRP), in epithelial injury, repair, and neutrophil emigration after ozone exposure. Wistar rats were administered either a CGRP-receptor antagonist (CGRP(8-37)) or saline and exposed to 8 hours of 1-ppm ozone or filtered air with an 8-hour postexposure period. Immediately after exposure, ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, airway dissected lung lobes were stained for 5'-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Positive epithelial cells were quantified in specific airway generations. Rats treated with CGRP(8-37) had significantly reduced epithelial injury in terminal bronchioles and reduced epithelial proliferation in proximal airways and terminal bronchioles. Bronchoalveolar lavage and sections of terminal bronchioles showed no significant difference in the number of neutrophils emigrating into airways in CGRP(8-37)-treated rats. The airway epithelial cell line, HBE-1, showed no difference in the number of oxidant stress positive cells during exposure to hydrogen peroxide and a range of CGRP(8-37) doses, demonstrating no antioxidant effect of CGRP(8-37). We conclude that activation of CGRP receptors during ozone inhalation contributes to airway epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  5. Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5-lipoxygenase pathways

    Directory of Open Access Journals (Sweden)

    Cui Zhi-Hua

    2012-03-01

    Full Text Available Abstract Background Allergen induced early phase airway response and airway plasma exudation are predominantly mediated by inflammatory mast cell mediators including histamine, cysteinyl leukotrienes (cysLTs and thromboxane A2 (TXA2. The aim of the present study was to evaluate whether repeated allergen exposure affects early phase airway response to allergen challenge. Methods A trimellitic anhydride (TMA sensitized guinea pig model was used to investigate the effects of low dose repeated allergen exposure on cholinergic airway responsiveness, early phase airway response and plasma exudation, as well as local airway production of mast cell derived cysteinyl leukotrienes and thromboxane B2 (TXB2 after allergen challenge. Results Repeated low dose allergen exposure increased cholinergic airway responsiveness. In contrast, early phase airway response and plasma exudation in response to a high-dose allergen challenge were strongly attenuated after repeated low dose allergen exposure. Inhibition of the airway response was unspecific to exposed allergen and independent of histamine receptor blocking. Furthermore, a significant reduction of cysteinyl leukotrienes and TXB2 was found in the airways of animals repeatedly exposed to a low dose allergen. However, in vitro stimulation of airway tissue from animals repeatedly exposed to a low dose allergen with arachidonic acid and calcium ionophore (A23187 induced production of cysteinyl leukotrienes and TXB2, suggesting enhanced activity of 5-lipoxygenase and cyclooxygenase pathways. Conclusions The inhibition of the early phase airway response, cysteinyl leukotriene and TXB2 production after repeated allergen exposure may result from unresponsive effector cells.

  6. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.

    Directory of Open Access Journals (Sweden)

    Vinciane Saint-Criq

    Full Text Available Male cystic fibrosis (CF patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1 and CF (CuFi-1 bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1-10 nM reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na(+/K(+ATPase in CF cells.

  7. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    Directory of Open Access Journals (Sweden)

    Benjamin A Turturice

    Full Text Available Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids.To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics.A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13 were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6 and to themselves after six weeks of treatment with fluticasone propionate (FP. Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing.Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP, termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls.The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to

  8. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Directory of Open Access Journals (Sweden)

    Jennifer M. Bratt

    2010-01-01

    Full Text Available Objectives and Design. The function of the airway nitric oxide synthase (NOS isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  9. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Science.gov (United States)

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  10. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Christian Schwarzer

    Full Text Available Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11 with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells. PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins and massively (10-80 fold increase, termed "swarming", but transiently (random swimming after 15 mins, to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii PA use pili to bind to epithelial cells near wounds.

  11. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  12. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine.

    Science.gov (United States)

    Sherwood, Cara L; Boitano, Scott

    2016-05-17

    The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed

  13. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

    Science.gov (United States)

    Hwang, John H; Lyes, Matthew; Sladewski, Katherine; Enany, Shymaa; McEachern, Elisa; Mathew, Denzil P; Das, Soumita; Moshensky, Alexander; Bapat, Sagar; Pride, David T; Ongkeko, Weg M; Crotty Alexander, Laura E

    2016-06-01

    Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria. Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.

  14. Upper airway segmentation and dimensions estimation from cone-beam CT image datasets

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongjian; Scarfe, W.C. [Louisville Univ., KY (United States). School of Dentistry; Farman, A.G. [Louisville Univ., KY (United States). School of Dentistry; Louisville Univ., KY (United States). Div. of Radiology and Imaging Science

    2006-11-15

    Objective: To segment and measure the upper airway using cone-beam computed tomography (CBCT). This information may be useful as an imaging biomarker in the diagnostic assessment of patients with obstructive sleep apnea and in the planning of any necessary therapy. Methods: With Institutional Review Board Approval, anonymous CBCT datasets from subjects who had been imaged for a variety of conditions unrelated to the airway were evaluated. DICOM images were available. A segmentation algorithm was developed to separate the bounded upper airway and measurements were performed manually to determine the smallest cross-sectional area and the anteriorposterior distance of the retropalatal space (RP-SCA and RP-AP, respectively) and retroglossal space (RG-SCA and RG-AP, respectively). A segmentation algorithm was developed to separate the bounded upper airway and it was applied to determine RP-AP, RG-AP, the smallest transaxial-sectional area (TSCA) and largest sagittal view airway area (LCSA). A second algorithm was created to evaluate the airway volume within this bounded upper airway. Results: Measurements of the airway segmented automatically by the developed algorithm agreed with those obtained using manual segmentation. The corresponding volumes showed only very small differences considered clinically insignificant. Conclusion: Automatic segmentation of the airway imaged using CBCT is feasible and this method can be used to evaluate airway cross-section and volume comparable to measurements extracted using manual segmentation. (orig.)

  15. Differential responses of human dendritic cells to metabolites from the oral/airway microbiome.

    Science.gov (United States)

    Whiteson, K; Agrawal, S; Agrawal, A

    2017-06-01

    Small molecule metabolites that are produced or altered by host-associated microbial communities are emerging as significant immune response modifiers. However, there is a key gap in our knowledge of how oral microbial metabolites affect the immune response. Here, we examined the effects of metabolites from five bacterial strains found commonly in the oral/airway microbial communities of humans. The five strains, each isolated from cystic fibrosis patient sputum, were Pseudomonas aeruginosa FLR01 non-mucoid (P1) and FLR02 mucoid (P2) forms, Streptococcus pneumoniae (Sp), S. salivarius (Ss) and Rothia mucilaginosa (Rm). The effect of bacterial metabolites on dendritic cell (DC) activation, T cell priming and cytokine secretion was determined by exposing DCs to bacterial supernatants and individual metabolites of interest. Supernatants from P1 and P2 induced high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-12 and IL-6 from DCs and primed T cells to secrete interferon (IFN)-γ, IL-22 compared to supernatants from Sp, Ss and Rm. Investigations into the composition of supernatants using gas chromatography-mass spectroscopy (GC-MS) revealed signature metabolites for each of the strains. Supernatants from P1 and P2 contained high levels of putrescine and glucose, while Sp and Ss contained high levels of 2,3-butanediol. The individual metabolites replicated the results of whole supernatants, although the magnitudes of their effects were reduced significantly. Altogether, our data demonstrate for the first time that the signature metabolites produced by different bacteria have different effects on DC functions. The identification of signature metabolites and their effects on the host immune system can provide mechanistic insights into diseases and may also be developed as biomarkers. © 2017 British Society for Immunology.

  16. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  17. Incidence of unanticipated difficult airway using an objective airway score versus a standard clinical airway assessment

    DEFF Research Database (Denmark)

    Nørskov, Anders Kehlet; Rosenstock, Charlotte Valentin; Wetterslev, Jørn

    2013-01-01

    -specific assessment. Data from patients' pre-operative airway assessment are registered in the Danish Anaesthesia Database. Objective scores for intubation and mask ventilation grade the severity of airway managements. The accuracy of predicting difficult intubation and mask ventilation is measured for each group...... the examination and registration of predictors for difficult mask ventilation with a non-specified clinical airway assessment on prediction of difficult mask ventilation.Method/Design: We cluster-randomized 28 Danish departments of anaesthesia to airway assessment either by the SARI or by usual non...... that registration of the SARI and predictors for difficult mask ventilation are mandatory for the intervention group but invisible to controls....

  18. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba

    2009-06-01

    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  19. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Directory of Open Access Journals (Sweden)

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  20. Neuronal NOS localises to human airway cilia.

    Science.gov (United States)

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab

    Science.gov (United States)

    Roth, Michael; Zhao, Feng; Zhong, Jun; Lardinois, Didier; Tamm, Michael

    2015-01-01

    Background Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC) activity deposing extracellular matrix. Objective We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies. Methods Isolated human ASMC were exposed to serum obtained from: (i) healthy controls, or patients with (ii) allergic asthma, (iii) non-allergic asthma, and (iv) atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days. Results Serum from patients with allergies significantly stimulated: (i) ASMC proliferation, (ii) deposition of collagen type-I (48 hours) and (iii) of fibronectin (24 hours). One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects. Conclusion and Clinical Relevance Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC. PMID:26332463

  2. Serum IgE Induced Airway Smooth Muscle Cell Remodeling Is Independent of Allergens and Is Prevented by Omalizumab.

    Directory of Open Access Journals (Sweden)

    Michael Roth

    Full Text Available Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC activity deposing extracellular matrix.We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies.Isolated human ASMC were exposed to serum obtained from: (i healthy controls, or patients with (ii allergic asthma, (iii non-allergic asthma, and (iv atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days.Serum from patients with allergies significantly stimulated: (i ASMC proliferation, (ii deposition of collagen type-I (48 hours and (iii of fibronectin (24 hours. One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects.Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC.

  3. Airway Progenitor Clone Formation Is Enhanced by Y-27632-Dependent Changes in the Transcriptome.

    Science.gov (United States)

    Reynolds, Susan D; Rios, Cydney; Wesolowska-Andersen, Agata; Zhuang, Yongbin; Pinter, Mary; Happoldt, Carrie; Hill, Cynthia L; Lallier, Scott W; Cosgrove, Gregory P; Solomon, George M; Nichols, David P; Seibold, Max A

    2016-09-01

    The application of conditional reprogramming culture (CRC) methods to nasal airway epithelial cells would allow more wide-spread incorporation of primary airway epithelial culture models into complex lung disease research. In this study, we adapted the CRC method to nasal airway epithelial cells, investigated the growth advantages afforded by this technique over standard culture methods, and determined the cellular and molecular basis of CRC cell culture effects. We found that the CRC method allowed the production of 7.1 × 10(10) cells after 4 passages, approximately 379 times more cells than were generated by the standard bronchial epithelial growth media (BEGM) method. These nasal airway epithelial cells expressed normal basal cell markers and could be induced to form a mucociliary epithelium. Progenitor cell frequency was significantly higher using the CRC method in comparison to the standard culture method, and progenitor cell maintenance was dependent on addition of the Rho-kinase inhibitor Y-27632. Whole-transcriptome sequencing analysis demonstrated widespread gene expression changes in Y-27632-treated basal cells. We found that Y-27632 treatment altered expression of genes fundamental to the formation of the basal cell cytoskeleton, cell-cell junctions, and cell-extracellular matrix (ECM) interactions. Importantly, we found that Y-27632 treatment up-regulated expression of unique basal cell intermediate filament and desmosomal genes. Conversely, Y-27632 down-regulated multiple families of protease/antiprotease genes involved in ECM remodeling. We conclude that Y-27632 fundamentally alters cell-cell and cell-ECM interactions, which preserves basal progenitor cells and allows greater cell amplification.

  4. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata; Kalita, Mridul [Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX (United States); Kaphalia, Bhupendra S. [Department of Pathology, University of Texas Medical Branch, Galveston, TX (United States); Calhoun, William J., E-mail: William.Calhoun@utmb.edu [Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX (United States)

    2016-02-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.

  5. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    International Nuclear Information System (INIS)

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S.; Calhoun, William J.

    2016-01-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.

  6. THE BUFFER CAPACITY OF AIRWAY EPITHELIAL SECRETIONS

    Directory of Open Access Journals (Sweden)

    Dusik eKim

    2014-06-01

    Full Text Available The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF. The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 µl volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO3- is the major buffer. Peak buffer capacity (β increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO3- secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO3- secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  7. Lentiviral Vector Gene Transfer to Porcine Airways

    Directory of Open Access Journals (Sweden)

    Patrick L Sinn

    2012-01-01

    Full Text Available In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE. Interestingly, feline immunodeficiency virus (FIV-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF.

  8. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle

    2015-01-01

    to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development...

  9. High resolution CT in obstructive and air-ways lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The topics briefly discussed i.e. emphysema, its diagnosis, bronchiectasis etc. HRTC (high resolution computerized tomography) in diagnosing both disease and small airways abnormalities also discussed. (33 refs.).

  10. High resolution CT in obstructive and air-ways lung disease

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    The topics briefly discussed i.e. emphysema, its diagnosis, bronchiectasis etc. HRTC (high resolution computerized tomography) in diagnosing both disease and small airways abnormalities also discussed. (33 refs.)

  11. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    NARCIS (Netherlands)

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact

  12. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  13. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Airway resistance at maximum inhalation as a marker of asthma and airway hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    O'Connor George T

    2011-07-01

    Full Text Available Abstract Background Asthmatics exhibit reduced airway dilation at maximal inspiration, likely due to structural differences in airway walls and/or functional differences in airway smooth muscle, factors that may also increase airway responsiveness to bronchoconstricting stimuli. The goal of this study was to test the hypothesis that the minimal airway resistance achievable during a maximal inspiration (Rmin is abnormally elevated in subjects with airway hyperresponsiveness. Methods The Rmin was measured in 34 nonasthmatic and 35 asthmatic subjects using forced oscillations at 8 Hz. Rmin and spirometric indices were measured before and after bronchodilation (albuterol and bronchoconstriction (methacholine. A preliminary study of 84 healthy subjects first established height dependence of baseline Rmin values. Results Asthmatics had a higher baseline Rmin % predicted than nonasthmatic subjects (134 ± 33 vs. 109 ± 19 % predicted, p = 0.0004. Sensitivity-specificity analysis using receiver operating characteristic curves indicated that baseline Rmin was able to identify subjects with airway hyperresponsiveness (PC20 min % predicted, FEV1 % predicted, and FEF25-75 % predicted, respectively. Also, 80% of the subjects with baseline Rmin min > 145% predicted had hyperresponsive airways, regardless of clinical classification as asthmatic or nonasthmatic. Conclusions These findings suggest that baseline Rmin, a measurement that is easier to perform than spirometry, performs as well as or better than standard spirometric indices in distinguishing subjects with airway hyperresponsiveness from those without hyperresponsive airways. The relationship of baseline Rmin to asthma and airway hyperresponsiveness likely reflects a causal relation between conditions that stiffen airway walls and hyperresponsiveness. In conjunction with symptom history, Rmin could provide a clinically useful tool for assessing asthma and monitoring response to treatment.

  15. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  16. Differential expression of peroxisome proliferator activated receptor gamma and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cells

    NARCIS (Netherlands)

    Lau, Justine Y; Oliver, Brian G; Moir, Lyn M; Black, Judith L; Burgess, Janette K

    UNLABELLED: PPARgamma levels in asthma- and non-asthma-derived airway smooth muscle cells and PPARgamma activation-induced cell proliferation were investigated. In the presence of FBS, PPARgamma levels were higher in subconfluent asthma-derived cells but lower in confluent cells compared with

  17. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  18. PPARγ ligand ciglitazone inhibits TNFα-induced ICAM-1 in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chien-Da Huang

    2014-08-01

    Full Text Available Background: Modification of human airway smooth muscle (ASM function by proinflammatory cytokines has been regarded as a potential mechanism underlying bronchial hyperresponsiveness in asthma. Human ASM cells express intercellular adhesion molecule (ICAM-1 in response to cytokines. Synthetic ligands for peroxisome proliferator-activated receptor (PPARγ reportedly possess anti-inflammatory and immunomodulatory properties. In this study, we examined whether ciglitazone, a synthetic PPARγ ligand, can modulate the basal and tumor necrosis factor (TNFα-induced ICAM1 gene expression in human ASM cells. Methods: Human ASM cells were treated with TNFα. ICAM-1 expression was assessed by flow cytometry and reverse transcriptase-polymerase chain reaction (RT-PCR analysis. PPARγ activity was inhibited by target-specific small interfering (si RNA targeting PPARγ and GW9662, a PPARγ antagonist. Activity of nuclear factor (NF-κB was assessed by using immunoblot analysis, immune-confocal images, and electrophoretic mobility shift assay (EMSA. Results: By flow cytometry, ciglitazone alone had no effect on ICAM-1 expression in ASM cells, but inhibited ICAM-1 expression in response to TNFα (10 ng/ml in a dose-dependent manner (1-10 μM. It also inhibited TNFα-induced ICAM1 gene expression by RT-PCR analysis. Knockdown of PPARγ gene by target-specific siRNA targeting PPARγ enhanced ICAM-1 expression and the inhibitory effect of ciglitazone on TNFα-induced ICAM-1 expression was reversed by PPARγ siRNA and GW9662. SN-50 (10 μg/ml, an inhibitor for nuclear translocation of NF-κB, inhibited TNFα-induced ICAM-1 expression. Ciglitazone did not prevent TNFα-induced degradation of the cytosolic inhibitor of NF-κB (IκB, but inhibited the nuclear translocation of p65 induced by TNFα and suppressed the NF-κB/DNA binding activity. Conclusion: These findings suggest that ciglitazone inhibits TNFα-induced ICAM1 gene expression in human ASM cells through

  19. Physiologic correlates of airspace size and airway remodeling in the smoke exposed guinea pig model

    NARCIS (Netherlands)

    Wright, J. L.; Postma, D. S.; Kerstjens, H. A. M.; Timens, W.; Whittaker, P.; Churg, A.

    2007-01-01

    Although small airway remodeling (SAR) leading to airflow obstruction is a common consequence of human cigarette smoking, the airways have been largely ignored in animal models of chronic obstructive pulmonary disease ( COPD). We examined lung structure in a guinea pig model of chronic cigarette

  20. Silibinin attenuates allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-01-01

    Highlights: ► Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. ► Silibinin reduces the levels of various cytokines into the lung of allergic mice. ► Silibinin prevents the development of airway hyperresponsiveness in allergic mice. ► Silibinin suppresses NF-κB transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-κB activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-κB activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  1. Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.

    Science.gov (United States)

    Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R

    2014-11-01

    Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  2. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Directory of Open Access Journals (Sweden)

    Walseth Timothy F

    2008-03-01

    Full Text Available Abstract Background CD38 is expressed in human airway smooth muscle (HASM cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α. CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to

  3. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  4. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    Science.gov (United States)

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  5. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  6. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome

    DEFF Research Database (Denmark)

    Sverrild, Asger; Kiilerich, Pia; Brejnrod, Asker Daniel

    2017-01-01

    BACKGROUND: Asthmatic patients have higher microbiome diversity and an altered composition, with more Proteobacteria and less Bacteroidetes compared with healthy control subjects. Studies comparing airway inflammation and the airway microbiome are sparse, especially in subjects not receiving anti......-inflammatory treatment. OBJECTIVE: We sought to describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free patients with asthma and healthy control subjects. METHODS: Bronchoalveolar lavage fluid was collected from 23 steroid-free nonsmoking patients with asthma and 10...... and AHR to mannitol but not airway neutrophilia. The overall composition of the airway microbiome of asthmatic patients with the lowest levels of eosinophils but not asthmatic patients with the highest levels of eosinophils deviated significantly from that of healthy subjects. Asthmatic patients...

  7. Development and Analysis of Patient-Based Complete Conducting Airways Models.

    Directory of Open Access Journals (Sweden)

    Rafel Bordas

    Full Text Available The analysis of high-resolution computed tomography (CT images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6-10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD. Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11 and asthmatic (n = 24 CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47. The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01 in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3-5 versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1 (Spearman ρ = -0.65, p < 0.001 and, at low flow rates (0.00017 L/s, FEV1 over forced vital capacity (FEV1

  8. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    Science.gov (United States)

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  9. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    Science.gov (United States)

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  10. Supra-Epiglottic Upper Airway Volume in Elderly Patients with Obstructive Sleep Apnea Hypopnea Syndrome.

    Science.gov (United States)

    Boutet, Claire; Abdirahman Mohamed Moussa, Syad; Celle, Sébastien; Laurent, Bernard; Barthélémy, Jean-Claude; Barral, Fabrice-Guy; Roche, Frédéric

    2016-01-01

    Small upper airway measurements areas and high body mass index are recognized risk factors for obstructive sleep apnea syndrome (OSAS) in non-elderly populations; however, there is limited information regarding elderly patients. We evaluated whether upper airway volume is associated with OSAS and OSAS treated with continuous positive airway pressure (CPAP) treatment and whether BMI is correlated with upper airway volume and measurements in elderly subjects. In 60 volunteers aged 75.58±0.9 years: 20 OSAS, 20 OSAS chronically treated with CPAP, and 20 controls, semi-automatic segmentation, retropalatal distance and transverse diameter of the supra-epiglottic upper airway were evaluated using 3DT1-weighted magnetic resonance imaging. Anteroposterior to transverse diameter ratio was defined as retropalatar diameter/transverse diameter. There were no significant differences in supra-epiglottic upper airway volume between OSAS, CPAP treated patients, and controls. There were significant differences in retropalatal distance and anteroposterior to transverse diameter ratio between OSAS, CPAP treated patients, and controls (P = 0.008 and Psupra-epiglottic upper airway volume. In elderly subjects, OSAS and body mass index are not associated with changes in supra-epiglottic upper airway volume but are associated with modification of pharynx shape.

  11. Exploring the context of the lung proteome within the airway mucosa following allergen challenge.

    Science.gov (United States)

    Fehniger, Thomas E; Sato-Folatre, José-Gabriel; Malmström, Johan; Berglund, Magnus; Lindberg, Claes; Brange, Charlotte; Lindberg, Henrik; Marko-Varga, György

    2004-01-01

    The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states.

  12. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis

    DEFF Research Database (Denmark)

    Perez-Rovira, Adria; Kuo, Wieying; Petersen, Jens

    2016-01-01

    Purpose: Bronchiectasis and airway wall thickening are commonly assessed in computed tomography (CT) by comparing the airway size with the size of the accompanying artery. Thus, in order to automate the quantification of bronchiectasis and wall thickening following a similar principle......, and pairs airway branches with the accompanying artery, then quantifies airway wall thickening and bronchiectasis by measuring the wall-artery ratio (WAR) and lumen and outer wall airway-artery ratio (AAR). Measurements that do not use the artery size for normalization are also extracted, including wall...... area percentage (WAP), wall thickness ratio (WTR), and airway diameters. Results: The method was thoroughly evaluated using 8000 manual annotations of airway-artery pairs from 24 full-inspiration pediatric CT scans (12 diseased and 12 controls). Limits of agreement between the automatically...

  13. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Treatments and Therapies Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. ... or caregiver. Older kids and adults can choose ACTs that they can do on their own. Share ...

  14. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J...induced neuro- peptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L775–L781...co-localization of transient receptor po- tential vanilloid (trpv)1 and sensory neuropeptides in the guinea - pig respiratory system. Neuroscience

  15. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  16. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma.

    Science.gov (United States)

    Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H

    2014-01-01

    Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that

  17. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  18. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Directory of Open Access Journals (Sweden)

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  19. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells

    NARCIS (Netherlands)

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune

  20. Low tracheal tumor and airway management: An anesthetic challenge

    Directory of Open Access Journals (Sweden)

    Richa Saroa

    2015-01-01

    Full Text Available We describe a case presenting with tracheal tumor wherein a Microlaryngeal tube was advanced into the trachea distal to the tumor for primary airway control followed by cannulation of both endobronchial lumen with 5.5 mm endotracheal tubes to provide independent lung ventilation post tracheal transection using Y- connector attached to anesthesia machine. The plan was formulated to provide maximal surgical access to the trachea while providing adequate ventilation at the same time. A 32 yrs non smoker male, complaining of cough, progressive dyspnea and hemoptysis was diagnosed to have a broad based mass in the trachea on computed tomography of chest. Bronchoscopy of the upper airway confirmed presence of the mass at a distance of 9 cms from the vocal cords, obstructing the tracheal lumen by three fourth of the diameter. The patient was scheduled to undergo the resection of the mass through anterolateral thoracotomy. We recommend the use of extralong, soft, small sized microlaryngeal surgery tube in tumors proximal to carina, for securing the airway before the transection of trachea and bilateral endobronchial intubation with small sized cuffed endotracheal tubes for maintenance of ventilation after the transection of trachea in patients with mass in the lower trachea.

  1. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... to loosen mucus from airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ... Offer their tips for fitting ACTs into daily life Airway Clearance Techniques | Webcast ... Facebook Twitter ...

  2. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  3. Muc5b Is the Major Polymeric Mucin in Mucus from Thoroughbred Horses With and Without Airway Mucus Accumulation

    Science.gov (United States)

    Rousseau, Karine; Cardwell, Jacqueline M.; Humphrey, Emma; Newton, Richard; Knight, David; Clegg, Peter; Thornton, David J.

    2011-01-01

    Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria. PMID:21602926

  4. Muc5b is the major polymeric mucin in mucus from thoroughbred horses with and without airway mucus accumulation.

    Directory of Open Access Journals (Sweden)

    Karine Rousseau

    Full Text Available Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.

  5. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    Science.gov (United States)

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  6. Multi-User MIMO Across Small Cells

    DEFF Research Database (Denmark)

    Finn, Danny; Ahmadi, Hamed; Cattoni, Andrea Fabio

    2014-01-01

    The main contribution of this work is the proposal and assessment of the MU-MIMO across Small Cells concept. MU-MIMO is the spatial multiplexing of multiple users on a single time-frequency resource. In small cell networks, where the number of users per cell is low, finding suitable sets of users...... to be co-scheduled for MU-MIMO is not always possible. In these cases we propose MU-MIMO-based cell reassignments of users into adjacent cells to enable MU-MIMO operation. From system level simulations we found that, when the initial number of users per small cell is four, cell reassignment results in a 21.......7% increase in the spectral efficiency gain attributed to MU-MIMO, and a higher percentage increase when the initial number of users per cell is lower. Going forward, we will extend this work to also consider energy savings through switching off small cells which are emptied by the reassignment process....

  7. Postnatal remodeling of the neural components of the epithelial-mesenchymal trophic unit in the proximal airways of infant rhesus monkeys exposed to ozone and allergen

    International Nuclear Information System (INIS)

    Larson, Shawnessy D.; Schelegle, Edward S.; Walby, William F.; Gershwin, Laural J.; Fanuccihi, Michelle V.; Evans, Michael J.; Joad, Jesse P.; Tarkington, Brian K.; Hyde, Dallas M.; Plopper, Charles G.

    2004-01-01

    Nerves and neuroendocrine cells located within the airway epithelium are ideally situated to sample a changing airway environment, to transmit that information to the central nervous system, and to promote trophic interactions between epithelial and mesenchymal cellular and acellular components. We tested the hypothesis that the environmental stresses of ozone (O 3 ) and house dust mite allergen (HDMA) in atopic infant rhesus monkeys alter the distribution of airway nerves. Midlevel bronchi and bronchioles from 6-month-old infant monkeys that inhaled filtered air (FA), house dust mite allergen HDMA, O 3 , or HDMA + O 3 for 11 episodes (5 days each, 0.5 ppm O 3 , 8 h/day followed by 9 days recovery) were examined using immunohistochemistry for the presence of Protein gene product 9.5 (PGP 9.5), a nonspecific neural indicator, and calcitonin gene-related peptide (CGRP). Along the axial path between the sixth and the seventh intrapulmonary airway generations, there were small significant (P 3 , while in monkeys exposed to HDMA + O 3 there was a greater significant (P 3 or HDMA + O 3 there was a significant increase in the number of PGP 9.5 positive/CGRP negative cells that were anchored to the basal lamina and emitted projections in primarily the lateral plain and often intertwined with projections and cell bodies of other similar cells. We conclude that repeated cycles of acute injury and repair associated with the episodic pattern of ozone and allergen exposure alter the normal development of neural innervation of the epithelial compartment and the appearance of a new population of undefined PGP 9.5 positive cells within the epithelium

  8. Intervention effect and dose-dependent response of tanreqing injection on airway inflammation in lipopolysaccharide-induced rats.

    Science.gov (United States)

    Dong, Shoujin; Zhong, Yunqing; Yang, Kun; Xiong, Xiaoling; Mao, Bing

    2013-08-01

    To assess the effect of Tanreqing injection on airway inflammation in rats. A rat model of airway inflammation was generated with lipopolysaccharide (LPS). Tanreqing injection was given by intratracheal instillation, and bronchoalveolar lavage fluid (BALF) from the right lung was collected. BALF total cell and neutrophil counts were then determined. In addition, BALF levels of inflammatory cytokines interleukin-13, cytokine-induced neutrophil chemoat-tractant-1, and tumor necrosis factor-alpha were measured using enzyme linked immunosorbent assay. The middle lobe of the right lung was stained with hematoxylin-eosin and histological changes examined. LPS increased airway inflammation, decreased BALF inflammatory cell count, inflammatory cytokine levels, and suppressed leukocyte influx of the lung. The LPS-induced airway inflammation peaked at 24 h, decreased beginning at 48 h, and had decreased markedly by 96 h. Tanreqing injection contains anti-inflammatory properties, and inhibits airway inflammation in a dose-dependent manner.

  9. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    Science.gov (United States)

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  10. Pulmonary langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Suri Harpreet S

    2012-03-01

    Full Text Available Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events resulting in enhanced recruitment and activation of Langerhans cells in small airways. Bronchiolar inflammation may be accompanied by variable lung interstitial and vascular involvement. While cellular inflammation is prominent in early disease, more advanced stages are characterized by cystic lung destruction, cicatricial scarring of airways, and pulmonary vascular remodeling. Pulmonary function is frequently abnormal at presentation. Imaging of the chest with high resolution chest CT scanning may show characteristic nodular and cystic abnormalities. Lung biopsy is necessary for a definitive diagnosis, although may not be required in instances were imaging findings are highly characteristic. There is no general consensus regarding the role of immunosuppressive therapy in smokers with PLCH. All smokers must be counseled on the importance of smoking cessation, which may result in regression of disease and obviate the need for systemic immunosuppressive therapy. The prognosis for most patients is relatively good, particularly if longitudinal lung function testing shows stability. Complications like pneumothoraces and secondary pulmonary hypertension may shorten life expectancy. Patients with progressive disease may require lung transplantation.

  11. Extraglottic airway devices: technology update

    Directory of Open Access Journals (Sweden)

    Sharma B

    2017-08-01

    Full Text Available Bimla Sharma, Chand Sahai, Jayashree Sood Department of Anaesthesiology, Pain and Perioperative Medicine, Sir Ganga Ram Hospital, New Delhi, India Abstract: Extraglottic airway devices (EADs have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS formed the Airway Device Evaluation Project Team (ADEPT to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues. Keywords: extraglottic airway devices, laryngeal mask airway, other extraglottic airway devices, safety, technology update

  12. Overexpression of microRNA-375 impedes platelet-derived growth factor-induced proliferation and migration of human fetal airway smooth muscle cells by targeting Janus kinase 2.

    Science.gov (United States)

    Ji, Yamei; Yang, Xin; Su, Huixia

    2018-02-01

    The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Measurement of the airway surface liquid volume with simple light refraction microscopy.

    Science.gov (United States)

    Harvey, Peter R; Tarran, Robert; Garoff, Stephen; Myerburg, Mike M

    2011-09-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air-liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays.

  14. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    Science.gov (United States)

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  15. Airway management in neuroanesthesiology.

    Science.gov (United States)

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis.

    Science.gov (United States)

    Silva, Carlos A M; Danelishvili, Lia; McNamara, Michael; Berredo-Pinho, Márcia; Bildfell, Robert; Biet, Franck; Rodrigues, Luciana S; Oliveira, Albanita V; Bermudez, Luiz E; Pessolani, Maria C V

    2013-07-01

    This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.

  17. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    Science.gov (United States)

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  18. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Hiroki Tashiro

    Full Text Available Interleukin-33 (IL-33 activates group 2 innate lymphoid cells (ILC2, resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation.BALB/c mice were sensitized and challenged with a house dust mite (HDM preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes.The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung.IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.

  19. Allergic rhinitis and asthma: inflammation in a one-airway condition

    Directory of Open Access Journals (Sweden)

    Haahtela Tari

    2006-11-01

    Full Text Available Abstract Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria. Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli. Structural alterations (that is, remodeling of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites.

  20. The Inter-Cell Interference Dilemma in Dense Outdoor Small Cell Deployment

    DEFF Research Database (Denmark)

    Polignano, Michele; Mogensen, Preben; Fotiadis, Panagiotis

    2014-01-01

    The deployment of low-power small cells is envisaged as the main driver to accommodate the mobile broadband traffic growth in cellular networks. Depending on the spatial distribution of the user traffic, a densification of the small cells may be required in confined areas. However, deploying more...... and more cells in given areas may imply an increase of the inter-cell interference among the small cells. This study aims at investigating if the inter-cell interference among outdoor small cells may represent an impairment to the user experience, and evaluates if and in what conditions the interference...... coordination is worthwhile compared to the universal frequency reuse. Results show that the inter-cell interference depends on the small cell deployment in the urban environment (e.g. streets and squares) and on the network load condition. In case of deployment along urban streets, the inter-cell interference...

  1. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy...... and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking...... and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5...

  2. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Manyu Li

    Full Text Available Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR, and receptor activity-modifying protein 1 (RAMP1. RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR

  3. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression.

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-02-15

    Cystic fibrosis (CF) is one of the most common lethal genetic diseases in which the role of microRNAs has yet to be explored. Predicted to be regulated by miR-126, TOM1 (target of Myb1) has been shown to interact with Toll-interacting protein, forming a complex to regulate endosomal trafficking of ubiquitinated proteins. TOM1 has also been proposed as a negative regulator of IL-1beta and TNF-alpha-induced signaling pathways. MiR-126 is highly expressed in the lung, and we now show for the first time differential expression of miR-126 in CF versus non-CF airway epithelial cells both in vitro and in vivo. MiR-126 downregulation in CF bronchial epithelial cells correlated with a significant upregulation of TOM1 mRNA, both in vitro and in vivo when compared with their non-CF counterparts. Introduction of synthetic pre-miR-126 inhibited luciferase activity in a reporter system containing the full length 3\\'-untranslated region of TOM1 and resulted in decreased TOM1 protein production in CF bronchial epithelial cells. Following stimulation with LPS or IL-1beta, overexpression of TOM1 was found to downregulate NF-kappaB luciferase activity. Conversely, TOM1 knockdown resulted in a significant increase in NF-kappaB regulated IL-8 secretion. These data show that miR-126 is differentially regulated in CF versus non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an important role in regulating innate immune responses in the CF lung. To our knowledge, this study is the first to report of a role for TOM1 in the TLR2\\/4 signaling pathways and the first to describe microRNA involvement in CF.

  4. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    Science.gov (United States)

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  5. Airway management in trauma.

    Science.gov (United States)

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration.

  6. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  7. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye; Farrow, Nigel; Siu, Karen; Parsons, David

    2016-01-01

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  8. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  9. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Background: To evaluate the possibility of airway management using a laryngeal mask airway (LMA) during dental procedures on mentally retarded (MR) patients and patients with genetic diseases. Design: A prospective pilot study. Setting: University Hospital. Methods: A pilot study was designed to induce general ...

  10. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Stevens, Elizabeth Munkebjerg; Larsen, Lars Allan

    2017-01-01

    BACKGROUND: Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical...... surface facing the outside and accessible for analysis of ciliary function. METHODS: We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls...... in the investigation of pathophysiological aspects and drug effects in human nasal airway epithelium....

  11. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    Science.gov (United States)

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  12. Airway necrosis after salvage esophagectomy

    International Nuclear Information System (INIS)

    Tanaka, Norimitsu; Hokamura, Nobukazu; Tachimori, Yuji

    2010-01-01

    Salvage esophagectomy is the sole curative intent treatment for patients with persistent or recurrent locoregional disease after definitive chemoradiotherapy (CRT) for esophageal carcinoma. However, salvage esophagectomy is a very high-risk operation, and airway necrosis is a fatal complication. Between 1997 and 2007, 49 patients with thoracic esophageal cancer underwent salvage esophagectomy after definitive CRT. We retrospectively compared patients with and without airway necrosis, and investigated operative procedures related to airway necrosis. Airway necrosis occurred in five patients (10.2%), of four patients (80%) died during their hospitalization. Airway necrosis seemed to be closely related to operative procedures, such as resection of bronchial artery and cervical and subcarinal lymph node dissection. Bronchogastric fistula following necrosis of gastric conduit occured in 2 patients reconstructed through posterior mediastinal route. Airway necrosis is a highly lethal complication after salvage esophagectomy. It is important in salvage esophagectomy to take airway blood supply into consideration sufficiently and to reconstruct through retrosternal route to prevent bronchogastric fistula. (author)

  13. Relapsing polychondritis and airway involvement.

    Science.gov (United States)

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  14. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single ...

  15. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    Science.gov (United States)

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  16. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma.

    Science.gov (United States)

    Chen, Jun; Miller, Marina; Unno, Hirotoshi; Rosenthal, Peter; Sanderson, Michael J; Broide, David H

    2017-09-07

    Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3 Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3 Zp3-Cre mice, which do not have a blood supply. Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3 Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca 2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Postnatal remodeling of the neural components of the epithelial-mesenchymal trophic unit in the proximal airways of infant rhesus monkeys exposed to ozone and allergen.

    Science.gov (United States)

    Larson, Shawnessy D; Schelegle, Edward S; Walby, William F; Gershwin, Laural J; Fanuccihi, Michelle V; Evans, Michael J; Joad, Jesse P; Tarkington, Brian K; Hyde, Dallas M; Plopper, Charles G

    2004-02-01

    Nerves and neuroendocrine cells located within the airway epithelium are ideally situated to sample a changing airway environment, to transmit that information to the central nervous system, and to promote trophic interactions between epithelial and mesenchymal cellular and acellular components. We tested the hypothesis that the environmental stresses of ozone (O(3)) and house dust mite allergen (HDMA) in atopic infant rhesus monkeys alter the distribution of airway nerves. Midlevel bronchi and bronchioles from 6-month-old infant monkeys that inhaled filtered air (FA), house dust mite allergen HDMA, O(3), or HDMA + O(3) for 11 episodes (5 days each, 0.5 ppm O(3), 8 h/day followed by 9 days recovery) were examined using immunohistochemistry for the presence of Protein gene product 9.5 (PGP 9.5), a nonspecific neural indicator, and calcitonin gene-related peptide (CGRP). Along the axial path between the sixth and the seventh intrapulmonary airway generations, there were small significant (P < 0.05) decrements in the density of epithelial nerves in monkeys exposed to HDMA or O(3), while in monkeys exposed to HDMA + O(3) there was a greater significant (P < 0.05) reduction in epithelial innervation. In animals exposed to O(3) or HDMA + O(3) there was a significant increase in the number of PGP 9.5 positive/CGRP negative cells that were anchored to the basal lamina and emitted projections in primarily the lateral plain and often intertwined with projections and cell bodies of other similar cells. We conclude that repeated cycles of acute injury and repair associated with the episodic pattern of ozone and allergen exposure alter the normal development of neural innervation of the epithelial compartment and the appearance of a new population of undefined PGP 9.5 positive cells within the epithelium.

  18. The effect of body weight on distal airway function and airway inflammation.

    Science.gov (United States)

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; plimitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  19. Pathway reconstruction of airway remodeling in chronic lung diseases: a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ali Najafi

    Full Text Available Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD, asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients.

  20. L-Thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1

    NARCIS (Netherlands)

    Dekkers, Bart G J; Naeimi, Saeideh; Bos, I. Sophie T.; Menzen, Mark H; Halayko, Andrew John; Sadeghi Hashjin, Goudarz; Meurs, Herman

    2015-01-01

    Hypothyroidism may reduce, whereas hyperthyroidism may aggravate asthma symptoms. The mechanisms underlying this relationship are largely unknown. Since thyroid hormones have central roles in cell growth and differentiation, we hypothesized that airway remodeling, in particular increased airway

  1. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.

    Science.gov (United States)

    Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem

    2018-04-20

    Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways

  2. Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae.

    Science.gov (United States)

    Urb, Mirjam; Snarr, Brendan D; Wojewodka, Gabriella; Lehoux, Mélanie; Lee, Mark J; Ralph, Benjamin; Divangahi, Maziar; King, Irah L; McGovern, Toby K; Martin, James G; Fraser, Richard; Radzioch, Danuta; Sheppard, Donald C

    2015-09-01

    Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Airway inflammation and upper respiratory tract infection in athletes: is there a link?

    Science.gov (United States)

    Bermon, Stéphane

    2007-01-01

    Upper Respiratory Tract Infection (URTI) is regarded as the most common medical condition affecting both highly trained and elite athletes, in particular those participating in endurance events. The causes of these disturbances, also occurring during training, remain unclear. Viruses such as rhinovirus, adenovirus and para-influenza virus are frequently reported as the source of URTI. However, in a few comprehensive laboratory and epidemiological studies which reported at least a 30% incidence of URTI, no identifiable pathogens were either reported or studied. A recent, longitudinal study investigated symptomatology and pathogenic etiology in sedentary controls, recreational and elite athletes. The highest incidence of URTI occurred in elite athletes. However; only 11 out of 37 illness episodes overall had pathogenic origins, and most of the unidentified upper respiratory illnesses were shorter in duration and less severe than infectious ones. This concept of inflammation without infection in athletes is quite new and leads us to consider other explanatory pathophysiological conditions. Increases in airway neutrophils, eosinophils and lymphocytes have been described under resting conditions in endurance sports, swimmers and cross-country skiers. These inflammatory patterns may be due to pollutants or chlorine-related compounds in swimmers. After intense exercise similar airways cellular profiles have been reported, with a high amount of bronchial epithelial cells. This increase in airway inflammatory cells in athletes can result from a hyperventilation-induced increase in airway osmolarity stimulating bronchial epithelial cells to release chemotactic factors. Fortunately, in most cases, these inflammatory cells express rather low level of adhesion molecules, explaining why airway inflammation may appear blunted in athletes despite numerous inflammatory cellular elements. However it can be hypothesized that a transient loss of control of this local inflammation, due

  4. Airway malacia in children with achondroplasia.

    Science.gov (United States)

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  5. The involvement of glycosaminoglycans in airway disease associated with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    Individuals with cystic fibrosis (CF) present with severe airway destruction and extensive bronchiectasis. It has been assumed that these structural airway changes have occurred secondary to infection and inflammation, but recent studies suggest that glycosaminoglycan (GAG) remodelling may be an important independent parallel process. Evidence is accumulating that not only the concentration, but also sulphation of GAGs is markedly increased in CF bronchial cells and tissues. Increased expression of GAGs and, in particular, heparan sulphate, has been linked to a sustained inflammatory response and neutrophil recruitment to the CF airways. This present review discusses the biological role of GAGs in the lung, as well as their involvement in CF respiratory disease, and their potential as therapeutic targets.

  6. Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Venkatachalem Sathish

    2015-06-01

    Full Text Available Aims: Cigarette smoke (CS in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE on 17β-estradiol (E2 signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1 phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS.

  7. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J

    2013-01-01

    -dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  8. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  9. Comparison of airway responses in sheep of different age in precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Verena A Lambermont

    Full Text Available Animal models should display important characteristics of the human disease. Sheep have been considered particularly useful to study allergic airway responses to common natural antigens causing human asthma. A rationale of this study was to establish a model of ovine precision-cut lung slices (PCLS for the in vitro measurement of airway responses in newborn and adult animals. We hypothesized that differences in airway reactivity in sheep are present at different ages.Lambs were delivered spontaneously at term (147d and adult sheep lived till 18 months. Viability of PCLS was confirmed by the MTT-test. To study airway provocations cumulative concentration-response curves were performed with different allergic response mediators and biogenic amines. In addition, electric field stimulation, passive sensitization with house dust mite (HDM and mast cells staining were evaluated.PCLS from sheep were viable for at least three days. PCLS of newborn and adult sheep responded equally strong to methacholine and endothelin-1. The responses to serotonin, leukotriene D4 and U46619 differed with age. No airway contraction was evoked by histamine, except after cimetidine pretreatment. In response to EFS, airways in PCLS from adult and newborn sheep strongly contracted and these contractions were atropine sensitive. Passive sensitization with HDM evoked a weak early allergic response in PCLS from adult and newborn sheep, which notably was prolonged in airways from adult sheep. Only few mast cells were found in the lungs of non-sensitized sheep at both ages.PCLS from sheep lungs represent a useful tool to study pharmacological airway responses for at least three days. Sheep seem well suited to study mechanisms of cholinergic airway contraction. The notable differences between newborn and adult sheep demonstrate the importance of age in such studies.

  10. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  11. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  12. Clinical review: Management of difficult airways

    Science.gov (United States)

    Langeron, Olivier; Amour, Julien; Vivien, Benoît; Aubrun, Frédéric

    2006-01-01

    Difficulties or failure in airway management are still important factors in morbidity and mortality related to anesthesia and intensive care. A patent and secure airway is essential to manage anesthetized or critically ill patients. Oxygenation maintenance during tracheal intubation is the cornerstone of difficult airway management and is always emphasized in guidelines. The occurrence of respiratory adverse events has decreased in claims for injuries due to inadequate airway management mainly at induction of anesthesia. Nevertheless, claim reports emphasize that airway emergencies, tracheal extubation and/or recovery of anesthesia phases are still associated with death or brain damage, indicating that additional educational support and management strategies to improve patient safety are required. The present brief review analyses specific problems of airway management related to difficult tracheal intubation and to difficult mask ventilation prediction. The review will focus on basic airway management including preoxygenation, and on some oxygenation and tracheal intubation techniques that may be performed to solve a difficult airway. PMID:17184555

  13. Clinical review: management of difficult airways.

    Science.gov (United States)

    Langeron, Olivier; Amour, Julien; Vivien, Benoît; Aubrun, Frédéric

    2006-01-01

    Difficulties or failure in airway management are still important factors in morbidity and mortality related to anesthesia and intensive care. A patent and secure airway is essential to manage anesthetized or critically ill patients. Oxygenation maintenance during tracheal intubation is the cornerstone of difficult airway management and is always emphasized in guidelines. The occurrence of respiratory adverse events has decreased in claims for injuries due to inadequate airway management mainly at induction of anesthesia. Nevertheless, claim reports emphasize that airway emergencies, tracheal extubation and/or recovery of anesthesia phases are still associated with death or brain damage, indicating that additional educational support and management strategies to improve patient safety are required. The present brief review analyses specific problems of airway management related to difficult tracheal intubation and to difficult mask ventilation prediction. The review will focus on basic airway management including preoxygenation, and on some oxygenation and tracheal intubation techniques that may be performed to solve a difficult airway.

  14. A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells.

    Science.gov (United States)

    Cao, Pengxing; Tan, Xiahui; Donovan, Graham; Sanderson, Michael J; Sneyd, James

    2014-08-01

    The inositol trisphosphate receptor ([Formula: see text]) is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the [Formula: see text] have arisen. Firstly, how best should the [Formula: see text] be modeled? In other words, what fundamental properties of the [Formula: see text] allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of [Formula: see text], is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the [Formula: see text], and thus the behavior of the [Formula: see text] is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, [Formula: see text] stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic [Formula: see text] models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified [Formula: see text] models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.

  15. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact that they may have the ability to affect epithelial cell function and physiological processes on their own.Keywords: CFTR, cystic fibrosis transmembrane conductance regulator, ion channels, K+ channels, lung cells, polystyrene nanoparticle 

  16. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    Science.gov (United States)

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  17. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory

  18. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats.

    Science.gov (United States)

    Wang, T; Liu, Y; Chen, L; Wang, X; Hu, X-R; Feng, Y-L; Liu, D-S; Xu, D; Duan, Y-P; Lin, J; Ou, X-M; Wen, F-Q

    2009-05-01

    Airway inflammation with mucus overproduction is a distinguishing pathophysiological feature of many chronic respiratory diseases. Phosphodiesterase (PDE) inhibitors have shown anti-inflammatory properties. In the present study, the effect of sildenafil, a potent inhibitor of PDE5 that selectively degrades cyclic guanosine 3',5'-monophosphate (cGMP), on acrolein-induced inflammation and mucus production in rat airways was examined. Rats were exposed to acrolein for 14 and 28 days. Sildenafil or distilled saline was administered intragastrically prior to acrolein exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell count and the detection of pro-inflammatory cytokine levels. Lung tissue was examined for cGMP content, nitric oxide (NO)-metabolite levels, histopathological lesion scores, goblet cell metaplasia and mucin production. The results suggested that sildenafil pretreatment reversed the significant decline of cGMP content in rat lungs induced by acrolein exposure, and suppressed the increase of lung NO metabolites, the BALF leukocyte influx and pro-inflammatory cytokine release. Moreover, sildenafil pretreatment reduced acrolein-induced Muc5ac mucin synthesis at both mRNA and protein levels, and attenuated airway inflammation, as well as epithelial hyperplasia and metaplasia. In conclusion, sildenafil could attenuate airway inflammation and mucus production in the rat model, possibly through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, and, thus, might have a therapeutic potential for chronic airway diseases.

  19. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    Science.gov (United States)

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human

  20. Treatment of stage III non-small cell lung cancer and limited-disease small-cell lung cancer

    NARCIS (Netherlands)

    El Sharouni, S.Y.

    2009-01-01

    This thesis concerns the treatment of stage III non-small cell lung cancer (NSCLC) and limited disease small-cell lung cancer (SCLC). We described a systematic review on the clinical results of radiotherapy, combined or not with chemotherapy, for inoperable NSCLC stage III with the aim to define the

  1. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    Science.gov (United States)

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Securing the Airway in Pretracheal Dermal Metastases From Oropharyngeal Carcinoma: A Case Report.

    Science.gov (United States)

    Truong, Angela T; Truong, Dam-Thuy; Gillenwater, Ann M; Soliz, Jose M; Rahlfs, Thomas F

    2018-04-23

    Dermal metastases reflect the ominous and aggressive spread of oropharyngeal squamous cell carcinomas. The rampant proliferation of these metastatic tumors to the neck results in respiratory distress and impending airway obstruction. We report a case of a patient with massive neck dermal metastases requiring urgent airway control for intermittent stridor. Awake tracheostomy is generally regarded as the gold standard to manage the compromised airway. However, in this unusual case, after discussion between surgeon and anesthesiologist, because of the anticipated formidable difficulties in performing awake tracheostomy, it was decided that awake fiberoptic intubation would provide the best chance of success.

  3. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  4. Vessel-guided airway tree segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2010-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained to di...

  5. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    Science.gov (United States)

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  6. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis.

    Science.gov (United States)

    Shaler, Christopher R; Horvath, Carly; Lai, Rocky; Xing, Zhou

    2012-01-01

    Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.

  7. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  8. Evolution and adaptation of Pseudomonas aeruginosa in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Madsen Sommer, Lea Mette

    of natural environments, the primary obstacle is re-sampling of the samepopulation over time, especially if the population is small.Nevertheless, it has been accomplished: Chronic airway infections of cystic fibrosis (CF) patients have offered a unique view into the adaptationand evolution of Pseudomonas...... to the CF airways. From this analysis we found common clonal lineages among the patients, evidence of patient-to-patient transmission, historic contingencies, and convergent evolution of 52 candidate pathoadaptive genes. By further genome sequencing 26 P. aeruginosa isolates from four Italian CF patients...

  9. Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis.

    Science.gov (United States)

    Regamey, Nicolas; Tsartsali, Lemonia; Hilliard, Tom N; Fuchs, Oliver; Tan, Hui-Leng; Zhu, Jie; Qiu, Yu-Sheng; Alton, Eric W F W; Jeffery, Peter K; Bush, Andrew; Davies, Jane C

    2012-02-01

    Studies in cystic fibrosis (CF) generally focus on inflammation present in the airway lumen. Little is known about inflammation occurring in the airway wall, the site ultimately destroyed in end-stage disease. To test the hypothesis that inflammatory patterns in the lumen do not reflect those in the airway wall of children with CF. Bronchoalveolar lavage (BAL) fluid and endobronchial biopsies were obtained from 46 children with CF and 16 disease-free controls. BAL cell differential was assessed using May-Gruenwald-stained cytospins. Area profile counts of bronchial tissue immunopositive inflammatory cells were determined. BAL fluid from children with CF had a predominance of neutrophils compared with controls (median 810×10(3)/ml vs 1×10(3)/ml, p<0.0001). In contrast, subepithelial bronchial tissue from children with CF was characterised by a predominance of lymphocytes (median 961 vs 717 cells/mm(2), p=0.014), of which 82% were (CD3) T lymphocytes. In chest exacerbations, BAL fluid from children with CF had more inflammatory cells of all types compared with those with stable disease whereas, in biopsies, only the numbers of lymphocytes and macrophages, but not of neutrophils, were higher. A positive culture of Pseudomonas aeruginosa was associated with higher numbers of T lymphocytes in subepithelial bronchial tissue (median 1174 vs 714 cells/mm(2), p=0.029), but no changes were seen in BAL fluid. Cell counts in BAL fluid and biopsies were positively correlated with age but were unrelated to each other. The inflammatory response in the CF airway is compartmentalised. In contrast to the neutrophil-dominated inflammation present in the airway lumen, the bronchial mucosa is characterised by the recruitment and accumulation of lymphocytes.

  10. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  11. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  12. dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses.

    Science.gov (United States)

    Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min

    2017-08-04

    German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.

  13. Small cell networks deployment, management, and optimization

    CERN Document Server

    Claussen, Holger; Ho, Lester; Razavi, Rouzbeh; Kucera, Stepan

    2018-01-01

    Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject--offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applicat...

  14. The Development and Validation of an In Vitro Airway Model to Assess Realistic Airway Deposition and Drug Permeation Behavior of Orally Inhaled Products Across Synthetic Membranes.

    Science.gov (United States)

    Huynh, Bao K; Traini, Daniela; Farkas, Dale R; Longest, P Worth; Hindle, Michael; Young, Paul M

    2018-04-01

    Current in vitro approaches to assess lung deposition, dissolution, and cellular transport behavior of orally inhaled products (OIPs) have relied on compendial impactors to collect drug particles that are likely to deposit in the airway; however, the main drawback with this approach is that these impactors do not reflect the airway and may not necessarily represent drug deposition behavior in vivo. The aim of this article is to describe the development and method validation of a novel hybrid in vitro approach to assess drug deposition and permeation behavior in a more representative airway model. The medium-sized Virginia Commonwealth University (VCU) mouth-throat (MT) and tracheal-bronchial (TB) realistic upper airway models were used in this study as representative models of the upper airway. The TB model was modified to accommodate two Snapwell ® inserts above the first TB airway bifurcation region to collect deposited nebulized ciprofloxacin-hydrochloride (CIP-HCL) droplets as a model drug aerosol system. Permeation characteristics of deposited nebulized CIP-HCL droplets were assessed across different synthetic membranes using the Snapwell test system. The Snapwell test system demonstrated reproducible and discriminatory drug permeation profiles for already dissolved and nebulized CIP-HCL droplets through a range of synthetic permeable membranes under different test conditions. The rate and extent of drug permeation depended on the permeable membrane material used, presence of a stirrer in the receptor compartment, and, most importantly, the drug collection method. This novel hybrid in vitro approach, which incorporates a modified version of a realistic upper airway model, coupled with the Snapwell test system holds great potential to evaluate postairway deposition characteristics, such as drug permeation and particle dissolution behavior of OIPs. Future studies will expand this approach using a cell culture-based setup instead of synthetic membranes, within a

  15. Assessment of airway compression on chest radiographs in children with pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Richter-Joubert, Lisel; Andronikou, Savvas; Workman, Lesley; Zar, Heather J.

    2017-01-01

    Because small, pliable paediatric airways are easily compressed by enlarged lymph nodes, detection of radiographic airway compression might be an objective criterion for diagnosing pulmonary tuberculosis. To investigate the frequency and inter-observer agreement of airway compression on chest radiographs in children with pulmonary tuberculosis compared to those with a different lower respiratory tract infection. Chest radiographs of children with suspected pulmonary tuberculosis were read by two readers according to a standardised format and a third reader when there was disagreement. Radiographs of children with proven pulmonary tuberculosis were compared to those with a different lower respiratory tract infection. We evaluated frequency and location of radiographic airway compression. Findings were correlated with human immunodeficiency virus (HIV) status and age. We assessed inter-observer agreement using kappa statistics. We reviewed radiographs of 505 children (median age 25.9 months, interquartile range [IQR] 14.3-62.2). Radiographic airway compression occurred in 54/188 (28.7%) children with proven pulmonary tuberculosis and in 24/317 (7.6%) children with other types of lower respiratory tract infection (odds ratio [OR] 4.9; 95% confidence interval [CI] 2.9-8.3). A higher frequency of radiographic airway compression occurred in infants (22/101, or 21.8%) compared to older children (56/404, or 13.9%; OR 1.7; 95% CI 1.0-3.0). We found no association between airway compression and HIV infection. Inter-observer agreement ranged from none to fair (kappa of 0.0-0.4). There is a strong association between airway compression on chest radiographs and confirmed pulmonary tuberculosis. However this finding's clinical use as an objective criterion for diagnosis of pulmonary tuberculosis in children is limited by poor inter-observer agreement. (orig.)

  16. Assessment of airway compression on chest radiographs in children with pulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Richter-Joubert, Lisel [Groote Schuur Hospital and University of Cape Town, Department of Radiology, Cape Town (South Africa); Andronikou, Savvas [Groote Schuur Hospital and University of Cape Town, Department of Radiology, Cape Town (South Africa); Bristol Royal Hospital for Children and the University of Bristol, Department of Paediatric Radiology, Bristol (United Kingdom); Workman, Lesley; Zar, Heather J. [University of Cape Town, Department of Paediatrics and Child Health and MRC Unit on Child and Adolescent Health, Red Cross War Memorial Children' s Hospital, Cape Town (South Africa)

    2017-09-15

    Because small, pliable paediatric airways are easily compressed by enlarged lymph nodes, detection of radiographic airway compression might be an objective criterion for diagnosing pulmonary tuberculosis. To investigate the frequency and inter-observer agreement of airway compression on chest radiographs in children with pulmonary tuberculosis compared to those with a different lower respiratory tract infection. Chest radiographs of children with suspected pulmonary tuberculosis were read by two readers according to a standardised format and a third reader when there was disagreement. Radiographs of children with proven pulmonary tuberculosis were compared to those with a different lower respiratory tract infection. We evaluated frequency and location of radiographic airway compression. Findings were correlated with human immunodeficiency virus (HIV) status and age. We assessed inter-observer agreement using kappa statistics. We reviewed radiographs of 505 children (median age 25.9 months, interquartile range [IQR] 14.3-62.2). Radiographic airway compression occurred in 54/188 (28.7%) children with proven pulmonary tuberculosis and in 24/317 (7.6%) children with other types of lower respiratory tract infection (odds ratio [OR] 4.9; 95% confidence interval [CI] 2.9-8.3). A higher frequency of radiographic airway compression occurred in infants (22/101, or 21.8%) compared to older children (56/404, or 13.9%; OR 1.7; 95% CI 1.0-3.0). We found no association between airway compression and HIV infection. Inter-observer agreement ranged from none to fair (kappa of 0.0-0.4). There is a strong association between airway compression on chest radiographs and confirmed pulmonary tuberculosis. However this finding's clinical use as an objective criterion for diagnosis of pulmonary tuberculosis in children is limited by poor inter-observer agreement. (orig.)

  17. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie

    2012-01-01

    of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella...... spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria...... provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella...

  18. Obstetric airway management

    African Journals Online (AJOL)

    of stomach contents into the lungs during obstetric anesthesia.8 ... Both of the mortalities occurred secondary to solid ... The large number of deaths ... subcategories of patients as a first-line airway device, and are increasingly being ... outline the problems with obstetric airway management, and then focus on a few of the ...

  19. Primary Paediatric Bronchial Airway Epithelial Cell in Vitro Responses to Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Neil McInnes

    2016-03-01

    Full Text Available The bronchial airway epithelial cell (BAEC is the site for initial encounters between inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of pro inflammatory interleukins (IL-6 and IL-8 from primary BAEC cultured from children will be increased after in vitro exposure to common environmental factors. Primary BAEC were obtained from children undergoing clinically indicated routine general anaesthetic procedures. Cells were exposed to three different concentrations of lipopolysaccharide (LPS or house dust mite allergen (HDM or particulates extracted from side stream cigarette smoke (SSCS. BAEC were obtained from 24 children (mean age 7.0 years and exposed to stimuli. Compared with the negative control, there was an increase in IL-6 and IL-8 release after exposure to HDM (p ≤ 0.001 for both comparisons. There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023. There was no change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures.

  20. Pediatric Trainees Managing a Difficult Airway: Comparison of Laryngeal Mask Airway, Direct, and Video-Assisted Laryngoscopy

    Directory of Open Access Journals (Sweden)

    Art Ambrosio MD

    2017-05-01

    Full Text Available Objective Difficult airway management is a key skill required by all pediatric physicians, yet training on multiple modalities is lacking. The objective of this study was to compare the rate of, and time to, successful advanced infant airway placement with direct laryngoscopy, video-assisted laryngoscopy, and laryngeal mask airway (LMA in a difficult airway simulator. This study is the first to compare the success with 3 methods for difficult airway management among pediatric trainees. Study Design Randomized crossover pilot study. Setting Tertiary academic medical center. Methods Twenty-two pediatric residents, interns, and medical students were tested. Participants were provided 1 training session by faculty using a normal infant manikin. Subjects then performed all 3 of the aforementioned advanced airway modalities in a randomized order on a difficult airway model of a Robin sequence. Success was defined as confirmed endotracheal intubation or correct LMA placement by the testing instructor in ≤120 seconds. Results Direct laryngoscopy demonstrated a significantly higher placement success rate (77.3% than video-assisted laryngoscopy (36.4%, P = .0117 and LMA (31.8%, P = .0039. Video-assisted laryngoscopy required a significantly longer amount of time during successful intubations (84.8 seconds; 95% CI, 59.4-110.1 versus direct laryngoscopy (44.9 seconds; 95% CI, 33.8-55.9 and LMA placement (36.6 seconds; 95% CI, 24.7-48.4. Conclusions Pediatric trainees demonstrated significantly higher success using direct laryngoscopy in a difficult airway simulator model. However, given the potential lifesaving implications of advanced airway adjuncts, including video-assisted laryngoscopy and LMA placement, more extensive training on adjunctive airway management techniques may be useful for trainees.

  1. Randomized crossover comparison of the laryngeal mask airway classic with i-gel laryngeal mask airway in the management of difficult airway in post burn neck contracture patients

    Directory of Open Access Journals (Sweden)

    Jeevan Singh

    2012-01-01

    Full Text Available Purpose: The objective of the study was to compare the performance of i-gel supraglottic airway with cLMA in difficult airway management in post burn neck contracture patients and assess the feasibility of i-gel use for emergency airway management in difficult airway situation with reduced neck movement and limited mouth opening. Methods: Prospective, crossover, randomized controlled trial was performed amongst forty eight post burn neck contracture patients with limited mouth opening and neck movement. i-gel and cLMA were placed in random order in each patient. Primary outcome was overall success rate. Other measurements were time to successful ventilation, airway leak pressure, fiberoptic glottic view, visualization of square wave pattern. Results: Success rate for the i-gel was 91.7% versus 79.2% for the cLMA. i-gel required shorter insertion time (19.3 seconds vs. 23.5 seconds, P=0.000. Airway leak pressure difference was statistically significant (i-gel 21.2 cm H20; cLMA 16.9 cm H 2 0; P=0.00. Fiberoptic view through the i-gel showed there were less epiglottic downfolding and better fiberoptic view of the glottis than cLMA. Overall agreement in insertion outcome for i-gel was 22/24 (91.7% successes and 2/24(8.3% failure and for cLMA, 19/24 (79.16% successes and 5/24 (16.7% failure in the first attempt. Conclusion: The i-gel is cheap, effective airway device which is easier to insert and has better clinical performance in the difficult airway management of the airway in the post burn contracture of the neck. Our study shows that i-gel is feasible for emergency airway management in difficult airway situation with reduced neck movement and limited mouth opening in post burn neck.

  2. The multi-faceted role of allergen exposure to the local airway mucosa

    NARCIS (Netherlands)

    Golebski, K.; Röschmann, K. I. L.; Toppila-Salmi, S.; Hammad, H.; Lambrecht, B. N.; Renkonen, R.; Fokkens, W. J.; van Drunen, C. M.

    2013-01-01

    Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by

  3. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bergström, Ulrika [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Organismal Biology, Uppsala University, SE-751 Uppsala (Sweden); Ågren, Lina [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Österlund, Lars [Dept of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 Uppsala (Sweden); Sandström, Thomas [Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden)

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.

  4. The laminin beta 1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Background: Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can

  5. Preventative Effect of an Herbal Preparation (HemoHIM) on Development of Airway Inflammation in Mice via Modulation of Th1/2 Cells Differentiation

    OpenAIRE

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured w...

  6. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Dombu, Christophe Youta; Kroubi, Maya; Zibouche, Rima; Matran, Regis; Betbeder, Didier, E-mail: dbetbeder@aol.com [EA 4483, IFR 114, Laboratoire de Physiologie, Faculte de Medecine Pole Recherche, Universite de Lille 2, 1 place de Verdun, 59045 Lille Cedex (France)

    2010-09-03

    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 deg. C compared with 37 deg. C, or by NaN{sub 3} treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.

  7. Bovine milk fat enriched in conjugated linoleic and vaccenic acids attenuates allergic airway disease in mice.

    Science.gov (United States)

    Kanwar, R K; Macgibbon, A K; Black, P N; Kanwar, J R; Rowan, A; Vale, M; Krissansen, G W

    2008-01-01

    It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases. We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses. C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge. Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective. Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.

  8. CT analysis of peripheral airway and lung lesions of patients with asthma and COPD

    International Nuclear Information System (INIS)

    Itoh, Takayuki; Tanaka, Hiroshi; Sahara, Shin; Ohnishi, Tetsuro; Abe, Shosaku; Ueno, Kan

    2002-01-01

    We compared peripheral airway and lung parenchyma images among patients with asthma, chronic obstructive pulmonary disease (COPD) and healthy controls using high-resolution CT images taken by a multidetector-row CT scanner (Aquillion, Toshiba, Japan). CT images were saved as digital image and communication (DICOM) files and %low attenuation area (LAA) (<-960 Hounsfield Unit) was calculated with the imaging software. %LAA was significantly increased in patients with COPD (p<0.0001) and smokers with stable asthma (p<0.01) as compared with healthy controls. In stable asthma, mucous plugging in the airway sometime appeared, while during asthma exacerbation small nodules and mosaic pattern of peripheral lung field appeared. Since smoker's patients with asthma have hyper-secretion of sputum due to smoking, mucous plugging and airway inflammation may easily occur and consequently air trapping may increase. In the future, image diagnosis of peripheral airway should develop for early detection of airway diseases as a non-invasive examination. On the other hand, micro focus X-ray computed tomography system (Hitachi Medico Technology Co., Japan) can display CT images closely similar to the pictures of microscopic findings and it will be a useful tool to analyze radiologic-pathologic correlations of peripheral airways and lung parenchyma. (author)

  9. Morphometric Characterization of Small Cell Lymphocytic Lymphoma

    Directory of Open Access Journals (Sweden)

    Chisoi Anca

    2014-11-01

    Full Text Available The morphometry in histopathology is used to characterize cell populations belonging to different tissues and to identify differences in their parameters with prognostic implications. To achieve morphometric examination were selected 6 of 24 cases identified as small cell lymphocytic lymphoma. For each case analysis was done on five fields, for each field measuring the parameters of 20 cells. The studied parameters were for cytoplasm: cytoplasmic area, maximum and minimum cytoplasmic diameter, cytoplasmic perimeter; for nucleus were measured: nuclear area, minimum and maximum nuclear diameter, nuclear perimeter, nuclear contour index, nuclear ellipticity index, nuclear irregularity index. Also the nucleocytoplasmic ratio was calculated in all studied cases. Small cell lymphocytic lymphoma is characterized in morphometric terms having a small cytoplasmic area (average 29.206 and also a small nuclear area (mean 28.939 having a nucleo-cytoplasmic ratio appearance suggestive for adult lymphocyte. A nuclear contour index small value (3.946, ellipticity index value also small (3.521 and small nuclear irregularity index (3.965. Standard deviations, in any of the studied morphometric categories, is around or below 1 suggesting monomorphic cell appearance. These morphometric and microscopic features characterized mainly by a small population of adult lymphocytes, monomorphic, with rounded hipercromic nuclei, dense chromatin, support the framing into indolent lymphoma group in terms of clinical outcome.

  10. Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma

    NARCIS (Netherlands)

    Januskevicius, Andrius; Vaitkiene, Simona; Gosens, Reinoud; Janulaityte, Ieva; Hoppenot, Deimante; Sakalauskas, Raimundas; Malakauskas, Kestutis

    2016-01-01

    BACKGROUND: Recent studies have suggested that eosinophils may have a direct effect on airway smooth muscle cells (ASMC), causing their proliferation in patients with asthma, but the precise mechanism of the interaction between these cells remains unknown. We propose that changes in Wnt signaling

  11. Behavioral inhibition in rhesus monkeys (Macaca mulatta is related to the airways response, but not immune measures, commonly associated with asthma.

    Directory of Open Access Journals (Sweden)

    Katie Chun

    Full Text Available Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean=1.25 years, n=24 behaviorally inhibited animals, we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+. Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p=0.031, confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation within

  12. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... specialized CF care and a range of treatment options. Airway Clearance Active Cycle of Breathing Technique Airway ... on their own. Share Facebook Twitter Email More options Print Share Facebook Twitter Email Print Permalink All ...

  13. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Physical Therapy Coughing and Huffing High-Frequency Chest Wall Oscillation Positive Expiratory Pressure Clinical Trials Clinical Trials ... clapping) or vibration to loosen mucus from airway walls. See how different airway clearance techniques work to ...

  14. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... ACTs involve coughing or huffing . Many of them use percussion (clapping) or vibration to loosen mucus from airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ...

  15. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... today. ANNUAL FUND Become a Corporate Supporter Cause Marketing Make a Charitable Gift Our Corporate Supporters Workplace ... Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. Most are easy to ...

  16. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... a range of treatment options. Airway Clearance Active Cycle of Breathing Technique Airway Clearance Techniques Autogenic Drainage ... LEGACY GIFT Sponsor a Participant CF Climb CF Cycle for Life Great Strides Xtreme Hike Participate In ...

  17. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  18. Clinical review: Management of difficult airways

    OpenAIRE

    Langeron, Olivier; Amour, Julien; Vivien, Benoît; Aubrun, Frédéric

    2006-01-01

    Difficulties or failure in airway management are still important factors in morbidity and mortality related to anesthesia and intensive care. A patent and secure airway is essential to manage anesthetized or critically ill patients. Oxygenation maintenance during tracheal intubation is the cornerstone of difficult airway management and is always emphasized in guidelines. The occurrence of respiratory adverse events has decreased in claims for injuries due to inadequate airway management mainl...

  19. The R213G polymorphism in SOD3 protects against allergic airway inflammation

    DEFF Research Database (Denmark)

    Gaurav, Rohit; Varasteh, Jason T; Weaver, Michael R

    2017-01-01

    ) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers...... by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s....

  20. Upper airway obstruction and pulmonary abnormalities due to lymphoproliferative disease following bone marrow transplantation in children

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, B.D. [Department of Diagnostic Imaging, St. Jude Children`s Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105 (United States)]|[Departments of Radiology and Pediatrics, University of Tennessee, Memphis, Tennessee (United States); Heslop, H.E. [Department of Hematology/Oncology, St. Jude Children`s Research Hospital, Department of Pediatrics, University of Tennessee, Memphis, Tennessee (United States); Kaste, S.C. [Department of Diagnostic Imaging, St. Jude Children`s Research Hospital, Department of Radiology, University of Tennessee, Memphis, Tennessee (United States); Bodner, S. [Department of Pathology, St. Jude Children`s Research Hospital, Department of Pathology, University of Tennessee, Memphis, Tennessee (United States)

    1998-07-01

    We report three patients who developed severe supraglottic airway obstruction due to Epstein-Barr virus lymphoproliferative disease following allogeneic bone marrow transplantation. In addition to enlarged pharyngeal lymphoid tissue seen in all three patients, two had supraglottic airway narrowing and two developed pulmonary lymphoproliferative disease. They were treated with unmanipulated T cells or EBV-specific cytotoxic T lymphocytes. Life-threatening upper airway obstruction is a radiologically detectable complication of allogeneic bone marrow transplantation in children. (orig.) With 3 figs., 1 tab., 12 refs.

  1. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Make a Charitable Gift Our Corporate Supporters Workplace Engagement DONATE YOUR PROPERTY eCards for a Cure About ... airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ...

  2. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma.

    Science.gov (United States)

    Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg

    2017-07-01

    In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    Science.gov (United States)

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in excitability persisted beyond the duration of the smooth muscle contraction. 6. These results demonstrate that antigen-antibody-mediated inflammatory processes may enhance the excitability of vagal afferent

  4. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    Science.gov (United States)

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  5. Endoscopic diode-laser applications in airway surgery

    Science.gov (United States)

    Pankratov, Michail M.; Wang, Zhi; Rebeiz, Elie E.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Gleich, Lyon L.

    1994-09-01

    A technique was developed to secure small mucosal grafts onto the airway wound with fibrin/albumin tissue adhesive mixed with ICG dye and irradiated with a 810 nm diode laser. An in vitro study of the tensile strength produced strong mucosal soldering which was adequate to fix grafts in place. In vivo studies showed that wounds with mucosal grafts were completely covered by regenerated squamous cells in 1 week and by ciliated epithelium in 2 weeks. Excellent healing was observed at 6 and 14 days postoperatively and the histology at 28 days found normal epithelium over the vocal cord lesion. This soldering technique is a less traumatic treatment for patients with extensive lesions of the larynx of various origin. Diode laser soldering with ICG-doped fibrin tissue adhesive was evaluated in tracheal anastomosis as a substitute for absorbable sutures. In vitro studies demonstrated strong anastomoses with minimal tissue damage. In vivo animal study showed that these anastomoses had less fibrosis and tissue damage than control animals repaired with sutures only.

  6. Identification of airway mucosal type 2 inflammation by using clinical biomarkers in asthmatic patients.

    Science.gov (United States)

    Silkoff, Philip E; Laviolette, Michel; Singh, Dave; FitzGerald, J Mark; Kelsen, Steven; Backer, Vibeke; Porsbjerg, Celeste M; Girodet, Pierre-Olivier; Berger, Patrick; Kline, Joel N; Chupp, Geoffrey; Susulic, Vedrana S; Barnathan, Elliot S; Baribaud, Frédéric; Loza, Matthew J

    2017-09-01

    The Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study profiled patients with mild, moderate, and severe asthma and nonatopic healthy control subjects. We explored this data set to define type 2 inflammation based on airway mucosal IL-13-driven gene expression and how this related to clinically accessible biomarkers. IL-13-driven gene expression was evaluated in several human cell lines. We then defined type 2 status in 25 healthy subjects, 28 patients with mild asthma, 29 patients with moderate asthma, and 26 patients with severe asthma based on airway mucosal expression of (1) CCL26 (the most differentially expressed gene), (2) periostin, or (3) a multigene IL-13 in vitro signature (IVS). Clinically accessible biomarkers included fraction of exhaled nitric oxide (Feno) values, blood eosinophil (bEOS) counts, serum CCL26 expression, and serum CCL17 expression. Expression of airway mucosal CCL26, periostin, and IL-13-IVS all facilitated segregation of subjects into type 2-high and type 2-low asthmatic groups, but in the ADEPT study population CCL26 expression was optimal. All subjects with high airway mucosal CCL26 expression and moderate-to-severe asthma had Feno values (≥35 ppb) and/or high bEOS counts (≥300 cells/mm 3 ) compared with a minority (36%) of subjects with low airway mucosal CCL26 expression. A combination of Feno values, bEOS counts, and serum CCL17 and CCL26 expression had 100% positive predictive value and 87% negative predictive value for airway mucosal CCL26-high status. Clinical variables did not differ between subjects with type 2-high and type 2-low status. Eosinophilic inflammation was associated with but not limited to airway mucosal type 2 gene expression. A panel of clinical biomarkers accurately classified type 2 status based on airway mucosal CCL26, periostin, or IL-13-IVS gene expression. Use of Feno values, bEOS counts, and serum marker levels (eg, CCL26 and CCL17) in combination might allow patient

  7. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests

    International Nuclear Information System (INIS)

    Achenbach, Tobias; Weinheimer, Oliver; Schmitt, Sabine; Freudenstein, Daniela; Kunz, Richard Peter; Dueber, Christoph; Biedermann, Alexander; Buhl, Roland; Goutham, Edula; Heussel, Claus Peter

    2008-01-01

    Quantitative assessment of airway-wall dimensions by computed tomography (CT) has proven to be a marker of airway-wall remodelling in chronic obstructive pulmonary disease (COPD) patients. The objective was to correlate the wall thickness of large and small airways with functional parameters of airflow obstruction in COPD patients on multi-detector (MD) CT images using a new quantification procedure from a three-dimensional (3D) approach of the bronchial tree. In 31 patients (smokers/COPD, non-smokers/controls), we quantitatively assessed contiguous MDCT cross-sections reconstructed orthogonally along the airway axis, taking the point-spread function into account to circumvent over-estimation. Wall thickness and wall percentage were measured and the per-patient mean/median correlated with FEV1 and FEV1%. A median of 619 orthogonal airway locations was assessed per patient. Mean wall percentage/mean wall thickness/median wall thickness in non-smokers (29.6%/0.69 mm/0.37 mm) was significantly different from the COPD group (38.9%/0.83 mm/0.54 mm). Correlation coefficients (r) between FEV1 or FEV1% predicted and intra-individual means of the wall percentage were -0.569 and -0.560, respectively, with p<0.001. Depending on the parameter, they were increased for airways of 4 mm and smaller in total diameter, being -0.621 (FEV1) and -0.537 (FEV1%) with p < 0.002. The wall thickness was significantly higher in smokers than in non-smokers. In COPD patients, the wall thickness measured as a mean for a given patient correlated with the values of FEV1 and FEV1% predicted. Correlation with FEV1 was higher when only small airways were considered. (orig.)

  8. Airway, responsiveness and inflammation in adolescent elite swimmers

    DEFF Research Database (Denmark)

    Pedersen, Lise; Lund, T.K.; Barnes, P.J.

    2008-01-01

    Background: Whereas increased airway hyperresponsiveness (AHR) and airway inflammation are well documented in adult elite athletes, it remains uncertain whether the same airway changes are present in adolescents involved in elite sport. Objective: To investigate airway responsiveness and airway....... There was no difference in FeNO, cellular composition of sputum, airway reactivity, or prevalence of having AHR to methacholine and/or EVH between swimmers with and without respiratory symptoms. Conclusion: Adolescent elite swimmers do not have significant signs of airway damage after only a few years of intense training...... and competition. This leads us to believe that elite swimmers do not have particularly susceptible airways when they take up competitive swimming when young, but that they develop respiratory symptoms, airway inflammation, and AHR during their swimming careers Udgivelsesdato: 2008/8...

  9. From single cilia to collective waves in human airway ciliated tissues

    Science.gov (United States)

    Cicuta, Pietro; Chioccioli, Maurizio; Feriani, Luigi; Pellicciotta, Nicola; Kotar, Jurij

    I will present experimental results on activity of motile cilia on various scales: from waveforms on individual cilia to the synchronised motion in cilia carpets of airway cells. Model synthetic experiments have given us an understanding of how cilia could couple with each other through forces transmitted by the fluid, and thus coordinate to beat into well organized waves (previous work is reviewed in Annu. Rev. Condens. Matter Phys. 7, 1-26 (2016)). Working with live imaging of airway human cells at the different scales, we can now test whether the biological system satisfies the ``simple'' behavior expected of the fluid flow coupling, or if other factors of mechanical forces transmission need to be accounted for. In general being able to link from the scale of molecular biological activity up to the phenomenology of collective dynamics requires to understand the relevant physical mechanism. This understanding then allows informed diagnostics (and perhaps therapeutic) approaches to a variety of diseases where mucociliary clearance in the airways is compromised. We have started exploring particularly cystic fibrosis, where the rheological properties of the mucus are affected and prevent efficient cilia synchronization. ERC Grant HydroSync.

  10. The operative cooperation and nursing in performing airway stent placement under DSA guidance for treating airway stenosis

    International Nuclear Information System (INIS)

    Yan Baojun; Wu Gang; Han Xinwei; Wang Nan; Shi Jin; Si Wenfeng; Wang Kai; Su Ning; Liu Jia; Hai Dandan

    2011-01-01

    Objective: To discuss the key points of the nursing care for effectively performing airway stent placement under DSA monitoring for airway stenosis. Methods: Corresponding nursing care measures were carried out for 118 patients with airway stenosis who were treated with airway stent placement. Results: The symptom of dyspnea was markedly relieved after stent implantation in all 118 patients with airway stenosis. Conclusion: To strengthen the preoperative psychological nursing and operative posture training, to make close postoperative watch on vital signs, to adopt some prevention measures for possible complications and to give necessary medical advises at the time of discharge are very helpful for patient's recovery after the surgery. (authors)

  11. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  12. Analysis of airways in computed tomography

    DEFF Research Database (Denmark)

    Petersen, Jens

    Chronic Obstructive Pulmonary Disease (COPD) is major cause of death and disability world-wide. It affects lung function through destruction of lung tissue known as emphysema and inflammation of airways, leading to thickened airway walls and narrowed airway lumen. Computed Tomography (CT) imaging...

  13. Emergency surgical airway management in Denmark

    DEFF Research Database (Denmark)

    Rosenstock, C V; Nørskov, A K; Wetterslev, J

    2016-01-01

    for difficult airway management. RESULTS: In the DAD cohort 27 out of 452 461 patients had an ESA representing an incidence of 0.06 events per thousand (95% CI; 0.04 to 0.08). A total of 12 149/452 461 patients underwent Ear-Nose and Throat (ENT) surgery, giving an ESA incidence among ENT patients of 1.6 events...... of which three failed. Reviewers evaluated airway management as satisfactory in 10/27 patients. CONCLUSIONS: The incidence of ESA in the DAD cohort was 0.06 events per thousand. Among ENT patients, the ESA Incidence was 1.6 events per thousand. Airway management was evaluated as satisfactory for 10......BACKGROUND: The emergency surgical airway (ESA) is the final option in difficult airway management. We identified ESA procedures registered in the Danish Anaesthesia Database (DAD) and described the performed airway management. METHODS: We extracted a cohort of 452 461 adult patients undergoing...

  14. Awake Craniotomy: A New Airway Approach.

    Science.gov (United States)

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.

  15. Airway structure and function in Eisenmenger's syndrome.

    Science.gov (United States)

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  16. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  17. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    Science.gov (United States)

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.

  18. RAGE: a new frontier in chronic airways disease

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter AB; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand–RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. PMID:22506507

  19. Camera Embedded Single Lumen Tube as a Rescue Device for Airway Handling during Lung Separation

    DEFF Research Database (Denmark)

    Højberg Holm, Jimmy; Andersen, Claus

    2016-01-01

    .Keywords: Thoracic anesthesia; Airway handling; VivaSight; Vivasight-SL; Lobectomy; Camera-embedded tube; Endotracheal; Lung isolation; Video tube Taking the small stature into account, use of a small conventional 35-Fr right sided DLT was planned for the procedure. As it turned out, this tube could not be passed...

  20. Relationship of airway dimensions with airflow limitation or lung volumes in chronic obstructive pulmonary disease (COPD

    Directory of Open Access Journals (Sweden)

    Masaru Hasegawa

    2006-12-01

    Full Text Available We have recently developed new software to obtain longitudinal images and accurate short axis images of airways with an inner diameter > 2 mm located anywhere in the lung, using curved multiplanar reconstruction. Using this software, we demonstrated in patients with COPD that FEV1 (%predicted was highly correlated with airway dimensions and the correlation coefficients improved as the airway became smaller in size (3. In this study, our aims are to further confirm the significant relationship between airway dimensions and airflow limitation in larger number of subjects, and to examine the relationship of airway dimensions with lung volumes in 95 patients with COPD (stage 0, 10; stage I, 23; stage II, 35; stage III, 24; stage IV, 3. We analyzed the airway dimensions from the 3rd to the 6th generations of the apical bronchus (B1 of the right upper lobe and the anterior basal bronchus (B8 of the right lower lobe. Lung volumes were measured by the helium closed circuit method. Both airway luminal area (Ai and wall area percent (WA% of all the generations, except a few, from the two bronchi were significantly correlated with RV and RV/TLC, but not with TLC or FRC. More importantly, the correlation coefficients (r between airway dimensions and RV/TLC improved as the airways became smaller in size from the 3rd to 6th generations in both bronchi (r = –0.483, –0482, –0.553, –0.624 for Ai of B8; r = 0.316, 0.380, 0.499, 0.551 for WA% of B8. These findings provide further evidence that distal (small airways rather than proximal (large airways are the determinants for airflow limitation in COPD.

  1. Multiscale Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; de Bruijne, Marleen

    2009-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier that is trai...

  2. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    OpenAIRE

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to...

  3. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    Science.gov (United States)

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  4. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production

    Directory of Open Access Journals (Sweden)

    Ju Hee Lee

    2015-01-01

    Full Text Available The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549 and the major constituent, methyl protodioscin (MP, also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF- α from A549 cells at 10–100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS- induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100–400 mg/kg and 30–60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders.

  5. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  6. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway.

    Science.gov (United States)

    Li, Hong-Yi; Meng, Jing-Xia; Liu, Zhen; Liu, Xiao-Wen; Huang, Yu-Guang; Zhao, Jing

    2018-06-01

    Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.

  7. Airway injury during emergency transcutaneous airway access: a comparison at cricothyroid and tracheal sites.

    LENUS (Irish Health Repository)

    Salah, Nazar

    2009-12-01

    Oxygenation via the cricothyroid membrane (CTM) may be required in emergencies, but inadvertent tracheal cannulation may occur. In this study, we compared airway injury between the tracheal and CTM sites using different techniques for airway access.

  8. Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability.

    Directory of Open Access Journals (Sweden)

    Shaoyan Zhang

    Full Text Available Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR. The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease.Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR, and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction.Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05. There was no increase CFTR mRNA.Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability. The foundation for a

  9. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis. Objective airway-artery quantification

    International Nuclear Information System (INIS)

    Kuo, Wieying; Tiddens, Harm A.W.M.; Bruijne, Marleen de; Petersen, Jens; Nasserinejad, Kazem; Ozturk, Hadiye; Chen, Yong; Perez-Rovira, Adria

    2017-01-01

    To quantify airway and artery (AA)-dimensions in cystic fibrosis (CF) and control patients for objective CT diagnosis of bronchiectasis and airway wall thickness (AWT). Spirometer-guided inspiratory and expiratory CTs of 11 CF and 12 control patients were collected retrospectively. Airway pathways were annotated semi-automatically to reconstruct three-dimensional bronchial trees. All visible AA-pairs were measured perpendicular to the airway axis. Inner, outer and AWT (outer-inner) diameter were divided by the adjacent artery diameter to compute A in A-, A out A- and A WT A-ratios. AA-ratios were predicted using mixed-effects models including disease status, lung volume, gender, height and age as covariates. Demographics did not differ significantly between cohorts. Mean AA-pairs CF: 299 inspiratory; 82 expiratory. Controls: 131 inspiratory; 58 expiratory. All ratios were significantly larger in inspiratory compared to expiratory CTs for both groups (p<0.001). A out A- and A WT A-ratios were larger in CF than in controls, independent of lung volume (p<0.01). Difference of A out A- and A WT A-ratios between patients with CF and controls increased significantly for every following airway generation (p<0.001). Diagnosis of bronchiectasis is highly dependent on lung volume and more reliably diagnosed using outer airway diameter. Difference in bronchiectasis and AWT severity between the two cohorts increased with each airway generation. (orig.)

  10. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; McLachlan, Anne; Atkinson, Jeffrey J; Hardie, William D; Korfhagen, Thomas R; Dietsch, Maggie; Liu, Yang; Di, Peter Y P; Wesselkamper, Scott C; Borchers, Michael T; Leikauf, George D

    2009-11-01

    Induced mainly by cigarette smoking, chronic obstructive pulmonary disease (COPD) is a global public health problem characterized by progressive difficulty in breathing and increased mucin production. Previously, we reported that acrolein levels found in COPD sputum could activate matrix metalloproteinase-9 (MMP9). To determine whether acrolein increases expression and activity of MMP14, a critical membrane-bound endopeptidase that can initial a MMP-activation cascade. MMP14 activity and adduct formation were measured following direct acrolein treatment. MMP14 expression and activity was measured in human airway epithelial cells. MMP14 immunohistochemistry was performed with COPD tissue, and in acrolein- or tobacco-exposed mice. In a cell-free system, acrolein, in concentrations equal to those found in COPD sputum, directly adducted cysteine 319 in the MMP14 hemopexin-like domain and activated MMP14. In cells, acrolein increased MMP14 activity, which was inhibited by a proprotein convertase inhibitor, hexa-d-arginine. In the airway epithelium of COPD subjects, immunoreactive MMP14 protein increased. In mouse lung, acrolein or tobacco smoke increased lung MMP14 activity and protein. In cells, acrolein-induced MMP14 transcripts were inhibited by an epidermal growth factor receptor (EGFR) neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhibitor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 inhibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein and activity in vitro by small interfering (si)RNA to MMP14 diminished the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or transgenic mice with lung-specific transforming growth factor-alpha (an EGFR ligand) expression, lung MMP14 and MUC5AC levels increased and these effects were inhibited by a EGFR inhibitor, erlotinib. Taken together, these findings implicate acrolein-induced MMP14 expression and activity in mucin production in COPD.

  11. CXCL1 is a negative regulator of mast cell chemotaxis to airway smooth muscle cell products in vitro.

    Science.gov (United States)

    Alkhouri, H; Moir, L M; Armour, C L; Hughes, J M

    2014-03-01

    Activated mast cells (MC) numbers on airway smooth muscle (ASM) are increased in eosinophilic asthma. In vitro, asthmatic cytokine-stimulated ASM cell-conditioned medium (CM) induces more MC chemotaxis than CM from nonasthmatic ASM cells. Intriguingly the nonasthmatic ASM CM inhibits MC chemotaxis to the asthmatic ASM CM. However, the inhibitory factor(s) in the nonasthmatic ASM CM is still to be identified. To identify the factor(s) released by nonasthmatic ASM cells that inhibits MC chemotaxis. Confluent, serum-starved ASM cells from donors with and without asthma were stimulated with IL-1β and T-helper (Th)1 (TNFα and IFNγ) or Th2 (IL-4, IL-13) cytokines, or left unstimulated. CM samples were collected after 24 h, and a potential inhibitory factor identified using cytokine protein arrays. Its production was assessed using ELISA and RT-PCR and inhibitory role investigated in MC chemotaxis and Ca(2+) mobilization assays. Only CXCL1 was produced in greater amounts by nonasthmatic than asthmatic ASM cells following Th1 and Th2 cytokine stimulation. CXCL1 mRNA expression was also increased. Exogenous rh-CXCL1 significantly inhibited MC intracellular Ca(2+) mobilization and chemotaxis to either CXCL10, CXCL8 or CM collected from asthmatic ASM cells following Th1 or Th2 cytokine stimulation. Neutralizing CXCL1 in nonasthmatic ASM CM or blocking its receptor significantly promoted MC chemotaxis. CXCL1 was a major factor regulating MC chemotaxis in vitro. Its differential release by ASM cells may explain the differences observed in MC localization to the ASM of people with and without asthma. CXCL1 inhibition of MC recruitment to the ASM may lead to new targets to limit asthma pathophysiology. © 2013 John Wiley & Sons Ltd.

  12. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    Science.gov (United States)

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    Epidemiological studies have reported that elevated levels of particulate air pollution in urban communities are associated with increases in attacks of asthma based on evidence from hospital admissions and emergency department visits. Principal pathologic features of chronic airway diseases, like asthma, are airway inflammation and mucous hypersecretion with excessive amounts of luminal mucus and increased numbers of mucus-secreting cells in regions of the respiratory tract that normally have few or no mucous cells (ie, mucous cell metaplasia). The overall goal of the present project was to understand the adverse effects of urban air fine particulate matter (PM2.5; pollutants in the outdoor air of a local Detroit community with a high incidence of childhood asthma; (2) determine the effects of this community-based PM2.5 on the airway epithelium in normal rats and rats compromised with preexisting hypersecretory airway diseases (ie, animal models of human allergic airway disease--asthma and chronic bronchitis); and (3) identify the chemical or physical components of PM2.5 that are responsible for PM2.5 -induced airway inflammation and epithelial alterations in these animal models. Two animal models of airway disease were used to examine the effects of PM2.5 exposure on preexisting hypersecretory airways: neutrophilic airway inflammation induced by endotoxin challenge in F344 rats and eosinophilic airway inflammation induced by ovalbumin (OVA) challenge in BN rats. A mobile air monitoring and exposure laboratory equipped with inhalation exposure chambers for animal toxicology studies, air pollution monitors, and particulate collection devices was used in this investigation. The mobile laboratory was parked in a community in southwestern Detroit during the summer months when particulate air pollution is usually high (July and September 2000). We monitored the outdoor air pollution in this community daily, and exposed normal and compromised rats to concentrated PM2

  13. Post-extubation airway obstruction. Literature review

    Directory of Open Access Journals (Sweden)

    Álvaro SÁNCHEZ-TABERNERO

    2017-03-01

    Full Text Available Introduction and objective: airway obstruction after extubation in any surgery is a critical event with low incidence, which may require reintubation or tracheostomy, which often otolaryngologist is required. Objective: To determine the prevalence of BVA and its causes through systematic literature review. Method: Literature review in PubMed, Scopus and Cochrane clinical trials, meta-analysis, reviews and case series and control over airway obstruction after extubation that requires reintubation in adults. Results: 6 studies and one clinical practice guidelines were selected. The most common cause of extubation failure is blocking the airway for various reasons (pharyngeal muscle weakness residual effect -often farmacologycal-, laryngospasm, vocal cord paralysis, edema of upper respiratory tract, cervical postoperative hematoma, foreign bodies or secretions. Most cases of re-intubation occurred within 2 hours after extubation. Conclusions: The most common cause of failure after general anesthesia extubation is blocking the airway generally caused by residual neuromuscular blocking effect. Airway obstruction risk increases in airway and head and neck surgery. Difficult intubation guidlines have improved performance and reduced adverse events and similar strategies must be implemented in extubation. The procedure extubation and reintubation should be documented. Working groups airway must be multidisciplinary and include specialists in otolaryngology.

  14. Alcohol and airways function in health and disease.

    Science.gov (United States)

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  15. Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma.

    Science.gov (United States)

    Zhang, Guqin; Nie, Hanxiang; Yang, Jiong; Ding, Xuhong; Huang, Yi; Yu, Hongying; Li, Ruyou; Yuan, Zhuqing; Hu, Suping

    2011-12-01

    Asthma is a common chronic inflammatory disease involving many different cell types. Recently, type I natural killer T (NKT) cells have been demonstrated to play a crucial role in the development of asthma. However, the roles of type II NKT cells in asthma have not been investigated before. Interestingly, type I and type II NKT cells have been shown to have opposing roles in antitumor immunity, antiparasite immunity, and autoimmunity. We hypothesized that sulfatide-activated type II NKT cells could prevent allergic airway inflammation by inhibiting type I NKT cell function in asthma. Strikingly, in our mouse model, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells result in reduced-inflammation cell infiltration in the lung and bronchoalveolar lavage fluid, decreased levels of IL-4 and IL-5 in the BALF; and decreased serum levels of ovalbumin-specific IgE and IgG1. Furthermore, it is found that the activation of sulfatide-reactive type II NKT cells leads to the functional inactivation of type I NKT cells, including the proliferation and cytokine secretion. Our data reveal that type II NKT cells activated by glycolipids, such as sulfatide, may serve as a novel approach to treat allergic diseases and other disorders characterized by inappropriate type I NKT cell activation.

  16. Energy efficient design of cognitive small cells

    NARCIS (Netherlands)

    Wildemeersch, Matthias; Wildemeersch, Matthias; Quek, Tony Q.S.; Rabbachin, Alberto; Slump, Cornelis H.; Huang, Aiping; Kim, Dong-In; Mueller, P.

    2013-01-01

    Heterogeneous networks consisting of a macrocell tier and a small cell tier are considered an attractive solution to cope with the fierce increase of mobile traffic demand. Nevertheless, a massive deployment of small cell access points (SAPs) leads also to a considerable increase in energy

  17. Rule-based detection of intrathoracic airway trees

    International Nuclear Information System (INIS)

    Sonka, M.; Park, W.; Hoffman, E.A.

    1996-01-01

    New sensitive and reliable methods for assessing alterations in regional lung structure and function are critically important for the investigation and treatment of pulmonary diseases. Accurate identification of the airway tree will provide an assessment of airway structure and will provide a means by which multiple volumetric images of the lung at the same lung volume over time can be used to assess regional parenchymal changes. The authors describe a novel rule-based method for the segmentation of airway trees from three-dimensional (3-D) sets of computed tomography (CT) images, and its validation. The presented method takes advantage of a priori anatomical knowledge about pulmonary airway and vascular trees and their interrelationships. The method is based on a combination of 3-D seeded region growing that is used to identify large airways, rule-based two-dimensional (2-D) segmentation of individual CT slices to identify probable locations of smaller diameter airways, and merging of airway regions across the 3-D set of slices resulting in a tree-like airway structure. The method was validated in 40 3-mm-thick CT sections from five data sets of canine lungs scanned via electron beam CT in vivo with lung volume held at a constant pressure. The method's performance was compared with that of the conventional 3-D region growing method. The method substantially outperformed an existing conventional approach to airway tree detection

  18. B lymphocyte lineage cells and the respiratory system

    Science.gov (United States)

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  19. Pharyngeal airway changes following mandibular setback surgery

    Directory of Open Access Journals (Sweden)

    Babu Ramesh

    2005-01-01

    Full Text Available Treatment of dentofacial deformities with jaw osteotomies has an effect on airway anatomy and therefore mandibular setback surgery has the potential to diminish airway size. The purpose of this study was to evaluate the effect of mandibular setback surgery on airway size. 8 consecutive patients were examined prospectively. All patients underwent mandibular setback surgery. Cephalometric analysis was performed preoperatively and 3 months post operatively with particular attention to pharyngeal airway changes. Pharyngeal airway size decreased considerably in all, patients thus predisposing to development of obstructive sleep apnea. Therefore, large anteroposterior discrepancies should be corrected by combined maxillary and mandibular osteotomies.

  20. The root barks of Morus alba and the flavonoid constituents inhibit airway inflammation.

    Science.gov (United States)

    Lim, Hun Jai; Jin, Hong-Guang; Woo, Eun-Rhan; Lee, Sang Kook; Kim, Hyun Pyo

    2013-08-26

    The root barks of Morus alba have been used in traditional medicine as an anti-inflammatory drug, especially for treating lung inflammatory disorders. To find new alternative agents against airway inflammation and to establish the scientific rationale of the herbal medicine in clinical use, the root barks of Morus alba and its flavonoid constituents were examined for the first time for their pharmacological activity against lung inflammation. For in vivo evaluation, an animal model of lipopolysaccharide-induced airway inflammation in mice was used. An inhibitory action against the production of proinflammatory molecules in lung epithelial cells and lung macrophages was examined. Against lipopolysaccharide-induced airway inflammation, the ethanol extract of the root barks of Morus alba clearly inhibited bronchitis-like symptoms, as determined by TNF-α production, inflammatory cells infiltration and histological observation at 200-400mg/kg/day by oral administration. In addition, Morus alba and their major flavonoid constituents including kuwanone E, kuwanone G and norartocarpanone significantly inhibited IL-6 production in lung epithelial cells (A549) and NO production in lung macrophages (MH-S). Taken together, it is concluded that Morus alba and the major prenylated flavonoid constituents have a potential for new agents to control lung inflammation including bronchitis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  2. Continuous Positive Airway Pressure (CPAP)

    Science.gov (United States)

    ... ENT Doctor Near You Continuous Positive Airway Pressure (CPAP) Continuous Positive Airway Pressure (CPAP) Patient Health Information ... relations staff at newsroom@entnet.org . What Is CPAP? The most common and effective nonsurgical treatment for ...

  3. The Difficult Airway Society 'ADEPT' guidance on selecting airway devices: the basis of a strategy for equipment evaluation.

    Science.gov (United States)

    Pandit, J J; Popat, M T; Cook, T M; Wilkes, A R; Groom, P; Cooke, H; Kapila, A; O'Sullivan, E

    2011-08-01

    Faced with the concern that an increasing number of airway management devices were being introduced into clinical practice with little or no prior evidence of their clinical efficacy or safety, the Difficult Airway Society formed a working party (Airway Device Evaluation Project Team) to establish a process by which the airway management community within the profession could itself lead a process of formal device/equipment evaluation. Although there are several national and international regulations governing which products can come on to the market and be legitimately sold, there has hitherto been no formal professional guidance relating to how products should be selected (i.e. purchased). The Airway Device Evaluation Project Team's first task was to formulate such advice, emphasising evidence-based principles. Team discussions led to a definition of the minimum level of evidence needed to make a pragmatic decision about the purchase or selection of an airway device. The Team concluded that this definition should form the basis of a professional standard, guiding those with responsibility for selecting airway devices. We describe how widespread adoption of this professional standard can act as a driver to create an infrastructure in which the required evidence can be obtained. Essential elements are that: (i) the Difficult Airway Society facilitates a coherent national network of research-active units; and (ii) individual anaesthetists in hospital trusts play a more active role in local purchasing decisions, applying the relevant evidence and communicating their purchasing decisions to the Difficult Airway Society. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  4. Stenting of major airway constriction

    International Nuclear Information System (INIS)

    Wu Xiaomei

    2002-01-01

    Objective: To investigate the correlated issues in the stenting treatment of major airway constriction. Methods: Nineteen cases of major airway stenting procedure were studied retrospectively. The clinical choice of stents of different advantages or deficiencies were discussed. The importance of intravenous anesthesia supporting, life-parameters monitoring during the procedures and the prevention of complications were analysed. Results: Under intravenous and local anesthesia, 19 Wallstents had been successively placed and relieved 19 cases of major airway constrictions due to malignant or benign diseases (15 of tumors, 3 of tuberculosis, 1 of tracheomalacia). Intravenous anesthesia and life-parameters monitoring had made the procedures more safe and precise. Conclusions: Major airway stenting is an reliable method for relieving tracheobronchial stenosis; and intravenous anesthesia supporting and life-parameters monitoring guarantee the satisfactions of procedures

  5. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity.

    Science.gov (United States)

    Maazi, Hadi; Patel, Nisheel; Sankaranarayanan, Ishwarya; Suzuki, Yuzo; Rigas, Diamanda; Soroosh, Pejman; Freeman, Gordon J; Sharpe, Arlene H; Akbari, Omid

    2015-03-17

    Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis. Objective airway-artery quantification

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wieying; Tiddens, Harm A.W.M. [Erasmus MC - Sophia Children' s Hospital, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); Erasmus MC, Department of Radiology, Rotterdam (Netherlands); Bruijne, Marleen de [Erasmus MC, Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Rotterdam (Netherlands); University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Petersen, Jens [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Nasserinejad, Kazem [Erasmus MC Cancer Institute, HOVON Data Center, Clinical Trial Center, Rotterdam (Netherlands); Erasmus MC, Department of Biostatistics, Rotterdam (Netherlands); Ozturk, Hadiye [Erasmus MC - Sophia Children' s Hospital, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); Chen, Yong [General Hospital of Ningxia Medical University, Department of Radiology, Yinchuan (China); Perez-Rovira, Adria [Erasmus MC - Sophia Children' s Hospital, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); Erasmus MC, Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Rotterdam (Netherlands)

    2017-11-15

    To quantify airway and artery (AA)-dimensions in cystic fibrosis (CF) and control patients for objective CT diagnosis of bronchiectasis and airway wall thickness (AWT). Spirometer-guided inspiratory and expiratory CTs of 11 CF and 12 control patients were collected retrospectively. Airway pathways were annotated semi-automatically to reconstruct three-dimensional bronchial trees. All visible AA-pairs were measured perpendicular to the airway axis. Inner, outer and AWT (outer-inner) diameter were divided by the adjacent artery diameter to compute A{sub in}A-, A{sub out}A- and A{sub WT}A-ratios. AA-ratios were predicted using mixed-effects models including disease status, lung volume, gender, height and age as covariates. Demographics did not differ significantly between cohorts. Mean AA-pairs CF: 299 inspiratory; 82 expiratory. Controls: 131 inspiratory; 58 expiratory. All ratios were significantly larger in inspiratory compared to expiratory CTs for both groups (p<0.001). A{sub out}A- and A{sub WT}A-ratios were larger in CF than in controls, independent of lung volume (p<0.01). Difference of A{sub out}A- and A{sub WT}A-ratios between patients with CF and controls increased significantly for every following airway generation (p<0.001). Diagnosis of bronchiectasis is highly dependent on lung volume and more reliably diagnosed using outer airway diameter. Difference in bronchiectasis and AWT severity between the two cohorts increased with each airway generation. (orig.)

  7. Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products.

    Directory of Open Access Journals (Sweden)

    Carol Hoffman

    Full Text Available Interleukin (IL-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+ alveolar macrophages and lung dendritic cells.IL-19-deficient (IL-19-/- mice were studied at baseline (naïve and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2 expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13.Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that

  8. Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Kang, Shin Ae; Md, Anisuzzaman; Jeong, U-Cheol; Jin, Feng; Kang, Seok-Joong; Lee, Jeong-Yeol; Yu, Hak Sun

    2018-01-01

    In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4 + CD25 + Foxp3 + T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.

  9. Role of the adiponectin binding protein, T-cadherin (Cdh13, in allergic airways responses in mice.

    Directory of Open Access Journals (Sweden)

    Alison S Williams

    Full Text Available Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13 is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT, T-cadherin deficient (T-cad(-/- and adiponectin and T-cad bideficient mice to ovalbumin (OVA and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad(-/- mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad(-/- versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad(-/- mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.

  10. RAGE: a new frontier in chronic airways disease.

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter A B; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-11-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  11. The effects of emphysema on airway disease: Correlations between multi-detector CT and pulmonary function tests in smokers

    International Nuclear Information System (INIS)

    Yahaba, Misuzu; Kawata, Naoko; Iesato, Ken; Matsuura, Yukiko; Sugiura, Toshihiko; Kasai, Hajime; Sakurai, Yoriko; Terada, Jiro; Sakao, Seiichiro; Tada, Yuji; Tanabe, Nobuhiro; Tatsumi, Koichiro

    2014-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and small airway narrowing. Quantitative evaluation of airway dimensions by multi-detector computed tomography (MDCT) has revealed a correlation between airway dimension and airflow limitation. However, the effect of emphysema on this correlation is unclear. Objective: The goal of this study was to determine whether emphysematous changes alter the relationships between airflow limitation and airway dimensions as measured by inspiratory and expiratory MDCT. Methods: Ninety-one subjects underwent inspiratory and expiratory MDCT. Images were evaluated for mean airway luminal area (Ai), wall area percentage (WA%) from the third to the fifth generation of three bronchi (B1, B5, B8) in the right lung, and low attenuation volume percent (LAV%). Correlations between each airway index and airflow limitation were determined for each patient and compared between patients with and without evidence of emphysema. Results: In patients without emphysema, Ai and WA% from both the inspiratory and expiratory scans were significantly correlated with FEV 1. No correlation was detected in patients with emphysema. In addition, emphysematous COPD patients with GOLD stage 1 or 2 disease had significantly lower changes in B8 Ai than non-emphysematous patients. Conclusions: A significant correlation exists between airway parameters and FEV 1 in patients without emphysema. Emphysema may influence airway dimensions even in patients with mild to moderate COPD

  12. The effects of emphysema on airway disease: Correlations between multi-detector CT and pulmonary function tests in smokers

    Energy Technology Data Exchange (ETDEWEB)

    Yahaba, Misuzu, E-mail: mis_misuzu@yahoo.co.jp; Kawata, Naoko, E-mail: chumito_03@yahoo.co.jp; Iesato, Ken, E-mail: iesato_k@yahoo.co.jp; Matsuura, Yukiko, E-mail: matsuyuki_future@yahoo.co.jp; Sugiura, Toshihiko, E-mail: sugiura@js3.so-net.ne.jp; Kasai, Hajime, E-mail: daikasai6075@yahoo.co.jp; Sakurai, Yoriko, E-mail: yoliri@nifty.com; Terada, Jiro, E-mail: jirotera@chiba-u.jp; Sakao, Seiichiro, E-mail: sakao@faculty.chiba-u.jp; Tada, Yuji, E-mail: ytada@faculty.chiba-u.jp; Tanabe, Nobuhiro, E-mail: ntanabe@faculty.chiba-u.jp; Tatsumi, Koichiro, E-mail: tatsumi@faculty.chiba-u.jp

    2014-06-15

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and small airway narrowing. Quantitative evaluation of airway dimensions by multi-detector computed tomography (MDCT) has revealed a correlation between airway dimension and airflow limitation. However, the effect of emphysema on this correlation is unclear. Objective: The goal of this study was to determine whether emphysematous changes alter the relationships between airflow limitation and airway dimensions as measured by inspiratory and expiratory MDCT. Methods: Ninety-one subjects underwent inspiratory and expiratory MDCT. Images were evaluated for mean airway luminal area (Ai), wall area percentage (WA%) from the third to the fifth generation of three bronchi (B1, B5, B8) in the right lung, and low attenuation volume percent (LAV%). Correlations between each airway index and airflow limitation were determined for each patient and compared between patients with and without evidence of emphysema. Results: In patients without emphysema, Ai and WA% from both the inspiratory and expiratory scans were significantly correlated with FEV{sub 1.} No correlation was detected in patients with emphysema. In addition, emphysematous COPD patients with GOLD stage 1 or 2 disease had significantly lower changes in B8 Ai than non-emphysematous patients. Conclusions: A significant correlation exists between airway parameters and FEV{sub 1} in patients without emphysema. Emphysema may influence airway dimensions even in patients with mild to moderate COPD.

  13. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas

    2007-02-01

    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  14. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite.

    Directory of Open Access Journals (Sweden)

    Zhuang-Gui Chen

    Full Text Available Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP, an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1 were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.

  15. Methylene Blue-Aided In Vivo Staining of Central Airways during Flexible Bronchoscopy

    Directory of Open Access Journals (Sweden)

    Sabine Zirlik

    2012-01-01

    Full Text Available Background. The early diagnosis of malignant and premalignant changes of the bronchial mucosa remains a major challenge during bronchoscopy. Intravital staining techniques are not new. Previous small case series suggested that analysis of the bronchial mucosal surface using chromoendoscopy allows a prediction between neoplastic and nonneoplastic lesions. Objectives. The aim of the present study was to evaluate chromobronchoscopy as a method to identify malignant and premalignant lesions in the central airways in a prospective manner. Methods. In 26 patients we performed chromoendoscopy with 0.1% methylene blue during ongoing flexible white light bronchoscopy. Circumscribed lesions in central airways were further analyzed by biopsies and histopathologic examination. Results. In the majority of cases neither flat nor polypoid lesions in the central airways were stained by methylene blue. In particular, exophytic growth of lung cancer did not show any specific pattern in chromobronchoscopy. However, a specific dye staining was detected in one case where exophytic growth of metastatic colorectal cancer was present in the right upper lobe. In two other cases, a circumscribed staining was noted in unsuspicious mucosa. But histology revealed inflammation only. Conclusions. In contrast to previous studies, the present findings clearly indicate that chromobronchoscopy is not useful for early detection of malignant or premalignant lesions of the central airways.

  16. Airway exploration in children

    Directory of Open Access Journals (Sweden)

    Fernando GÓMEZ-SÁEZ

    2018-03-01

    Full Text Available Introduction and objective: The management of the airways represents a constant challenge in pediatric practice. In the last years, bronchoscopy has become an essential technique in the diagnosis and treatment of various abnormalities of the child's respiratory system. The special characteristics of the pediatric airway and the differentiated pathology it presents give pediatric bronchoscopy its own entity. Pediatric bronchoscopy is a safe technique with many applications, both diagnostic and therapeutic. The use of both types of bronchoscopes (flexible and rigid allows to take advantage of each one of them. Flexible bronchoscopy in pediatrics is a relatively simple and low-risk procedure that provides anatomical and dynamic information on the airways, as well as cytological and microbiological studies. The simplicity and low risk of this technique, in addition to not requiring general anesthesia, allows it to be performed even at the head of the patient, which has led to an increasingly extensive field of indications. The purpose of this article is to provide a review on the timeliness of the pediatric bronchoscopy procedure, especially about its indications. Method: Narrative review. Conclusion: The endoscopic examination of the airway is a cost-effective technique in pediatrics, with little complications and can offer very valuable diagnostic information, as well as perform certain therapeutic procedures. It is recommended that all professionals involved in the management of patients with airway pathology should know their indications, contraindications, complications, as well as their therapeutic applications.

  17. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    Morbidly obese patients present with excess fatty tissue externally on the breast, neck, thoracic wall and abdomen and internally in the mouth, pharynx and abdomen. This excess tissue tends to make access (intubation, tracheostomy) to and patency (during sedation or mask ventilation) of the upper...... in morbidly obese patients and should be followed by actions to counteract atelectasis formation. The decision as to weather to use a rapid sequence induction, an awake intubation or a standard induction with hypnotics should depend on the thorough airway examination and comorbidity and should not be based...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...

  18. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    Science.gov (United States)

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  19. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    Science.gov (United States)

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  20. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Science.gov (United States)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.