WorldWideScience

Sample records for slurry feed grout

  1. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  2. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit

  3. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  4. Low-level waste disposal - Grout issue and alternative waste form technology

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Westski, J.H. Jr. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01

    Based on the Record of Decision (1) for the Hanford Defense Waste Environmental Impact Statement (HDW-EIS) (2), the US Department of Energy (DOE) is planning to dispose of the low-level fraction of double-shell tank (DST) waste by solidifying the liquid waste as a cement-based grout placed in near-surface, reinforced, lined concrete vaults at the Hanford Site. In 1989, the Hanford Grout Disposal Program (HGDP) completed a full-scale demonstration campaign by successfully grouting 3,800 cubic meters (1 million gallons) of low radioactivity, nonhazardous, phosphate/sulfate waste (PSW), mainly decontamination solution from N Reactor. The HGDP is now preparing for restart of the facility to grout a higher level activity, mixed waste double-shell slurry feed (DSSF). This greater radionuclide and hazardous waste content has resulted in a number of issues confronting the disposal system and the program. This paper will present a brief summary of the Grout Treatment Facility`s components and features and will provide a status of the HGDP, concentrating on the major issues and challenges resulting from the higher radionuclide and hazardous content of the waste. The following major issues will be discussed: Formulation (cementitious mix) development; the Performance Assessment (PA) (3) to show compliance of the disposal system to long-term environmental protection objectives; and the impacts of grouting on waste volume projections and tank space needs.

  5. Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO2 is much lower than water. This means it should take less energy to pump liquid CO2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO2/coal slurry properties.

  6. Influence Mechanism of Grouting on Mechanical Characteristics of Rock Mass

    Directory of Open Access Journals (Sweden)

    Zhang Jixun

    2013-01-01

    Full Text Available Grouting technology has been widely used in all fields of geotechnical and civil engineering. Prospective engineering objectives including reinforcement of rock mass and groundwater leakage treatment can be achieved by grouting which will change the mechanical parameters of rock mass such as strength, elastic modulus, and coefficient of permeability. In this paper, rock mass is assumed as a composite material consisting of rock particles and random microcracks initially. Since part or all of the cracks will be filled with cement slurry after grouting, rock mass consists of rock particles, grout condensate, and some or no random microcracks after grouting. The damage constitutional law of the mesoscopic element is established based on the theory of mesoscopic damage mechanics. With the heterogeneity of the components of rock mass considered, the variation of mechanical characteristics of rock mass is studied before and after grouting. And the influence mechanism of grouting on rock mass is investigated at mesoscale level.

  7. Strength of Experimental Grouts

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

     The present report describes tests carried out on 5 experimental grouts developed by BASF Construction Materials and designed for use in grouted connections of offshore windmill foundations....... The present report describes tests carried out on 5 experimental grouts developed by BASF Construction Materials and designed for use in grouted connections of offshore windmill foundations....

  8. Utilization of coal ash for civil engineering materials. Study on a grouting material using fly ash as the main material; Sekitanbai no doboku zairyo eno riyo. Flyash wo shuzai to shita tunnel gurauto zai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, I. [Hokkaido Electric Power Co. Inc., Sapporo (Japan)

    1996-03-25

    Mixing tests and filling performance experiments were carried out on a slurry material made by mixing cement, water and foam, using fly ash as the main material (air fly ash grouting material). The tests and experiments were intended to discuss its usability as a tunnel grouting material. In change in the properties, the air fly ash grout did not show a large change both in the air amount and the flow, and maintained a good condition, while air mortar had the flow decreased largely. Therefore, in view of assuring the long-time fluidity, the air fly ash grout is more advantageous. As a result of the compression strength test, the air fly ash grout had a strength of 27.6 kgf/cm{sup 2} emerged in atmospheric curing, while the air mortar showed a strength of 12.3 kgf/cm{sup 2}. The strength of the air fly ash grout is more than twice as much as that of the air mortar. The foaming material hardens in largely different rates according to the kinds of fly ash, hence there is a possibility that the air amount decreases as a result of pump-compressed feeding, causing the grout properties to change largely. The utilization of the material requires verification of compatibility of the ash type with the foaming agents, and attention must be paid on controlling the foam. 2 refs., 27 figs., 18 tabs.

  9. Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

    1994-11-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions.

  10. Pilot-scale grout production test with a simulated low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  11. Tank closure reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.B.

    1997-04-18

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  12. Strength of High Performance Grouts

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on 5 experimental grouts developed by BASF Construction Materials and designed for use in grouted connections of offshore windmill foundations.......The present report describes tests carried out on 5 experimental grouts developed by BASF Construction Materials and designed for use in grouted connections of offshore windmill foundations....

  13. Investigation on the effects of vermiculite-based feed additives on ammonia and nitrate emission from pig slurry and pig growth performances

    Directory of Open Access Journals (Sweden)

    Riccardo Consigliere

    2016-08-01

    Full Text Available The aim of the present study was to evaluate the effects of vermiculite-based feed additives used in fattening pigs on the concentrations of nitrogen compounds in manure and atmosphere and upon measures of pig production efficiency. The trial was conducted in a fattening unit representative of Italian commercial units. The pigs were routinely fed twice a day with a feed ration identical for all the pigs except for the addition of the vermiculite additive (group A. During the fattening period, the evolution of atmospheric ammonia concentration, total nitrogen, ammonia and nitrates of slurry and pigs live weight gain were evaluated. The inclusion at very low dosage of vermiculite-based feed additives in fattening pigs increased the nitrification activity in the treated slurry. No reduction of the ammonia emission was obtained. The average growth rate of the treated group was higher, whilst the feed conversion rate was similar in both groups.

  14. ELAWD GROUT HOPPER MOCK-UP TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Pickenheim, B.; Hansen, E.; Leishear, R.; Marzolf, A.; Reigel, M.

    2011-10-27

    A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominal working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation

  15. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required to prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.

  16. Epoxy Grout With Silica Thickener

    Science.gov (United States)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  17. Feed dilution-based design of a thickener for refuse slurry of a coal preparation plant

    Energy Technology Data Exchange (ETDEWEB)

    S. Banisi; M. Yahyaei [Shahid Bahonar University of Kerman, Kerman (Iran). Mining Engineering Group

    2008-10-15

    Thickening is the most widely applied dewatering technique in mineral processing. Thickeners are used to increase the concentration of suspensions by sedimentation, accompanied by the release of a clear liquid. As the particles get finer the thickening process encounters difficulty due to a significant change in the particles settling behavior. The batch settling tests of coal refuse of a coal washing plant that contained 91% particles smaller than 38 {mu}m and 0.6% coarser than 75 {mu}m showed that the optimum feed percent solids that provided highest flux (solids handling capacity) was 4%. The flux of the pulp with the plant solids concentration (i.e., 10% by weight) was 60% lower than that of the pulp with 4% solids. A thickener with a diameter of 22 m based on the dilution of feed from solids concentration of 10% to 4% was designed. Monitoring of the thickener performance for a period of one month in the plant indicated that an average feed rate of 25t/h (dry solids) with solids concentration of 10% could be thickened to an underflow concentration of 26.5% with a clear water overflow. It was found that the key component of the successful operation of the thickener is the dilution of the feed, without dilution the overflow loses its clarity and the system ceases to operate under predetermined conditions. Based on the results of established CFD (Computational Fluid Dynamics) studies, a feeding system that efficiently dissipated the energy of the incoming flow and a staged flocculant addition regime were utilized in the design and operation of the thickener. 23 refs.

  18. Leachability studies of hydrofracture grouts

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Loflin, J.A.

    1986-11-01

    Leaching studies were performed on simulated hydrofracture grouts containing As, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, /sup 90/Sr, and /sup 137/Cs. The grout samples were leached in three solutions: distilled water, shallow groundwater, and a deep brine. The resulting leach data are compared with the NRC and EPA regulatory requirements for the disposal of solid wastes.

  19. Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R. D. [Oak Ridge National Lab., TN (United States); Kauschinger, J. L. [Ground Environmental Services, Inc., Alpharetta, GA (United States)

    1997-05-01

    The Gunite{trademark} and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI{trademark}), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. T his is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation.

  20. Self Cleanable Tile Grout

    Directory of Open Access Journals (Sweden)

    Mehmet CANBAZ

    2016-03-01

    Full Text Available In this study, In this study, self-cleaning tile grout and white cement specimens are produced and the effect of self-cleaning mechanism of TiO2 is tested. Effects of TiO2 amount and TiO2 type are tested and compared. Anatase form and rutile TiO2 additive are used in the study. In addition, effects of silicate additives on the self-cleaning mechanism is determined. Studies are conducted with respect to Italian UNI code. This study presents a method for solving rust between the tiles of ceramic wet floor coverings with photocatalysis method and then removing the dirt with secondary effects such as water, wind etc.

  1. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing.

    Science.gov (United States)

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  2. Grouting for Pile Foundation Improvement

    NARCIS (Netherlands)

    Van der Stoel, A.E.C.

    2001-01-01

    The aim of this research was to examine the use of grouting methods for pile foundation improvement, a generic term that is used here to define both foundation renovation (increasing the bearing capacity of a pile foundation that has insufficient bearing capacity) and foundation protection

  3. Grouting of fly ash in sanitary landfills; Injektering av flygaska i hushaallsavfallsdeponi

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockhom (Sweden); Andreas, Lale; Lagerkvist, Anders [Luleaa Univ. of Technology (Sweden); Jannes, Sara; Tham, Gustav [Telge Aatervinning AB, Soedertaelje (Sweden); Sjoeblom, Rolf [Tekedo AB, Nykoeping (Sweden)

    2003-10-01

    The purpose of the study was to investigate the potential for stabilization of sanitary landfills by injecting fly ash. The method is supposed to prevent differential settlements in landfills and by that to counteract damages in the final cover. Injecting fly ash may also affect the chemical development in a positive way and prevent metal leaching. Pilot experiments at the Tveta waste recycling center (Tveta Aatervinningsanlaeggning) have been performed in order to estimate if the grouting technology is a suitable method for sanitary landfills. Fly ashes from the combustion of bio fuels were used in these tests. A literature study and laboratory experiments in order to prepare the field experiments were also part of the project. About 100 tons of ash slurry were injected during the pilot experiments. This corresponds to a filling degree of approximately 12-16 % of the available pores in the landfill body. As a result of the pilot test, the following conclusions can be drawn: Ash can be mixed with water to a pumpable slurry which can be injected without hardening inside the equipment. Neither the waste nor the grouting material caused a backpressure during the injection and nothing indicates that the injected ash deforms the landfilled waste. The ash-water-slurry flows through the voids in the waste easily. Thus, the ash may dispread quite far from the injection holes. Using a more powerful equipment backpressure and movements in the waste might occur. It was not possible to estimate the flow required for backpressure in this study. Large variations are possible but for safety reasons the maximal pressure should be limited with regard to the expected stability in the actual area. The grouted ash will harden within the landfill body within a couple of days. It accumulates in hard but brittle lumps, which may result in an increased stability of the landfill. Further studies are necessary in order to evaluate how the stability is affected and what amounts of ash are

  4. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  5. Fracture and fatigue strength of grouted macadams

    OpenAIRE

    Oliveira, Joel; Thom, N.H.; Zoorob, S.

    2006-01-01

    Grouted macadams form a class of material which provides significant advantages in comparison to both concrete and conventional asphalt, having both rut resistance and a degree of flexibility. This paper presents a series of laboratory tests on several grouted macadam mixtures, for stiffness, fatigue and low temperature fracture. The variables explored include binder grade and content, aggregate size and gradation, and grout strength. Although the material is found to perform fundamentally as...

  6. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  7. Clamp and grout systems for structural repair

    Energy Technology Data Exchange (ETDEWEB)

    Lalani, M.

    1984-10-01

    Steel offshore platforms in the North Sea and elsewhere have required repair or strengthening, opening up a new and important aspect of offshore engineering. A clamp and grout system for structured repair is described. Over 150 clamped and grouted repair systems are now in service in the North Sea and elsewhere.

  8. Compensation Grouting in Sand : Experiments, Field Experiences and Mechanisms

    NARCIS (Netherlands)

    Bezuijen, A.

    2010-01-01

    This thesis reports on experimental research on compensation grouting in sand. It is investigated in model tests, how the shape of the grout bodies made during injection depends on the grout properties, the density of the sand and the way the tubes are installed. The shape of the grout body affects

  9. Innovative grout/retrieval demonstration final report

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Thompson, D.N.

    1995-01-01

    This report presents the results of an evaluation of an innovative retrieval technique for buried transuranic waste. Application of this retrieval technique was originally designed for full pit retrieval; however, it applies equally to a hot spot retrieval technology. The technique involves grouting the buried soil waste matrix with a jet grouting procedure, applying an expansive demolition grout to the matrix, and retrieving the debris. The grouted matrix provides an agglomeration of fine soil particles and contaminants resulting in an inherent contamination control during the dusty retrieval process. A full-scale field demonstration of this retrieval technique was performed on a simulated waste pit at the Idaho National Engineering Laboratory. Details are reported on all phases of this proof-of-concept demonstration including pit construction, jet grouting activities, application of the demolition grout, and actual retrieval of the grouted pit. A quantitative evaluation of aerosolized soils and rare earth tracer spread is given for all phases of the demonstration, and these results are compared to a baseline retrieval activity using conventional retrieval means. 8 refs., 47 figs., 10 tabs.

  10. Fatigue Life of High Performance Grout for Wind Turbine Grouted Connection in Wet or Dry Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Westhof, Luc; Yde, Elo

    Grouted connections of monopile supported offshore wind turbine structures are subjected to loads leading to very high oscillating service stresses in the grout material. The fatigue capacity of a high performance cement based grout was tested by dynamic compressive loading of cylindrical specimens...... at varying levels of cyclic frequency and load. The fatigue tests were performed in two series: one with the specimens in air and one with the specimens submerged in water during the test. The fatigue life of the grout, in terms of the number of cycles to failure, was found to be significantly shorter when...... tested in water than when tested in air....

  11. Grout to meet physical and chemical requirements for closure at Hanford grout vaults. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-21

    The US Army Engineer Waterways Experiment Station (WES) developed a grout based on portland cement, Class F fly ash, and bentonite clay, for the Hanford Grout Vault Program. The purpose of this grout was to fill the void between a wasteform containing 106-AN waste and the vault cover blocks. Following a successful grout development program, heat output, volume change, and compressive strength were monitored with time in simulated repository conditions and in full-depth physical models. This research indicated that the cold-cap grout could achieve and maintain adequate volume stability and other required physical properties in the internal environment of a sealed vault. To determine if contact with 106-AN liquid waste would cause chemical deterioration of the cold-cap grout, cured specimens were immersed in simulated waste. Over a period of 21 days at 150 F, specimens increased in mass without significant changes in volume. X-ray diffraction of reacted specimens revealed crystallization of sodium aluminum silicate hydrate. Scanning electron microscopy used with X-ray fluorescence showed that clusters if this phase had formed in grout pores, increasing grout density and decreasing its effective porosity. Physical and chemical tests collectively indicate a sealing component. However, the Hanford Grout Vault Program was cancelled before completion of this research. This report summarizes close-out Waterways Experiment Station when the Program was cancelled.

  12. Strength of Mock-up Trial Grout

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on samples taken and cast during the execution of a mock-up trial placement of the high performance grout MASTERFLOW 9500 on January 21, 2009.......The present report describes tests carried out on samples taken and cast during the execution of a mock-up trial placement of the high performance grout MASTERFLOW 9500 on January 21, 2009....

  13. How an ROV-placed grout

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, A.J.

    1986-06-01

    A remotely installed grout bag system, developed jointly by Stolt-Nielsen Seaway Technology Ltd., SeaMark Ltd. and Colos Colcrete Ltd., was used to correct and support a free span on Total Oil Marine's Frigg-St. Fergus pipe line system. The author gives details on how the system works and cost advantages over diver-placed grout bag supports.

  14. Optimization of cement-based grouts using chemical additives

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Azadi

    2017-08-01

    Full Text Available Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation. There are many methods of grouting. Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground. In grouting operations, the grout quality is important to achieve the best results. There are four main characteristics for a grout mixture including bleeding, setting time, strength, and viscosity. In this paper, we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics. The ingredients of grout mixtures built in this study are cement, water, bentonite, and some chemical additives such as sodium silicate, sodium carbonate, and triethanolamine (TEA. The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project. Effect of each above-mentioned ingredient is profoundly investigated. Since each ingredient may have positive or negative aspect, an optimization of appropriate amount of each ingredient is determined. The optimization is based on 200 grout mixture samples with different percentages of ingredients. Finally, some of these grout mixtures are chosen for the introduced project. It should be mentioned that grouting operations depend on various factors such as pressure of injection, ground structure and grain size of soils. However, quality of a grout can be helpful to make an injection easier and reasonable. For example, during the injection, a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting. This paper tries to show some tests in easy way to achieve a desirable sample of grout.

  15. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.

    Science.gov (United States)

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-11-22

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  16. Corrosion performance of prestressing strands in contact with dissimilar grouts.

    Science.gov (United States)

    2013-01-01

    To improve the corrosion protection provided to prestressing strands, anti-bleed grouts are used to fill voids in post-tensioning : ducts that result from bleeding and shrinkage of older Portland Cement grouts. Environmental differences caused by exp...

  17. Mechanical Properties of High Cementitious Grout (I)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

     The present report describes tests carried out on the high performance grout MASTERFLOW 9500, marked WMG 7145 FP, developed by BASF Construction Materials and designed for use in grouted connections of offshore windmill foundations....

  18. Mechanical Properties of High Performance Cementitious Grout Masterflow 9200

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on the high performance grout Masterflow 9200, developed by BASF Construction Chemicals A/S and designed for use in grouted connections of windmill foundations.......The present report describes tests carried out on the high performance grout Masterflow 9200, developed by BASF Construction Chemicals A/S and designed for use in grouted connections of windmill foundations....

  19. Mechanical Properties of High Performance Cementitious Grout (II)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report is an update of the report “Mechanical Properties of High Performance Cementitious Grout (I)” [1] and describes tests carried out on the high performance grout MASTERFLOW 9500, marked “WMG 7145 FP”, developed by BASF Construction Chemicals A/S and designed for use in grouted co...... connections of offshore windmill foundations....

  20. Investigation of Hardened Filling Grout Samples

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

     Suzlon Wind Energy A/S requested on August 28, 2007 an investigation of 2 samples of a hardened filling grout to be carried out, comprising drilling and strength determination of 4 test cylinders, and description of the surface characteristics of the samples....... Suzlon Wind Energy A/S requested on August 28, 2007 an investigation of 2 samples of a hardened filling grout to be carried out, comprising drilling and strength determination of 4 test cylinders, and description of the surface characteristics of the samples....

  1. Thermally conductive cementitious grout for geothermal heat pump systems

    Science.gov (United States)

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  2. Crack Formation in Grouted Annular Composite

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The objective of the present analysis is to identify the reason for extensive crack formation which occurred during an annulus grouting performance test, to evaluate possible consequences of the cracking, and to recommend measures to be taken in order to avoid similar problems in the future....

  3. GPR measurements for the distribution of thixotropic slurry behind segments in large diameter and long distance pipe-jacking construction

    Science.gov (United States)

    Zhao, Yonghui; Wu, Jiansheng; Xie, Xiongyao; Zeng, Chenchao

    2013-04-01

    It is very important to form an integrated ring of thixotropic slurry around the pipe segments to reduce resistance during large diameter and long distance pipe jacking. Furthermore, the integrated slurry ring between the pipe and the excavated soil can effectively reduce the soil disturbance caused by the pipes, and minimize ground settlement. It is necessary to real-time monitor the spatial distribution of the thixotripic slurry during jacking process. The traditional solution to estimate the outlines of slurry ring is the jacking load and the injecting pressure. If the jacking load increases, which means more slurry should be injected to reduce the jacking load. However, this solution couldn't provide the distribution of the slurry beneath pipe segments, and locate the zones which need to be injected enough slurry. Ground penetrating radar (GPR) has been successfully used to detect the thickness of the grouting behind the shield tunnel segments in last several years. An important factor is the dielectric difference between grouting and soil. Similarly, the interface between the liquid slurry with high relative electric permittivity and surrounding soil, should be recognized from GPR image due to the distinct dielectric difference. Here, GPR experiment has been conducted on a sewage pipe jacking engineering. The purpose of the survey is to evaluate the distribution of the thixotropic slurry through GPR image. In this sewage jacking engineering, the width and the thickness of each pipe segments is 200 cm and 30 cm, respectively. Considering the resolution and propagation range of radar wave, ground coupled bowtie antenna of 900 MHz frequency has been selected for GPR data acquisition. A series of circular GPR data have been collected along the inner surface of pipe segments. In addition, sampling of slurry has been performed on four different segments. The relative electric permittivity and conductivity of the thixotropic slurry have been measured by using time

  4. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  5. Cementitious grout for preplaced aggregate concrete: A review

    Science.gov (United States)

    Jaafar, Muhammad Jafni; Johari, Megat Azmi Megat; Hashim, Syed Fuad Saiyid

    2017-10-01

    Preplaced-Aggregate Concrete (PAC) consists of two main components, namely the cementitious grout mixture and coarse aggregate particles. Coarse aggregates are placed into the formwork, and then a fresh cementitious grout mixture is injected into the formwork to fill the voids created by the coarse aggregates to form a concrete. PAC has been used in many applications, such as underwater construction, casting concrete sections congested with reinforcement and concrete repair. The cementitious grout properties play an important role for this type of concrete to be successfully constructed. The cementitious grout rheology and physical properties should be practically suitable for the intended usage of the PAC. Therefore, the available literature on the effects of mixture proportions of the grout on the PAC properties is reviewed. The effects of water content on the grout fluidity, bleeding and compressive strength of the PAC are emphasized in this paper.

  6. Bell Canyon Test (BCT) cement grout development report

    Energy Technology Data Exchange (ETDEWEB)

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Buck, A.D.

    1980-12-01

    Development of the cement grout for the Bell Canyon Test was accomplished at the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. Initial development work centered on a saltwater grout with Class H cement, fly ash, and an expansive additive. Testing of the saltwater grout showed suitable properties except for the interface between anhydrite rock and grout in small core samples. Higher than expected permeability occurred at the interface because of space between the grout and the anhydrite; the space was produced as a result of allowing the specimens to dry. A change to freshwater grout and proper care to prevent the specimens from drying alleviated this condition. The BCT-1FF freshwater grout mixture was used in both the plug ONE and ONEX field grouting operations. Testing of the development grout mixtures was also done at Dowell, Pennsylvania State University, and Oak Ridge National Laboratory. Results of the testing and evaluation by the four laboratories are included in the report. Field batching, mixing, and placement of the grout at the plug locations for both plug ONE and ONEX were satisfactory with adequate quality control. The freshwater grout mixture maintained adequate flow characteristics for pumpability for 3 1/2 h during each of the two field operations. Physical property and expansivity data for the field samples through 90 days' age are in general agreement with laboratory development data. A large number of samples were obtained for inclusion in the long-term durability studies and the geochemical programs. The high-density, low water-cement ratio expansive grout (BCT-1FF) is considered to be an excellent candidate for plugging boreholes at most locations (except through halite sections).

  7. Thermal conductivity and other properties of cementitious grouts

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.

    1998-08-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  8. Evaluation of the Performance of Grouting Materials for Saturated Riprap

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2013-12-01

    Full Text Available In this study, four types of grout were developed to evaluate the effect of grouting of saturated riprap layers on ground water flow. The developed types of grout are divided into a quick-setting type and a general-type, and also into high and low viscosities. A number of grout tests were performed in a model acrylic chamber, 0.4 m in diameter and 2.0 m in length, for visual observation of injection. To reproduce the field flow condition of the saturated riprap layers (approach flow, the grout tests were carried out at 0 cm/s and 100 cm/s for the flow speed and 10 L/min for the grout injection speed after installing a flow injection opening on the lower part of the chamber. Based on the results of the grout tests, the injection of each grout in the saturated riprap layers was examined to find out the most effective grout.

  9. Tensile capacity of loop connections grouted with concrete or mortar

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2017-01-01

    This paper presents a study of grout failure in symmetric U-bar loop connections loaded in tension, with focus on the performance of two grouting materials – concrete and mortar. The study contains an experimental investigation as well as a rigid-plastic modelling of the tensile capacity. The test...... to allow yielding of the U-bars. The experimental work showed that connections grouted with concrete performed better than the connections grouted with mortar. In the theoretical models, the difference in tested capacity is explained by the difference in the internal angle of friction and in the softening...... behaviour of concrete as compared with mortar....

  10. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  11. Fatigue Life of High Performance Grout in Dry and Wet Environment for Wind Turbine Grouted Connections

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2011-01-01

    the fatigue life of a high performance cement based grout was tested by dynamic compressive loading of cylindrical specimens at varying levels of cyclic frequency and load. The fatigue tests were performed in two series, one with the specimens tested in air and one with the specimens submerged in water during...... the test. The fatigue life of the grout, in terms of the number of cycles to failure, was found to be significantly shorter when tested in water than when tested in air, particularly at low frequency....

  12. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  13. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  14. Mechanical Properties of High Performance Cementitious Grout Masterflow 9300

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on the high performance grout MASTERFLOW 9300, developed by BASF Construction Chemicals A/S.......The present report describes tests carried out on the high performance grout MASTERFLOW 9300, developed by BASF Construction Chemicals A/S....

  15. Silicate grout curtains behaviour for the protection of coastal aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elektorowicz, M.; Chifrina, R.; Hesnawi, R. [Concordia Univ., Montreal, Quebec (Canada)

    1997-12-31

    Tests were performed to evaluate the behaviour of silicate grout with different reagents (ethylacetate - formamide SA and calcium chloride SC) in pure silica sand and natural soils from coastal areas containing organic matter, clayey soil and silica sand. The grouted specimens were tested with simulated fresh and salt water. The setting process during chemical grouting in the soil and sand was studied. The grouting of soil and sand with SA caused a transfer to the environment of some compounds: sodium formate, sodium acetate, ammonia and part of the initial ethylacetate and formamide. This process had a tendency to decrease for approximately 4 months. The stability of specimens was low. The grouting of soil and sand with SC caused no significant contamination of the environment. The increase of pH of environmental water was even less than with SA grouting. Also, the stability of specimens is higher in comparison with SA grouting. Salt water protected the specimens grouted with SA and SC from destruction and prevented contamination.

  16. Evolution of technetium speciation in reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; Bucher, Jerome J.; Shuh, David K.; Edelstein,Norman M.

    2003-11-24

    Cementitious waste forms (CWFs) are an important component of the strategy to immobilize high-level nuclear waste resulting from plutonium production by the U.S. Department of Energy (DOE). Technetium (99Tc) is an abundant fission product of particular concern in CWFs due to the high solubility and mobility of pertechnetate, TcO4-, the stable form of technetium in aerobic environments. CWFs can more effectively immobilize 99Tc if they contain additives that reduce mobile TcO4- to immobile Tc(IV) species. Leaching of 99Tc from reducing CWFs that contain Tc(IV) is much slower than for CWFs containing TcO4-. Previous X-ray absorption fine structure (XAFS) studies showed that the Tc(IV) species were oxidized to TcO4- in reducing grout samples prepared on a laboratory scale. Whether the oxidizer was atmospheric O2 or NO3- in the waste simulant was not determined. In actual CWFs, rapid oxidation of Tc(IV) by NO3- would be a concern, whereas oxidation by atmospheric O2 would be of less concern due to the slow diffusion and reaction of O2 with the reducing CWF. To address this uncertainty, two series of reducing grouts were prepared using TcO4- containing waste simulants with and without NO3-. In the first series of samples, the TcO4- was completely reduced using Na2S, and the samples were placed in containers that permitted O2 diffusion. In these samples, all of the technetium was initially present as aTc(IV) sulfide compound, TcSx, which was characterized using extended X-ray absorption fine structure (EXAFS) spectroscopy, and is likely Tc2S7. The TcSx initially present in the grout samples was steadily oxidized over 4 years. In the second series of samples, all of the TcO4- was not initially reduced, and the grout samples were placed in airtight containers. In these samples, the remaining TcO4- continued to be reduced as the samples aged, presumably due to the presence of reducing blast furnace slag. When samples in the second series were exposed to atmosphere, the

  17. Fate of Contaminants in Contact with West Valley Grouts

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann,M.; Gillow, J.

    2009-07-01

    The objective of the work described here is to determine to what extent a variety of contaminants, including fission products, actinides, and RCRA elements are sequestered by the two grout formulations. The conceptual model for this study is as follows: a large mass of grout having been poured into a high-level waste tank is in the process of aging and weathering for thousands of years. The waste remaining in the tank will contain radionuclides and other contaminants, much of which will adhere to tank walls and internal structures. The grout will encapsulate the contaminants. Initially the grout will be well sequestered, but over time rainwater and groundwater will gain access to it. Ultimately, the grout/waste environment will be an open system. In this condition water will move through the grout, exposing it to O{sub 2} and CO{sub 2} from the air and HCO{sub 3}{sup -} from the groundwater. Thus we are considering an oxic environment containing HCO{sub 3}{sup -}. Initially the solubility of many contaminants, but not all, will be constrained by chemistry dominated by the grout, primarily by the high pH, around 11.8. This is controlled and buffered by the portland cement and blast furnace slag components of the grout, which by themselves maintain a solution pH of about 12.5. Slowly the pH will diminish as Ca(OH){sub 2} and KOH dissolve, are carried away by water, and CaCO{sub 3} forms. As these conditions develop, the behavior of these elements comes into question. In our conceptual model, although the grout is formulated to provide some reducing capacity, in order to be conservative this mechanism is not considered. In addition to solubility constraints imposed by pH, the various contaminants may be incorporated into a variety of solid phases. Some may be incorporated into newly forming compounds as the grout sets and cures. Others (like soddyite, (UO{sub 2}){sub 2}SiO{sub 4}(H{sub 2}O){sub 2}) are the result of slower reactions but may become important over time

  18. CsIX/TRU Grout Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    1998-11-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.

  19. Electrolysis of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, K.E.; Tran, T.; Swinkels, D.

    1984-01-01

    The major aims of the project were: to verify early reports of the American workers and demonstrate the feasibility of the concept of electrolysis of coal slurries; investigate reaction mechanisms and the stoichiometry; measure the reducing power and oxidation kinetics of selected Australian coals; investigate some process variables, and demonstrate an electrolysis cell with practical electrode geometry.

  20. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  1. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  2. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  3. Cement-based grouts in geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M. [AECL Research, Pinnawa, Manitoba (Canada)

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  4. Environmental Technology Verification Report: Grouts for Wastewater Collection Systems, Warren Environmental, Inc. 301-04 Epoxy Grout

    Science.gov (United States)

    Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to infiltration of leaking water from the surrounding environments. Rehabilitation of these facilities by in situ methods, including the use of grouting, is u...

  5. Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

    Energy Technology Data Exchange (ETDEWEB)

    Becaccia, A.; Ferrer, P.; Ibañez, M.A.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, C. de; Calvet, P.; García-Rebollar, P.

    2015-07-01

    This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2>0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production. (Author)

  6. Predicting the Occurrence of Hydraulic Fracture in Grouting Operations Based on the Pressure in the Penetrated Cement Grout

    Directory of Open Access Journals (Sweden)

    Hassan Bakhshandeh Amnieh

    2017-12-01

    Full Text Available Cement grouting is an operation often carried out to consolidate and seal the rock mass in dam sites and tunnels. The quality and efficiency of a grouting operation depends on various factors such as water take, grout properties and grouting pressure. One of the parameters which have the highest effect is pressure since the application of excessive pressure causes the hydraulic fracture phenomenon to occur in the rock mass and too little pressure leads to incomplete grouting and failure to seal the site in a perfect manner. Mathematical modeling is used for the first time in this study to predict and determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. To obtain equations governing the joints and the surroundings, energy method is used accompanied by Hamilton principle. In the end, an analytical solution method is used to obtain the maximum grouting pressure. In order to validate the modeling, the grouting pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures. Modeling in the examined sections of Seymareh dam showed 29.61, 5.57, 21.98, 32.50 and 9.09 percent error rates and in the sections of Aghbolagh dam it rendered the values of 4.32, 5.40 and 2.96 percent. The results indicate that this modeling can be used to estimate the amount of pressure for hydraulic fracture in grouting, to predict it and to prevent it.

  7. Data report on the Waste Isolation Pilot Plant Small-Scale Seal Performance Test, Series F grouting experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, E.H. [Sandia National Labs., Albuquerque, NM (United States); Dale, T.F.; Van Pelt, R.S. [INTERA, Inc., Austin, TX (United States)

    1996-03-01

    SSSPT-F was designed to evaluate sealing materials at WIPP. It demonstrated: (1) the ability to practically and consistently produce ultrafine cementitious grout at the grouting site, (2) successful, consistent, and efficient injection and permeation of the grout into fractured rock at the repository horizon, (3) ability of the grout to penetrate and seal microfractures, (4) procedures and equipment used to inject the grout. Also techniques to assess the effectiveness of the grout in reducing the gas transmissivity of the fractured rock were evaluated. These included gas-flow/tracer testing, post-grout coring, pre- and post-grout downhole televiewer logging, slab displacement measurements, and increased loading on jacks during grout injection. Pre- and post-grout diamond drill core was obtained for use in ongoing evaluations of grouting effectiveness, degradation, and compatibility. Diamond drill equipment invented for this test successfully prevented drill cuttings from plugging fractures in grout injection holes.

  8. In situ grouting of low-level burial trenches with a cement-based grout at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C.W.; Spence, R.D.; Tamura, T.; Spalding, B.P.

    1993-01-01

    A technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at ORNL is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in SWSA 6 were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability (characterized by trench penetration tests) and the decreased potential for leachate migration (characterized by hydraulic conductivity tests) following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. For example, construction of impermeable covers to seal the trenches will be ineffectual unless subsequent trench subsidence is permanently suspended. A grout composed of 39% Type 1 Portland cement, 55.5% Class F fly ash, and 5.5% bentonite mixed at 12.5 lb/gal of water was selected. Before the trenches were grouted, the primary characteristics relating to physical stability, hydraulic conductivity, and void volume of the trenches were determined. Their physical stability was evaluated using soil-penetration tests.

  9. Rock grouting. Current competence and development for the final repository

    Energy Technology Data Exchange (ETDEWEB)

    Emmelin, Ann (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Brantberger, Martin (Ramboell (SE)); Eriksson, Magnus (Vattenfall Power Consultant (SE)); Gustafson, Gunnar (Chalmers Univ. of Technology, Goeteborg (SE)); Stille, Haakan (Royal Inst. of Technology, Stockholm (SE))

    2007-06-15

    The report aims at presenting the overall state of grouting competence and development relating to the final repository and at motivating and giving detail to the grouting sections presented in the 2007 version of the overall SKB report 'Programme for research, development and demonstration of methods for the management and disposal of nuclear waste' that is presented to the government every three years. The report offers suggestions for principles for planning, design and execution of grouting and describes the further work thought to be necessary in order to meet the requirements of the final repository, that are currently given as working premises. This report does not aim to, and cannot, describe the grouting processes in detail. For details of current concepts, experience and development work, a list of references is provided. In Chapter 2, the task of sealing the underground repository is examined and an overall approach presented. Although the requirements related to this task are preliminary, it is made evident that they concern both the actual grouting results and the process leading to the achievement of these results. Chapter 3 is a conceptual description of grouting and the factors that govern the spreading of grout in the rock mass. It is intended as an introduction to Chapters 4-6, which describe the state of grouting competence and the tools available for the sealing of the final repository facility. Both common practice and cutting-edge research are dealt with in these chapters, mainly relying on references where available. Chapters 4 and 5 focus on the system consisting of the fundamental components the rock mass, the grout materials and the grouting technology, and how these system components interact whilst, in Chapter 6, the rock/grout technical system is viewed in a brief organizational context. Based on the requirements on results and the overall grouting process on the one hand and the current competence in grouting theory and

  10. Florida Sinkholes and Grout Injection Stabilization

    Directory of Open Access Journals (Sweden)

    Charles Hunt Griffith II

    2014-09-01

    Full Text Available Florida has a major problem when it comes to sinkholes. These sinkholes can become very hazardous to people, homes, and to the landscape as a whole. Florida sits on a carbonate platform which is highly indicative of sinkholes. There are three main types of sinkholes which occur in Florida: dissolution, cover subsidence, and cover collapse. I will compare these types of sinkholes to the underlying formation beneath Florida to see if there is a connection between the types of sinkholes that occur. I will also create a 3D model of grout injection stabilization and calculate its volume to compare to the actual volume placed under the house. This information will help inform and bring attention to the problem in Florida and in turn, may help alleviate the problem if we can understand what causes these sinkholes. The 3D model may help engineering companies become more efficient in predicting the projected amount of volume to stabilize a house that may be in danger.

  11. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  12. The effectiveness of grouted macadam at intersections. : A life-cycle cost analysis

    OpenAIRE

    Jacobsen, Sofie

    2012-01-01

    Intersections often experience severe rutting in the asphalt concrete layers due to slow moving, high loads, acceleration, deceleration and turning. This thesis aims to investigate the effectiveness of grouted macadam, open graded asphalt with its voids filled with cement grout, as a pavement material at intersections. This was done by investigating the properties of grouted macadam through a literature review and performing a life-cycle cost analysis comparing grouted macadam and asphalt con...

  13. Protection against water or mud inrush in tunnels by grouting: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2016-10-01

    Full Text Available Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.

  14. Systematic approach for the design of pumpable cement-based grouts for immobilization of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sams, T.L.; Gilliam, T.M.

    1987-01-01

    Cement-based grouts have been proven to be an economical and environmentally acceptable means of waste disposal. Costs can be reduced if the grout is pumped to the disposal site. This paper presents a systematic approach to guide the development of pumpable grouts. 20 refs., 2 figs.

  15. Liquid return from gas pressurization of grouted waste

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Benny, H.L.

    1994-05-01

    The ability to force pore liquids out of a simulated waste grout matrix using air pressure was measured. Specimens cured under various conditions were placed in a permeameter and subjected to increasing air pressure. The pressure was held constant for 24 hours and then stepped up until either liquid was released or 150 psi was reached. One specimen was taken to 190 psi with no liquid release. Permeability to simulated tank waste was then measured. Compressive strength was measured following these tests. This data is to assess the amount of fluid that might be released from grouted waste resulting from the buildup of radiolytically generated hydrogen and other gasses within the waste form matrix. A plot of the unconfined compressive strength versus breakthrough pressures identifies a region of ``good`` grout, which will resist liquid release.

  16. Solidification/stabilization of technetium in cement-based grouts

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L. (Oak Ridge National Lab., TN (USA); Oak Ridge Gaseous Diffusion Plant, TN (USA); Oak Ridge National Lab., TN (USA); Oak Ridge Gaseous Diffusion Plant, TN (USA))

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs.

  17. Performance of Grouted Splice Sleeve Connector under Tensile Load

    Directory of Open Access Journals (Sweden)

    A. Alias

    2016-05-01

    Full Text Available The grouted splice sleeve connector system takes advantage of the bond-slip resistance of the grout and the mechanical gripping of reinforcement bars to provide resistance to tensile force. In this system, grout acts as a load-transferring medium and bonding material between the bars and sleeve. This study adopted the end-to-end rebars connection method to investigate the effect of development length and sleeve diameter on the bonding performance of the sleeve connector. The end-to-end method refers to the condition where reinforcement bars are inserted into the sleeve from both ends and meet at the centre before grout is filled. Eight specimens of grouted splice sleeve connector were tested under tensile load to determine their performance. The sleeve connector was designed using 5 mm thick circular hollow section (CHS steel pipe and consisted of one external and two internal sleeves. The tensile test results show that connectors with a smaller external and internal sleeve diameter appear to provide better bonding performance. Three types of failure were observed in this research, which are bar fracture (outside the sleeve, bar pullout, and internal sleeve pullout. With reference to these failure types, the development length of 200 mm is the optimum value due to its bar fracture type, which indicates that the tensile capacity of the connector is higher than the reinforcement bar. It is found that the performance of the grouted splice sleeve connector is influenced by the development length of the reinforcement bar and the diameter of the sleeve.

  18. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  19. Charged slurry droplet research

    Science.gov (United States)

    Kelly, A. J.

    1989-02-01

    Rayleigh Bursting, wherein critically charged droplets explosively expel a number of micron sized sibling droplets, enhances atomization and combustion of all liquid fuels. Droplet surface charge is retained during evaporation, permitting multiple Rayleigh Bursts to occur. Moreover, the charge is available for the deagglomeration of residual particulate flocs from slurry droplet evaporation. To fill gaps in our knowledge of these processes, an experimental program involving the use of a charged droplet levitator and a Quadrupole Mass Spectrometer, High Speed Electrometer (QMS/HSE) has been undertaken to observe the disruption and to measure quantitatively the debris. A charged droplet levitator based on a new video frame grabber technology to image transient events, is described. Sibling droplet size is ten microns or less and is close to, if not coincident with, the predicted phase transition in droplet charging level. The research effort has focused on the exploration of this transition and its implications.

  20. Thermal conductivity of cementitious grouts for geothermal heat pumps. Progress report FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.

    1997-11-01

    Grout is used to seal the annulus between the borehole and heat exchanger loops in vertical geothermal (ground coupled, ground source, GeoExchange) heat pump systems. The grout provides a heat transfer medium between the heat exchanger and surrounding formation, controls groundwater movement and prevents contamination of water supply. Enhanced heat pump coefficient of performance (COP) and reduced up-front loop installation costs can be achieved through optimization of the grout thermal conductivity. The objective of the work reported was to characterize thermal conductivity and other pertinent properties of conventional and filled cementitious grouts. Cost analysis and calculations of the reduction in heat exchanger length that could be achieved with such grouts were performed by the University of Alabama. Two strategies to enhance the thermal conductivity of cementitious grouts were used simultaneously. The first of these was to incorporate high thermal conductivity filler in the grout formulations. Based on previous tests (Allan and Kavanaugh, in preparation), silica sand was selected as a suitable filler. The second strategy was to reduce the water content of the grout mix. By lowering the water/cement ratio, the porosity of the hardened grout is decreased. This results in higher thermal conductivity. Lowering the water/cement ratio also improves such properties as permeability, strength, and durability. The addition of a liquid superplasticizer (high range water reducer) to the grout mixes enabled reduction of water/cement ratio while retaining pumpability. Superplasticizers are commonly used in the concrete and grouting industry to improve rheological properties.

  1. Slurry flow principles and practice

    CERN Document Server

    Shook, C A; Brenner, Howard

    2015-01-01

    Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport.The technical literature in this field is extensive:

  2. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  3. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE MIXING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 211B

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Stone, M.

    2009-09-02

    Aqueous radioactive high-level waste slurries are combined during processing steps that ultimately produce a stable borosilicate glass waste form. Chemically treated waste slurries are combined with each other and with glass frit-water slurries to produce the melter feed. Understanding the evolution of the rheological properties of the slurries is an important aspect of removing and treating the stored waste. To a first approximation, combinations of colloidal waste slurry with {approx}0.1-mm mean diameter glass frit or glass beads act in an analogous matter to slurries of spherical beads in Newtonian liquids. The non-Newtonian rheological properties of the waste slurries without frit, however, add complexity to the hydrodynamic analysis. The use of shear rate dependent apparent viscosities with the modified Einstein equation was used to model the rheological properties of aqueous frit-waste slurries.

  4. Fatigue Behaviour of High Performance Cementitious Grout Masterflow 9500

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes the fatigue behaviour of the high performance grout MASTERFLOW 9500 subjected to cyclic loading, in air as well as submerged in water, at various frequencies and levels of maximum stress. Part of the results were also reported in [1] together with other mechanical...

  5. Field testing of jet-grouted piles and drilled shafts.

    Science.gov (United States)

    2014-01-01

    A field study of deep foundations supporting high mast lighting and signage was undertaken in typical Florida : soils. Three drilled shafts (48 in x12 ft and two 48 in x18 ft) and two jet-grouted piles (28 in x18 ft) were : constructed in Keystone He...

  6. Fatigue behaviour and ultimate capacity of grouted tubular joints

    NARCIS (Netherlands)

    Lalani, M.; Morahan, D.J.; Foeken, R.J. van; Wardenier, J.

    1996-01-01

    A Joint industry project (JIP) commenced in 1993(1) to develop a design manual for tubular joints which are strengthened or repaired through chord grout-filling. This project has been funded by five oil companies and two regulatory bodies. The project has comprised the conduct of over 150 Stress

  7. Simulation of prepackaged grout bleed under field conditions.

    Science.gov (United States)

    2014-04-01

    This report contains a summary of the research performed in the area of reproducing and determining the cause of soft : grout, which has been found in several PT (Post-Tensioned) tubes around the state of Florida. A modified version of the : Euronorm...

  8. Comparative testing of slurry monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K. [Oak Ridge National Lab., TN (United States); Anderson, M.S. [Ames Lab., IA (United States); Van Essen, D.C. [Advanced Integrated Management Services, Inc., Oak Ridge, TN (United States)

    1998-05-01

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses.

  9. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  10. Grouting design based on characterization of the fractured rock. Presentation and demonstration of a methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Aasa (SWECO Environment, Stockholm (Sweden); Chalmers Univ. of Technology, Goeteborg (Sweden))

    2008-12-15

    The design methodology presented in this document is based on an approach that considers the individual fractures. The observations and analyses made during production enable the design to adapt to the encountered conditions. The document is based on previously published material and overview flow charts are used to show the different steps. Parts of or the full methodology has been applied for a number of tunneling experiments and projects. SKB projects in the Aespoe tunnel include a pillar experiment and pre-grouting of a 70 meter long tunnel (TASQ). Further, for Hallandsas railway tunnel (Skaane south Sweden), a field pre-grouting experiment and design and post-grouting of a section of 133 meters have been made. For the Nygard railway tunnel (north of Goeteborg, Sweden), design and grouting of a section of 86 meters (pre-grouting) and 60 meters (post-grouting) have been performed. Finally, grouting work at the Tornskog tunnel (Stockholm, Sweden) included design and grouting along a 100 meter long section of one of the two tunnel tubes. Of importance to consider when doing a design and evaluating the result are: - The identification of the extent of the grouting needed based on inflow requirements and estimates of tunnel inflow before grouting. - The selection of grout and performance of grouting materials including penetration ability and length. The penetration length is important for the fan geometry design. - The ungrouted compared to the grouted and excavated rock mass conditions: estimates of tunnel inflow and (if available) measured inflows after grouting and excavation. Identify if possible explanations for deviations. For the Hallandsas, Nygard and Tornskog tunnel sections, the use of a Pareto distribution and the estimate of tunnel inflow identified a need for sealing small aperture fractures (< 50 - 100 mum) to meet the inflow requirements. The tunneling projects show that using the hydraulic aperture as a basis for selection of grout is a good

  11. Spray-drying of alumina powder for APS: effect of slurry properties ...

    Indian Academy of Sciences (India)

    Administrator

    pension (slurry) is transformed into a dry granule (feed- stock) by spraying the fluid feed material into a stream of heated air. Spray drying enables the fabrication of com- posite powder by aggregation of different small particles using an appropriate organic binder. The rapid heat and mass transfer occurs during the process.

  12. Revised Methodology for Determining Cesium-137 Content of HN-200 Grout Containers

    Energy Technology Data Exchange (ETDEWEB)

    SHELOR, J.L.

    1999-08-31

    The purpose of this technical paper is to examine the accuracy of the existing method of determining the Cs-137 content of HN-200 grout containers and compare that accuracy to the accuracy attainable by other methods of measurement. The methods of measurement to be compared include: Contact measurements on a grouted container (existing method); Measurements at 5 feet from the surface of a grouted container; Measurements at 10 feet from a grouted container; Measurements on contact with the surface of an ungrouted container; Measurements at 5 feet from the surface of an ungrouted container; and Measurements at 10 feet from the surface of an ungrouted container. Once the most accurate and useable method is determined, the precepts for an operating procedure will be provided for determining the Cs-137 content of newly generated and future HN-200 grout containers as well as the grouted legacy containers currently stored in B Cell.

  13. Experimental Study on Post Grouting Bearing Capacity of Large Diameter Bored Piles

    Directory of Open Access Journals (Sweden)

    Wang Duanduan

    2015-01-01

    Full Text Available Post grouting can improve the inherent defects such as the formation of the mud cake at pile side and the sediment at pile end in the process of bored pile construction. Thus post grouting has been widely used in Engineering. The purpose of this paper is to research the influences of post grouting to pile bearing capacity more systematically and intuitively. Combined with the static load test of four test piles in Weihe River Bridge test area of new airport highway in Xi’an, the bearing capacity and settlement of routine piles and post grouting piles are comparatively analyzed. The test results show that under the same geological condition, post grouting can improve the properties of pile tip and pile shaft soil of bored piles significantly, enhance the ultimate resistance, improve the ultimate bearing capacity and reduce the pile tip settlement. Then post grouting can aim to optimize pile foundation.

  14. Chemical Grouting Lost-Circulation Zones with Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A.J.; Westmoreland, J.J.

    1999-07-12

    Sandia National Laboratories is developing polyurethane foam as a chemical grout for lost circulation zones. In past work polyurethane foam was tried with limited success in laboratory tests and GDO sponsored field tests. Goals were that the foam expanded significantly and harden to a chillable firmness quickly. Since that earlier work there have been improvements in polyurethane chemistry and the causes of the failures of previous tests have been identified. Recent success in applying pure solution grouts (proper classification of polyurethane--Naudts) in boreholes encourages reevaluating its use to control lost circulation. These successes include conformance control in the oil patch (e.g. Ng) and darn remediation projects (Bruce et al.). In civil engineering, polyurethane is becoming the material of choice for sealing boreholes with large voids and high inflows, conditions associated with the worst lost circulation problems. Demonstration of a delivery mechanism is yet to be done in a geothermal borehole.

  15. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2008-09-25

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  16. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2009-05-27

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  17. Durability of geothermal grouting materials considering extreme loads

    OpenAIRE

    Indacoechea Vega, Irune; Pascual Muñoz, Pablo; Castro Fresno, Daniel; Zamora-Barraza, D

    2018-01-01

    The concern about the massive use of the non-renewable and very limited fossil fuels together with the well-known effects of the global warming makes it more necessary the efficient use of the current forms of renewable energy generation. Because of the crucial role played by the grouting materials in the Ground Source Heat Pumps (GSHP), a proper selection of these elements should be made based on a deep knowledge of their performance. In this paper, thermal conductivity, mechanical strength ...

  18. Numerical Simulations of Settlement of Jet Grouting Columns

    Directory of Open Access Journals (Sweden)

    Juzwa Anna

    2016-03-01

    Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.

  19. A simple approach to the design of pavements incorporating grouted macadams

    OpenAIRE

    Oliveira, Joel; Zoorob, S.; Thom, N.H.; Pereira, Paulo A. A.

    2007-01-01

    Grouted macadams form a semi-flexible class of composites whose behaviour lies somewhere between concrete and conventional asphalt materials, having both excellent rut resistance and a degree of flexibility. This paper presents a series of pavement design computer simulations, based on results obtained from laboratory fatigue and stiffness tests on grouted macadam and conventional asphalt mixtures. The design variables explored include the application of grouted macadams both as surf...

  20. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Virgil James; Pao, Jenn Hai; Demmer, Ricky Lynn; Tripp, Julia Lynn

    2002-02-01

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to reduce the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.

  1. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.J.; Pao, J.H.; Demmer, R.L.; Tripp, J.L.

    2002-01-17

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.

  2. Brief overview of the various families of grouts and their aplications

    Energy Technology Data Exchange (ETDEWEB)

    Nandts, A.

    1989-04-01

    It is difficult to maintain an up-to-date overview of all the grouts presently used on the international market. Better grouts are continuously developed and more formulators are making their appearance. Consequently, it is difficult to clearly define all of the products in the industry. This topic has been the subject of numerous papers and textbooks. Most authors, however, only focus on their fields of interest: applications in geotechnical, or rehabilitation, or seepage control in civil engineering, oil or mining industry. There has been a limited transfer of technology from one field to the other because of the enormous differences in magnitude, site conditions and consequently the application techniques. The tools an engineer has are: his expertise in grouting and engineering background, equipment available or to be designed or modified to carry out a particular job, relevant data available from other sciences, and products with a variety of characteristics. This paper concentrates on product selection. The most suitable product for a particular project requires a good understanding of the general chemical and mechanical characteristics of the grout. The grouts have been classified into four categories for the purpose of this paper. There may be other methods of classification; however, this is only an attempt to help the industry with the selection of the most suitable grout for a given application. The four categories are: suspension grouts, chemical grouts, hot melts, and precipitation grouts. 1 fig.

  3. Review of Consolidation Grouting of Rock Masses and Methods for Evaluation

    Science.gov (United States)

    1988-07-01

    undesirable as the clay fillings may be less pc ~vious than the cement grout. However, they were grouting for seepage control and were not attempting...34 Memoria No. 364, Laboratorio Nacional De Engenharia Civil, Lisbon. Barton, C. M. 1978 (May). "Analysis of Joint Traces," Proceedings, 19th US Rock

  4. New data on the fatigue and ultimate limit state of grouted tubular joints

    Energy Technology Data Exchange (ETDEWEB)

    Morahan, D.J.; Foeken, R.J. van; Lalani, M.; Wardenier, J.

    1996-12-31

    A Joint Industry Project (JIP) commenced in 1993 to develop a design manual for tubular joints which are strengthened or repaired through chord grout-filling. This project has been funded by five oil companies and two regulatory bodies. The project has comprised the conduct of over 150 Stress Concentration Factor (SCF) and ultimate load tests on large scale as-welded and grouted tubular joints. Separate data capture studies, including capture of data on double-skin grout reinforced joints, have been conducted, together with studies on offshore deployment, to ensure that complete chord grout-filling is achieved for all practical scenarios. The primary reason for carrying out this project has been an industry-wide recognition that chord grout-filling represents an extremely cost-effective and technically-efficient method to strengthen or repair tubular joints. Further, it has been recognized that double-skin joints (e.g. pile through leg with annulus grout-filled) are often present in structures and the resulting enhanced strength and fatigue characteristics should be exploited to permit more efficient new platform designs or better estimation of joint performance for existing installations. Although API RP2A permits the use of grouted joints, little guidance is provided, reflecting the lack of data and information in this area. This project has been carried out to generate a significant amount of new data/information, leading to the creation of a design manual for grouted joints.

  5. Development of laboratory test methods to replace the simulated high-temperature grout fluidity test.

    Science.gov (United States)

    2014-06-01

    This report contains a summary of the research performed to develop a replacement for the high-temperature grout : fluidity (HTGF) test. The HTGF test was employed in the past by FDOT to qualify post-tensioning (PT) grouts for use in : post-tensioned...

  6. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in...... generally high. It was concluded that the contribution from floors to NH3 emissions was effect on N2O emissions was observed. The effect...

  7. Low-pH injection grout for deep repositories. Summary report from a co-operation project between NUMO (Japan), Posiva (Finland) and SKB (Sweden)

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Anders [SwedPower AB, Stockholm (Sweden); Sievaenen, Ursula [JP-Suoraplan Oy, Vantaa (Finland)

    2005-06-01

    The use of standard cementitious material creates pulses of pH in the magnitude of 12-13 in the leachates and release alkalis. Such a high pH is detrimental and also unnecessarily complicates the safety analysis of the repository. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis. Also, according to current understanding, the use of low-pH cement (pH = 11) will not disturb the functioning of the bentonite, although limiting the amount of low-pH cement is recommended. A result of the project is that there are both low-pH cementitious material for grouting larger fractures (= 100 {mu}m) and non-cementitious material for grouting smaller fractures (< 100 {mu}m) that will, after further optimisation work, be recommended for grouting of deep repositories. This project concentrated on the technical development of properties for the low pH grouts. Long-term safety and environmental aspects and durability of materials were preliminarily considered. Continued evaluations have to be carried out. Five systems, e.g. material combinations, were studied in the project: 1. Ordinary Portland Cement + Silica Fume. 'OPC+SF' denotes a binder system that is based mainly on OPC+SF. SF was used in a few commercial forms. The OPC used in this system was mainly UF16 and in some cases Rheocem 900 or white cement. 2. Blast furnace slag. 'Slag' denotes an OPC activated slag based system. Alkali and water glass activation were not examined, because of long-term safety reasons. OPC used in this system was rapid hardening Portland cement. 3. Super sulphate cement. 'SSC' is a slag-based system activated with gypsum and OPC. The OPC used was rapid hardening Portland cement and the gypsum was a very fine grained slurry product. 4. Low-Alkali Cement 'LAC' was introduced to the project by NUMO as a product, ground to fixed fineness by the producer. Neither the mineral composition nor

  8. MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-01-05

    The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

  9. Parameters Optimization of Curtain Grouting Reinforcement Cycle in Yonglian Tunnel and Its Application

    Directory of Open Access Journals (Sweden)

    Qingsong Zhang

    2015-01-01

    Full Text Available For practical purposes, the curtain grouting method is an effective method to treat geological disasters and can be used to improve the strength and permeability resistance of surrounding rock. Selection of the optimal parameters of grouting reinforcement cycle especially reinforcement cycle thickness is one of the most interesting areas of research in curtain grouting designs. Based on the fluid-structure interaction theory and orthogonal analysis method, the influence of reinforcement cycle thickness, elastic modulus, and permeability on water inflow of tunnel after grouting and stability of surrounding rock was analyzed. As to the water inflow of tunnel after grouting used as performance evaluation index of grouting reinforcement cycle, it can be concluded that the permeability was the most important factor followed by reinforcement cycle thickness and elastic modulus. Furthermore, pore water pressure field, stress field, and plastic zone of surrounding rock were calculated by using COMSOL software under different conditions of reinforcement cycle thickness. It also can be concluded that the optimal thickness of reinforcement cycle and permeability can be adopted as 8 m and 1/100 of the surrounding rock permeability in the curtain grouting reinforcement cycle. The engineering case provides a reference for similar engineering.

  10. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G. [Daniel B. Stephens & Associates, Inc., Richland, WA (United States)

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  11. Laboratory leach tests of phosphate/sulfate waste grout and leachate adsorption tests using Hanford sediment

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; McLaurine, S.B.; Airhart, S.P.; LeGore, V.L.; Treat, R.L.

    1987-12-01

    An assessment of the long-term risks posed by grout disposal at Hanford requires data on the ability of grout to resist leaching of waste species contained in the grout via contact with water that percolates through the ground. Additionally, data are needed on the ability of Hanford sediment (soil) surrounding the grout and concrete vault to retard migration of any wastes released from the grout. This report describes specific laboratory experiments that are producing empirical leach rate data and leachate-sediment adsorption data for Phosphate-Sulfate Waste (PSW) grout. The leach rate and adsorption values serve as inputs to computer codes used to forecast potential risk resulting from the use of ground water containing leached species. In addition, the report discusses other chemical analyses and geochemical computer code calculations that were used to identify mechanisms that control leach rates and adsorption potential. Knowledge of the controlling chemical and physical processes provides technical defensibility for using the empirical laboratory data to extrapolate the performance of the actual grout disposal system to the long time periods of interest. 59 refs., 83 figs., 18 tabs.

  12. Dermal and neural toxicity caused by acrylamide exposure in two Korean grouting workers: a case report.

    Science.gov (United States)

    Kim, Heeyun; Lee, Sang Gil; Rhie, Jeongbae

    2017-01-01

    Peripheral neuritis caused by acrylamide is well-known, and many Korean grouting workers are frequently exposed to acrylamide in grouting agents that are injected into cracked concrete. We recently encountered two cases of dermal and neural toxicity in Korean grouting workers with exposure to grouting agents that contained a high concentration of acrylamide. The first case involved a 44-year-old man with 8 years of waterproofing experience. The patient developed peeling skin on both hands while grouting, which progressed to systemic neurological symptoms, such as reduced sensory function and strength. The patient was diagnosed with peripheral neuropathy caused by acrylamide exposure, and fully recovered after conservative treatment and withdrawal of exposure to the grouting agent. The second case involved a 34-year-old man with 10 years of grouting experience. The patient initially experienced weakness in both legs, which progressed to weakness in his arms and uncontrolled phonation. After being hospitalized, he was diagnosed with cerebellar ataxia and peripheral neuropathy caused by acrylamide exposure, and was discharged after conservative treatment. Our follow-up investigation revealed that both workers were recently exposed to grouting agents that contained higher concentrations of acrylamide, compared to the agents that they had previously been using. Both workers had workplace acrylamide exposure through dermal contact plus inhalation of dust and vapor, which led to the neural toxicity and dermatitis. Therefore, government studies are needed to investigate the current status of workplace acrylamide use, and to protect workers from the hazardous effects of using acrylamide-containing grouting agents.

  13. Patoka Lake Foundation Report. Book 5. Appendix E. Special Grouting Analysis Report.

    Science.gov (United States)

    1983-04-01

    mortar sand, 3 cu. ft. of water, 3 cu. ft. of cement, and I cu. ft. of flyash . The water content was low ered occasionally. However, inconsistent sand...3-19. Specified water cement ratios for grouting varied from 3:1 to 0.6:1. Provisions were included for mortar grout if neces- sary. Allowable...three holes to the base of the grout curtain and backfill each hole with ready mix mortar . The three ver- tical holes were picked to intersect the three

  14. Modification of Grout Properties in Prepacked Aggregate Concrete Incorporating Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Reza Hodjati

    2015-01-01

    Full Text Available Prepacked aggregate concrete (PAC is a type of concrete that is placed in two stages where the coarse aggregates are first placed inside the formworks and then the grout is pumped from underneath through a manual pump. Grout properties including density, grout consistency, bleeding, and compressive strength are of great importance in PAC. Such properties could be improved by application of pozzolanic materials like palm oil fuel ash. This paper is aimed at finding the most optimum percentage of POFA replacement by weight of cement. It was concluded that 30% POFA replacement yielded the most optimum results.

  15. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Miguel; Arcos, David; Duro, Lara [Enviros Consulting, Valldoreix, Barc elona (Spain)

    2007-11-15

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  16. GROUT TEMPERATURE MEASUREMENTS IN 105-R DISASSEMBLY BASIN D AND E CANAL

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, R.; Collins, M.; Guerrero, H.

    2010-06-03

    The 105-R Reactor Disassembly Basin Grout Placement Strategy Report (SRNL-TR-2009-00157) identifies various portions of the facility that will undergo an in-situ decommissioning process. The estimated residual radioactive contamination in the 105-R facility is shown in Figure 1. Cementitious grout formulations developed by SRNL are being used to immobilize and isolate the radioactive contamination in existing below grade portions of the 105-R building as shown by the gray-hatched area in Figure 2. A Zero Bleed flowable fill was formulated for both dry placement and for underwater placement. The first major area in the 105-R Disassembly Basin to undergo the grouting process was the D&E Canal and an underlying void space known as the Chase. Grout temperature data was needed to ensure that the grout mix design was on the correct grout curing trajectory to meet the material compressive strength requirement of 50 pounds per square inch. Initial grout temperature measurements were needed to confirm and optimize grout mix design fresh property characteristics; i.e. material strength, and set time. Grout curing temperature is an integrating fresh property characteristic that is used to estimate cementitious material strength in accordance with the Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM C 1074. The Maturity Method is used in the construction industry to estimate in-place strength of concrete to allow the start of critical construction activities; e.g. formwork removal, removal of cold weather protection, opening of roadways to traffic, etc. Applying this methodology provides an expeditious means to estimate in-place grout strength based on compressive strength laboratory results. The Maturity Method results define the relationship between strength-time and age-time that may be utilized in the field for estimating strength after a given time of placement. Maturation curves were developed under the 105-R Reactor Disassembly Basin

  17. SLURRY FLOW MODELLING BY CFD

    Directory of Open Access Journals (Sweden)

    K.C. Ghanta

    2010-12-01

    Full Text Available An attempt has been made in the present study to develop a generalized slurry flow model using CFD and utilize the model to predict concentration profile. The purpose of the CFD model is to gain better insight into the solid liquid slur¬ry flow in pipelines. Initially a three-dimensional model problem was developed to understand the influence of the particle drag coefficient on the solid concen¬tration profile. The preliminary simulations highlighted the need for correct mo¬delling of the inter phase drag force. The various drag correlations available in the literature were incorporated into a two-fluid model (Euler-Euler along with the standard k- turbulence model with mixture properties to simulate the tur¬bulent solid-liquid flow in a pipeline. The computational model was mapped on to a commercial CFD solver FLUENT6.2 (of Fluent Inc., USA. To push the en¬velope of applicability of the simulation, recent data from Kaushal (2005 (with solid concentration up to 50% was selected to validate the three dimensional simulations. The experimental data consisted of water-glass bead slurry at 125 and 440-micron particle with different flow velocity (from 1 to 5 m/s and overall concentration up to 10 to 50% by volume. The predicted pressure drop and concentration profile were validated by experimental data and showed excel-lent agreement. Interesting findings came out from the parametric study of ve-locity and concentration profiles. The computational model and results discus¬sed in this work would be useful for extending the applications of CFD models for simulating large slurry pipelines.

  18. Task plan to evaluate the effectiveness of in situ grouting of an ORNL waste burial trench with a cement-based grout

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C.W.

    1991-11-01

    This task will demonstrate the feasibility of using an in situ grouting technique with a particulate-grout formulation as a closure action to stabilize waste trenches in Solid Waste Storage Area (SWSA) 6. It also supports technology development for closure of other SWSAs. A particulate grout will be formulated using cement-bentonite and fly ash from a coal-fired power plant. The grout solids will be dry-blended, mixed with water, and injected (using {similar to}5 to 10 lb/in.{sup 2} pressure) into five injection wells per trench. After 28 days for setting, soil penetration resistance and hydraulic conductivity measurements will be repeated for comparison to pregrouting measurements. The primary objective of this task is to demonstrate the feasibility and effectiveness of the in situ injection of a particulate grout into waste burial trenches. Effectiveness is defined here as increased trenched stability (characterized by trench penetration resistance tests) and decreased potential for leachate migration (characterized by hydraulic conductivity tests).

  19. Task plan to evaluate the effectiveness of in situ grouting of an ORNL waste burial trench with a cement-based grout. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C.W.

    1991-11-01

    This task will demonstrate the feasibility of using an in situ grouting technique with a particulate-grout formulation as a closure action to stabilize waste trenches in Solid Waste Storage Area (SWSA) 6. It also supports technology development for closure of other SWSAs. A particulate grout will be formulated using cement-bentonite and fly ash from a coal-fired power plant. The grout solids will be dry-blended, mixed with water, and injected (using {similar_to}5 to 10 lb/in.{sup 2} pressure) into five injection wells per trench. After 28 days for setting, soil penetration resistance and hydraulic conductivity measurements will be repeated for comparison to pregrouting measurements. The primary objective of this task is to demonstrate the feasibility and effectiveness of the in situ injection of a particulate grout into waste burial trenches. Effectiveness is defined here as increased trenched stability (characterized by trench penetration resistance tests) and decreased potential for leachate migration (characterized by hydraulic conductivity tests).

  20. Slurry discharge management-beach profile prediction

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Nawrot, J.R. [Southern Illinois University at Carbondale, Carbondale, IL (United States). Dept. of Civil Engineering

    1996-11-01

    Mine tailings dams are embankments used by the mining industry to retain the tailings products after the mineral preparation process. Based on the acid-waste stereotype that all coal slurry is acid producing, current reclamation requires a four foot soil cover for inactive slurry disposal areas. Compliance with this requirement is both difficult and costly and in some case unnecessary, as not all the slurry, or portions of slurry impoundments are acid producing. Reduced costs and recent popularity of wetland development has prompted many operators to request reclamation variances for slurry impoundments. Waiting to address slurry reclamation until after the impoundment is full, limits the flexibility of reclamation opportunities. This paper outlines a general methodology to predict the formation of the beach profile for mine tailings dams, by the discharge volume and location of the slurry into the impoundment. The review is presented under the perspective of geotechnical engineering and waste disposal management emphasizing the importance of pre-planning slurry disposal land reclamation. 4 refs., 5 figs.

  1. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    Science.gov (United States)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  2. Corrosion performance of prestressing strands in contact with dissimilar grouts : technical summary.

    Science.gov (United States)

    2013-01-01

    Inspections of post-tensioned bridges : by the Kansas Department of Transportation : have revealed voids in strand ducts due to : bleeding and shrinkage of older Portland : Cement grouts. The Kansas Department : of Transportation is faced with a deci...

  3. Grouting techniques for the unfavorable geological conditions of Xiang'an subsea tunnel in China

    Directory of Open Access Journals (Sweden)

    Dingli Zhang

    2014-10-01

    Full Text Available One of the major challenges during subsea tunnel construction is to seal the potential water inflow. The paper presents a case study of Xiang'an subsea tunnel in Xiamen, the first subsea tunnel in China. During its construction, different grades of weathered geomaterials were encountered, which was the challenging issue for this project. To deal with these unfavorable geological conditions, grouting was adopted as an important measure for ground treatment. The grouting mechanism is first illustrated by introducing a typical grouting process. Then the site-specific grouting techniques employed in the Xiang'an subsea tunnel are elaborated. By using this ground reinforcement technique, the tunneling safety of the Xiang'an subsea tunnel was guaranteed.

  4. Double-parameter foundation beam modal of overlying thin rock stratum under loose layers grouting mining

    Science.gov (United States)

    Xianghong, Chen; Lianjin, Tao; Honghua, Liu

    2017-04-01

    Strata movement of drilling grouting is distinctly different from that of traditional caving mining, especially for overlying thin rock stratum. Considering the horizontal shear transfer of foundation, a mechanical model of overlying strata movement was established using the theory of Pasternak double-parameter foundation beam. The deflection and internal force equations of rock beam were derived, and the influence mechanisms of grouting material parameter were discussed. The results showed that the thickness of layer grouting was the key influential factor than the foundation modulus coefficient and grout diffusion radius. The comparison with the theory of Winkler elastic foundation beam also showed that double-parameter foundation beam method is more applicable to reinforced strata.

  5. Guidelines for sampling, assessing, and restoring defective grout in prestressed concrete bridge post-tensioning ducts.

    Science.gov (United States)

    2013-10-01

    A significant proportion of the U.S. bridge inventory is based on bonded post-tensioned (PT) concrete construction. An : important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly grouted : wit...

  6. Effects of surface drilling grouting on deformation properties of thin rock stratum above goaf

    Science.gov (United States)

    Dongxiao, Xu

    2017-12-01

    Strata movement of coal mining for surface drilling grouting of overlying loose layers is distinctly different from that of traditional caving mining. In order to calculate strata movement accurately after full-size grouting, based on the shear transfer mechanism along foundation horizontal, a mechanical model of strata movement was established using the theory of Pasternak double-parameter beam on elastic foundation, and the deflection differential equations of rock beam were derived. Then the influence mechanisms of varied grouting parameters were discussed and the results showed that, the maximum deformation change value of roof increase non-obviously with the increasing of elastic modulus ratio, while decrease non-linearly with the grouting thickness. Thus can provide theoretical reference for strata displacement control in the same or similar projects.

  7. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R- AND P-REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2009-12-29

    The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS&T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D&D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or Portland cement grout (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters does not provide a significant margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. It is recommended that this grout not be utilized for this task. The R-reactor vessel contains significantly less aluminum and thus a Portland cement grout may be considered as well. For example, if the grout fill rate is less than 1 inch/min and the grout temperature is maintained at 70 C or less, the risk of hydrogen accumulation in the R-reactor vessel is very low for the Portland cement. Alternatively, if the grout fill rate is less than 0.5 inch/min and the grout is maintained

  8. Field lysimeter studies for performance evaluation of grouted Hanford defense wastes

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Serne, R.J.; LeGore, V.L.

    1995-02-01

    The Grout Waste Test Facility (GWTF) consisted of four large field lysimeters designed to test the leaching and migration rates of grout-solidified low-level radioactive wastes generated by Hanford Site operations. Each lysimeter was an 8-m-deep by 2-media closed-bottom caisson that was placed in the ground such that the uppermost rim remained just above grade. Two of these lysimeters were used; the other two remained empty. The two lysimeters that were used (A-1 and B-1) were backfilled with a two-layer soil profile representative of the proposed grout disposal site. The proposed grout disposal site (termed the Grout Treatment Facility Landfill) is located immediately east of the Hanford Site`s 200 East Area. This soil profile consisted of a coarse sand into which the grout waste forms were placed and covered by 4 m of a very fine sand. The A-1 lysimeter was backfilled in March 1985, with a grout-solidified phosphate/sulfate liquid waste from N Reactor decontamination and ion exchange resin regeneration. The B-1 lysimeter was backfilled in September 1985 and received a grout-solidified simulated cladding removal waste representative of waste generated from fuel reprocessing operations at the head end of the Plutonium Uranium Extraction (PUREX) plant. Routine monitoring and leachate collection activities were conducted for over three years, terminating in January 1989. Drainage was collected sporadically between January 1989 and December 1992. Decontamination and decommissioning of these lysimeters during the summer of 1994, confirmed the presence of a 15 to 20-cm-long hairline crack in one of the bottom plate welds. This report discusses the design and construction of the GWTF, presents the routine data collected from this facility through January 1989 and subsequent data collected sporadically between 1989 and 1993, and provides a brief discussion concerning preliminary interpretation of the results.

  9. A New Parameter to Assess Hydromechanical Effect in Single-hole Hydraulic Testing and Grouting

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Fransson, A.; Tsang, C.-F.; Rutqvist, J.; Gustafson, G.

    2007-09-01

    Grouting or filling of the open voids in fractured rock is done by introducing a fluid, a grout, through boreholes under pressure. The grout may be either a Newtonian fluid or a Bingham fluid. The penetration of the grout and the resulting pressure profile may give rise to hydromechanical effects, which depends on factors such as the fracture aperture, pressure at the borehole and the rheological properties of the grout. In this paper, we postulate that a new parameter, {angstrom}, which is the integral of the fluid pressure change in the fracture plane, is an appropriate measure to describe the change in fracture aperture volume due to a change in effective stress. In many cases, analytic expressions are available to calculate pressure profiles for relevant input data and the {angstrom} parameter. The approach is verified against a fully coupled hydromechanical simulator for the case of a Newtonian fluid. Results of the verification exercise show that the new approach is reasonable and that the {angstrom}-parameter is a good measure for the fracture volume change: i.e., the larger the {angstrom}-parameter, the larger the fracture volume change, in an almost linear fashion. To demonstrate the application of the approach, short duration hydraulic tests and constant pressure grouting are studied. Concluded is that using analytic expressions for penetration lengths and pressure profiles to calculate the {angstrom} parameter provides a possibility to describe a complex situation and compare, discuss and weigh the impact of hydromechanical couplings for different alternatives. Further, the analyses identify an effect of high-pressure grouting, where uncontrolled grouting of larger fractures and insufficient (or less-than-expected) sealing of finer fractures is a potential result.

  10. Grout and Glass Performance Maximizing the Loading of ORNL Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, M.W.; Mattus, A.J.; Spence, R.D.; Travis, J.R.

    1999-03-01

    Grouting and vitrification are currently two likely stabilization and solidification alternatives for radioactive and hazardous mixed wastes stored at Department of Energy (DOE) facilities. Grouting has been used to stabilize and solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as a mixed-waste alternative disposal technology.

  11. CONSIDERATIONS FOR GROUT FORMULATIONS FOR FACILITY CLOSURES USING IN SITU STRATEGIES

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.; Serrato, M.; Langton, C.; Long, T.; Blankenship, J.; Hannah, G.; Stubblefield, R.; Szilagyi, A.

    2010-08-25

    The U.S. Department of Energy (DOE) is conducting in situ closures (entombment) at a large number of facilities throughout the complex. Among the largest closure actions currently underway are the closures of the P and R Reactors at the Savannah River Site (SRS), near Aiken, South Carolina. In these facilities, subgrade open spaces are being stabilized with grout; this ensures the long term structural integrity of the facilities and permanently immobilizes and isolates residual contamination. The large size and structural complexity of these facilities present a wide variety of challenges for the identification and selection of appropriate fill materials. Considerations for grout formulations must account for flowability, long term stability, set times, heat generation and interactions with materials within the structure. The large size and configuration of the facility necessitates that grout must be pumped from the exterior to the spaces to be filled, which requires that the material must retain a high degree of flowability to move through piping without clogging while achieving the required leveling properties at the pour site. Set times and curing properties must be controlled to meet operations schedules, while not generating sufficient heat to compromise the properties of the fill material. The properties of residual materials can result in additional requirements for grout formulations. If significant quantities of aluminum are present in the facility, common formulations of highly alkaline grouts may not be appropriate because of the potential for hydrogen generation with the resultant risks. SRS is developing specialized inorganic grout formulations that are designed to address this issue. One circum-neutral chemical grout formulation identified for initial consideration did not possess the proper chemical characteristics, having exceptionally short set times and high heat of hydration. Research efforts are directed toward developing grout formulations

  12. The grouting handbook a step-by-step guide for foundation design and machinery installation

    CERN Document Server

    Harrison, Donald M

    2013-01-01

    Minimize loss of revenue and the downtime of critical assets by avoiding foundation cracking, poor bonds, and initial alignment changes. After their successful introduction as a maintenance material, machinery grouts are now being used for equipment placement in new construction. While certainly suitable for both markets and applications, a successful installation depends on proper grout selection, application, foundation preparation, and forming methods. Therefore, guidelines on their uses and limitations are needed for engineers and maintenance personnel. Based on 45 years of field experi

  13. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-03-03

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

  14. Strength Assessment of Broken Rock Postgrouting Reinforcement Based on Initial Broken Rock Quality and Grouting Quality

    Directory of Open Access Journals (Sweden)

    Hongfa Xu

    2017-01-01

    Full Text Available To estimate postgrouting rock mass strength growth is important for engineering design. In this paper, using self-developed indoor pressure-grouting devices, 19 groups of test cubic blocks were made of the different water cement ratio grouting into the broken rock of three kinds of particle sizes. The shear strength parameters of each group under different conditions were tested. Then this paper presents a quantitative calculation method for predicting the strength growth of grouted broken rock. Relational equations were developed to investigate the relationship between the growth rates of uniaxial compressive strength (UCS, absolute value of uniaxial tensile strength (AUTS, internal friction angle, and cohesion for post- to pregrouting broken rock based on Mohr-Coulomb strength criterion. From previous test data, the empirical equation between the growth rate of UCS and the ratio of the initial rock mass UCS to the grout concretion UCS has been determined. The equations of the growth rates of the internal friction coefficient and UCS for grouting broken rock with rock mass rating (RMR and its increment have been established. The calculated results are consistent with the experimental results. These observations are important for engineered design of grouting reinforcement for broken rock mass.

  15. Jet grouting for a groundwater cutoff wall in difficult glacial soil deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, R.F.; Pepe, F. Jr. [Parsons Brinckerhoff Quade & Douglas, New York, NY (United States)

    1997-12-31

    Jet grouting is being used as part of a groundwater cutoff wall system in a major New York City subway construction project to limit drawdowns in an adjacent PCB contamination plume. A circular test shaft of jet grout columns was conducted during the design phase to obtain wall installation parameters. The test program also included shaft wall mapping, and measurements of; inflows, piezometric levels, ground heave and temperature, and jet grout hydraulic conductivity. An axisymmetric finite element method groundwater model was established to back calculate the in-situ hydraulic conductivities of both the surrounding glacial soils and the jet grout walls by matching observed inflows and piezometric levels. The model also verified the use of packer permeability test as a tool in the field to evaluate the hydraulic conductivities of jet grout columns. Both the test program and analytic studies indicated that adjustments to the construction procedures would be required to obtain lower hydraulic conductivities of the jet grout walls for construction. A comparison is made with the conductivities estimated from the test program/analytic studies with those from the present construction.

  16. Use of jet grouting to create a low permeability horizontal barrier below an incinerator ash landfill

    Energy Technology Data Exchange (ETDEWEB)

    Furth, A.J.; Burke, G.K. [Hayward Baker Inc., Odenton, MD (United States); Deutsch, W.L. Jr. [Roy F. Weston, Inc., West Chester, PA (United States)

    1997-12-31

    The City of Philadelphia`s Division of Aviation (DOA) has begun construction of a new commuter runway, designated as Runway 8-26, at the Philadelphia International Airport. A portion of this runway will be constructed over a former Superfund site known as the Enterprise Avenue Landfill, which for many years was used to dispose of solid waste incinerator ash and other hazardous materials. The site was clay capped in the 1980`s, but in order for the DOA to use the site, additional remediation was needed to meet US EPA final closure requirements. One component of the closure plan included installation of a low permeability horizontal barrier above a very thin (approximately 0.61 to 0.91 meters) natural clay stratum which underlies an approximately 1020 m{sup 2} area of the landfill footprint so as to insure that a minimum 1.52 meter thick low permeability barrier exists beneath the entire 150,000 m{sup 2} landfill. The new barrier was constructed using jet grouting techniques to achieve remote excavation and replacement of the bottom 0.91 meters of the waste mass with a low permeability grout. The grout was formulated to meet the low permeability, low elastic modulus and compressive strength requirements of the project design. This paper will discuss the advantages of using jet grouting for the work and details the development of the grout mixture, modeling of the grout zone under load, field construction techniques, performance monitoring and verification testing.

  17. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-12-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the "hottest" (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates

  18. Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel

    Energy Technology Data Exchange (ETDEWEB)

    A. K. Herbst; S. V. Raman; R. J. Kirkham

    2004-01-01

    The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600ºC.

  19. Development of a technical approach for assessing environmental release and migration characteristics of Hanford Grout

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Treat, R. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lokken, R. O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1985-09-01

    A Transportable Grout Facility is being constructed at the Hanford Site to immobilize low-level liquid radioactive waste in grout. This report addresses the grout and sediment testing methodology that is being developed at PNL to support assessments of the long-term performance of the disposed grout. Sediment is the soil that surrounds and underlies the disposed grout. A goal of these efforts is to certify tests for application at Hanford. An assessment of the long-term risks posed by grout requires data on the ability of grout to resist leaching of wastes contained within the grout. Additionally, data are needed on the ability of the sediments to retard the mobility of any wastes released from grout. The effects of aging on the ability of grout to retain waste must also be understood. Aging of grout can reduce or enhance the ability of the grout to contain waste. Credible predictive modeling of the fate of hazardous constituents in disposed grout for periods of up to 10,000 years would best be performed using comprehensive, coupled hydrologic and chemical reaction codes based on knowledge of the mechanisms that control waste release and mobility. It is not clear yet how soon such codes will be available or which types of waste disposal options they will apply to. In the interim we must be content with simpler and separate models that address individual reactions such as leaching and adsorption. One of these models, the Semi-Infinite Solid Diffusion Leach Model, is a popular release model used to describe the leaching of grouts and other cemented waste forms. Because others have found success in describing laboratory leach experiments with cemented waste forms using this leach model and because it appears likely to err on the conservative side for the Hanford application, we currently endorse the use of this model and its supporting experimental methodology for approximations of grout waste release rates. At the present time it is believed that the leachate from

  20. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essential elements of a feed delivery strategy that drives the Hanford clean-up mission.

  1. Thickened aqueous slurry explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Craig, J.F.M.; Matts, T.C.; Seto, P.F.L.

    1979-01-04

    A thickened slurry explosive composition consists of water, inorganic oxidizing salt, fuel, and thickener wherein the thickener is a mixture of an unmodified guar gum and a hydroxypropyl-modified guar gum. The thickener mixture improves the stability and rheologic properties of the explosive. The preferred thickener mixture contains from 15 to 85% by weight of unmodified guar to 15 to 85% by weight of hydroxypropyl-modified guar and the composition preferably comprises 0.2% to 2.0% by weight of the thickener mixture. The thickener mixture is especially effective in explosive compositions sensitized with gas bubbles or with water-soluble organic nitrate for example, ethylene glycol mononitrate, propylene glycol mononitrate, ethanolamine nitrate, propanolamine nitrate, methylamine nitrate, ethylamine nitrate, ethylenediamine dinitrate, urea nitrate, or aniline nitrate. 14 claims.

  2. Design considerations for slurry bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Zappi, M.E. [Army Corps of Engineers, Vicksburg, MS (United States). Waterways Experiment Station; Banerji, S.K.; Bajpai, R.K. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Slurry treatment is an innovative approach for bioremediation of contaminated soils under controlled conditions of pH, temperature, and nutrients. This treatment of excavated soils permits better control of environmental conditions than in landfarming, composting, and biocell units, and therefore may achieve accelerated rates of decontamination. Bioslurry reactors have been used to remediate a variety of contaminants, such as soils and sludges from refinery wastes, wood-preserving wastes, wastes containing polychlorinated biphenyls and halogenated solvents. Key considerations in design of such reactors involve meeting the oxygen requirements for biodegradation, preventing the settling of soil particles, efficient mixing of additives, and control of foaming. The aspects of reactor design, specifically agitation system have been discussed in this paper.

  3. INFLUENCE OF SUPERPLASTICIZER TYPE AND DOSAGE ON THE WORKABILITY AND STRENGTH OF CEMENTITIOUS GROUT FOR SEMI-FLEXIBLE PAVEMENT APPLICATION

    National Research Council Canada - National Science Library

    KOTING, Suhana; MAHMUD, Hilmi; KARIM, Mohamed Rehan

    2007-01-01

    Semi-flexible pavement is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement which is subsequently grouted with an appropriate cementitious material...

  4. D7.21 Report on Validation of design of grouted joints Work Package 7.2

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2017-01-01

    Grouted joints for offshore wind turbines forming the connection between the transition piece to the monopile and tower are one of the weakest links of the support structure. The grout being a reinforced concrete material is susceptible to cyclic loading comprising of tensile and compressive...... components. As offshore wind turbines reach 10 MW capacities, it is extremely important to determine the reliability of grouted joints and their design configurations so as to ensure integrity of the 10 MW support structure. This report investigates two types of grouted joint connections, the conventional...

  5. Grout Impregnation of Pre-Placed Recycled Concrete Pavement (RCP) for Rapid Repair of Deteriorated Portland Cement Concrete Airfield Pavement

    Science.gov (United States)

    2007-04-01

    and water, with or without filler (UFGS, 2004). UFC 3-270-07 (Unified Facilitates Criteria, 2002) describes a stone and grout method as a current...Pavemend™ Repair 2 Type III Grout Not to Scale 12.2 m (40 ft) -63- 510-mm- (20-in.-) thick crushed limestone base course and the 90-day...crushed limestone ). 240 mm (9.5 in.) PCC Repair 5 Type III Grout Not to Scale Repair 6 Type III Grout Repair 8 Pavemend™ Repair 7 Pavemend

  6. Study of evaluation for grouting effect in a borehole; Yakueki chunyu koka hyoka gijutsu ni okeru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Matsuo, T. [Fukuoka Municipal Transportation Bureau, Fukuoka (Japan); Yamauchi, Y.; Imanishi, H. [Osaka Soil Test, Osaka (Japan)

    1996-10-01

    For the foundation improvement works by grouting in a borehole, evaluation of grouting effect is one of the most important management items. The grouting design and works are sometimes reconsidered depending on the evaluation of grouting effect during the test injection. The purpose of the evaluation of grouting effect is to grasp the range of improvement and consolidation after the injection, and to judge and estimate the strength and permeability of the consolidation part. This paper describes the judgment method of the strength using PS logging results and borehole televiewer (BHTV) logging results. The reflection intensity (Ir) by the BHTV logging increased after the grouting, which showed a same tendency as that using S-wave and P-wave velocities (Vs and Vp) before and after the grouting. This was considered to demonstrate the grouting effect. A relation was obtained between the Vs, Vp and Ir before and after the grouting, which was expressed by following equation. Ir=0.143{times}Vs-70=0.093{times}Vp-110. The relation with the dynamic elastic coefficient (Ed) was also obtained as follow; Ir=0.0013{times}Ed. 9 figs.

  7. Yield Stress Reduction of Radioactive Waste Slurries by Addition of Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    MICHAEL, STONE

    2005-02-08

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass while the facilities at the Hanford site are in the design/construction phase. Both processes utilize slurry-fed joule heated melters to vitrify the waste slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and melter feed processes. The use of a surface active agent, or surfactant, to increase the solids loading that can be fed to the melters would increase melt rate by reducing the heat load on the melter required to evaporate the water in the feed. The waste slurries are non-Newtonian fluids with rheological properties that were modeled using the Bingham Plastic mod el (this model is typically used by SRNL when studying the DWPF process1).The results illustrate that altering the surface chemistry of the particulates in the waste slurries can lead to a reduction in the yield stress. Dolapix CE64 is an effective surfactant over a wide range of pH values and was effective for all simulants tested. The effectiveness of the additive increased in DWPF simulants as the concentration of the additive was increased. No maxi main effectiveness was observed. Particle size measurements indicate that the additive acted as a flocculant in the DWPF samples and as a dispersant in the RPP samples.

  8. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination......This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... of technologies) having the largest potential for reducing the overall environmental impacts....

  9. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-07-01

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondary waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.

  10. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, William [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad A. [Argonne National Lab. (ANL), Argonne, IL (United States); Youker, Amanda [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  11. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Farnsworth, R.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  12. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Trotter, D.R.

    1993-09-01

    Stabilization/solidification technology is one of the most widely used techniques for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Cement-based products, commonly referred to as grouts, are the predominant materials of choice because of their low associated processing costs, compatibility with a wide variety of disposal scenarios, and ability to meet stringent processing and performance requirements. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % American Society for Testing and Materials (ASTM) Class F fly ash, and 4 wt % Type I-II-LA Portland cement. This blend is mixed with 106-AN at a mix ratio of 9 lb of dry-solids blend per gallon of waste. This report documents the final results of efforts at Oak Ridge National Laboratory in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  13. Leaching of radioactive nuclides from cement grouts. [Method for measuring rate of leaching of Cs-137 from cement grouts

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, W.W.; Filiba, R.; Wang, M.

    1974-05-22

    A method for measuring the rate of leaching of /sup 137/Cs from cement grouts was investigated as an alternate to the International Atomic Energy Agency (IAEA) method which requires long experimental times. The effects of curing time (10, 20, and 30 days) and the type of leachant (tap and saline water) on the amount of /sup 137/Cs leached were studied. Mathematical models for mass transport phenomena for both finite cylindrical geometry and a semi-infinite medium were developed to analyze the data. It was found that the models for diffusion of /sup 137/Cs with depletion of the species due to curing provided the best correlation of the data. The proposed method was found to give values of the mass transport coefficients within a factor of 2 to 10 of the IAEA test results. Diffusion coefficients were found to be in the range of 10/sup -9/ to 10/sup -11/ cm/sup 2//sec and depletion rate constants in the range of 10/sup -6/ to 10/sup -8/ sec/sup -1/.

  14. Studies of coal slurries property; Slurry no seijo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, M.; Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Sakaki, T.; Shibata, M.; Hirosue, H. [Kyushu National Industrial Research Institute, Saga (Japan)

    1996-10-28

    It was previously found that the increase of slurry temperature provides a significant effect of slurry viscosity reduction for the coal slurry with high concentration of 50 wt%. To investigate the detailed influence of slurry temperature for the coal slurry with concentration of 50 wt%, influence of temperature on the successive change of apparent viscosity was observed at the constant shear rate. When the concentration of coal was increased from 45 wt% to 50 wt%, viscosity of the slurry was rapidly increased. When heated above 70{degree}C, the apparent viscosity decreased during heating to the given temperature, but it increased successively after reaching to the given temperature. The apparent viscosity showed higher value than that of the initial viscosity. The coal slurry with concentration of 50 wt% showed the fluidity of Newtonian fluid at the lower shear rate region, but showed the fluidity of pseudo-plastic fluid at the higher shear rate region. The slurry having high apparent viscosity by the successive change showed higher apparent viscosity with increasing the higher even by changing the shear rate. 1 ref., 4 figs.

  15. A simplified approach to calculate slurry production of growing pigs at farm level

    Directory of Open Access Journals (Sweden)

    Franco Tagliapietra

    2010-01-01

    Full Text Available A simplified approach to predict the amount of slurry produced by growing pigs at farm level is proposed. The inputs are initial (LWi and final (LWf live weights, production (t and empty (empty periods, feed consumption (FC, dry matter (DMD, N digestibilities and farm water consumption per pig (FWC. Estimates of the amount of water required (or arisen per kg of feed for the various physiological functions were estimated by running a published mathematical model using data representing the ordinary conditions of rearing. Water excretion was estimated in two ways depending on: 1 free access (ad lib to water; 2 restricted access (forced. In the first case, the proportion of water consumed (wiad lib and those excreted with the urine (wuad lib and the faeces (wfec were quantified to be 2.9, 1.72 and 0.33 kg per kg of feed, respectively. From the urinary excretions of N and minerals, obtained as the difference between the digestible nutrient intakes and the retentions, the model predicted a urinary DM content of 2.1% (by weight. In the second case, for pigs receiving drinking water in forced ratio with the feed (wiforced, the urinary production was calculated as wuforced=(wiforced+wf+wo-(wd+ws+wg+wfec+we, where wf=water content in feed (0.12 kg/kg, wo=water arising from nutrient oxidation (0.25 kg/kg, wd=water required for digestion (0.08 kg/kg, ws=water demand for protein and lipid synthesis (0.06 kg/kg, wg=water retained in body tissues (0.14 kg/kg and we=water lost through evaporation (0.96 kg/kg. Estimates of fresh slurry production (faeces+urine were regressed against the values resulting from empirical literature equations and referred to pigs fed water:feed ratios of 2.5:1, 2.9:1 and 4:1. The resulting regression (R2=0.97, with a slope close to unity (1.05, indicated that the approach can be extended to predict the farm fresh slurry production with pigs having free access to water or kept on different water:feed ratios. In agreement with

  16. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  17. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, C.A., E-mail: Camilla.stitt@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hart, M., E-mail: oxford.mike@gmail.com [Diamond Light Source Limited, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire OX11 0QX (United Kingdom); Harker, N.J., E-mail: nicholas.harker@esrf.fr [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hallam, K.R., E-mail: k.r.hallam@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); MacFarlane, J., E-mail: james.macfarlane@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Banos, A., E-mail: antonis.banos@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paraskevoulakos, C., E-mail: cp13846@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Butcher, E., E-mail: ed.j.butcher@nnl.co.uk [National Nuclear Laboratory, Seascale, Cumbria CA20 1 PG (United Kingdom); Padovani, C., E-mail: cristiano.padovani@nda.gov.uk [Radioactive Waste Management Limited (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority), Curie Avenue, Didcot, Oxfordshire OX11 0RH (United Kingdom); Scott, T.B., E-mail: t.b.scott@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2015-03-21

    Highlights: • Unirradiated Magnox uranium was encapsulated in grout and exposed to hydrogen. • Synchrotron X-ray tomography imaged the uranium corrosion before and after exposure. • Synchrotron X-ray powder diffraction identified the corrosion products; UH{sub 3} and UO{sub 2}. • Uranium encapsulated in grout oxidised via the anoxic U + H{sub 2}O regime. • Successful in-situ, non-invasive examination of pyrophoric and radioactive material - Abstract: How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H{sub 2} corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U + H{sub 2}O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO{sub 2} and UH{sub 3}, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems.

  18. Bolt-Grout Interactions in Elastoplastic Rock Mass Using Coupled FEM-FDM Techniques

    Directory of Open Access Journals (Sweden)

    Debasis Deb

    2010-01-01

    Full Text Available Numerical procedure based on finite element method (FEM and finite difference method (FDM for the analysis of bolt-grout interactions are introduced in this paper. The finite element procedure incorporates elasto-plastic concepts with Hoek and Brown yield criterion and has been applied for rock mass. Bolt-grout interactions are evaluated based on finite difference method and are embedded in the elasto-plastic procedures of FEM. The experimental validation of the proposed FEM-FDM procedures and numerical examples of a bolted tunnel are provided to demonstrate the efficacy of the proposed method for practical applications.

  19. Quantitative modelling of the degradation processes of cement grout. Project CEMMOD

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Galindez, Juan-Manuel; Arcos, David; Molinero, Jorge (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-05-15

    Grout cement is planned to be used in the sealing of water-conducting fractures in the deep geological storage of spent nuclear fuel waste. The integrity of such cementitious materials should be ensured in a time framework of decades to a hundred of years as mimum. However, their durability must be quantified since grout degradation may jeopardize the stability of other components in the repository due to the potential release of hyperalkaline plumes. The model prediction of the cement alteration has been challenging in the last years mainly due to the difficulty to reproduce the progressive change in composition of the Calcium-Silicate-Hydrate (CSH) compounds as the alteration proceeds. In general, the data obtained from laboratory experiments show a rather similar dependence between the pH of pore water and the Ca-Si ratio of the CSH phases. The Ca-Si ratio decreases as the CSH is progressively replaced by Si-enriched phases. An elegant and reasonable approach is the use of solid solution models even keeping in mind that CSH phases are not crystalline solids but gels. An additional obstacle is the uncertainty in the initial composition of the grout to be considered in the calculations because only the recipe of low-pH clinker is commonly provided by the manufacturer. The hydration process leads to the formation of new phases and, importantly, creates porosity. A number of solid solution models have been reported in literature. Most of them assumed a strong non-ideal binary solid solution series to account for the observed changes in the Ca-Si ratios in CSH. However, it results very difficult to reproduce the degradation of the CSH in the whole Ca-Si range of compositions (commonly Ca/Si=0.5-2.5) by considering only two end-members and fixed nonideality parameters. Models with multiple non-ideal end-members with interaction parameters as a function of the solid composition can solve the problem but these can not be managed in the existing codes of reactive

  20. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R AND P REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2009-10-29

    The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS&T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D&D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or portland cement grout (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the R- and P- reactor vessels. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Conservative calculations estimate that either ceramicrete or the silica fume grout may be used to safely grout the R- and P- reactor vessels. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Although these calculations are conservative, there are some measures that may be taken to further minimize the potential for hydrogen evolution. (1) Minimize the temperature of the grout as much as practical. Lower temperatures will mean lower hydrogen generation rates. Grout temperatures less than 100 C should however, still provide an adequate safety margin for the pH 8 and pH 10.4 grout formulations. (2) Minimize the fill rate as much as

  1. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  2. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    for one impact category, but disadvantageous for another, while another type showed the opposite trends. Slurry acidification was the preferred technology for reducing terrestrial acidification and eutrophication potential, while slurry separation performed best for freshwater eutrophication......, and anaerobic digestion showed the lowest impact potential for fossil resource depletion and marine eutrophication. For climate change potential, whether a beneficial or disadvantageous impact potential was revealed depended on the specific technology (moment of acidification, separation and fraction upgrading...... occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...

  3. The impact of using alternative forages on the nutrient value within slurry and its implications for forage productivity in agricultural systems.

    Directory of Open Access Journals (Sweden)

    Felicity V Crotty

    Full Text Available Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense, lucerne (Medicago sativa or kale (Brassica oleracea would improve the yield of hybrid ryegrass (Lolium hybridicum, compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha⁻¹ with 100 kg N ha⁻¹ inorganic fertiliser; dry matter (DM yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha⁻¹ year-1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (Pred clover (81 kg >kale (44 kg >ryegrass (26 kg ha⁻¹ yr⁻¹. These FNE values represent relative efficiencies of 22% (ryegrass, 52% (kale, 47% (red clover and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005. Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001. Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks.

  4. Continuous in-house acidification affecting animal slurry composition

    DEFF Research Database (Denmark)

    Hjorth, Maibritt; Cocolo, Giorgia; Jonassen, Kristoffer

    2015-01-01

    The emerging slurry acidification technology affects gaseous emissions, fertiliser value, biogas production and solid-liquid separation; however, maximising the advantages is difficult, as the effect of acidification on the slurry characteristics resulting in those observations remains unclarifie...

  5. Results of sludge slurry pipeline pluggage tests. [Simulation of Radioactive Slurry Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, J.M.

    1987-02-06

    Test results of sludge slurry transport through the Interarea Transfer Line (IAL) Mock-up Facility showed little risk of plugging the interarea pipelines with sludge slurry. Plug-free operation of the pipeline was successfully demonstrated by worst case IAL operating scenarios. Pipeline pressure gradients were measured vs. flow rate for comparison with a computer model over a range of sludge slurry rheological properties. A mathematical computer model developed by L. M. Lee is included in this report which will predict pressure drop for Bingham plastic fluid flow in a pipeline. IAL pluggage situations and pumping requirements may be realized from this model. 4 refs., 11 figs., 2 tabs.

  6. Micronutrient component changes in the biogas slurry treated by a pilot solar-heated anaerobic reactor

    Science.gov (United States)

    Yang, Z. Y.; Xu, Y. B.; Li, P. F.; Wang, Y. J.; Sun, J.; Zhang, Y. P.

    2017-06-01

    A solar-heated anaerobic reactor system was applied to decompose livestock wastewater, in which cattle manure and chopped straw were mixed (CODCr 15,000∼25,000 mg·l-1), the commercial microorganisms were added to ambient acidification (about 32°C) and the acclimated sludge was inoculated. Then, the experiments were carried out on wastewater anaerobic degradation and biogas production at 40∼42°C, as fed every 10 days till stable running. The results showed that NH3-N and PO4 3- of the biogas slurry were 441 mg·l-1 and 65.0 mg·l-1 on the 35th day, respectively. The concentration of K was up to 350 mg·l-1 in the biogas slurry, rather higher than that of Mg and Fe, which indicated that the available K could contribute more in the agricultural irrigation. Total amino acids were up to 23.7 mg·l-1 after anaerobic digestion, in which Lys, Thr, Ala and Arg were prominent in the biogas slurry. These amino acids could be beneficial to seed soaking, feed adding and apply as foliar fertilizer. The major volatile organic compounds were detected in the biogas slurry, including toluene, m-cresol (up to 0.036% in the process of ambient acidification) and triethylsilane, which could be reduced to scarcely influence on agricultural application after anaerobic digestion.

  7. Fractal Prediction of Grouting Volume for Treating Karst Caverns along a Shield Tunneling Alignment

    Directory of Open Access Journals (Sweden)

    Wen-Chieh Cheng

    2017-06-01

    Full Text Available Karst geology is common in China, and buried karst formations are widely distributed in Guangdong province. In the process of shield tunneling, the abundant water resources present in karst caverns could lead to the potential for high water ingress, and a subsequent in situ stress change-induced stratum collapse. The development and distribution of karst caverns should therefore be identified and investigated prior to shield tunnel construction. Grouting is an efficient measure to stabilize karst caverns. The total volume of karst caverns along the shield tunneling alignment, and its relationship with the required volume of grouts, should be evaluated in the preliminary design phase. Conventionally, the total volume of karst caverns is empirically estimated based on limited geological drilling hole data; however, accurate results are rarely obtained. This study investigates the hydrogeology and engineering geology of Guangzhou, the capital of Guangdong province, and determines the fractal characteristics of the karst caverns along the tunnel section of Guangzhou metro line no. 9. The karst grouting coefficients (VR were found to vary from 0.11 in the case of inadequate drilling holes to 1.1 in the case where adequate drilling holes are provided. A grouting design guideline was furthermore developed in this study for future projects in karst areas.

  8. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    Science.gov (United States)

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  10. Degree of saturation effect on the grout-soil interface shear strength of soil nailing

    Directory of Open Access Journals (Sweden)

    Wang Qiong

    2016-01-01

    Full Text Available In the grouted soil nailing system, the bonding strength of cement grout-soil interface offers the required resistance to maintain the stability of whole structure. In practice, soil nailing applications are often placed at unsaturated conditions, such as soil slopes, shallow foundations, retaining walls and pavement structures. In these cases, the water content in the soil nail zone may increase or decrease due to rain water or dry weather, and even cannot become saturated during their design service life. In this study, the effect of water content (degree of saturation on the shear strength of interface between cement grout and sand are experimentally investigated by means of direct shear test. Meanwhile the water retention curve was determined and interface microstructure was observed. Experimental results show that the shear strength of interface changes non-monotonously with degree of saturation when the interface was prepared, due to the non-monotonousness of the cohesiveness between soil particles. The less the cohesiveness between sand particles, the more grout was observed been penetrated into the voids, and thus the larger the interface shear stress.

  11. Grouting applications in civil engineering. Volume I and II. [800 references

    Energy Technology Data Exchange (ETDEWEB)

    Einstein, H.H.; Barvenik, M.J.

    1975-01-01

    A comprehensive description of grouting applications in civil engineering is presented that can serve as a basis for the selection of grouting methods in the borehole sealing problem. The breadth and depth of the study was assured by conducting the main part of the review, the collection and evaluation of information, without specifically considering the borehole sealing problem (but naturally incorporating any aspect of civil engineering applications that could be of potential use). Grouting is very much an art and not a science. In most cases, it is a trial and error procedure where an inexpensive method is initially tried and then a more expensive one is used until the desired results are obtained. Once a desired effect is obtained, it is difficult to credit any one procedure with the success because the results are due to the summation of all the methods used. In many cases, the method that proves successful reflects a small abnormality in the ground or structure rather than its overall characteristics. Hence, successful grouting relies heavily on good engineering judgement and experience, and not on a basic set of standard correlations or equations. 800 references. (JRD)

  12. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN C-REACTOR DISASSEMBLY BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-07-12

    C-reactor disassembly basin is being prepared for deactivation and decommissioning (D and D). D and D activities will consist primarily of immobilizing contaminated scrap components and structures in a grout-like formulation. The disassembly basin will be the first area of the C-reactor building that will be immobilized. The scrap components contain aluminum alloy materials. Any aluminum will corrode very rapidly when it comes in contact with the very alkaline grout (pH > 13), and as a result would produce hydrogen gas. To address this potential deflagration/explosion hazard, Savannah River National Laboratory (SRNL) reviewed and evaluated existing experimental and analytical studies of this issue to determine if any process constraints are necessary. The risk of accumulation of a flammable mixture of hydrogen above the surface of the water during the injection of grout into the C-reactor disassembly area is low if the assessment of the aluminum surface area is reliable. Conservative calculations estimate that there is insufficient aluminum present in the basin areas to result in significant hydrogen accumulation in this local region. The minimum safety margin (or factor) on a 60% LFL criterion for a local region of the basin (i.e., Horizontal Tube Storage) was greater than 3. Calculations also demonstrated that a flammable situation in the vapor space above the basin is unlikely. Although these calculations are conservative, there are some measures that may be taken to further minimize the risk of developing a flammable condition during grouting operations.

  13. PRETREATMENT OF TC CONTAINING WASTE AND ITS EFFECT ON 99 TC LEACHING FROM GROUTS

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J

    2006-12-11

    A salt solution (doped with Tc-99), that simulates the salt waste stream to be processed at the Saltstone Production Facility, was immobilized in grout waste forms with and without (1) ground granulated blast furnace slag and (2) pretreatment with iron salts. The degree of immobilization of Tc-99 was measured through monolithic and crushed grout leaching tests. Although Fe (+2) was shown to be effective in reducing Tc-99 to the +4 state, the strong reducing nature of the blast furnace slag present in the grout formulation dominated the reduction of Tc-99 in the cured grouts. An effective diffusion coefficient of 4.75 x 10{sup -12} (Leach Index of 11.4) was measured using the ANSI/ANS-16.1 protocol. The leaching results show that, even in the presence of a concentrated salt solution, blast furnace slag can effectively reduce pertechnetate to the immobile +4 oxidation state. The measured diffusivity was introduced into a flow and transport model (PORFLOW) to calculate the release of Tc-99 from a Saltstone Vault as a function of hydraulic conductivity of the matrix.

  14. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2014-01-01

    Full Text Available The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  15. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    Science.gov (United States)

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  16. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  17. Nitrification limitation in animal slurries at high temperatures

    NARCIS (Netherlands)

    Willers, H.C.; Derikx, P.J.L.; Have, ten P.J.W.; Vijn, T.K.

    1998-01-01

    Nitrification rates in two types of animal slurry were measured at temperatures between 20 and 60°C. The rates were assessed in rapid laboratory assays using samples from aeration tanks of large scale treatment plants for pig or veal-calf slurry. Maximum nitrification rates for the two slurries were

  18. Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Tianyong Jiang

    2017-09-01

    Full Text Available With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors’ previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD. To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA developed to utilize one Lead Zirconate Titanate (PZT transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon

  19. Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers.

    Science.gov (United States)

    Jiang, Tianyong; Zheng, Junbo; Huo, Linsheng; Song, Gangbing

    2017-09-29

    With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.

  20. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Magi; Starosvetsky, David [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel); Vaes, Jan [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Ein-Eli, Yair, E-mail: eineli@tx.technion.ac.i [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2010-04-01

    The integration of an advanced inhibitor, potassium sorbate (K[CH{sub 3}(CH){sub 4}CO{sub 2}]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  1. Evaluation of the Monroe Slurry Maker.

    Science.gov (United States)

    2009-05-01

    In early February, 2009, the Maine Department of Transportation (MaineDOT) installed a Monroe Slurry : Maker on one of its 2009 Volvo Wheelers (see Photos 1 and 2). This truck was equipped with a : Henderson Utility Body. An 18 gallon per minute spoo...

  2. Electrokinetic sedimentation and dewatering of clay slurries

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedelhassan, E. [Lakehead Univ., Thunder Bay, ON (Canada). Dept. of Civil Engineering

    2008-07-01

    Electrokinetics is the application of a low voltage direct current across soil mass or soil slurry. It involves electro-osmosis, electromigration, and electrophoresis. Electrokinetics improves the sedimentation and dewatering by increasing the sedimentation velocity of soil particles by electrophoresis and draining water from soil pores by electro-osmosis. This presentation discussed a study that involved the electrokinetic sedimentation and dewatering of clay slurries. The objectives of the study were to accelerate the sedimentation by electrophoresis and enhance the dewatering and consolidation by electro-osmosis for two clay slurries. The presentation discussed the experimental program and provided several illustrations and photographs of the sedimentation configuration and dewatering process. Last, results of the experiment were presented. It was concluded that the the volume of the kaolinite/bentonite slurry in the electrokinetic test decreased by 63.6 per cent compared to a decrease of only 2.9 per cent in the control group. Next steps were identified as conducting a sedimentation and dewatering study with a solar panel as the source for direct current. tabs., figs.

  3. Freeforming objects with low-binder slurry

    Science.gov (United States)

    Cesarano, III, Joseph; Calvert, Paul D.

    2000-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  4. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  5. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  6. Physicochemical and rheological characteristics of charcoal slurry fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ugwu, K.E.; Eze, S.I. [National Center for Energy Research and Development, University of Nigeria, Nsukka (Nigeria)

    2013-07-01

    Charcoal slurry fuel (CCF) was prepared from a mixture of charcoal, water and a surfactant. Some properties of the slurry were examined and evaluated. The rheological characteristics which were evaluated from the measurement of the viscosity of the slurry at varying solid concentrations showed it to be a Newtonian and non-Newtonian fluid depending on the solid concentrations. The slurry was stable at below 40% solid concentration. This research results provided data that may be useful in the consideration of charcoal slurry as a potential substitute for the conventional petroleum-based diesel oil.

  7. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R AND P REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-05-24

    The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D and D). D and D activities consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS and T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D and D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or Portland cement groupt (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters does not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. It is recommended that this grout not be utilized for this task. The R-reactor vessel cotnains significantly less aluminum based on current facility process knowledge, surface observations, and drawings. Therefore, a Portland cement grout may be considered for grouting operations as well as the other grout formulations. For example, if the grout fill rate is less than 1 inch/min and the grout temperature is maintained at 70 C or less, the risk of hydrogen accumulation during fill

  8. Jet Grouting. Control of execution and result parameters. Test fields - Experience in Chile; Jet Grouting. Control de parametros de ejecucion y de resultados. Campos de prueba-Experiencia en Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ayarza, P. M.; Vukotic, G.

    2014-07-01

    This article emphasizes the importance of Test Fields in project that includes the Jet Grouting technique. In particular, the Chilean experience is analyzed, where the Jet Grouting was first introduced by Pilots Terratest S. A. in the year 2010, only, only in 2011 the first project using jet columns was constructed. The versatilely of this technique allows its use in a wide variety of projects, for example, soil capacity improvement, settlement control, reduction of soil permeability and other environmental applications. Currently, the most common applications are underpinning existing foundations, ground improvement, lateral support of excavations, hydraulic barriers, slope stabilization, liquefaction control, among others. The Jet Grouting is one of the most demanding soil improvement technique and requires excellence in designing and execution engineers and other involved specialist. It is therefore essential to ensure exhaustive control to the execution and final parameters, in order to check that the product- Jet Grouting element-have the design properties, and implement modifications if necessary. Many authors strongly advises that if there is no comparable experience and even if there is, a Test Field of Jet Grouting elements has to be executed in site. This field consists in a nearby area with similar geotechnical conditions of the project, where Jet Grouting test columns will be constructed. This Test Field will allow selecting the most effective execution parameters and verifying that the final product has he correct design properties. (Author)

  9. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  10. The impact of using alternative forages on the nutrient value within slurry and its implications for forage productivity in agricultural systems.

    Science.gov (United States)

    Crotty, Felicity V; Fychan, Rhun; Theobald, Vince J; Sanderson, Ruth; Chadwick, David R; Marley, Christina L

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha⁻¹) with 100 kg N ha⁻¹ inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha⁻¹ year-1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (Pred clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha⁻¹ yr⁻¹). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (Pforages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks.

  11. Production of Biogas through Anaerobic Cofermentation of Cattle Slurry with Biscuit Waste

    Directory of Open Access Journals (Sweden)

    Chamrádová K.

    2016-03-01

    Full Text Available The paper presents the results of the model of anaerobic co-fermentation of cattle slurry with biscuit waste. It was confirmed that the waste from the food industry is a valuable biogas substrate. The highest specific production of methane (0.49 mN3·kgVS-1 was achieved in the co-fermentation of 20 wt% biscuit waste with cattle slurry. The feed mixture contained 22 wt% of total solids. The biscuit waste has the specific production of biogas 0.66 mN 3·kg-1 and the specific production of methane 0.38 mN 3·kg-1.

  12. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    Science.gov (United States)

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH3) and methane (CH4) emissions without increasing nitrous oxide (N2O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m3 h-1), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH3, CH4, carbon dioxide (CO2) and N2O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m-3 [slurry] d-1, P effect was detected for CO2, and no relevant N2O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH3 emissions.

  13. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  14. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4

  15. Creosote treatability using a slurry bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Hosier, K. R.; Vale, E.; Wardlaw, C. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre

    1995-12-31

    A treatability study using continuously-stirred bioslurry reactors was performed to test the biodegradability of a creosote-contaminated soil taken from a wood-preserving plant site. The experiment evaluated the use of two surfactants, a microbial inocculant from a sewage treatment plant (STP)and a combination of surfactants and STP inoculum. A biotic control (i.e. no treatment) and an abiotic treatment (no treatment; autoclaved slurry) were also used. Monitoring was performed on a periodic basis for pH, dissolved oxygen, electrical conductivity, oxygen consumption rate, slurry surface tension, temperature, microbial biomass, toxicity, and PAHs (polyaromatic hydrocarbons). Viable fluoranthene -degrading microbes were found to be present in the slurries. Toxicity was quite high initially, but decreased with time. Surface tension also decreased initially, but periodic additions of surfactants helped to maintain desired levels. Oxygen consumption rates appeared to increase progressively. Gas chromatography showed a decrease in the contaminants-of-concern (i.e. those on the EPA`s priority pollutant list) over the course of the study.

  16. Arcing test on an aged grouted solar cell coupon with a realistic flashover simulator

    OpenAIRE

    Siguier, J.M.; Inguimbert, V.; Murat, Gaétan; Payan, D.; Balcon, N.

    2014-01-01

    International audience; We have performed arcing tests on an aged grouted solar cell coupon provided by KIT (JAPAN) under NEDO grant. Aging is simulated by electrons, protons and UV irradiations combined with thermal cycling, corresponding to 10 years in geostationary orbit (GEO). Arcing tests are performed with a European standard setup implemented with two different flashover simulators. Instead of using a large capacitance corresponding to the missing solar panel surface, we have implement...

  17. Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications

    Directory of Open Access Journals (Sweden)

    Ortega, J. M.

    2014-03-01

    Full Text Available Special foundations, most prominently micropiles and soil anchors, are frequently used in construction today. In Spain, the grout for these special technical applications is generally prepared with portland cement, although the codes and standards in place stipulate only the minimum compressive strength required, with no mention of cement type. Those texts also establish a range of acceptable water:cement ratios. In the present study, durability and compressive strength in cement grout prepared with blast furnace slag cement at different w/c ratios are characterised and compared to the findings for a reference portland cement grout. The results show that slag grout exhibits greater durability than the portland cement material and complies with the compressive strength requirements laid down in the respective codes.Actualmente es muy frecuente el empleo de cimentaciones especiales, entre las que destacan los micropilotes y los anclajes. En España, las lechadas de cemento para estos trabajos geotécnicos especiales se preparan habitualmente con cemento Portland, aunque las diferentes normativas al respecto no restringen el tipo de cemento a emplear, siempre que se alcance una determinada resistencia a compresión. Respecto a la dosificación de las lechadas, la normativa permite emplear diferentes relaciones agua/cemento dentro de un determinado rango. En vista de ello, en este trabajo se han caracterizado las propiedades de durabilidad y resistencia a compresión de lechadas de cemento preparadas con un cemento con escoria de alto horno y con diferentes relaciones a/c, tomando como referencia de comportamiento lechadas de cemento Portland. El uso de un cemento con escoria conlleva una mejora en la durabilidad de las lechadas, cumpliendo los requisitos de resistencia a compresión establecidos por la normativa.

  18. Selection of Colloidal Silica Grouts with Respect to Gelling and Erosion Behaviour

    Directory of Open Access Journals (Sweden)

    Pingqian Shen

    2017-02-01

    Full Text Available Cembinder, Eka EXP36, and MEYCO MP320 are three colloidal silica materials that have been proposed for post-excavation grouting of deep tunnels in a radioactive waste repository. In this study, samples of these colloidal silicas were tested for their particle size distribution, gel induction time (tG, gel time (TG, and physical erosion, under mildly saline groundwater flow conditions. In order to achieve a desired gel time range, from 15 to 50 min, it is recommended that the colloidal silica is mixed with a NaCl accelerator at a 5:1 volume ratio. At 20 °C, the concentration range for the NaCl solution should be 1.5 to 1.7 M for MEYCO, 1.23 to 1.38 M for Eka EXP36, and 1.3 to 1.47 M for Cembinder. The physical erosion of the set silicas remained steady during a 10 h flow cell experiment, when grouts were subjected to 0.05 M NaCl at a superficial velocity of 2.2 × 10−5 m/s. For these test conditions, the results show that MEYCO has the highest average erosion rate (0.85 mg/h of the three grout materials, as well as the greatest variability in this rate. Cembinder performed best with the lowest silica removal rate. Extrapolation of the measured erosion rates suggests that grout fracture dilation would not be significant under natural quiescent groundwater flow conditions, but would be high if there was hydraulic communication between the geosphere and the repository.

  19. Evaluation of Sealing Materials and Techniques for Installing Quoin and Miter Block Backing Grout

    Science.gov (United States)

    2015-11-01

    adhesion. This is not a problem for the epoxy filler materials since they are applied in a confined space and are loaded in compression. However...material to leak out. When this happens, the gap must be cleaned and resealed. This work was undertaken to resolve the problems associated with pouring...21 3-5 Gel timetable (approximate) for HIT RE500 epoxy anchor grout

  20. Grout for Closure of the Demonstration Vault at the US DOE Hanford Facility

    Science.gov (United States)

    1992-08-01

    Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete." k. Designation C 939-87. "Standard Test Method for Flow of Grout...ettringite or CACH11 were identified. Calcite and dolomite probably from Lhe palygorskite, were present in the wasteform material. The cold-cap...C2S) - minor Dolomite - minor (C) Material on Contact - Waste Side (D) Interface - Waste Side Quartz Calcite Albite Quartz Calcite Aragonite Hematite

  1. Comparison of Raw Dairy Manure Slurry and Anaerobically Digested Slurry as N Sources for Grass Forage Production

    Directory of Open Access Journals (Sweden)

    Olivia E. Saunders

    2012-01-01

    Full Text Available We conducted a 3-year field study to determine how raw dairy slurry and anaerobically digested slurry (dairy slurry and food waste applied via broadcast and subsurface deposition to reed canarygrass (Phalaris arundinacea affected forage biomass, N uptake, apparent nitrogen recovery (ANR, and soil nitrate concentrations relative to urea. Annual N applications ranged from 600 kg N ha−1 in 2009 to 300 g N ha−1 in 2011. Forage yield and N uptake were similar across slurry treatments. Soil nitrate concentrations were greatest at the beginning of the fall leaching season, and did not differ among slurry treatments or application methods. Urea-fertilized plots had the highest soil nitrate concentrations but did not consistently have greatest forage biomass. ANR for the slurry treatments ranged from 35 to 70% when calculations were based on ammonium-N concentration, compared with 31 to 65% for urea. Slurry ANR calculated on a total N basis was lower (15 to 40% due to lower availability of the organic N in the slurries. No consistent differences in soil microbial biomass or other biological indicators were observed. Anaerobically digested slurry supported equal forage production and similar N use efficiency when compared to raw dairy slurry.

  2. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

  3. Compensated gamma ray densimeter measures slurry densities in flow

    Energy Technology Data Exchange (ETDEWEB)

    Guest, R.J.; Zimmerman, C.W.

    1973-09-01

    A gamma-ray densitometer has been compensated so that the density of flowing oil-field slurries is measured accurately and independent of slurry composition. Accuracies over the range of densities employed in oil-field applications is within +.25 lb/gal of true density. Normal drilling mud densities are measured while flowing through the rig's standpipe at accuracies of +0.1 lb/gal of true density. Until the compensated gamma-ray densitometer was developed, it was necessary to recalibrate densitometers when slurries containing elements of high atomic numbers were present. Most oil-field cementing slurries contain no significant amounts of high atomic number elements. However, some cement slurries and drilling mud contain barite (atomic number 56) which precluded accurate measurements by earlier gamma-ray densitometers without recalibration for changes in slurry composition.

  4. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...... of the compounds in fresh or aged slurry. Generally, addition of a sulfate increased the contribution from H2S dramatically, whereas acidification lowered the H2S contribution but increased that of MT. Thus, acidification of slurry with sulfuric acid may potentially produce more odor from S compounds than...... with acidification, on sulfur transformations in slurry and emissions of volatile sulfur compounds (VSC) during storage of fresh and aged cattle slurry. When pH was lowered to 5.5 it resulted in an almost complete inhibition of sulfate reduction. There was a huge emission of hydrogen sulfide (H2S) with addition...

  5. Biogas slurry pricing method based on nutrient content

    Science.gov (United States)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  6. Geotechnical properties of debris-flow sediments and slurries

    Science.gov (United States)

    Major, J.J.; Iverson, R.M.; McTigue, D.F.; Macias, S.; Fiedorowicz, B.K.

    1997-01-01

    Measurements of geotechnical properties of various poorly sorted debris-flow sediments and slurries (??? 32 mm diameter) emphasize their granular nature, and reveal that properties of slurries can differ significantly from those of compacted sediments. Measurements show that: (1) cohesion probably offers little resistance to shear in most debris flows under low confining stresses normally found in nature; (2) intrinsic hydraulic permeabilities of compacted debris-flow sediments vary from about 10-14-10-9 m2; permeabilities of 'typical' debris-flow slurries fall toward the low end of the range; (3) debris-flow slurries are characterized by very large values of 'elastic' compressibility (C approx. 10-2 kPa-1); and (4) hydraulic diffusivities of quasistatically consolidating slurries are approx. 10-4-10-7 m2/s. Low hydraulic diffusivity of debris slurries permits excess fluid pressure and low effective strength to persist during sediment transport and deposition.

  7. Étude d'un nouveau mode de contact gaz-liquide-solide à l'échelle millimétrique : vers des réacteurs catalytiques utilisant l'écoulement "slurry Taylor"

    OpenAIRE

    Liedtke, Anne-Kathrin

    2014-01-01

    Slurry reactors, widely encountered in chemical industry (laboratory scale up to manufactaring), offer good mass and heat transfer capacities and their high flexibility ensures the simple changeover of solid phases enables a continuous online fresh catalyst feed for fast deactivating catalysts. However slurry reactors promote a high degree of backmixing which can be a drawback for reactions with selectivity issues or when very high conversions are required. In microreaction technology, Taylor...

  8. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K. [Argonne National Lab., IL (United States); Hayashi, Kanetoshi [NKK Corp., Kawasaki (Japan)

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  9. System and method for continuous solids slurry depressurization

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    2017-07-11

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.

  10. Oak Ridge National Laboratory Old Hydrofracture Facility Tank Closure Plan and Grout Development Status Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.E.

    2000-05-08

    U.S. Department of Energy (DOE) facilities across the country have radioactive waste underground storage tanks, which will require either complete removal of the tank contents and tank shells or in-place stabilization of sludge heels. Complete removal of the sludge and tank shells can become costly while providing little benefit to health, safety, and the environment. An alternative to the removal of the residual wastes and tank shells is the use of in situ solidification and stabilization techniques to immobilize the Resource Conservation and Recovery Act (RCRA) and radioactive components present in waste storage tanks. One technology for in situ remediation of tank wastes is Ground Environmental Service's (GES's) Multi-Point-Injection (MPI.) technology. MPI technology is a patented delivery system, which uses simple and inexpensive injection tools for rapid delivery of grout or other treatment agents, as well as for the emplacement of subsurface barriers. Through the use of tailored grout formulations in conjunction with a system of specially designed grout injection tools, MPI technology is capable of producing a uniform mixture of sludge and grout. Grouts can be tailored for the immobilization of specific RCRA and radioactive constituents. The system of injection tools is designed to maximize the mixing efficiency of the grout with the wastes in the tank. MPI technology has been successfully demonstrated on the solidification of shallow buried wastes at the Oak Ridge Y-12 Plant and in large-scale pumping and mixing tests in both cylindrical and horizontal simulated waste tanks. Hot demonstration of the technology will be accomplished during the closure of the Old Hydrofracture Facility (OHF) tank at the Oak Ridge National Laboratory (ORNL) in fiscal year 2000. This report describes the closure plan for the OHF tanks and presents the status of grout formulation development at ORNL.

  11. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  12. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-01-01

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240[degrees]C, 0.5 to 1.5 MPa, H[sub 2]/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R[sub H[sub 2+Co

  13. Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation

    NARCIS (Netherlands)

    Bertora, C.; Alluvione, F.; Zavattaro, L.; Groenigen, van J.W.; Velthof, G.L.; Grignani, C.

    2008-01-01

    The treatment of manures may improve their agricultural value and environmental quality, for instance with regards to greenhouse gases mitigation and enhancement of carbon (C) sequestration. The present study verified whether different pig slurry treatments (i.e. solid/liquid separation and

  14. An Investigation on Load Bearing Capacities of Cement and Resin Grouted Rock Bolts Installed in Weak Rocks

    Science.gov (United States)

    Kalyoncu Erguler, Guzide; Abiddin Erguler, Zeynal

    2015-04-01

    Rock bolts have been considered one of indispensable support method to improve load bearing capacity of many underground engineering projects, and thus, various types of them have been developed until now for different purposes. Although mechanically anchored rock bolts can be successfully installed to prevent structurally controlled instabilities in hard rocks, in comparison with cement and resin grouted rock bolts, these types of anchors are not so effective in weak rocks characterized by relatively low mechanical properties. In order to investigate the applicability and to measure relative performance of cement and resin grouted rock bolts into weak and heavily jointed rock mass, a research program mainly consisting of pull-out tests was performed in a metal mine in Turkey. The rock materials excavated in this underground mining were described as basalt, tuff, ore dominated volcanic rocks and dacite. To achieve more representative results for rock materials found in this mining and openings excavated in varied dimensions, the pull-out tests were conducted on rock bolts used in many different locations where more convergences were measured and deformation dependent instability was expected to cause greater engineering problems. It is well known that the capacity of rock bolts depends on the length, diameter and density of the bolt pattern, and so considering the thickness of plastic zone in the studied openings, the length and diameter of rock bolts were taken as 2.4 m. and 25 mm., respectively. The spacing between rows changed between 70 and 180 cm. In this study, totally twenty five pull-out tests were performed to have a general understanding about axial load bearing capacity and support reaction curves of cement and resin grouted rock bolts. When pull load-displacement curves belongs to cement and resin grouted rock bolts were compared with each other, it was determined that cement grouted rock bolts carry more load ranging between 115.6 kN and 127.5 kN with

  15. Multi-stage slurry system used for grinding and polishing materials

    Energy Technology Data Exchange (ETDEWEB)

    Hed, P. Paul (San Ramon, CA); Fuchs, Baruch A. (Aventura, FL)

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  16. MASS-TRANSFER IN GAS-LIQUID SLURRY REACTORS

    NARCIS (Netherlands)

    BEENACKERS, AACM; VANSWAAIJ, WPM

    A critical review is presented on the mass transfer characteristics of gas-liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas-liquid mass transfer coefficients

  17. Mass transfer in gas-liquid slurry reactors

    NARCIS (Netherlands)

    Beenackers, A.A.C.M.; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    A critical review is presented on the mass transfer characteristics of gas¿liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas¿liquid mass transfer coefficients

  18. Developing Archetypal Machines for a Sequence of Food- Slurry ...

    African Journals Online (AJOL)

    Conventional methods of producing these food-slurries prior to their consumption as food cannot meet up with the high demand for these gruels. This current ... The results show that the machines have increased the sieving rate of steeped grain and in extension the production of these food-slurries by over 50%. Design ...

  19. Comparison of catalytic ethylene polymerization in slurry and gas phase

    NARCIS (Netherlands)

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different

  20. theoretical basis for slurry computation and compounding in highly

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... 6 shows the conventional slurry distribution over the annular space of a casing landed in a devi- ated well. Grain size distribution of the slurry is uni- form. Free water and sedimentation tendencies exist. Hence it is expected that every little inter-granular space would be occupied with equal hydrostatic pres-.

  1. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

      Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  2. Technical Development of Slurry Three-Dimensional Printer

    Science.gov (United States)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  3. Fluidized bed ice slurry generator for enhanced secondary cooling systems

    NARCIS (Netherlands)

    Meewisse, J.W.

    2004-01-01

    Ice slurries are liquid solutions of a freezing point depressant in water, in which small ice crystals are present. Ice slurries are efficient secondary cooling fluids because they utilize the latent heat effect involved with the ice/water phase change. A high heat capacity is available at

  4. The resource utilization of algae - preparing coal slurry with algae

    Energy Technology Data Exchange (ETDEWEB)

    Weidong Li; Weifeng Li; Haifeng Li [East China University of Science and Technology, Shanghai (China). Key Laboratory of Coal Gasification of Education Ministry of China

    2010-05-15

    Nowadays, the occurrence of harmful algal blooms is increasing rapidly all over the world. However, the methods of resource utilization of algae are very few. In this study, we propose a new way to dispose algae, which is gasification of coal-algae slurry. Coal slurries prepared with algae were investigated, and gasification reactivity of coal-algae slurry was compared with that of coal-water slurry (CWS). The results showed that, anaerobic fermentation, chemical treatment, high-speed shearing and heating are effective pre-treatment methods on reducing the viscosity of algae, which could obviously increase the maximum solids concentration of coal-algae slurry. When the de-ionized water/algae ratio is 1:1, the maximum solids concentration could get to 62.5 wt.%, which is almost the same as that of CWS. All the coal-algae slurries exhibit pseudo-plastic behavior, and this type of fluid is shear-thinning. Compared with CWS, the stability of coal-algae slurry is much better, which could be no solids deposition after 70 h. The coal-algae slurry displays better gasification reactivity than CWS. 30 refs., 6 figs., 3 tabs.

  5. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha−1 from the loam, 0.38 kg P ha−1 from the sandy loam, and 0.22 kg P ha−1...

  6. The Settling and Compaction of Nuclear Waste Slurries

    Energy Technology Data Exchange (ETDEWEB)

    MACLEAN, G.T.

    1999-11-15

    The settling and compaction of simulated and real nuclear waste slurries were extensively studied. Experiments were carried out with simulated wastes at laboratory and large-scale sizes, and the results compared. A model of settling was derived and a method developed to correlate and scale-up settling data for different slurries and vessel sizes.

  7. Effective Compressibility of a Bubbly Slurry.

    Science.gov (United States)

    Kam, S. I.; Gauglitz, P. A.; Rossen, W. R.

    2001-09-01

    The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases, that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles in the slurry layer are long and the ratio of pore-body radius to pore-throat radius is close to 1; unfortunately, compressibility can not be quantified unambiguously from the data without additional information on pore geometry. Therefore, determining the quantity of gas in the tanks requires more than just waste-level data. The non-uniqueness of the fit is also found with two other simple models: a capillary-tube model with contact angle hysteresis and a spherical-pore model. Copyright 2001 Academic Press.

  8. Bauxite slurry pipeline: start up operation

    Energy Technology Data Exchange (ETDEWEB)

    Othon, Otilio; Babosa, Eder; Edvan, Francisco; Brittes, Geraldo; Melo, Gerson; Janir, Joao; Favacho, Orlando; Leao, Marcos; Farias, Obadias [Vale, Rio de Janeiro, RJ (Brazil); Goncalves, Nilton [Anglo Ferrous Brazil S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The mine of Miltonia is located in Paragominas-PA, in the north of Brazil. Bauxite slurry pipeline starts at the Mine of Miltonia and finishes in the draining installation of Alunorte refinery at the port of Barcarena-PA, located approximately 244km away from the mine. The pipeline runs over seven cities and passes below four great rivers stream beds. The system was designed for an underground 24 inches OD steel pipe to carry 9.9 million dry metric tonnes per annum (dMTAs) of 50.5% solid concentration bauxite slurry, using only one pumping station. The system is composed by four storage tanks and six piston diaphragm pumps, supplying a flow of 1680 m3/h. There is a cathodic protection system along the pipeline extension to prevent external corrosion and five pressure monitoring stations to control hydraulic conditions, there is also a fiber optic cable interconnection between pump station and terminal station. Pipeline Systems Incorporated (PSI) was the designer and followed the commissioning program of the start up operations. This paper will describe the beginning of the pipeline operations, technical aspects of the project, the operational experiences acquired in these two years, the faced problems and also the future planning. (author)

  9. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  10. Numerical simulation of turbulent slurry flows

    Science.gov (United States)

    Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.

    2016-11-01

    Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.

  11. Observations on microbial activity in acidified pig slurry

    DEFF Research Database (Denmark)

    Ottosen, Lars Ditlev Mørck; Poulsen, Henrik Vestergaard; Nielsen, Daniel Aagren

    2009-01-01

    Acidification of pig slurry to pH 5.5 is used as a measure to reduce ammonia emission from pits and storages. The slurry is acidified with sulphuric acid in a process tank and pumped back to the slurry pits or to a storage tank. We investigated the effect of acidification on microbial activity...... by the high concentration of protonized short-chained volatile fatty acids in the acidified slurry (approximately 25 mM, compared to untreated slurry ... acidification are greatly reduced production rates and loss of sulphide and methane, and eliminated loss of ammonia. On the other hand, increased volatilization and loss of smelly fatty acids is to be expected....

  12. Technical Note: Example of the Application of Jet Grouting to the Neutralisation of Geotechnical Hazard in Shaft Structures

    Directory of Open Access Journals (Sweden)

    Dybeł Piotr

    2015-09-01

    Full Text Available The article presents a geotechnical hazard neutralisation technology for shaft structures. The diagnosis of problems with uncontrolled subsidence of the ventilation duct provided by the authors enabled the development of a schedule of works required for the protection and reinforcement of foundation soil in the shaft area. The technology of protection works was selected after the analysis of the technical condition of shaft structures as well as hydrological and geomechanical conditions. Due to the closeness of the shaft lining, it was necessary to form grout columns using jet grouting and low-pressure grouting technologies. The article presents the issues related to the selected technology and its application to the neutralisation of the emergent geotechnical hazard. The method of performance of recommended works was also described together with their impact on the technical condition of structures discussed as well as their functionality and usage.

  13. Technical Note: Example of the Application of Jet Grouting to the Neutralisation of Geotechnical Hazard in Shaft Structures

    Science.gov (United States)

    Dybeł, Piotr; Wałach, Daniel; Jaskowska-Lemańska, Justyna

    2015-09-01

    The article presents a geotechnical hazard neutralisation technology for shaft structures. The diagnosis of problems with uncontrolled subsidence of the ventilation duct provided by the authors enabled the development of a schedule of works required for the protection and reinforcement of foundation soil in the shaft area. The technology of protection works was selected after the analysis of the technical condition of shaft structures as well as hydrological and geomechanical conditions. Due to the closeness of the shaft lining, it was necessary to form grout columns using jet grouting and low-pressure grouting technologies. The article presents the issues related to the selected technology and its application to the neutralisation of the emergent geotechnical hazard. The method of performance of recommended works was also described together with their impact on the technical condition of structures discussed as well as their functionality and usage.

  14. In-situ grouting of the low-level radioactive waste disposal silos at ORNL`s Solid Waste Storage Area Six

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C.W.; Farmer, C.D. [Oak Ridge National Lab., TN (US); Stansfield, R.G. [Stansfield (Robert G.), Knoxville, TN (US)

    1993-07-01

    At Oak Ridge National Laboratory (ORNL), one method of solid low-level radioactive waste disposal has been disposed of in below-grade cylindrical concrete silos. Located in Solid Waste Storage Area 6 (SWSA 6), each silo measures 8 ft in diameter and 20 ft deep. Present day operations involve loading the silos with low-level radioactive waste and grouting the remaining void space with a particulate grout of low viscosity. Initial operations involving the disposal of wastes into the below-grade silos did not include the grouting process. Grouting was stated as a standard practice (in late 1988) after discovering that {approximately}75% of the silos accumulated water in the bottom of the silos in the {approximately}2 years after capping. Silo water (leachate) contained a wide range of types and concentrations of radionuclides. The migration of contaminated leachate out of the silo into adjoining soil and groundwater was considered to be a serious environmental concern. This report describes how a specially designed particulate-base grout was used to grout 54 silos previously filled with low-level radioactive waste. Grouting involved three steps: (1) silo preparation, (2) formulation and preparation of the grout mixture, and (3) injection of the grout into the silos. Thirty-five of the 54 silos grouted were equipped with a 3-in.-diam Polyvinyl Chloride (PVC) pipe used to monitor water levels in the silos. A method for rupturing the bottom section of these PVC wells was developed so that grout could be pumped to the bottom of those silos. Holes (2-in. diam) were drilled through the {approximately}18 in. thick concrete to fill the remaining 19 wells without the PVC monitoring wells. The formulation of grout injected into the silos was based on a Portland Type I cement, flyash, sand, and silica fume admixture. Compressive strength of grout delivered to SWSA6 during grouting operations averaged 1,808 lb/in{sup 2} with a bulk density of 3,549 lb/yd{sup 3}.

  15. Evaluation of the cohesion of chemically grouted sands; Mizu glass kei yakueki ni yori shinto chunyusareta sashitsu jiban no nenchakuryoku no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Y. [Aoki Corp., Tokyo (Japan); Tokoro, T.; Takahashi, N. [Nippon Sogo-Bosui Co. Ltd., Saitama (Japan)

    1998-02-15

    To evaluate the effect of soil improvement by grouting, the test results using a specified type of soil such as standard sand or silica sand and specified chemicals have been conventionally used. However, it is uncertain whether or not the results of such evaluations can be applied to the actual sites. Moreover, the strength of the sand solidified by chemical grouting has only been qualitatively evaluated by its relative density and/or grain size. In this study, the cohesion of sand solidified by chemical grouting was precisely evaluated by a simple method using the hydraulic radius of sand and the tensile strength of pure grout. From the result a quantitative method was proposed for predicting the cohesion of sand solidified by chemical grouting at the actual sites. 4 refs., 9 figs., 5 tabs.

  16. Expected occurrence of the transmissive fractures at the repository level for grouting design purposes

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Nummela, J.; Tammisto, E. (Poeyry Environment Oy, Vantaa (Finland))

    2007-11-15

    Posiva Oy has set up a R20-programme to define an acceptable sealing methodology for the disposal tunnels of the spent nuclear fuel. As a sub-task of project Grouting technology expected hydrogeological conditions in the bedrock from the grouting point of view at the planned repository depth have been assessed based on observations of the transmissive fractures in deep drillholes. The processing of the transmissive fractures was performed in two phases. First all transmissive fractures were assessed together and then fractures were divided to belong either to the averagely fractured rock or to fractured zones. The fractured zones were determined after the criteria applied in bedrock model version 2003/1. Furthermore, the fractures were classified by hydraulic aperture, b{sub hydr} below 0.020 mm, b{sub hydr} 0.020-0.050 mm, and b{sub hydr} above 0.050 mm and by dip angle, dip below 30 deg, dip 30-60 deg , and dip above 60 deg . The assessed parameters were transmissivity and derived hydraulic aperture, orientation in terms of dip direction and dip, and spacing. Classification was performed for grouting design purposes. The description of the classified fracture groups is given. Observation of steeply dipping fractures is biased due to the sub-vertical orientation of the deep drillholes. Based on the fracture mapping data from ONKALO access tunnel walls and roof order of magnitude multiplying term, 1.7, was approximated for the occurrence of steeply dipping fractures. To approximate transmissive fracture frequency in horizontal tunnel instead of subvertical drillhole, spacing of fractures was rotated assuming planar continuity for fractures and applying right-angled triangle calculation. Average distances between fractures within each of above mentioned fracture group is given. The distance varied from 112 m (dip below 30 deg and b{sub hydr} below 0.020 mm) to 3350 m (dip 30-60 deg and bhydr above 0.050 mm). For the transmissive fractures within fractured zones

  17. Drip Sealing Grouting of Tunnels in Crystalline Rock: Conceptualisation and Technical Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Butron, Christian

    2012-07-01

    A conceptual model of the groundwater hydraulic conditions around the tunnel contour in ancient brittle crystalline rocks has been developed and verified. The general aim has been to reach an understanding of the groundwater conditions in and close to the tunnel roof where dripping takes place and to propose technical and practical strategies for waterproofing. Dripping is accompanied by ice growth and icicle formation in cold regions, creating additional problems such as shotcrete fall-outs, icicle fall-outs, damage to vehicles, damage to trains, etc. The methodology for the development of the conceptual model is based mainly on transmissivity determinations from short-duration hydraulic tests and analyses of the connectivity of the fracture structure by means of semi-variogram analysis. The determination of the dimensionality of the flow in the fractures has also been found to be essential in order to describe the conductive system. This conceptual model describes the fracture systems as a combination of transmissive patches (2D-flow fractures) connected by less pervious channels (1D-flow fractures). It provides an understanding of the heterogeneity and connectivity of the fracture network and thus the groundwater conditions, not only in the roof but also around the tunnel contour. The pre-excavation grouting design process used in the tunnelling projects followed a structured approach and the evaluation showed that the grouting design reduced the inflow and fulfilled the environmental demands. However, dripping remained, making its characterisation very important when proposing a possible solution for its control. It is proposed that the remaining dripping comes from a channelised system that has been left unsealed and which would be extremely difficult to intersect with future boreholes, as well as from some ungrouted fractures with inconvenient orientations. Geomembrane lining and post-excavation grouting are possible solutions, although particular attention

  18. Multi-stage slurry system used for grinding and polishing materials

    Energy Technology Data Exchange (ETDEWEB)

    Hed, P. Paul; Fuchs, Baruch A.

    2000-03-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of shiny in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  19. Physical and hydraulic properties of sediments and engineered materials associated with grouted double-shell tank waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayer, M.J.; Heller, P.R.

    1993-09-01

    Numerical models are used to predict the fate of contaminants in the environment for durations of 10,000 years and more. At the Hanford Site, these models are being used to evaluate the potential health effects and environmental impacts associated with the disposal of double-shell tank waste in grouted vaults. These models require information on the properties of the earthen and manufactured materials that compose the vault system and its surroundings. This report documents the physical and hydraulic properties of the materials associated with burial of grouted double-shell tank waste at the Hanford Site.

  20. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.

  1. CFD Prediction of Erosion Wear in Centrifugal Slurry Pumps for Dilute Slurry Flows

    Directory of Open Access Journals (Sweden)

    K. V. Pagalthivarthi

    2011-12-01

    Full Text Available The paper discusses numerical prediction of erosion wear trends in centrifugal pump casing pumping dilute slurries. The casing geometry is considered two-dimensional. Discrete Phase Model (DPM in FLUENT 6.1® is utilized to obtain dilute slurry flow field through the pump casing employing two-way coupling. Standard k — ε model is used for turbulence. Effect of several operational parameters viz. pump flow rate, pump speed (RPM, particle diameter and various geometry conditions viz. tongue curvature, slope of the discharge pipe and casing width is studied. Qualitative trends of erosion wear is described for these operational and geometric parameters with an idea to lower the wear rates and to make the wear pattern along the casing wall as uniform as possible. For example, with increase in pump flow rate, wear rates tends to even out whereas with increased casing width, wear rates are found to decrease.

  2. Slurry Bubble Column Reactor Optimization (book chapter)

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Gidaspow, D. (Illinois Inst. of Technology, Chicago, IL); Jung, J. (ANL)

    2007-03-01

    Slurry bubble column reactors (SBCR) are the preferred contactors for the conversion of syngas to fules and chemicals partially due to their superior heat and mass transfer characteristics. The multiphase fluid dynamics in these systems greatly affect the reactor volumetric productivity. Here, we have developed a computational fluid dynamics (CFD) assisted design methodology for searching the optimum particle size for maximum production in a SBCR. Reactor optimization due to heat exchanger configuration was also investigated. We have rearranged the heat exchangers in a SBCR and constructed a CFD model for a baffled reactor. The novel arrangement of the exchangers prevents the unfavorable high catalysts concentration at the lower stage of the reactor. Thus an optimum catalyst concentration is maintained during the course of the production of liquid fuels.

  3. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    Science.gov (United States)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  4. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  5. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    Directory of Open Access Journals (Sweden)

    Wenyan Chen

    2014-07-01

    Full Text Available Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri, larvae and embryos of zebrafish (Danio rerio were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v and 1.95% (v/v respectively, and embryonic development was inhibited at just 1% (v/v. Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR, while the LC50 of larvae was 75.23% (v/v and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

  6. Microstructural evaluation of oil well cementing slurries using alternative materials

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Maria D.M.; Melo, Dulce M.A.; Martinelli, Antonio E. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    n this work, cementing slurries were prepared with densities between 12.2 and 13.8 lb/gal with addition of clay materials (vermiculite and paligorskite) and pozzolans (metakaolin), comparing with neat reference slurries, from 15.6 to 15.8 lb/gal. The cements employed were the Portland G and ordinary Portland. These mixes were evaluated microstructurally through microhardness testing and acquisition of electronic images by ESEM and X-ray maps by EDS. A semi-quantitative analysis software was developed to identify phase distributions from the X-ray maps. It was found that the addition of metakaolin generated slurries with microhardness comparable to or superior to neat slurries, although a new phase was introduced in the hardened material. On the other hand, clay materials generated slurries with lower microhardness. It was observed in these cases a lower hydration degree, possibly due to water absorption by the clays' grains. One exception was the light slurry with paligorskite, which has an excess of water compared to the others. However, the higher water-cement ratio produced a lower microhardness due to the presence of voids, visible by ESEM. Clay inclusions also decreased the microhardness of the slurries. Based on these results, we can recommend metakaolin as the best performing addition to be further evaluated in the field. (author)

  7. ORGANIC NITROGEN IN A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Marco André Grohskopf

    2015-02-01

    Full Text Available The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.

  8. Slurry fired heater cold-flow modelling

    Energy Technology Data Exchange (ETDEWEB)

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  9. Analytical Study of the Mechanical Behavior of Fully Grouted Bolts in Bedding Rock Slopes

    Science.gov (United States)

    Liu, C. H.; Li, Y. Z.

    2017-09-01

    Bolting is widely used as a reinforcement means for rock slopes. The support force of a fully grouted bolt is often provided by the combination of the axial and shear forces acting at the cross section of the bolt, especially for bedding rock slopes. In this paper, load distribution and deformation behavior of the deflecting section of a fully grouted bolt were analyzed, and a structural mechanical model was established. Based on force method equations and deformation compatibility relationships, an analytical approach, describing the contribution of the axial and shear forces acting at the intersection between the bolt and the joint plane to the stability of a rock slope, was developed. Influence of the inclination of the bolt to the joint plane was discussed. Laboratory tests were conducted with different inclinations of the bolt to the joint plane. Comparisons between the proposed approach, the experimental data and a code method were made. The calculation results are in good agreement with the test data. It is shown that transverse shear resistance plays a significant role to the bolting contribution and that the bigger the dip of the bolt to the joint plane, the more significant the dowel effect. It is also shown that the design method suggested in the code overestimates the resistance of the bolt. The proposed model considering dowel effect provides a more precise description on bolting properties of bedding rock slopes than the code method and will be helpful to improve bolting design methods.

  10. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, I.L.; Bostick, W.D.

    1990-10-01

    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  11. Performance assessment on grouted double-shell tank waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.H; McNair, G.W. [Pacific Northwest Lab., Richland, WA (United States); Allison, J.M. [Westinghouse Hanford Co., Richland, WA (United States)

    1989-11-01

    The low-level fraction of liquid waste stored in double-shell tanks at Hanford will be solidified in a cementitious matrix (grout) and disposed in subsurface vaults. This paper discusses activities related to the preparation of a site-specific performance assessment as required by DOE Order 5820.2A. A draft performance assessment has been prepared for the planned grout disposal system at Hanford using site-specific data. The assessment estimates the incremental increase in the dose to future populations who, after loss of institutional control at the site, use groundwater downgradient of the disposal site. Increases in nonradiological species in water from a hypothetical well are also estimated. Two-dimensional transport models were used to estimate contaminant concentrations in groundwater. Based on diffusional release from the waste package, the projected radiological dose to an individual on a hypothetical farm using water from a well at the disposal facility boundary is estimated at less than one percent of the 25 mrem/yr standard in Order 5820.2. Technetium accounted for about 95% of the dose. Nitrate was the principle chemical contaminant at 0.3% to 0.5% of apportioned drinking water standards. Sensitivity studies on various parameters are in progress. This performance assessment will be updated as additional data become available.

  12. Costs of slurry separation technologies and alternative use of the solid fraction for biogas production or burning

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    a problem. Separation of the slurry into a liquid nitrogen rich fraction and a more solid phosphorus rich fraction, which is exported away from the farm, may alleviate this problem. Separation offers an alternative to transporting the slurry further away, renting more land or buying more land. The need...... for P-balance is stricter in Denmark than before, but developments in feeding, changes in regulation and the reduction of livestock numbers have made separation less favourable. This article compares dominant separation technologies in Denmark, such as decanter and flocculation, as well as source....... Decanter separation can be the cheapest if area is limited and cooperation with neighbours is possible as large volumes reduce separation costs per tonne. Flocculation is the best if much P has to be removed from the farm in the solid fraction. Separation will in the future in many cases be combined...

  13. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  14. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  15. Development of cementitious grouts for the incorporation of radioactive wastes. Part 2. Continuation of cesium and strontium leach studies. [Hydrofracture

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.G.

    1976-09-01

    Additional leach studies were completed on the leachability of cesium and strontium from simulated hydrofracture grout. These studies followed the test method proposed by IAEA or a modification which exposed smaller specimens with a higher surface-to-volume ratio to a larger volume of leachant. Results showed that the amount of cesium or strontium leached from the grout varied directly with the degree of drying during curing and inversely with the time of curing. The leachability also depends on the composition of the leachant and varies in the order: distilled water greater than tap water greater than grout water. The total waste concentration had little effect on the leachability of either cesium or strontium. The credibility of the laboratory results was substantiated by a short-term continuous leach test made on a fragment of a core sample of actual hydrofracture grout. The modified effective diffusivities (10/sup -11/ to 10/sup -10/ cm/sup 2//s) calculated from these limited data were comparable to those obtained from laboratory studies containing Grundite clay. These tests also confirmed the effect of various clays on the leachability of cesium and the importance of leachant renewal frequency on the leach rate.

  16. Polyacrylamide thickened slurry explosive with particular cross-linking combination

    Energy Technology Data Exchange (ETDEWEB)

    Sheeran, H.W.; Oriard, M.H.

    1973-02-20

    In manufacturing slurry blasting agents, it is commonly very important to produce a uniform and stable suspension of the liquid and nonexplosive solid ingredients along with a desired amount of fine entrained air bubbles in order to obtain optimum density and reactivity. Slurry explosives require the same type of uniform stable suspension of the liquid and explosive solid ingredients for optimum performance. In addition, it is very important that the suspending medium, the liquid or continuous phase of the slurries, be stable for extended periods of time at all normally encountered storage and use conditions. Further, it is very desirable that this liquid phase must resist penetration or dilution by water when the slurry is loaded in drill holes prior to a blast. Water-resistant gels are described which are produced by cross linking water-soluble polyacrylamide resins in an aqueous nitrate solution. (15 claims)

  17. Particle size and metal distributions in anaerobically digested pig slurry.

    Science.gov (United States)

    Marcato, Claire E; Pinelli, Eric; Pouech, Philippe; Winterton, Peter; Guiresse, Maritxu

    2008-05-01

    Particle size distribution and trace element patterns were studied in a full-scale anaerobic digestion plant treating pig slurry. Mass balance was established for major (N, P, K, Ca, Fe, Mg and S) and minor (Al, Cu, Mn and Zn) elements. Most of the elements were conserved through the process but part of the P, Ca, Mg and Mn was deposited as crystals lining the digester. In the dry matter of the slurry, Cu and Zn occurred at between 170 and 2600 mg kg(-1) due to pig diet supplements. Analyses of particle size distributions in raw and digested slurries showed a general shift in distribution towards larger sizes due to degradation of small and easily degradable particles as well as formation of large microbial filaments. Graded sieving of digested slurry showed metals to be mainly present on 3-25 microm particles. Less than 2% Cu and Zn was removed by passage through a 250 microm rotary screen.

  18. Developing Archetypal Machines for a Sequence of Food- Slurry ...

    African Journals Online (AJOL)

    ... Archetypal Machines for a Sequence of Food- Slurry Processing Operations: An ... Conclusively, this work presents a remarkable contribution to research on the ... developing nations through the introduction of new processing technologies.

  19. Interactions between soil texture and placement of dairy slurry application

    DEFF Research Database (Denmark)

    Glæsner, Nadia Andersen; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    -textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting...... soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  20. Impact of drilled shaft synthetic slurries on groundwater.

    Science.gov (United States)

    2011-06-01

    The overall objective of this project is to evaluate the effect of the aforementioned synthetic slurries on groundwater quality. The objective of Phase I (this report), however, was to conduct a comprehensive literature survey to gather data to evalu...

  1. Effect of flotation on preparation of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada)

    2009-07-01

    In order to study the effect of flotation reagents on the properties of coal-water slurry, a sub-bituminous coal was cleaned via either forward flotation or reverse flotation. The froth product from the forward flotation, obtained with the use of diesel oil and MIBC, and the tailings of the reverse flotation, carried out with dextrin-tannic acid depressants and dodecyltrimethylammonium chloride collector, were used in the preparation of coal-water slurries. It was shown that while it was possible to obtain the coal-water slurry with a high-solids content from the coal rendered hydrophilic (tailings from the coal reverse flotation), in the case of the hydrophobic product (froth product from the forward flotation) a dispersing agent was required to obtain the coal-water slurry of the same high-solids content.

  2. Development and evaluation of shallow injection of slurry into ley

    OpenAIRE

    Rodhe, Lena

    2004-01-01

    Shallow injection of slurry on grassland can reduce ammonia emissions compared to surface spreading and increase plant nitrogen utilisation. Other advantages include enhanced silage quality and lower odour. Disadvantages include higher investment costs, increased draught requirements and potential crop damage. The objective of this thesis was to determine appropriate techniques for slurry injection into ley that would minimise ammonia emissions, contamination of crops and energy inputs, while...

  3. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    cracking issue, and 3) the effect of composition and composition gradient of Ni and WC on the slurry erosion resistance over a wide range of erosion conditions. This thesis presents a set of numerical and experimental methods in order to address the challenges mentioned above. A three-dimensional (3-D) computational fluid dynamics (CFD) based powder flow model and three vision based techniques were developed in order to visualize the process of feeding the Ni-WC powder in the LBPD process. The results provide the guidelines for efficiently feeding the Ni-WC composite powder into the laser-formed molten pool. The finite element (FE) based experimentally verified 3-D thermal and thermo-mechanical models are developed in order to understand the thermal and stress evolutions in Ni-WC composite material during the LBPD process. The models address the effect of the process variables, preheating temperature, and different mass fractions of WC in Ni on thermal cycles and stress distributions within the deposited material. The slurry erosion behavior of the single and multilayered deposits of Ni-WC composite material produced by the LBPD process is investigated using an accelerated slurry erosion testing machine and a 3-D FE dynamic model. The verified model is used to identify the appropriate composition and composition gradient of Ni-WC composite material required to achieve erosion resistance over a wide range of erosion conditions.

  4. Assessment of slurry pressure letdown valve and slurry block valve technology for direct coal liquefaction demonstration and pioneer commercial plants

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.P.

    1984-10-01

    This report examines the status of the technology of high pressure slurry letdown valves and slurry block valves in coal liquefaction service. All of the demonstration and pioneer commercial direct liquefaction plant designs call for the use of high pressure slurry letdown valves for flow control and slurry block valves for flow isolation. Successful performance and reliability of these valves is a serious concern because of the severity of the process streams and the limited experience and performance data on these valves under such conditions. The objectives of this report are: (1) to examine the existing data base on these valves from the four major direct coal liquefaction pilot plants in the US, (2) to present the recommendations from the pilot plant experience, (3) to examine the specifications for the letdown and block valves in the demonstration/pioneer commercial designs, and (4) to identify the scale-up issues, data gaps, and development and testing needs. 23 references, 20 figures, 7 tables.

  5. Improving the Effectiveness of the Bio-slurry Extension Component of National Biodigester Program in Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M. F.

    2009-10-15

    This report deals with the escalating challenge Cambodia faces in its agricultural sector for providing sufficient feeding to an increasing population, while also having improper soil management. Based on field visits, interviews, regular meetings, training workshops, and joint analysis it was revealed that farmers used both organic (bio-slurry) and inorganic fertilisers but were unaware of the balance needed and required doses of fertiliser. Further, it appeared that farmers have limited access to improve crop management practices, specifically to fertiliser management. In a response to the problem, the current weaknesses, and further scope of improvement of present organisational setup of slurry extension component of NBP and subsidy system have been analysed in depth. Extensive recommendations are offered on an organisational setup level (e.g. strengthen the linkage between Provincial Biogas Program Office-PBPO and Cambodian Centre for Study and Development in Agriculture-CEDAC by involving CEDAC in the planning process), subsidy (e.g. provide subsidy to attract farmers for construction of standard compost hut, boundaries and shade), planning (e.g. bottom up planning approach is suggested where a seasonal planning meeting should be organized at province by the project director involving CEDAC provincial coordinator), development of training materials (e.g. a national consultant should be hired for developing a training manual on bio-slurry systems), training (e.g. strengthen user training by increasing its number, frequency, topics), farmers participatory action research (e.g. the participatory approach should be replaced by a demonstration one), monitoring and reporting (e.g. monitoring system should be established as desk and field monitoring)

  6. Slurry combustion. Volume 1, Text: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Essenhigh, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Mechanical Engineering

    1993-06-21

    The project described in this Report was to investigate the possibility of using sorbent added to coal-water fuel (CWF) mixtures as a means of reducing SOX emissions when burning Ohio coal. The results are significantly encouraging, with SOX concentrations reduced by amounts ranging from 25% to 65%, depending on the sorbent type and the firing conditions, where one major condition identified was the residence time in the flame gases. With the sorbent-loaded slurrys, the trend generally showed increasing SO{sub 2} capture with increasing sorbent loading. There were significant differences between the two different mixture formulations, however: The calcite/No. 8-seam mixture showed significantly higher SO{sub 2} capture at all times (ranging from 45% to 65%) than did the dolomite/No. 5 seam mixture (ranging from 25% to 45%). If the successes so far achieved are not to be wasted, advantage should be taken of these encouraging results by extending the work at both the present scale to determine the other unknown factors controlling sorption efficiency, and at larger scale to start implementation in commercial systems.

  7. Measuring the dynamic compression and release behavior of rocks and grouts associated with HYDROPLUS

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, M.D.

    1993-10-01

    Gas-gun impact tests were performed on twelve rocks and rock simulants pertinent to the HYDROPLUS nuclear yield measurement program: A variety of tuffs, rhyolites, carbonates, grouts, an epoxy-alumina mixture and quartzite permafrost samples recovered in an apparently preserved frozen state from northern Canada. The present report presents results for all of these materials except for the carbonates. Two classes of impact techniques were employed for measuring equation-of-state properties for these materials. Both use velocity interferometry diagnostics. One, employing a sample-in-projectile geometry, provides high-precision Hugoniot data and continuous release trajectories for dry or water-saturated materials. The majority of the experiments were performed with this geometry. The other, employing a sample-in-target geometry, provides loading path and Hugoniot data as well as limited release data. Uncertainties in the results have been estimated by analyzing the effects of errors in observables and ancillary material properties.

  8. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  9. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    Science.gov (United States)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-01

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  10. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Qingbang, Han; Ling, Chen; Changping, Zhu [Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, College of IOT, Hohai University Changzhou, Jiangsu, 213022 (China)

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  11. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    Directory of Open Access Journals (Sweden)

    Shenton B.

    2011-04-01

    Full Text Available The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA. To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1, Quebec, Canada (250 MWe was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  12. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    National Research Council Canada - National Science Library

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

      Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials...

  13. Viability of Ascaris suum eggs in stored raw and separated liquid slurry.

    Science.gov (United States)

    Katakam, Kiran Kumar; Roepstorff, Allan; Popovic, Olga; Kyvsgaard, Niels C; Thamsborg, Stig Milan; Dalsgaard, Anders

    2013-03-01

    Separation of pig slurry into solid and liquid fractions is gaining importance as a way to manage increasing volumes of slurry. In contrast to solid manure and slurry, little is known about pathogen survival in separated liquid slurry. The viability of Ascaris suum eggs, a conservative indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw slurry, respectively. The poorer survival at 25 °C was correlated with high ammonia contents in the range of 7.9-22.4 mM in raw slurry and 7.3-23.2 mM in liquid slurry compared to 3.2-9.5 mM in raw slurry and 2.6-9.5 mM in liquid slurry stored at 5 °C. The study demonstrates that at 5 °C, A. suum eggs have a higher viability in separated liquid slurry as compared to raw slurry. The hygiene aspect of this needs to be further investigated when separated liquid slurry is used to fertilize pastures or crops.

  14. Rock Mass Grouting in the Løren Tunnel: Case Study with the Main Focus on the Groutability and Feasibility of Drill Parameter Interpretation

    Science.gov (United States)

    Høien, Are Håvard; Nilsen, Bjørn

    2014-05-01

    The Løren road tunnel is a part of a major project at Ring road 3 in Oslo, Norway. The rock part of the tunnel is 915 m long and has two tubes with three lanes and breakdown lanes. Strict water ingress restriction was specified and continuous rock mass grouting was, therefore, carried out for the entire tunnel, which was excavated in folded Cambro-Silurian shales intruded by numerous dykes. This paper describes the rock mass grouting that was carried out for the Løren tunnel. Particular emphasis is placed on discussing grout consumption and the challenges that were encountered when passing under a distinct rock depression. Measurement while drilling (MWD) technology was used for this project, and, in this paper, the relationships between the drill parameter interpretation (DPI) factors water and fracturing are examined in relation to grout volumes. A lowering of the groundwater table was experienced during excavation under the rock depression, but the groundwater was nearly re-established after completion of the main construction work. A planned 80-m watertight concrete lining was not required to be built due to the excellent results from grouting in the rock depression area. A relationship was found between leakages mapped in the tunnel and the DPI water factor, indicating that water is actually present where the DPI water factor shows water in the rock. It is concluded that, for the Løren tunnel, careful planning and high-quality execution of the rock mass grouting made the measured water ingress meet the restrictions. For future projects, the DPI water factor may be used to give a better understanding of the material in which the rock mass grouting is performed and may also be used to reduce the time spent and volumes used when grouting.

  15. Novel techniques for slurry bubble column hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  16. Assessing The Durability of Polymer Modified Asphalt Emulsions Slurry Seal

    Science.gov (United States)

    Singgih, C.; Handayani, D.; Setyawan, A.

    2017-02-01

    Slurry Seal is an application of road preservation in the form of impermeable nonstructural thin layer with maximum thickness of 10 mm, which consisting of a cold laid mixture of asphalt emulsion with continuous graded fine aggregate, mineral filler, water and other added ingredients. Road preservation use slurry seal only functioning as a surface layer on the existing pavement structure. This preliminary research was conducted to determine the value of consistency, setting time, and indirect tensile strength of polymer modified slurry seal. The laboratory tests were conducted to determine the optimum residual asphalt content. The results show that the value of the optimum water content by pre-wetting 5% is getting smaller with increasing levels of residual asphalt emulsion. The addition of water 0 - 2.5% with 5% water for pre-wetting, the mixture provides a sufficient consistency in accordance with the specifications. The increasing levels of residual asphalt emulsion obtained the longer setting time at all slurry seal mixtures, but all of the mixtures still meet the specifications. The use of polymer modified asphalt emulsion on slurry seal was improved durability significantly, based on the value of indirect tensile strength.

  17. Gas migration through cement slurries analysis: A comparative laboratory study

    Directory of Open Access Journals (Sweden)

    Arian Velayati

    2015-12-01

    Full Text Available Cementing is an essential part of every drilling operation. Protection of the wellbore from formation fluid invasion is one of the primary tasks of a cement job. Failure in this task results in catastrophic events, such as blow outs. Hence, in order to save the well and avoid risky and operationally difficult remedial cementing, slurry must be optimized to be resistant against gas migration phenomenon. In this paper, performances of the conventional slurries facing gas invasion were reviewed and compared with modified slurry containing special gas migration additive by using fluid migration analyzer device. The results of this study reveal the importance of proper additive utilization in slurry formulations. The rate of gas flow through the slurry in neat cement is very high; by using different types of additives, we observe obvious changes in the performance of the cement system. The rate of gas flow in neat class H cement was reported as 36000 ml/hr while the optimized cement formulation with anti-gas migration and thixotropic agents showed a gas flow rate of 13.8 ml/hr.

  18. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  19. SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H.

    2009-11-10

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

  20. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  1. Effect of Nanosilica on the Fresh Properties of Cement-Based Grouting Material in the Portland-Sulphoaluminate Composite System

    OpenAIRE

    Shengli Li; Tingting Xu

    2016-01-01

    The effect of NS particle size and content on the fresh properties of the grouting material based on the portland-sulphoaluminate composite system was analyzed. The experimental results indicated that air content increased and apparent density decreased, with increased NS content, but the NS particle sizes have minimal effect on the air content and apparent density. The setting time of mortar was significantly shortened, with increased NS content; however, NS particle sizes had little influen...

  2. Thermal and hydrodynamic considerations of ice slurry in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bedecarrats, Jean-Pierre; Strub, Francoise; Peuvrel, Christophe [Laboratoire de Thermique, Energetique et Procedes, Equipe Energetique, Universite de Pau et des Pays de l' Adour, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France)

    2009-11-15

    This article focuses on the behavior in heat exchangers of an ice slurry composed of fine ice particles inside an ethanol-water solution. The heat transfer and friction characteristics were studied in two double pipe heat exchangers, one with a smooth surface and another with an improved surface. Heat transfer coefficients and pressure drops were experimentally investigated for the slurry flowing in the internal tube with ice mass fractions ranging from 0 to 30% and with flow velocities between 0.3 and 1.9 m s{sup -1}. For some flow velocities, the results showed that an increase in the ice fractions caused a change in the slurry flow structure influencing the evolution of the pressure drops and the heat transfer coefficients. Critical ice fraction values were determined corresponding to a change flow structure from laminar to turbulent motion revealed by the evolution of the friction factor. (author)

  3. Experimental study on heat transfer characteristics of ice slurry

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Shouji, Ryouta [Chubu Plant Service Co., Ltd., 11-22, Gohommatsu-cho, Atsuta-ku, Nagoya, Aichi 456-8516 (Japan); Shirakawa, Michito [Toyota Motor Corp., 1 Toyota-cho, Toyota, Aichi 471-8571 (Japan)

    2010-12-15

    Heat transfer characteristics of ice slurry were investigated experimentally. The Reynolds number, diameter of the tubes and ice packing factor (IPF) were varied as experimental parameters. For laminar flow, it was found that the ratio of the Nusselt numbers increased with the IPF, and an approximation equation of the Nusselt number could be derived using the apparent Reynolds number, IPF and the ratio of the average diameter of the ice particles to the diameter of the test tube. For turbulent flow, the ratio of the Nusselt numbers was 1 for each condition in the case of a low IPF. However, the ratio of the Nusselt numbers increased with the IPF in the high-IPF region. Moreover, the apparent Reynolds number, which can be derived by treating the ice slurry as a pseudoplastic fluid, can be used to determine the condition under which variation in the heat transfer characteristics of ice slurry in turbulent flow occurs. (author)

  4. Microalgal cultivation with biogas slurry for biofuel production.

    Science.gov (United States)

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Fast and Efficient Dehydration Process for Waste Drilling Slurry

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2017-01-01

    Full Text Available In this article, slurry system was converted to colloid from fluid with the colloidization of high polymer coagulants with high viscosity. The solid-liquid separation of the waste slurry was realized by the process of chemical colloidal gel breaking, coagulation function, acidification gelout. In addition, the surface morphology of slurry cake was investigated by using Field emission scanning electron microscope (FE-SEM. The results indicate that mud separation effect is decides on the type of flocculants, gel breaker. The solid content of mud cake increases from 40.5% to 77.5% when A-PA and H20 are employed as the flocculants, gelout, with the dosage of zero point four grams and zero point five grams.

  6. Concentrated biogas slurry enhanced soil fertility and tomato quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang-Bo Yu; Xi-Ping Luo; Fang-Bo Yu; Xi-Ping Luo; Cheng-Fang Song; Miao-Xian Zhang; Sheng-Dao Shan (Dept. of Environmental Sciences, Inst. of Environmental Technology, Zhejiang Forestry University, Linan (China))

    2010-05-15

    Biogas slurry is a cheap source of plant nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its further development. In this paper, a one-growing-season field study was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of microflora in both nonrhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could bring significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, beta-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It was concluded that the application is a practicable means in tomato production and will better service the area of sustainable agriculture

  7. Pretreatment of wood flour slurries prior to liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Vanasse, C.; Lemonnier, J.P.; Eugene, D.; Chornet, E.

    1988-02-01

    As a part of a solvolytic approach to wood fractionation and liquefaction known as UDES-S, a pretreatment stage has been developed using a fed batch technique to produce high solids content slurries. By using a combination of temperature and shear stress across homogenizing valves, wood flour slurries of poplar or aspen having concentrations of 20-32% by weight in both paraffin oil and ethylene glycol have been produced. Optical and scanning electron microscopy have shown that the recirculation loop and homogenizing valve cause structural degradation, defibration and defibrillation of the original particles as well as partial solubilization of the wood components. The maximum wood flour concentration, attainable before plugging was observed in the small scale system used, was just below 36% by weight. High concentration slurries are a prerequisite in order to obtain realistic reactor space velocities in biomass liquefaction processes. 12 refs., 9 figs.

  8. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal.

    Science.gov (United States)

    Solomon, Shola Gabriel; Ataguba, Gabriel Arome; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter.

  9. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    Directory of Open Access Journals (Sweden)

    José Marcos Ortega

    2017-05-01

    Full Text Available Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days compared to grouts made with OPC.

  10. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    Science.gov (United States)

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-01-01

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958

  11. Development of Alternative Rheological Measurements for DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. c.

    2005-09-01

    Rheological measurements are used to evaluate the fluid dynamic behavior of Defense Waste Processing Facility, DWPF, slurry samples. Measurements are currently made on non-radioactive simulant slurries using two state-of-the-art rheometers located at the Aiken County Technical Laboratory, ACTL. Measurements are made on plant samples using a rheometer in the Savannah River National Laboratory, SRNL, Shielded Cells facility. Low activity simulants or plant samples can be analyzed using a rheometer located in a radioactive hood in SRNL. Variations in the rheology of SB2 simulants impacted the interpretation of results obtained in a number of related studies. A separate rheological study was initiated with the following four goals: (1) Document the variations seen in the simulant slurries, both by a review of recent data, and by a search for similar samples for further study. (2) Attempt to explain the variations in rheological behavior, or, failing that, reduce the number of possible causes. In particular, to empirically check for rheometer-related variations. (3) Exploit the additional capabilities of the rheometers by developing new measurement methods to study the simulant rheological properties in new ways. (4) Formalize the rheological measurement process for DWPF-related samples into a series of protocols. This report focuses on the third and fourth goals. The emphasis of this report is on the development and formalization of rheological measurement methods used to characterize DWPF slurry samples. The organization is by rheological measurement method. Progress on the first two goals was documented in a concurrent technical report, Koopman (2005). That report focused on the types and possible causes of unusual rheological behavior in simulant slurry samples. It was organized by the sample being studied. The experimental portion of this study was performed in the period of March to April 2004. A general rheology protocol for routine DWPF slurry samples, Koopman

  12. Numerical simulation of slurry jets using mixture model

    Directory of Open Access Journals (Sweden)

    Wen-xin Huai

    2013-01-01

    Full Text Available Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-ε turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large, the turbulent kinetic energy k and turbulent dissipation rate ε, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the particle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.

  13. Defining the upper viscosity limit for mineral slurries used in drilled shaft construction.

    Science.gov (United States)

    2014-02-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during : excavation and concreting. Florida Department of Transportation (FDOT) specifications require that the : mineral slurry used for all primary str...

  14. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt

    2016-01-01

    Coal/bio-oil slurry (CBS) is a new partial green fuel for bio-oil utilization. CBS reacts with gasification agents at high temperatures and converts into hydrogen and carbon monoxide. This paper provides a feasibility study for the gasification of CBS in an atmospheric entrained flow reactor...... with steam/carbon ratio of 5, the syngas components are similar with that in equilibrium. A synergistic effect exists between coal and bio-oil in coal/bio-oil slurry gasification which might be caused by the catalysis effect of alkali metals and alkaline earth metals in bio-oil....

  15. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries

    Science.gov (United States)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki

    2017-08-01

    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  16. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries.

    Science.gov (United States)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki

    2017-08-01

    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  17. Slurry Coating System Statement of Work and Specification

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for a new system. This document presents the specifications and requirements for the system.

  18. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Science.gov (United States)

    2010-07-01

    ... structures which impound water, sediment, or slurry shall be required if such an existing or proposed impounding structure can: (1) Impound water, sediment, or slurry to an elevation of five feet or more above... design and construction of all new water, sediment, or slurry impoundments and impounding structures...

  19. Draught requirement of trailing foot and shallow injection equipment for applying slurry to grassland

    NARCIS (Netherlands)

    Huijsmans, J.F.M.; Hendriks, J.L.G.; Vermeulen, G.D.

    1998-01-01

    Surface spreading of slurry leads to the inevitable emission of ammonia into the environment. Injection of slurry on grassland reduces these emissions. However, injection of slurry by deep working injector tines with goose foot chisels (wings) requires high draught forces. This type of injection has

  20. Measurement of ion speciation in animal slurries using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Stelt, van der B.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2005-01-01

    The availability of nutrients in animal slurry for plant uptake depends on the total content as well as on the forms in which these nutrients are present in slurry manure. A DMT-manure cell was developed which can help to determine the speciation of nutrients in animal slurries. The cell consists of

  1. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry was studied as a function of the microstructure developed by austempering at 380 and 300°C for different exposure time in the slurry. The corrosion rates of the ADI balls immersed in the iron ore slurry was determined using weight loss method.

  2. Effects of different treatments of cattle slurry manure on water-extractable phosphorus

    NARCIS (Netherlands)

    Chapuis-Lardy, L.; Temminghoff, E.J.M.; Goede, de R.G.M.

    2003-01-01

    Cattle slurry manure applied to land increases the risk of phosphorus (P) movement to surface waters, which may lead to eutrophication. The water-extractable fraction of P in slurry manure is correlated with P concentration in runoff from soils amended with slurry smanure, and thus is an effective

  3. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  4. Physical properties, fuel characteristics and P-fertilizer production related to animal slurry and products from separation of animal slurry

    DEFF Research Database (Denmark)

    Thygesen, Ole; Johnsen, Tina; Triolo, Jin Mi

    The purpose of this study was twofold: firstly to examine the relationship between dry matter content (DM) and specific gravity (SG) and viscosity in slurry and the liquid fraction from slurry separation, and secondly to investigate the potential of energy production from combustion of manure fib...... comprising acid addition and drying/pelletizing is estimated at 3.7 mol HNO3 mol-1 P for mink, 4.5 mol HNO3 mol-1 P for pig and AD and 7.4 mol HNO3 mol-1 P for cattle....

  5. Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining

    Science.gov (United States)

    Zhao, Tong; Liu, Changyou

    2017-12-01

    Abandoned roadways and roof caving zones are commonly found in residual coal, and can destroy the integrity of the coal seam and roof. Resulting from mining-induced stress, continuous collapse and fracture instability in roof caving zones (RCZs) jeopardize the safety and efficiency of residual coal mining. Based on the engineering geology conditions of remining face 3101 in Shenghua Mine, the roof fracture and instability features of the RCZ were analyzed through physical simulation, theoretical analysis, and field measurements. In this case, influenced by the RCZ, the main roof across the RCZ fractured and rotated towards the goaf, greatly increasing the working resistance, and crushing the supports. The sudden instability of the coal pillars weakened its support of the main roof, thus resulting in long-key blocks across the RCZ and hinged roof structures, which significantly decreased the stability of the underlying immediate roof. This study establishes a mechanical model for the interactions between the surrounding rock and the supports in the RCZ, determines the reasonable working resistance, and examines the use of pre-grouting solidification restoration technology (PSRT) to solidify the RCZ and reinforce the coal pillars—thus increasing their bearing capacity. Field measurements revealed no roof flaking, inhomogeneous loading or support crushing, indicating that the PSRT effectively controlled the surrounding rock of the RCZ.

  6. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu

    2017-01-01

    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  7. Selection of design parameters for a slurry injection tool

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    Injection has been recognized as an effective method for land application of liquid slurry. Optimization design is essential for developing higher-performance injection tools and identifying potential improvement of existing tools. In this study, design parameters of an injection tool were determ...

  8. Developing Archetypal Machines for a Sequence of Food- Slurry ...

    African Journals Online (AJOL)

    User

    different operations respectively. The results show that the machines have increased the sieving rate of steeped grain and in extension the production of these food-slurries by over 50%. Design considerations for a dual- processing machine-assembly that combines the sieving and milling processes into a single operation ...

  9. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  10. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik

    2011-01-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involvi...

  11. Prediction of coal slurry concentration based on artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Li, Y.; Cheng, J.; Zhou, Z.; Li, S.; Liu, J.; Cen, K. [Zhejiang University, Hangzhou (China)

    2005-12-15

    Based on experimental data of coal slurry, three BP neural network models with 8, 7 and 5 input factors, were set up for predicting the slurry concentration. Three BP neural networks algorithm was Levenberg Marquardt algorithm, and their learning rate was 0.01. The hidden neurons number was settled by practical training effect of the networks. The hidden neurons number of BP model, with 8, 7 and 5 input factors is 27, 30 and 24, respectively. Two data treated methods were tested by seven input factors network model, which proves that the first method is the better one. The mean absolute error of the neural network models with 5, 7 and 8 factors is 0.53%, 0.50% and 0.74%, respectively, while that of the existed regression model is 1.15%. This indicates that the neural network models, especially the 7 factors model, are effective in predicting the slurry. The HGI input neuron in eight input factors model affects the prediction result because of its interference to other input factors. The effect of H and N in coal on the slurry is slight. 8 refs., 7 figs., 3 tabs.

  12. Method for freeforming objects with low-binder slurry

    Science.gov (United States)

    Cesarano, III, Joseph; Calvert, Paul D.

    2002-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  13. SLURRY NEBULIZATION ICP-OES FOR THE DETERMINATION OF ...

    African Journals Online (AJOL)

    a

    SLURRY NEBULIZATION ICP-OES FOR THE DETERMINATION OF Cu, Fe, Mg,. Mn AND Zn IN BOVINE LIVER. Ntebogeng S. Mokgalaka1*, Taddese Wondimu2 and Robert I. McCrindle1. 1Tshwane University of Technology, Department of Chemistry, Arcadia Campus, P.O. Box. 56208, Arcadia 0007, South Africa.

  14. Effect of internal filtration on slurry reactor performance

    NARCIS (Netherlands)

    Huizenga, P.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    In slurry bubble column reactors, generally small particles (<200 m) are applied. These particles often introduce a strenuous liquid-solid separation in processes involving liquid-phase products. This operation can be facilitated by performing filtration inside the reactor and thereby utilizing the

  15. Separation of phosphorus from pig slurry using chemical additives

    DEFF Research Database (Denmark)

    Estevez Rodriguez, M.D.; Gomez del Puerto, A.M.; Montealegre Meléndez, M.L.

    2005-01-01

    retention of P in a solid fraction. The laboratory studies showed that 98% of the P in slurry was retained in the solid fraction retained on the filter net (12% to 28% retained W:W) after the addition of coagulants and flocculants. Linear cationic polyacrylamide polymers proved to be more efficient at lower...

  16. Explorative study of phosphorus recovery from pig slurry : laboratory experiments

    NARCIS (Netherlands)

    Schoumans, O.F.; Ehlert, P.A.I.; Nelemans, J.A.; Doorn-van Tintelen, van W.; Rulkens, W.H.; Oenema, O.

    2014-01-01

    Here, we report on laboratory experiments with the aim to explore cheap and innovative techniques. The main focus of the experiments was to lower the P-content in pig slurry with 25%. In that case, in principle all manure produced in the Netherlands can be applied on agricultural land in The

  17. Agronomic recycling of pig slurry and pig sewage

    Science.gov (United States)

    Gómez Garrido, Melisa; Sánchez García, Pablo; Faz Cano, Ángel; Büyükkılıç Yanardag, Asuman; Yanardag, Ibrahim; Kabas, Sebla; Ángeles Múñoz García, María; María Rosales Aranda, Rosa; Segura Ruíz, Juan Carlos

    2013-04-01

    Recycling pig slurry as organic fertilizer is a convenient and suitable way of waste elimination due to its low cost and high agronomic benefits. The objectives of this two year study are focused on improving and recycling pig slurry appropriately, and monitoring the soil-plant system at the same time. The evaluation of the agronomic effectiveness of different types of pig slurry (raw, solid, treated and depurated) in different doses (170 kg N ha-1 (legislated dose), 340 and 510 kg N ha-1) is innovative because the fertilizer value of each amendment can be balanced. Furthermore environmental issues such us volatilisation, leaching and salinisation have been considered for each treatment in order to set the viability of the study and to justify the treatments applied. Electrical conductivity, Kjeldhal nitrogen, sodium and potassium are the physico-chemical parameters most influenced in soils treated with doses 340 and 510 kg N ha-1. Additionally plant samples, especially halophyte, have shown the highest major and minor nutrients contents. Finally, pig slurry application in legislated doses could be considered a useful environmental practice; however, the development of the crop will be very influenced by the type of dose and amendment selected.

  18. Life cycle assessment of biogas from separated slurry

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H. (Univ. of Southern Denmark, Odense (Denmark)); Molt Petersen, B. (Aarhus Univ.. Faculty of Agricultural Sciences, Aarhus (Denmark))

    2010-07-01

    The environmental aspects of biogas production based on pre-treated slurry from fattening pigs and dairy cows have been investigated in a life cycle perspective. The pre-treatment consists of concentrating the slurry using a separation technology. Significant environmental benefits, compared to the status quo slurry management, can be obtained for both pig and cow slurry, especially regarding reductions of the contributions to global warming, but the results depend to a large extent on the efficiency of the separation technology. Adding separation after the biogas plant can contribute to a more efficient management of the phosphorus, and this has also been investigated. Based on the results of the study it can be concluded that: 1) The environmental benefits of biogas from separated slurry are very dependent upon the separation efficiency (for carbon, nitrogen and phosphorous). This particularly applies for carbon, as the separation efficiency defines the extent to which the degradable carbon contained in the slurry is transferred to the biogas plant. Efficient separation can be obtained by using polymer, but also by using a suitable separation technology. It could be mentioned that the decanter centrifuge used has a rather high efficiency of transferring volatile solids (VS) to the fibre fraction also without the use of polymer. 2) Biogas production from separated slurry can lead to significant reductions in the contributions to global warming, provided that the 'best available technologies' described in the report are used. That includes, among others: - a covered and short time storage of the fibre fraction before entering the biogas plant, - a 2-step biogas production where the post-digestion tank is covered with air-tight cover, - a covered storage of the degassed fibre fraction The benefits are also highly dependent upon the source of energy substituted by the biogas. 3) Based on evidences from reviewed studies, the cationic polyacrylamide polymer

  19. Ice slurry ingestion increases running time in the heat.

    Science.gov (United States)

    Dugas, Jonathan

    2011-11-01

    To examine the effect of drinking an ice slurry (slushy) compared with cold water on prolonged submaximal exercise performed in the heat and on thermoregulatory responses. Crossover trial, with the 2 conditions counterbalanced and in random order. Results were adjusted for multiple comparisons by the method of Bonferroni. Exercise laboratory study; Edith Cowan University, Western Australia. Moderately active male volunteers (n = 10; mean age, 28 years) who participated in recreational sport and who had no injuries or history of heat illness were included. Five to 14 days before the trials, the participants were familiarized with the procedure by a progressive treadmill run to volitional exhaustion at their previously determined first ventilatory threshold running speed, in the same hot environment as the trials (34°C, 55% relative humidity). The 2 experimental trials were completed at the same time of day, 5 to 20 days apart. During the first 15 minutes, the participants rested while baseline measurements were taken. Over the next 30 minutes, they drank either a 7.5 g/kg flavored ice slurry (-1°C) or the same volume of flavored cold water (4°C) and then commenced the treadmill run. Participants were instructed to keep their normal lifestyle habits stable. In the 24 hours preceding the trials, they were asked to avoid strenuous exercise and to consume a specified amount of carbohydrate and fluid but no alcohol, caffeine, nonsteroidal anti-inflammatory drugs, or nutritional supplements. Urine and blood samples were taken, and respiratory variables, heart rate, and rectal and skin temperatures were continuously monitored. Heat storage was calculated from temperature and anthropomorphic measurements. The primary outcome measures were comparisons of run time to exhaustion, perceived exhaustion, heat storage capacity, and changes in rectal and skin body temperatures during the 2 trials. All 10 participants took longer to fatigue (range, 2.4-14.2 minutes) after ice

  20. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  1. Evaluation of abiotic fate mechanisms in soil slurry bioreactor treatment

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, J.A.; McCauley, P.T. [Environmental Protection Agency, Cincinnati, OH (United States); Dosani, M.A. [IT Corp., Cincinnati, OH (United States)] [and others

    1995-10-01

    Biological treatment of contaminated soil slurries may offer a viable technology for soil bioremediation. Slurry bioreactor treatment of soils, however, has not sufficiently progressed to be a durable, reliable, and cost-effective treatment option. Critical to the evaluation of slurry bioreactors is a better description of pollutant mass transfer during the treatment phase. Losses attributable to abiotic means are generally overlooked in field application of the technology. Discussions with EPA regional personnel and inspection of active soil slurry bioreactor operations have identified operational problems such as foaming which could result in possible abiotic loss. Field bioslurry operations have adopted various approaches to reduce foaming: (1) the addition of defoaming agents, (2) the reduction of rotational speed of the agitator, and (3) the reduction of gas flow through the bioreactor system. We have conducted two bench-scale slurry bioreactor treatability studies, at the U.S. EPA Testing & Evaluation Facility in Cincinnati, Ohio, which were designed to investigate some of the operating factors leading to foam formation and identify the most advantageous means to deal with foaming. The initial study has been previously presented as a general treatability study for treatment of creosote contamination in a soil. During this study, foaming became a major problem for operation. The foaming conditions were mitigated by use of defoamer and, in the more extreme cases, through reduction of the mixer rotational speed and gas flow. A subsequent study which was devoted specifically to investigating the causes and conditions of foaming using a different batch of soil from the same site as the earlier study showed little foaming at the very beginning of the study.

  2. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette

    2012-01-01

    The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period...... to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry....

  3. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    Directory of Open Access Journals (Sweden)

    José Marcos Ortega

    2017-08-01

    Full Text Available At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.

  4. Field grouting summary report on the WAG seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70% of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup {minus}6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.

  5. Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup -6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.

  6. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    Science.gov (United States)

    Esteban, María Dolores; Rodríguez, Raúl Rubén; Ibanco, Francisco José; Sánchez, Isidro

    2017-01-01

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement. PMID:28767078

  7. Viability of Ascaris suum eggs in stored raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Katakam, Kiran Kumar; Roepstorff, Allan Knud; Popovic, Olga

    2013-01-01

    indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis...... of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw...... slurry, respectively. The poorer survival at 25 °C was correlated with high ammonia contents in the range of 7·9-22·4 mm in raw slurry and 7·3-23·2 mm in liquid slurry compared to 3·2-9·5 mm in raw slurry and 2·6-9·5 mm in liquid slurry stored at 5 °C. The study demonstrates that at 5 °C, A. suum eggs...

  8. Nitric-glycolic flowsheet evaluation with the slurry-fed melt rate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-01

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previously to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.

  9. 3.1.1.2 Feed Processing and Handling DL2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Magnuson, Jon K.; Wend, Christopher F.

    2006-09-30

    This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.

  10. Soil Improvement By Jet Grout Method And Geogrid Against Liquefaction: Example Of Samsun-Tekkeköy

    Science.gov (United States)

    Öztürk, Seda; Banu İkizler, S.; Şadoǧlu, Erol; Dadaşbilge, Ozan; Angın, Zekai

    2017-04-01

    scenarios of earthquakes with 6.0, 6.5, 7.0 and 7.2 magnitudes. As a result of the analyses made, it has been deemed necessary to improve the soil in order to prevent or reduce the liquefaction effects which may occur in a possible earthquake due to the presence of liquefaction potential in the research area. For this purpose, jet grouting method and geogrid fill system, which are used widely in Turkey, have been chosen as appropriate improvement methods. Geogrids are strong in tension so they are commonly used to reinforce subsoils below foundations. Additionally, jet grouting method provides high bearing capacity; it is solution to the settlement problems, it can be applied to almost any kind of soil and it has a short production period. Within this scope, optimal solution was obtained with 616 pieces of 8 m and 12 m jet grout columns with the diameter of 0.65 m and with geogrid mechanical fillings laid on jet grout columns. Thus, not only the risk of liquefaction was eliminated but also an improvement of more than 3 times of the bearing capacity of the foundation was acquired. In addition, the required quality control tests were carried out for the jet grout columns built in the research area and no adverse effects were observed. Key words: Liquefaction, soil improvement, jet grouting, geogrid

  11. Nutrient losses from cattle co-digestate slurry during storage

    Directory of Open Access Journals (Sweden)

    Francesca Perazzolo

    2016-06-01

    Full Text Available Among environmental issues related to intensive livestock activity, emissions to air from manure management are of increasing concern. Thus the knowledge of the effect of treatment application on subsequent emissions from manure is required to assess the environment impact of management solutions. This work addresses the effect of anaerobic digestion and phase separation on emissions during storage by studying nitrogen losses from lab-scale stores and field pilot-scale stores of a co-digestate cattle slurry and its respective separated fractions. Lab-scale experiment was carried in temperature-controlled room where each fraction (untreated, separated liquid and separated solid was stored in duplicate for a period of 32 days in 30 L vessel. Pilot-scale experiment was carried out both during the cold season and during warm season for 90 days of storage. In both experimentations samples of the manure were analysed periodically for total Kjeldahl nitrogen (TKN, total ammonia nitrogen, dry matter and volatile solids and pH. These analyses allow estimating nitrogen losses in different storage conditions. Effects of mechanical separation and season were assessed by ANOVA (Wilcoxon test, P<0.05. In temperature controlled conditions nitrogen losses measured account for 13% and 26% of TKN for unseparated and separated slurries respectively. In field conditions during cold season nutrient losses were limited. On average unseparated and separated slurries lost respectively 6.8% and 12.6% of their initial TKN content. Much higher were the TKN losses from the slurries examined in warm season where losses raised up to 40% of the initial TKN content. Generally mechanical separation increases nutrient losses, but the differences were not significant in field conditions. The results highlighted that nutrient losses, in particular the nitrogen ones, can be considerable especially during summer storage. The latter, in case of separated slurries, are mainly related

  12. Experiments on Hybrid Precast Concrete Shear Walls Emulating Monolithic Construction with Different Amounts of Posttensioned Strands and Different Debond Lengths of Grouted Reinforcements

    Directory of Open Access Journals (Sweden)

    Zhangfeng Zhu

    2016-01-01

    Full Text Available This paper proposed a hybrid precast concrete shear wall emulating monolithic construction (HPWEM that utilized grouted vertical connecting reinforcements and unbonded posttensioned high-strength strands across the horizontal joint for the lateral resistance. The grouted reinforcements with predetermined debond length were used to provide strength by tension and energy dissipation by yielding. The posttensioned strands were mainly employed to offer the restoring force to reduce the residual displacement by elastic extension. The overlapping welded closed stirrups improved the confinement property of the restrained concrete, avoiding the brittle failure. Six HPWEM specimens, considering variables including the amounts of strands and the debond lengths of grouted reinforcements, as well as one referenced cast-in-place monolithic wall specimen, were tested under the low-cycle reversed lateral load. The HPWEM specimens were capable of providing strength, stiffness, ductility, and energy dissipation equivalent to that of the monolithic wall specimen under certain variable condition.

  13. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  14. Sorption (Kd) measurements on cinder block and grout in support of dose assessments for Zion Nuclear Station decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Milian L.; Sullivan T.

    2014-06-24

    The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with a backfill to provide structural support. Backfills under consideration include “clean” concrete demolition debris from the above grade parts of the facility, a flowable grout, cinder block construction debris and sand. A previous study (Yim, 2012) examined the sorption behavior of five nuclides (Fe-55, Co-60, Ni-63, Sr-85, and Cs-137) on concrete and local soils. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) examines the sorption behavior on cinder block and grout materials. Specifically, this study measured the distribution coefficient for four radionuclides of concern using site-groundwater and cinder block from the Zion site and a flowable grout. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the solid material that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides examined in this set of tests were Co-60, Ni-63, Sr-85, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90.

  15. Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs.

    Science.gov (United States)

    Hernández, F; Martínez, S; López, C; Megías, M D; López, M; Madrid, J

    2011-06-01

    An experiment was conducted to investigate the effect of dietary levels of crude protein (CP), close to the range used commercially and to the European Commission recommended values, on the nitrogen (N) balance, ammonia (NH(3)) emission and pollutant characteristics of the slurry from growing and finishing pigs. Three feeding programmes with different CP levels were compared during the growing and the finishing periods of fattening. Diets were formulated to be isoenergetic and for the digestible lysine : metabolisable energy ratio to be similar in all the diets for each phase, but differed in CP concentration (160, 150 and 140 g CP/kg for the growing phase and 155, 145 and 135 g CP/kg for the finishing phase). Faeces and urine from barrows (eight replicates per diet) allocated in metabolism cages were collected separately for 5 days to calculate the N balance and for 2 days to measure NH(3) emission in a laboratory system for 240 h. Excreta were analysed for pH, volatile fatty acids (VFA), total N, electrical conductivity (EC), total solids (TS), volatile solids (VS), biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD) and NH(4)-N reduction of dietary CP content led to a linear decrease of urinary (P excretion, and N excretion/feed intake (P 0.05) during the 240 h of study. However, in the growing phase, the NH(3)-N level in slurry was lower (P 0.05) on total VFA, EC, TS, VS, COD or BOD(5) contents of excreta. These parameters were higher (P excretion in the slurry of growing-finishing pigs. The slurry from finishing pigs is more concentrated than that from growing pigs.

  16. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading

    OpenAIRE

    Feng, Bo; Xiong, Feng; Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compres...

  17. Studies on Slurry Design Fundamentals for Advanced CMP Applications

    KAUST Repository

    Basim, G. B.

    2013-06-14

    New developments and device performance requirements in microelectronics industry add to the challenges in chemical mechanical planarization (CMP) process. One of the recently introduced materials is germanium which enables improved performance through better channel mobility in shallow trench isolation (STI) applications. This paper reports on the slurry design alternatives for Ge CMP with surfactant mediation to improve on the silica/germanium selectivity using colloidal silica slurry. In addition to the standard CMP tests to evaluate the material removal rates, atomic force microscopy (AFM) based wear tests were also conducted to evaluate single particle-surface interaction of the polishing system. Furthermore, nature of the surface oxide film of germanium was studied through contact angle measurements and surface roughness tested by AFM. It was observed that the CMP selectivity of the silica/germanium system and defectivity control were possible with a reasonable material removal rate value by using self-assembled structures of cationic surfactants.

  18. Flow characteristics of ice slurry in narrow tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Shouji, Ryouta; Hagiwara, Yosuke [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Shirakawa, Michito [Toyota Motor Corporation, 1 Toyota-cho, Toyota, Aichi 471-8571 (Japan)

    2010-12-15

    Flow characteristics of ice slurry were experimentally investigated using narrow tubes. Reynolds number, the diameter of the tubes and the ice packing factor (IPF) were varied as the experimental parameters. Theoretical analysis was carried out using the experimental results. For laminar flow, it was found that the ratio of the coefficients of pipe friction increases with the IPF, and the rate of increase is high in the case of a low Reynolds number. For turbulent flow, the ratio of the coefficients of pipe friction was 1 for each condition in the case of a low IPF. The ratio of coefficients of pipe friction then decreased slightly at a particular IPF and increased with the IPF in the high-IPF region. In theoretical analysis, it was found that the flow characteristics of ice slurry can be treated as those of pseudoplastic fluid and clarified using the apparent Reynolds number. (author)

  19. Design of a new abrasive slurry jet generator

    Science.gov (United States)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  20. Fulvic acid constituents of coal slurry transport wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M.C.; Davis, J.W.; Minear, R.A.; Sayler, G.S.

    1988-01-01

    Humic and fulvic components in coal slurry transport wastewater (pipeline and laboratory generated) were fractionated by XAD-8 adsorption chromatography. The wastewaters were dominated by fulvic acids with humic acid contributing <1% of the total DOC. Partial degradation of the fulvic and non-fulvic acid fractions was conducted using permanganate oxidation and derivatization with diazomethane. Methylated decomposition products were examined by GC-MS. Wyodak coal slurry preparations were dominated by both aromatic and aliphatic moieties as demonstrated by six distinct classes of decomposition products, while Black Mesa pipeline wastewater DOC appeared to be dominated by fulvic acids of an aliphatic character as suggested by the presence of a single decomposition product, oxalic acid. 15 refs., 2 figs., 2 tabs.

  1. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    with this interaction mechanism mainly give a geometrical protection against oxidation by blocking oxygen access at the surface of the oxide scale. The protecting effect is gradually reduced as the oxide scale grows thicker than the diameter of the coating particles. Interaction mechanism B entails a chemical reaction.......85Sr0.15)CoO3 + 10% Co3O4, LSC, coatings were found to be relatively successful in decreasing the oxidation rate, the chromium content in the outermost part of ii the dense scale, and the electrical resistance in the growing oxide scales when applied onto Crofer 22APU. But, the positive effects......In this project, high temperature oxidation experiments of slurry coated ferritic alloys in atmospheres similar to the atmosphere found at the cathode in an SOFC were conducted. From the observations possible interaction mechanisms between the slurry coatings and the growing oxide scale...

  2. Why is acidification of slurry a success only in Denmark?

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    . Several technologies have been used in the buildings, in the storage and when applying manure. One technology now used widely in Denmark (20% of all slurry) is acidification of slurry where the application of sulphuric acid reduces the ammonia emission. However, the technology has hardly been used......The EU countries are trying to reduce the ammonia emission towards the 2020 and the 2030 targets in the Clean Air agreement. In order to do so, the countries need to implement a range of technologies. The Danish ammonia emission has been reduced by 40% from 1980 to 2015, but more is required...... about safety. For a technology to be accepted in a “non-native” country, national farm scale tests are required as the technology acceptance. It is shown that regulatory requirements help companies producing these technologies and without these requirements the companies might struggle financially...

  3. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications. A supplement to final report: Design of slurry reactor for indirect liquefaction applications

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  4. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Yasushi [Daido Hoxan Inc., Osaka (Japan); Takeuchi, Hiromi; Pyatenko, A.T. [Hokkaido National Industrial Research Inst., Sapporo (Japan); Kayukawa, Naoyuki [Hokkaido Univ., Sapporo (Japan). Center for Advanced Research of Energy Technology

    1999-04-01

    The hydrodynamic and heat-transfer characteristics of slurry containing microencapsulated phase-change materials (MCPCMs) were investigated experimentally for use as a heat-transfer fluid. Pressure drop and local convective heat-transfer coefficients of the slurry flows in a circular tube with uniform heat flux were measured. Slurries consisting of octadecane (C{sub 18}H{sub 38}) contained in 2--10-{micro}m-dia. microcapsules and pure water were used. The particle volume fractions in the slurry were varied up to 0.3. Results showed that increases in particle volume fractions caused the slurry flow structure to change from turbulent to laminar, and the pressure-drop reduction of the slurry flow relative to a single-phase water flow was under the same flow-rate conditions. The heat-transfer performance of the slurry also depended on the change in flow structure. When the MCPCMs melted, the local heat-transfer coefficients for turbulent slurry flows increased relative to those for nonmelting slurry. This phenomenon was influenced by the MCPCM fraction, the degree of turbulence, and the heating rate at the tube wall. The experimental data will be useful in the design of thermal-energy transportation systems using MCPCM slurry.

  5. Planarization effect evaluation of acid and alkaline slurries in the copper interconnect process

    Science.gov (United States)

    Yi, Hu; Yan, Li; Yuling, Liu; Yangang, He

    2015-03-01

    We observed and analyzed the acid and HEBUT alkaline of Cu chemical mechanical polishing (CMP) slurry to evaluate their effects. Material analysis has shown that the planarity surfaces and the removal rate of alkaline slurry are better than the acid slurry during metal CMP processes. The global surface roughness and the small-scale surface roughness by 10 × 10 μm2 of copper film polished by the SVTC slurry are 1.127 nm and 2.49 nm. However, it is found that the surface roughnesses of copper films polished by the HEBUT slurry are 0.728 nm and 0.215 nm. All other things being equal, the remaining step heights of copper films polished by the SVTC slurry and HEBUT slurry are respectively 150 nm and 50 nm. At the end of the polishing process, the dishing heights of the HEBUT slurry and the SVTC slurry are approximately both 30 nm, the erosion heights of the HEBUT slurry and the SVTC slurry are approximately both 20 nm. The surface states of the copper film after CMP are tested, and the AFM results of two samples are obviously seen. The surface polished by SVTC slurry shows many spikes. This indicates that the HEBUT alkaline slurry is promising for inter-level dielectric (ILD) applications in ultra large-scale integrated circuits (ULSI) technology. Project supported by the Special Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009ZX02308), the Doctoral Program Foundation of Xinjiang Normal University Plan (No. XJNUBS1226), the Key Laboratory of Coal Gasification, Ministry of Education, and the Inorganic Chemistry Key Disciplines of Xinjiang Normal University.

  6. New plug flow slurry bioreactor for polycyclic aromatic hydrocarbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gamati, S.; Gosselin, C.; Bergeron, E.; Chenier, M.; Truong, T.V. [Sodexen Group, Laval, PQ (Canada); Bisaillon, J.G. [INRS-Inst. Armand-Frappier, Laval, PQ (Canada)

    1999-11-01

    Sodexen Group has developed a new bioslurry bioreactor capable of efficiently and economically treating polycyclic aromatic hydrocarbons (PAHs) contaminated soils and sediments. A pilot plug-flow reactor was constructed, and innovations included were specifically-designed Venturi jet aerators for improved mixing and and oxygen distribution, and the development of bacterial consortia selectively adapted to high molecular weight PAH soil matrices. Rapid biodegradation is provided due to enhanced mass transfer rates and better microorgamism/contaminant contact. Various soil mixtures were tested in a 200 L pilot, and recirculation of a 50% slurry solid concentration was obtained by the use of centrifugal pumps along with submerged aerators and water nozzles. Based on microcosm biodegradation results, specific bioenhancing agents were added to the slurry to optimize bacterial activity and increase substrate bioavailability. Collected volatile organic compounds were treated by a biofilter. The feasibility of operating the continuously fed plug-flow reactor at high slurry solid content was shown. The bioslurry reactor allowed adequate operational conditions and mass transfer rates. Initial operation tests showed that increasing the slurry solid content up to 50% required certain design modifications to move settled particles. These included the number, size, position and distribution of the aerators. Internal shape of the reactor was also changed to obtain adequate mixing and solid suspension. Obtained oxygen levels throughout the reactor showed the efficiency of the aeration system. Resulting PAH removal efficiencies ranged from 63-90% depending on PAH molecular weights. Residence times of about ten days were needed to attain this removal rate. A rapid biodegradation of 80-90% of the more readily-available 2- and 3- ring PHAs occurred. Overall removal rates of more sorbed 4- and 6- ring PHAs were lower, suggesting the need for longer residence times, improved

  7. Ice slurry on outdoor running performance in heat.

    Science.gov (United States)

    Yeo, Z W; Fan, P W P; Nio, A Q X; Byrne, C; Lee, J K W

    2012-11-01

    The efficacy of ingestion of ice slurry on actual outdoor endurance performance is unknown. This study aimed to investigate ice slurry ingestion as a cooling intervention before a 10 km outdoor running time-trial. Twelve participants ingested 8 g · kg (- 1) of either ice slurry ( - 1.4°C; ICE) or ambient temperature drink (30.9°C; CON) and performed a 15-min warm-up prior to a 10 km outdoor running time-trial (Wet Bulb Globe Temperature: 28.2 ± 0.8°C). Mean performance time was faster with ICE (2 715 ± 396 s) than CON (2 730 ± 385 s; P=0.023). Gastrointestinal temperature (Tgi) reduced by 0.5 ± 0.2°C after ICE ingestion compared with 0.1 ± 0.1°C (P<0.001) with CON. During the run, the rate of rise in Tgi was greater (P=0.01) with ICE than with CON for the first 15 min. At the end of time-trial, Tgi was higher with ICE (40.2 ± 0.6°C) than CON (39.8 ± 0.4°C, P=0.005). Ratings of thermal sensation were lower during the cooling phase and for the first kilometre of the run ( - 1.2 ± 0.8; P<0.001). Although ingestion of ice slurry resulted in a transient increase in heat strain following a warm up routine, it is a practical and effective pre-competition cooling manoeuvre to improve performance in warm and humid environments. © Georg Thieme Verlag KG Stuttgart · New York.

  8. An improved cement slurry formulation for oil and geothermal wells

    OpenAIRE

    Fridriksson, Fridrik Hilmar Zimsen

    2017-01-01

    Master's thesis in Petroleum engineering Properly designed cement slurry and good cement job are crucial factors for integrity during a well‘s life cycle. For this, cement must be able to prevent migration of formation fluids, support the well construction and withstand high pressure and temperature. A survey on the Norwegian continental shelf showed that 11% of well integrity issues were due to cement related problems [1]. Another integrity survey in Pennsylvania showed that 2.41% of over...

  9. Energetic performances of a refrigerating loop using ice slurry

    OpenAIRE

    Abbassi, Ikram El; Castaing-Lasvignottes, Jean; Bédécarrats, Jean-Pierre; Dumas, Jean-Pierre; Mimet, Et Abdelaziz

    2010-01-01

    Abstract The consideration of environmental constraints in production, transport and distribution of cold energy resulted in reconsidering the practices of installations dimensioning in particular. Their containment led to the development of secondary refrigerants such as ice slurries to store, transport and distribute the cold energy. These heat transfer fluids should have good thermophysical properties, giving high transport capability, high heat transfer ability as well as low p...

  10. Explorative study of phosphorus recovery from pig slurry : laboratory experiments

    OpenAIRE

    Schoumans, O.F.; Ehlert, P.A.I.; Nelemans, J.A.; Doorn-van Tintelen, van, W.; Rulkens, W.H.; Oenema, O.

    2014-01-01

    Here, we report on laboratory experiments with the aim to explore cheap and innovative techniques. The main focus of the experiments was to lower the P-content in pig slurry with 25%. In that case, in principle all manure produced in the Netherlands can be applied on agricultural land in The Netherlands itself, including the organic matter and other nutrients in the manure. The results show that with physical and chemical treatment techniques 25% of the phosphate can rather easily be recovere...

  11. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  12. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Castaldi, F.J.; Bombaugh, K.J. [Radian Corp., Austin, TX (United States); McFarland, B. [Chevron Research and Technology Co., Richmond, CA (United States)

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  13. Automation of the second iron ore slurry pipeline from Samarco

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Juliana M.; Fonseca, Mario L.; Drumond, Pablo P.; Barbosa, Sylvio [IHM Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    The second iron ore slurry pipeline from Samarco was build to attend the Third Pellet Plant Project, which includes a new Concentration Plant at Germano-MG and a third Pellet Plant at Ubu-ES. It has 396km of extension and links the two plants by pulping the iron ore slurry prepared at Germano Unit. This works aims to present the iron ore slurry pipeline with emphasis on the automation architecture for the supervision and control system, interconnect throughout the pipe extension by fiber optics. The control system is composed of ControlLogix CLP's at the pulping and valve station and Micrologix CLP's at the pressure and cathodic protection monitoring points, totalizing 19 PLC's. The supervisory system was developed using the Wonderware IAS 3.0 suite, including the supervisory software InTouch 9.5 and the integrated ArchestrA IDE, and is composed of two data servers in redundancy and nine operation stations. The control and supervision system is interconnect through and Ethernet network using fiber optics and multiplexer modules (GE JungleMux) for voice, data and video. Among the expected results, it can be highlighted the sequence automation, greater process data availability (real and historical) and greater facility for the operation and detection of failures. (author)

  14. Rheology of slurries and environmental impacts in the mining industry.

    Science.gov (United States)

    Boger, David V

    2013-01-01

    The world's resource industries are the largest producers of waste. Much of this waste is produced as a fine particle slurry, which is pumped to a storage area, generally at a low concentration, where it behaves like a Newtonian fluid. Simply removing, reusing, and recycling water from the slurry represents a step toward a more sustainable practice in this industry. As the concentration of such a slurry is increased as a result of dewatering, the materials exhibit non-Newtonian behavior, which is characterized by shear thinning, a yield stress, and in some instances thixotropic behavior. Such high-concentration, nonideal (dirty) suspensions in the resource industries have meant that new rheological methods and techniques have been needed to measure and interpret the basic flow properties. Also, some older empirical techniques have needed to be modified and interpreted in a more fundamental way so that the results could be used in design. This article reviews these techniques and illustrates how the industry itself has motivated their development. Understanding and exploiting this rheology has resulted in dramatic improvement in the waste-disposal strategy for some industries, but many have failed to embrace the available technology. The reasons for this are discussed. The article concludes that a greater positive change in waste-management practice will occur in the future, motivated by several factors, including public perception, tighter regulation, and perhaps even commonsense life cycle accounting.

  15. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  16. Breast-Feeding Twins: Making Feedings Manageable

    Science.gov (United States)

    ... breast-feed more than one baby? Here's help breast-feeding twins or other multiples, from getting positioned and ensuring an adequate milk supply to combining breast-feeding and formula-feeding. By Mayo Clinic Staff If ...

  17. The impact of fouling on the process performance of the thermal treatment of pig slurry using tubular heat exchangers.

    Science.gov (United States)

    Cunault, C; Burton, C H; Pourcher, A M

    2013-03-15

    The aim of this study was to determine the kinetics of fouling and their influence on the performance of a thermal treatment process used for sanitisation of pig slurry. Two temperatures (55 °C and 80 °C) were investigated. One trial was carried out at 55 °C and 80 °C in which the slurry was not re-circulated and one trial at 80 °C in which 100% or 50% of the slurry was re-circulated. Fouling of the heat exchangers was assessed by on-line monitoring of the drop in pressure, changes in treatment temperature, heat transfer coefficients, heat recycling rate, and energy consumption. Similar energy consumption of around 38 kWh m(-3) of effluent was observed at the two temperatures. The operating periods prior to excessive fouling or blockage were 18 days at 55 °C and four days at 80 °C. Recycling treated manure to obtain 50% dilution of the raw feed increased the viable operating period to 14 days at 80 °C but doubled energy consumption. At 55 °C, the significant drop in the target temperature (>7 °C) with fouling severely jeopardised the process. The nature of the decline in performance suggests that the main fouling mechanisms were bio-fouling at 55 °C and organic/mineral deposits at 80 °C. Recycling treated manure enabled the operating period to be extended but increased the total cost of heating. One hundred percent recycling showed that the fouling potential of the manure was largely eliminated after one thermal treatment, suggesting a pretreatment may be advantageous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Sorption of 17b-Estradiol to Pig Slurry Separates and Soil in the Soil-Slurry Environment

    DEFF Research Database (Denmark)

    Amin, Mostofa; Petersen, Søren O; Lægdsmand, Mette

    2012-01-01

    fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L−1 CaCl2 and in natural pig urine matrix. Sorption in 0.01 mol L−1 CaCl2 was higher than that in pig urine for all solids used...

  19. Effect of Nanosilica on the Fresh Properties of Cement-Based Grouting Material in the Portland-Sulphoaluminate Composite System

    Directory of Open Access Journals (Sweden)

    Shengli Li

    2016-01-01

    Full Text Available The effect of NS particle size and content on the fresh properties of the grouting material based on the portland-sulphoaluminate composite system was analyzed. The experimental results indicated that air content increased and apparent density decreased, with increased NS content, but the NS particle sizes have minimal effect on the air content and apparent density. The setting time of mortar was significantly shortened, with increased NS content; however, NS particle sizes had little influence on the setting time. The effect of fluidity on the mortars adding NS with particle size of 30 nm is larger than NS with particle sizes of 15 and 50 nm and the fluidity decreased with increased NS content, but the fluidity of mortars with the particle sizes of 15 and 50 nm is almost not affected by the NS content. XRD analysis shows that the formation of ettringite was promoted and the process of hydration reaction of cement was accelerated with the addition of NS. At the microscopic level, the interfacial transition zone (ITZ of the grouting material became denser and the formation of C-S-H gel was promoted after adding NS.

  20. Effects of main parameters on rheological properties of oil-coal slurry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong-gang; Hao Li-fang; Xiong Chu-an; Sun Xiu-ying [China University of Mining & Technology, Beijing (China). School of Chemical and Environmental Engineering

    2006-09-15

    Oil-coal slurry prepared in coal direct liquefaction is a dispersed solid-liquid suspension system. In this paper, some factors such as solvent properties, solid concentrations and temperatures, which affect viscosity change of oil-coal slurry, were studied. The viscosity of coal slurry was measured using rotary viscometer, and the rheological properties have been investigated. The viscosity and rheological curves were plotted and regressed, respectively. The results show that the coal slurry behaves a pseudoplastic and thixotropic property. The rheological type of coal slurry was ascertained and its rheological equations were educed. The oil-coal slurry changes to non-Newtonian fluid from Newtonian fluid with the increasing of solid concentration. 10 refs., 5 figs., 3 tabs.

  1. Prediction of the heat transfer coefficient for ice slurry flows in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kousksou, T.; Jamil, A.; Zeraouli, Y. [Laboratoire de Thermique Energetique et Procedes, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France); El Rhafiki, T. [Laboratoire de Thermique Energetique et Procedes, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France); Laboratoire d' Energetique, Mecanique des Fluides et Sciences des Materiaux, Universite AbdelMalek Essaidi, 90000 Tetouan (Morocco)

    2010-06-15

    In this study, heat transfer for ice slurry flows was investigated. For the experiments, ice slurry was made from 9% ethanol-water solution flow in a 20 mm internal diameter, 1000 mm long horizontal copper tube. The ice slurry was heated by a cylindrical electrical resistance. Experiments of the melting process were conducted with changing the ice slurry mass flux rate and the heat flux. The enthalpy-porosity formulation was used to predict the ice slurry temperature and the local values of heat transfer coefficient in the exchanger. Measurements and data acquisition of ice slurry temperature and mass flow rate at the inlet and outlet are performed. It was found that the heat transfer rates increase with the mass flow rate, the ice fraction and the heat flux density. However, the effect of ice fraction appears not to be significant at high mass flow rates. In addition, the correlation proposed by Christensen and Kauffeld gives good agreement with numerical results. (author)

  2. Ammonia and methane gas emissions from pig slurry: variability induced through feeding strategies

    OpenAIRE

    Fernandes Beccaccia, Amanda

    2016-01-01

    Esta Tesis doctoral fue desarrollada para estudiar las emisiones de amoniaco (NH3) y metano (CH4) en purines de cerdos, y los efectos ocasionados por cambios en la formulación de la dieta. Con este propósito, fueron llevados a cabo tres estudios. El experimento 1 fue realizado con el objetivo de analizar los factores de variación de la composición de purines y establecer ecuaciones de predicción para emisiones potenciales de NH3 y CH4. Fueron recogidas setenta y nueve muestras de piensos y p...

  3. Scaling Theory for Pulsed Jet Mixed Vessels, Sparging, and Cyclic Feed Transport Systems for Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, William L.; Rector, David R.; Rassat, Scot D.; Enderlin, Carl W.; Minette, Michael J.; Bamberger, Judith A.; Josephson, Gary B.; Wells, Beric E.; Berglin, Eric J.

    2013-09-27

    This document is a previously unpublished work based on a draft report prepared by Pacific Northwest National Laboratory (PNNL) for the Hanford Waste Treatment and Immobilization Plant (WTP) in 2012. Work on the report stopped when WTP’s approach to testing changed. PNNL is issuing a modified version of the document a year later to preserve and disseminate the valuable technical work that was completed. This document establishes technical bases for evaluating the mixing performance of Waste Treatment Plant (WTP) pretreatment process tanks based on data from less-than-full-scale testing, relative to specified mixing requirements. The technical bases include the fluid mechanics affecting mixing for specified vessel configurations, operating parameters, and simulant properties. They address scaling vessel physical performance, simulant physical performance, and “scaling down” the operating conditions at full scale to define test conditions at reduced scale and “scaling up” the test results at reduced scale to predict the performance at full scale. Essentially, this document addresses the following questions: • Why and how can the mixing behaviors in a smaller vessel represent those in a larger vessel? • What information is needed to address the first question? • How should the information be used to predict mixing performance in WTP? The design of Large Scale Integrated Testing (LSIT) is being addressed in other, complementary documents.

  4. Spread of Hepatitis E virus from pig slurry to the water environment

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Forslund, Anita; Breum, Solvej Østergaard

    Objectives: Spread of pig slurry as an organic fertilizer is commonly used in Danish agriculture. The slurry is spread untreated so pathogens able to survive in slurry tanks will be widely distributed in the environment. The objective of this study was to examine if hepatitis E virus (HEV), which...... HEV cannot be cultivated in cells. We did not find any HEV positive mussel samples indicating that the release of HEV from fields is not a concern for shellfish production....

  5. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  6. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    Science.gov (United States)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  7. Bench-scale cross flow filtration of Tank S-107 sludge slurries and Tank C-107 supernatant

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Reynolds, B.A.

    1996-10-01

    Hanford tank waste filtration experiments were conducted using a bench-scale cross flow filter on 8 wt%, 1.5 wt%, and 0.05 wt% Tank S- 107 sludge slurries and on Tank C-107 supernatant. For comparison, two simulants each with solids loadings of 8 wt% and 0.05 wt% were also tested. The purpose of the tests was to determine the efficacy of cross flow filtration on slurries of various solids loadings. -In addition, filtrate flux dependency on axial velocity and transmembrane pressure was sought so that conditions for future experiments might be better selected. The data gathered are compared to the simulants and three cross flow filtration models. A two- parameter central composite design which tested. transmembrane pressure from 5 to 40 psig and axial Velocity from 3 to 9 ft/s was used for all feeds. The cross flow filter effectively removed solids from the liquid, as 19 of 20 filtrate samples had particle concentrations below the resolution limit of the photon correlation spectrometer used in the Hanford Radiocolloid Laboratory. Radiochemical analysis indicate that all filtrate samples were below Class A waste classification standards for 9OSr and transuranics.

  8. Hydraulic testing of simulated DWPF waste slurries at the Georgia Iron Works Hydraulic Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.P.

    1982-12-31

    Pipeline tests of current simulations of Defense Waste Processing Facility (DWPF) waste slurries were performed during August 1982 at the Georgia Iron Works Hydraulic Laboratory (GIW). Measurements of pressure gradient versus flow in 3-inch pipes and fittings were made for various concentrations of unformated sludge and formated sludge with frit. All slurries were shown to behave generally as Bingham Plastic fluids. Formated sludge/frit slurries behaved generally like unformated sludge slurries of comparable yield stress. No frit settling problems were observed. 8 refs., 16 figs., 6 tabs.

  9. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  10. Critically evaluate techniques for the in situ testing of steel tendon grouting effectiveness as a basis for reducing fall of ground injuries and fatalities

    CSIR Research Space (South Africa)

    Kelly, AM

    1996-10-01

    Full Text Available is used, and over the past 20 years a number of research efforts have been made, both in south Africa and overseas to develop a non-destructive test method for assessing grouted tendon effectiveness in situ-with partial success in one case and no success...

  11. Complementary feeding

    DEFF Research Database (Denmark)

    Fewtrell, Mary; Bronsky, Jiri; Campoy, Cristina

    2017-01-01

    but should not be delayed beyond 6 months. Content: Infants should be offered foods with a variety of flavours and textures including bitter tasting green vegetables. Continued breast-feeding is recommended alongside CF. Whole cows' milk should not be used as the main drink before 12 months of age...

  12. Breast Feeding.

    Science.gov (United States)

    International Children's Centre, Paris (France).

    This set of documents consists of English, French, and Spanish translations of four pamphlets on breast-feeding. The pamphlets provide information designed for lay persons, academics and professionals, health personnel and educators, and policy-makers. The contents cover health-related differences between breast and bottle milk; patterns of…

  13. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  14. [Effects of seed soaking with biogas slurry on seed germination and seedling growth of Tagetes erecta].

    Science.gov (United States)

    Yuan, Dagang; Liu, Cheng; Pu, Guanglan; Wu, Deyong

    2011-04-01

    The experiment was conducted to study the effect of soaking seeds with biogas slurry on seed germination and growth of Tagetes erecta so that we can provide theory base for cultivation management of T. ercta. In order to find the best combine of biogas slurry concentration (25%, 50%, 75%, 100%) and soaking time (2, 3, 4, 5 h), completely randomized design was selected, germination percentage, seedling height, root length, root activity, content of chlorophyll (a, b) and MDA were analyzed and principle component analysis was adopted. Both soaking for 5 h in 25% biogas slurry and soaking for 4 h in 50% biogas slurry had the highest germination percentage (81.3%). Soaking for 5 h in 50% biogas slurry had the longest root, and soaking for 4 h in 50% biogas slurry had the highest root activity. They were significant higher than other 19 treatments. Soaking for 5 h in 50% biogas slurry had the highest content of chlorophyll a, chlorophyll b, chlorophyll (a + b) and ratio of chlorophyll a/ chlorophyll b. It was significant higher in these index, except b, than other 19 treatment. Soaking for 5 h in 25% biogas slurry had the lowest MDA content (0.0280 micromol x L(-1)), then was Soaking for 4 h in 50% biogas slurry (0.0286 micromol x L(-1) in MDA content). Appropriate biogas slurry concentration combined with seed soaking time can improve the germination and growth of T. erecta. As a whole, soaking for 5 h in 50% biogas slurry had the best effects on germination and growth in seedling stage for T. erecta.

  15. Microparticulate ICE slurry for renal hypothermia: laparoscopic partial nephrectomy in a porcine model.

    Energy Technology Data Exchange (ETDEWEB)

    Shikanov, S; Wille, M; Large, M; Razmaria, A; Lifshitz, D; Chang, A; Wu, Y; Kasza, K; Shalhav, A (Nuclear Engineering Division); (University of Chicago Medical Center)

    2010-10-01

    Previously, we described the feasibility of renal hypothermia using microparticulate ice slurry during laparoscopy. In the present study, we compared surface cooling with the ice slurry versus near-frozen saline or warm ischemia (WI) during laparoscopic partial nephrectomy (LPN) in a porcine model. We used a single-kidney porcine model. Animals in 5 equal groups (n = 6 each) underwent right laparoscopic complete nephrectomy. In Phase I, left LPN was performed under 90 minutes of ischemia and 90-minute renal cooling with either slurry (Slurry group 1) or saline (Saline group 1). No cooling was applied in the WI group. In Phase II, to simulate more extreme condition, ischemia time was extended to 120 minutes and cooling shortened to 10 minutes (Slurry group 2 and Saline group 2). The study endpoints were renal and core temperature during the surgery and serum creatinine at baseline and days 1, 3, 7, and 14 after the procedure. The ice slurry was easily produced and delivered. Nadir renal temperature (mean {+-} SD) was 8 {+-} 4 C in Slurry group 1 vs. 22.5 {+-} 3 C in Saline group 1 (P < .0001). Renal rewarming to 30 C occurred after 61 {+-} 7 minutes in Slurry group 2 vs. 24 {+-} 6 minutes in Saline group 2 (P < .0001). Core temperature decreased on average to 35 C in the Saline groups compared with 37 C in the Slurry groups (P < .0001). Serum creatinine did not differ between the Saline and Slurry groups in Phases I and II at any time point. Ice slurry provides superior renal cooling compared with near-frozen saline during LPN without associated core hypothermia.

  16. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha-1 and followed with four irrigation events: 3.5-h period at 10 mm h-1 after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO3-N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO3-N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly lower

  17. Field Efficiency of Slurry Applications Involving In-field Transports

    DEFF Research Database (Denmark)

    Bochtis, Dionysis; Sørensen, Claus Aage Grøn; Green, Ole

    2009-01-01

    event model for the simulation of CTF operations executed by cooperating machines has been introduced. The use of this model makes it possible to estimate the extent of reduction of the field efficiency. In this paper, a field experiment involving slurry application under the conventional unconstrained......Controlled traffic farming can significantly reduce the soil compaction caused from heavy machinery systems. However, using CTF in material handling operations executed by cooperative machines, the significantly increased in-field transports lead to a lower system’s efficiency. Recently, a discrete...

  18. Advanced control of propylene polimerizations in slurry reactors

    Directory of Open Access Journals (Sweden)

    Bolsoni A.

    2000-01-01

    Full Text Available The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality and the amount of unreacted monomer (productivity. The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron. The simulated performance of the controller was evaluated for a typical propylene polymerization process. It is shown that the performance of the proposed control strategy is much better than the one obtained with the use of linear predictive controllers for setpoint tracking control problems.

  19. Influence of soil structure on contaminant leaching from injected slurry

    DEFF Research Database (Denmark)

    Amin, M. G. Mostofa; Pedersen, Christina Østerballe; Forslund, Anita

    2016-01-01

    of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils...... macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect...

  20. Study and optimization of an annular photocatalytic slurry reactor.

    Science.gov (United States)

    Camera-Roda, Giovanni; Santarelli, Francesco; Panico, Mauro

    2009-05-01

    The experimental results obtained for the photocatalytic degradation of a model organic dye in an annular slurry reactor are analyzed with the aid of a mathematical model. The model is used also to study the effects on the performances of many operative conditions: flow rate, photocatalyst concentration, power of the lamp, size of the photocatalytic particles, dimensions of the reactor. The investigation demonstrates that the rate of the process is often limited by the radiant energy transfer and that some simple rules can be followed in order to optimize different yields and the observed rate of reaction.

  1. Slurry pipelines: economic and political issues. A review

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-11-30

    In the controversy surrounding the proposal to grant Federal eminent domain to coal-slurry pipelines, the fundamental issue is whether, on balance, such a grant is in the national interest. The principal subissues (peripheral issues) of economics, water supply and disposal, energy consumption and conservation, employment, safety, and environmental impact are analyzed. It is found that, as compared with unit trains, which are the only immediate alternative for movement of large quantities of Western coal, the pipelines are not against the national interest, except in the case of employment. It is concluded that, on balance, the pipelines are in the national interest and should be granted the power of Federal eminent domain.

  2. Deep conversion of black oils with Eni Slurry technology

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, Nicoletta; Rispoli, Giacomo

    2010-09-15

    Eni Slurry Technology represents a significant technological innovation in residue conversion and unconventional oils upgrading. EST allows the almost total conversion of heavy feedstocks into useful products, mainly transportation fuels, with a great major impact on the economic and environmental valorization of hydrocarbon resources. The peculiar characteristics of EST in terms of yields, products quality, absence of undesired by-products and feedstock flexibility constitute its superior economic and environmental attractiveness. The first full scale industrial plant based on this new technology will be realized in Eni's Sannazzaro refinery (23,000 bpd). Oil in is scheduled by 4th quarter 2012.

  3. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-01-01

    A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  4. Sampling data summary for the ninth run of the Large Slurry Fed Melter

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, D.M.

    1983-11-22

    The ninth experimental run of the Large Slurry Fed Melter (LSFM) was completed June 27, 1983, after 63 days of continuous operation. During the run, the various melter and off-gas streams were sampled and analyzed to determine melter material balances and to characterize off-gas emissions. Sampling methods and preliminary results were reported earlier. The emphasis was on the chemical analyses of the off-gas entrainment, deposits, and scrubber liquid. The significant sampling results from the run are summarized below: Flushing the Frit 165 with Frit 131 without bubbler agitation required 3 to 4.5 melter volumes. The off-gas cesium concentration during feeding was on the order of 36 to 56 ..mu..gCs/scf. The cesium concentration in the melter plenum (based on air in leakage only) was on the order of 110 to 210 ..mu..gCs/scf. Using <1 micron as the cut point for semivolatile material 60% of the chloride, 35% of the sodium and less than 5% of the managanese and iron in the entrainment are present as semivolatiles. A material balance on the scrubber tank solids shows good agreement with entrainment data. An overall cesium balance using LSFM-9 data and the DWPF production rate indicates an emission of 0.11 mCi/yr of cesium from the DWPF off-gas. This is a factor of 27 less than the maximum allowable 3 mCi/yr.

  5. Performance of Clarias gariepinus Fed Dried Brewer’s Yeast (Saccharomyces cerevisiae Slurry in Replacement for Soybean Meal

    Directory of Open Access Journals (Sweden)

    Shola Gabriel Solomon

    2017-01-01

    Full Text Available Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer’s yeast slurry meal (DBYM based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58±0.01 g were stocked in hapas (1 m × 1 m × 1 m immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer’s yeast and a control without dried brewer’s yeast (0% substitution were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p<0.05 among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p<0.05 being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter.

  6. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems

  7. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa

    Science.gov (United States)

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy sl...

  8. Dispersion and rheological studies of Y–PSZ tape casting slurry

    Indian Academy of Sciences (India)

    Optimized tape casting slurry was prepared using PEG 600 and BBP as plasticizers and PVB as the binder. Cyclohexanone was used as the homogenizer. The optimized slurry composition with 58% solid loading exhibited shear-thinning pseudoplastic rheological behaviour. Y–PSZ tapes of ∼ 50 m thickness free from ...

  9. Bioslurry reactor for treatment of slurries containing minerals, soils and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Hanify, D.E.; Duncan, S.P.; Emmett, R.C. Jr.; Brox, G.H.; O' Connor, L.T.

    1993-07-13

    Apparatus for use in treating, through use of bacteria, minerals, soils or sludges which have been contaminated with hazardous waste organic compounds, said apparatus is described comprising: slurry-forming means for adding water to said minerals, soils or sludges to form a slurry; screening means, associated with said slurry-forming means, for removing all solid material of a preselected size from said slurry; a container means associated with said screening means for containing a quantity of slurry and bacteria suited to treat hazardous waste organic compounds; an oxygen supply means mounted within said container means, said oxygen supply means including at least one flexible porous membrane diffuser adapted for receiving a supply of oxygen-containing gas and distributing said gas into said container means in a form of fine bubbles; a mixing means mounted within said container means for mixing and recirculating the slurry contained within said container means; an exhaust gas recycling means mounted on said container means for drawing off a quantity of exhaust gases from said container means, treating said exhaust gas by extracting carbon dioxide therefrom, injecting oxygen into said quantity of exhaust gas and thereafter reintroducing said treated exhaust gas into said container means by means of said oxygen supply means, wherein said container means is sealed to prevent escape of exhaust gases; and dewatering means, associated with said container means, for receiving said slurry from said container means and dewatering said slurry.

  10. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Science.gov (United States)

    2010-07-01

    ....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... reporting period. (4) Storage capacity of the impounding structure. (5) The volume of the impounded water... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and...

  11. 30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.

    Science.gov (United States)

    2010-07-01

    ... slurry impoundments and impounding structures; abandonment. (a) Prior to abandonment of any water... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and impounding structures; abandonment. 77.216-5 Section 77.216-5 Mineral Resources MINE SAFETY AND HEALTH...

  12. 30 CFR 77.216-1 - Water, sediment or slurry impoundments and impounding structures; identification.

    Science.gov (United States)

    2010-07-01

    ..., operating, or controlling the structure, shall be located on or immediately adjacent to each water, sediment... applicable. (a) For existing water, sediment or slurry impounding structures, markers shall be placed before May 1, 1976. (b) For new or proposed water, sediment, or slurry impounding structures, markers shall...

  13. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions

    Directory of Open Access Journals (Sweden)

    Jun-wen Zhao

    2017-05-01

    Full Text Available Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring (EMS and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.

  14. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  15. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  16. Anaerobic digestion of pig manure fibres from commercial pig slurry separation units

    DEFF Research Database (Denmark)

    Thygesen, Ole; Triolo, Jin M.; Sommer, Sven G.

    2014-01-01

    and screw press on average produced approximately 220l [CH4]kg-1 [VS]. Initial methane production can be described using a first-order kinetic model. The average rate constant for manure fibres was 0.030d-1 and for pig slurry 0.071d-1, showing that pig slurry is digested much faster than manure fibres....

  17. Use Of The African Locust Bean, Parkia biglobosa Waste Slurry As ...

    African Journals Online (AJOL)

    An assessment of the nutritive value of the waste slurry of the African locust bean, Parkia biglobosa as an energy source in practical diets for tilapia was carried out in glass aquaria. Five diets (35% crude protein) were formulated in which yellow maize was replaced at varying level with parkia slurry waste as follows: Diet 1, ...

  18. ABSORPTION OF GASES INTO ACTIVATED CARBON WATER SLURRIES IN A STIRRED CELL

    NARCIS (Netherlands)

    TINGE, JT; DRINKENBURG, AAH

    A surface-aerated stirred cell with a flat liquid surface was used to investigate the absorption of propane and ethene gas into slurries of activated carbon and water. Slurries with a solids concentration up to 4% by weight and particle diameters up to 565-mu-m were used. The experimental mass

  19. Hydrate slurry as cold energy storage and distribution medium : Enhancing the performance of refrigeration systems

    NARCIS (Netherlands)

    Zhou, H.

    2017-01-01

    The research presented in this thesis focuses on the use of hydrate slurries in the air conditioning and refrigeration areas. Both experimental and mathematical methods have been used. Hydrate slurries have been suggested as promising cold storage materials that can be used in air conditioning

  20. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  1. A novel method of atomizing coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.E.; Lefebvre, A.H.

    1990-05-01

    Despite the body of work describing the performance of effervescent atomizers, its potential for use with coal water slurries (CWS) had not been evaluated prior to this study. This program was therefore undertaken: to demonstrate that effervescent atomization can produce CWS sprays with mean drop sizes below 50{mu}m; to determine a lower size limit for effervescent atomizer produced CWS sprays; to determine the mechanism(s) responsible for the formation of effervescent atomizer produced sprays. An analysis of the effects of slurry rheological properties (as indicated by the consistency index and the flow behavior index) and formulation (in terms of loading and coal particle top size) on the spray formation process was performed. The experimental data reported were then analyzed to explain the physical processes responsible for spray formation. The analysis began by considering an energy balance across a control volume that extended from the nozzle exit plant to the line of spray measurement. The inlet conditions were calculated using two-phase flow techniques and the outlet conditions were calculated by using conservation of momentum and assuming that the final velocities of the air and liquid were equal. Entrainment was considered negligible and losses were accounted for by realizing that only a small fraction of the atomizing air participated in the spray formation process with the remainder passing through the control volume unperturbed. Results are discussed. 41 figs., 4 tabs.

  2. Metals attenuation in minerally-enhanced slurry walls

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Prince, M.J. [Bucknell Univ., Lewisburg, PA (United States); Adams, T.L. [Woodward-Clyde Consultants, Blue Bell, PA (United States)

    1997-12-31

    In current practice, a soil-bentonite slurry trench cutoff wall is a mixture of water, soil, and bentonite that is designed to serve as a passive barrier to ground water and contaminant transport. This study evaluated the transformation of a passive slurry trench cutoff wall barrier to an active barrier system. Conventional soil-bentonite vertical barriers presently serve as passive barriers to contaminated ground water. An active barrier will not only fulfill the functions of the present passive barrier system, but also retard contaminant transport by adsorptive processes. Attapulgite, Na-chabazite, and Ca-chabazite were added to {open_quotes}activate{close_quotes} the conventional soil-bentonite backfill. Batch extraction tests were performed to determine the partitioning coefficients of cadmium and zinc between the liquid and solid phase when in contact with the backfill mixes. Batch extraction and mathematical modeling results demonstrate the ability of an active barrier to retard the transport of cadmium and zinc. The reactivity of the soil-bentonite vertical barrier depends heavily on the inorganic being adsorbed. The reactivity of the barrier also depends on the adsorptive capabilities of the clay minerals added to the conventional soil-bentonite vertical barrier. The results of laboratory studies suggest that passive barrier systems can be transformed to active systems. Further, the data suggests that although conventional soil-bentonite vertical barriers are presently designed as passive barriers, they already have adsorptive capacity associated with active barriers.

  3. Rheology of corn stover slurries during fermentation to ethanol

    Science.gov (United States)

    Ghosh, Sanchari; Epps, Brenden; Lynd, Lee

    2017-11-01

    In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.

  4. The Influence of Clinoptilolite on Technological Properties of Fresh and Set Slag-Alkaline Slurries

    Directory of Open Access Journals (Sweden)

    Rafał Wiśniowski

    2006-10-01

    Full Text Available Since 1990 the AGH-UST scientists have been working on more efficient recipes of slag-alkaline slurries for sealing the soil and rock mass with hole injection methods.A special attention has been paid to the increasing efficiency of geoengineering works on a rational shaping of technological parameters of fresh and set slag-alkaline slurries.The properties of slurries containing clinoptiolite zeolites from the Košice area are presented in the paper.An addition of zeolites to the slurries increases the tightness of the set slurries. Zeolites favorably influence the course of crystallization of sodium zeolite and the hydroparameters in the slag-alkaline matrix.

  5. Effects of Cattle Slurry Acidification on Ammonia and Methane Evolution during Storage

    DEFF Research Database (Denmark)

    Petersen, Søren O; Andersen, Astrid; Eriksen, Jørgen

    2012-01-01

    . In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In one......Slurry acidification before storage is known to reduce NH3 emissions, but recent observations have indicated that CH4 emissions are also reduced. We investigated the evolution of CH4 from fresh and aged cattle slurry during 3 mo of storage as influenced by pH adjustment to 5.5 with sulfuric acid...... experiment sulfur was also added to slurry as the amino acid methionine in separate treatments. In each treatment 20-kg portions of slurry (n = 4) were stored for 95 d. All samples were subsampled nine to 10 times for determination of NH3 and CH4 evolution rates using a 2-L flow-through system. In all...

  6. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  7. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa.

    Science.gov (United States)

    Coblentz, W K; Muck, R E; Borchardt, M A; Spencer, S K; Jokela, W E; Bertram, M G; Coffey, K P

    2014-11-01

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400 ± 5271 and 41,700 ± 2397 L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477 kg/ha) and HARV2 (781 kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial

  8. Chemical mechanical polishing of copper using nanoparticle-based slurries

    Science.gov (United States)

    Jung, Su-Ho

    Chemical mechanical polishing (CMP) is a vital step for planarizing multi-level interconnect structures in ultra large-scale integrated circuit applications. The CMP has become the fastest growing semiconductor manufacturing operation in the past decade and is expected to continue its high growth rate with the emergence of next generation interconnect materials such as copper and ultra-low dielectric constant insulators in the coming decade. However, these next generation interconnects, due to their fragility and poor adhesion, are susceptible to CMP-induced defect formation such as microscratches, copper and barrier peeling, low k damage, dishing, and erosion. The state-of-the-art slurries presently designed for polishing copper/silica dielectric use hard aggregate particles (fumed alumina, 100--300 nm in diameter), which, we believe, may not be easily extended to polishing of copper/low k or ultra low k dielectrics. In this study, we investigate copper CMP using nanoparticle based slurries to reduce the defect formation. The reduction of defect formation, however, is among other considerations such as high removal rate. We examine the nanoscale synergistic chemical and mechanical interactions to determine controlling factors in defectivity and removal rate. Our experimental results indicate that the synergistic effect, that is, the rapid formation of surface passive layer that can be subsequently removed by the nanoparticles without deforming underlying bare copper, is needed to obtain the 'gentle' copper CMP. The removal rate is synergistic, but more dominated by the chemical reaction than by the mechanical abrasion. The formation mechanism of the removable surface layer is investigated. It is suggested that the enhanced the reaction kinetics of the layer formation by addition of chelating agent in the slurry leads to a less dense oxide layer on copper surface that can be removed by the nanoparticles. The role of nanoparticle size and concentration is also

  9. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    1999-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  10. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland

    2002-09-30

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  11. An integrated approach to route selection in slurry pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy G.; Altmann, Nara [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    The pressure to get engineering projects done and constructed as fast as possible in order to take advantage of the high prices in metals and petrochemicals has been driving companies to skip the conceptual phase and go straight into basic engineering with cost estimates in the level of 15% accuracy. By-passing early engineering and demanding higher cost estimating accuracy is a contradiction. In most cases, savings made on capital investment is much higher had money been spent in conceptual studies which allow for the optimal solution to be found. This paper reviews one of the key aspects in conceptual engineering of slurry pipeline designs: route selection. This activity is often overlooked, causing capital cost and operating difficulties to rise unnecessarily. This paper describes and gives example on how an integrated client/engineering company's approach to route selection can produce significant savings in pipeline construction and operating costs. (author)

  12. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    1999-03-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. The past three months of research have been focused on two major areas of bubble column hydrodynamics: (1) pressure and temperature effects on gas holdup and (2) region transition using a sparger as a gas distributor.

  13. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    2000-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  14. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    2002-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  15. Changes in the properties of pig manure slurry.

    Science.gov (United States)

    Kowalski, Zygmunt; Makara, Agnieszka; Fijorek, Kamil

    2013-01-01

    The paper presents the results of analyses of samples of manure from a pig farm located near Piła, Poland performed between June 2011 and May 2012 using a single sampling system. The statistical analyses of the average content of chemical and biological oxide demands, nitrogen, phosphorus, potassium, calcium and dry mass in the slurry in various seasons allowed us to draw conclusions concerning the changes in the chemical composition of the manure in specific seasons and to determine the correlations between the chemical parameters. The average content of N, BOD, P, and dry mass content tended to decrease systematically from the spring until the winter. The highest correlation coefficient, which indicates significant interdependency among the variables tested, was consistently found for COD and BOD, whereas the smallest correlation coefficient was found consistently for K and Ca and once for Ca and N.

  16. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  17. Maize yield after long-term application of pig slurry

    Directory of Open Access Journals (Sweden)

    June F. S. Menezes

    Full Text Available ABSTRACT Organic wastes produced in large quantities in pig farms, such as liquid swine manure (LSM, can become a good alternative source of nutrients for agriculture, thus enabling total or partial replacement of mineral fertilizers in agricultural crops. The aim of this study was to evaluate the use of LSM as a substitute of mineral fertilizer in the maize crop under Cerrado soil conditions. The treatments consisted of using mineral fertilization recommended for the maize crop; without fertilization; and LSM doses (25, 50,100 and 200 m3 ha-1. Maize grain yield was evaluated in the 2004/2005, 2005/2006, 2006/2007, 2007/2008, 2009/2010, 2011/2012 and 2013/2014 crop seasons. The mineral fertilization in maize can be replaced by pig slurry doses from 100 m3 ha-1 in a Cerrado soil (dystroferric Red Latosol with clayey texture with no loss of yield components.

  18. Effects of pH on rheological characteristics and stability of petroleum coke water slurry

    Directory of Open Access Journals (Sweden)

    Fu-Yan Gao

    2016-10-01

    Full Text Available Abstract In this study, the effects of pH on slurrying properties of petroleum coke water slurry (PCWS were investigated. The slurrying concentration, rheological characteristics and stability of PCWS were studied with four different types of additives at pH varying from 5 to 11. The results showed that the slurrying concentration, rheological characteristics and stability of PCWS all increased at first and then decreased with increasing pH from 5 to 11, and a pH of around 9 was found to be the most favorable acid–alkali environment to all these three slurrying properties. It was also indicated that only in a moderate alkaline environment can the additives be active enough to react with particle surfaces sufficiently to obtain good slurrying concentration and form a stable three-dimensional network structure, which can support strong pseudoplastic characteristics and good stability. An acid environment was a very unfavorable factor to the slurrying properties of PCWS.

  19. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    Science.gov (United States)

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  20. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential.

    Science.gov (United States)

    Badawi, Nora; Johnsen, Anders R; Brandt, Kristian K; Sørensen, Jan; Aamand, Jens

    2012-11-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this "slurry effect" on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, (14)C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in "intact" soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling

    Directory of Open Access Journals (Sweden)

    FENG Cai-mei

    2018-02-01

    Full Text Available Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

  2. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2004-10-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  3. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland

    2000-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

  4. Impact of slurry management strategies on potential leaching of nutrients and pathogens in a sandy soil amended with cattle slurry.

    Science.gov (United States)

    Fangueiro, D; Surgy, S; Napier, V; Menaia, J; Vasconcelos, E; Coutinho, J

    2014-12-15

    For farmers, management of cattle slurry (CS) is now a priority, in order to improve the fertilizer value of the slurry and simultaneously minimize its environmental impact. Several slurry pre-treatments and soil application methods to minimize ammonia emissions are now available to farmers, but the impact of such management strategies on groundwater is still unclear. A laboratory experiment was performed over 24 days in controlled conditions, with undisturbed soil columns (sandy soil) in PVC pipes (30 cm high and 5.7 cm in diameter). The treatments considered (4 replicates) were: a control with no amendment (CTR), injection of whole CS (WSI), and surface application of: whole CS (WSS), acidified (pH 5.5) whole CS (AWSS), the liquid fraction obtained by centrifugation of CS (LFS), and acidified (pH 5.5) liquid fraction (ALFS). An amount of CS equivalent to 240 kg N ha(-1) was applied in all treatments. The first leaching event was performed 72 h after application of the treatments and then leaching events were performed weekly to give a total of four irrigation events (IEs). All the leachates obtained were analyzed for mineral and organic nitrogen, electrical conductivity (EC), pH, total carbon, and phosphorus. Total coliforms and Escherichia coli were also quantified in the leachates obtained in the first IE. The results show that both acidification and separation had significant effects on the composition of the leachates: higher NO3(-) concentrations were observed for the LFS and ALFS relative to all the other treatments, throughout the experiment, and lower NO3(-) concentrations were observed for acidified relative to non-acidified treatments at IE2. Acidification of both the LF and WS led to higher NH4(+) concentrations as well as an increase of EC for treatment ALFS relative to the control, in the first IE, and lower pH values in the AWSS. Furthermore, the E. coli and total coliform concentrations in AWSS, LFS, and ALFS were significantly higher than in

  5. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  6. Effect of adding alum or zeolite to dairy slurry on ammonia volatilization and chemical composition.

    Science.gov (United States)

    Lefcourt, A M; Meisinger, J J

    2001-08-01

    Development of cost-effective amendments for treating dairy slurry has become a critical problem as the number of cows on farms continues to grow and the acreage available for manure spreading continues to shrink. To determine effectiveness and optimal rates of addition of either alum or zeolite to dairy slurry, we measured ammonia emissions and resulting chemical changes in the slurry in response to the addition of amendments at 0.4, 1.0, 2.5, and 6.25% by weight. Ammonia volatilization over 96 h was measured with six small wind tunnels with gas scrubbing bottles at the inlets and outlets. Manure samples from the start and end of trials were analyzed for total nitrogen and phosphorus, and were extracted with 0.01 M CaCl2, 1.0 M KCl, and water with the extracts analyzed for ammonium nitrogen, phosphorous, aluminum, and pH. The addition of 6.25% zeolite or 2.5% alum to dairy slurry reduced ammonia emissions by nearly 50 and 60%, respectively. Alum treatment retained ammonia by reducing the slurry pH to 5 or less. In contrast, zeolite, being a cation exchange medium, adsorbed ammonium and reduced dissolved ammonia gas. In addition, alum essentially eliminated soluble phosphorous. Zeolite also reduced soluble phosphorous by over half, but the mechanism for this reduction is unclear. Alum must be carefully added to slurry to avoid effervescence and excess additions, which can increase soluble aluminum in the slurry. The use of alum or zeolites as on-farm amendment to dairy slurry offers the potential for reducing ammonia emissions and soluble phosphorus in dairy slurry.

  7. Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment.

    Science.gov (United States)

    Lopez-Ridaura, Santiago; Werf, Hayo van der; Paillat, Jean Marie; Le Bris, Bertrand

    2009-02-01

    Slurry management is a central topic in the agronomic and environmental analysis of intensive livestock production systems. The objective of this study is to compare the environmental performance of two scenarios of collective slurry management for the disposal of excess nitrogen from animal manure. The scenarios are the transfer of slurry and its injection to crop land, and the treatment of slurry in a collective biological treatment station. The study is based on a real case in the West of France, where a group of farmers is developing a collective plan for the disposal of almost 7000 m(3) of excess pig slurry. The evaluation is carried out by Life Cycle Assessment, where emissions and resource consumption are quantified and aggregated into four environmental impact categories: eutrophication, acidification, climate change, and non-renewable energy use. Ammonia emitted is the most important contributor to acidification and eutrophication, while methane contributes most to climate change. Both ammonia and methane are mostly emitted during the storage of slurry and, in the case of the treatment scenario, also during composting the solid fraction of the slurry. The two management strategies are similar with respect to climate change, whereas eutrophication and acidification are twice as large for treatment relative to transfer. Electricity needed for the treatment process is the main contributor to non-renewable energy use for the treatment scenario, while the transfer scenario represents a net energy saving, as energy saved by the reduction of mineral fertiliser use more than compensates for the energy needed for transport and injection of slurry. The overall environmental performance of transfer is better than that of treatment, as it involves less acidification, eutrophication and non-renewable energy use. The method employed and the results obtained in this study can provide elements for a transparent discussion of the advantages and disadvantages of contrasting

  8. Effects of storage time and straw content of cattle slurry on the mineralization of nitrogen and carbon in soil

    DEFF Research Database (Denmark)

    Sørensen, P.

    1998-01-01

    Animal slurries are stored for a variable period of time before application in the field. The effect of cattle slurry storage time and temperature on the subsequent mineralization of C and N in soil was studied under laboratory conditions. Urine and faeces from a dairy cow were sampled separately...... and mixed to a slurry. After 4 weeks of storage under anaerobic conditions at 15 degrees C, the NH4+ N content exceeded the original urinary N content of the slurry; the NH4+ content increased only slightly during the following 16 weeks of storage. After 4 weeks of storage, the proportion of slurry C...... to a sandy and a sandy loam soil. After 1 week, the preceding storage period (0-20 weeks) and temperature (5 degrees C or 15 degrees C) had no significant effect on the net release of inorganic N from the slurry in soil. Thus, the increased NH4+ content in the slurry after storage was followed by increased...

  9. Influence of Mineral Additives on the Technological Properties of Sealing Slurries for Geoengineering Works

    Directory of Open Access Journals (Sweden)

    Andrzej Gonet

    2006-10-01

    Full Text Available One of the most important factors influencing the efficiency of sealing and reinforcing the ground and rock mass with geoengineering methods is a proper selection of respective technological parameters in view of existing hydrogeological and geotechnical conditions.Selected mineral additives increase the sealing properties of fresh and set slurries. They also decrease the cost of the slurry, provide a method for utilizing the stored materials (additives, and consequently, lessen the risk of environmental pollution.The results of laboratory tests on the influence of selected mineral additives on technological properties of sealing slurries are presented in the paper.

  10. Processing and mechanical properties of silicon nitride formed by robocasting aqueous slurries

    Energy Technology Data Exchange (ETDEWEB)

    HE,GUOPING; HIRSCHFELD,DEIDRE A.; CESARANO III,JOSEPH

    2000-01-26

    Robocasting is a new freeform fabrication technique for dense ceramics. It uses robotics to control deposition of ceramic slurries through an orifice. The optimization of concentrated aqueous Si{sub 3}N{sub 4} slurry properties to achieve high green density robocast bodies and subsequent high sintered densities was investigated. The effects of pH, electrolyte, additives and solids loading on the dispersion and rheological properties of Si{sub 3}N{sub 4} slurries were determined. The mechanical behavior of sintered robocast bars was determined and compared to conventionally produced silicon nitride ceramics.

  11. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region

    Science.gov (United States)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu

    2017-08-01

    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  12. Side-band injection of acidified cattle slurry as starter P-fertilization for maize seedlings

    DEFF Research Database (Denmark)

    Petersen, Jens; Lemming, Camilla; Rubæk, Gitte Holton

    Accumulation of phosphorus (P) in agricultural soils has caused increasing environmental concerns. Maize cropped for fodder implies return of animal manures rich in nutrients. In addition, starter fertilization with mineral P is used in cold conditions for maize cropping. It was hypothesized...... that the use of the additional mineral P could be excluded by increased availability of the P applied by animal manures. In a growth chamber experiment we investigated the effect of acidified slurry on the growth and nutrient uptake in maize seedlings. In special designed pot the slurries and mineral reference....... The effect of untreated raw slurry was similar to the mineral reference without P....

  13. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  14. Algorithms of Optimum Slurry Selection for Soil and Rock Sealing Operations

    Directory of Open Access Journals (Sweden)

    Stryczek Stanis³aw

    2004-09-01

    Full Text Available Technical problems, usually caused by complex geological and hydrogeological conditions, are often encountered in mining, drilling and geoengineering operations, as well as in hydrotechnical and underground construction.Natural hazards in the above engineering operations are frequently liquidated by reinforcement and sealing of the ground with the use of injection methods with pre-selected sealing slurries.The authors present methods for slurry technological parameters normalization, depending on the scope and target of sealing operations, and algorithm of slurry selection of soil and rock sealing.

  15. Forced convection heat transfer with microencapsulated phase-change-material slurries. Turbulent flow in a circular tube; Microcapsuleka sohenka busshitsu slurries no kyosei tairyu netsudentatsu tokusei. Enkannai ranryu

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Y.; Sugano, T. [Daido Hoxan Inc., Hokkaido (Japan); Takeuchi, H.; Pyatenko, A. [Hokkaido National Industrial Research Institute Sapporo (Japan)

    1998-01-01

    An experimental study using a slurry of micro-encapsulated phase change material (MCPCM) in water is conducted in order to investigate the increase in convection heat transfer coefficients of slurry flows as well as the increase in thermal capacity of a slurry by using the latent heat from a solid-liquid phase change material (PCM). Experiments were done for turbulent, hydrodynamically fully developed flows in a circular tube with constant wall heat flux. Local convective heat transfer coefficients were measured along the heating test section in order to study the effects of the melting phenomena inside MCPCMs. Experimental data are presented for various particle concentrations, slurry flow rates, and heating rates. Results show that an increase in the local convective heat transfer coefficient is found when the MCPCMs melted. Enhancement of heat transfer due to phase change is affected to varying degrees by Reynolds numbers of slurry flows, the fraction of PCM which is solid phase and heating rates. This paper provides and presents an explanation of the physical mechanism of the convective heat transfer enhancement due to the phase change of MCPCMs and a set of data available for the adjustments of system operating conditions for optimum heat transfer performance. 15 refs., 11 figs., 4 tabs.

  16. Influence of recirculation flow in a pilot scale downflow stationary fixed film anaerobic reactor treating piggery slurry

    Energy Technology Data Exchange (ETDEWEB)

    Lomas, J.M.; Urbano, C.; Camarero, L.M. [Universidad del Pais Vasco, Vitoria (Spain). Departamento de Ingenieria y del Medio Ambiente

    2000-07-01

    Some aspects of the operational studies of a pilot scale downflow stationary fix film reactor (DSFF), treating sieved piggery slurries (1 mm mesh), are presented. Conditions affecting anaerobic digestion of the slurries were examined. The effect of the variation in the recirculation factor, which was defined as the relation between the recirculation and the feeding flows (Q{sub r}/,Q{sub o}), was analyzed in this phase. The organic loading rate to the reactor and the temperature were kept almost uniform along the process. The experiments were conducted in the mesophilic range (around 35{sup o}C). Hydraulic retention time was between 2.1 and 1.6 days and the system did not go sour. The recirculation factor was varied from four up to 20, with limitations for the higher rates due to the equipment. Average organic concentration in the influents were 24 x 10{sup 3} ppm Total chemical oxygen demand (COD) and 13 x 10{sup 3} ppm volatile solids (VS). A medium load reduction was achieved, about 62% COD and 56% VS, with factors greater than 15 r, descending to 48 and 42%, respectively, when shortening the factors to under six. Biogas productivity increased from 2.8 to 3.3 m{sup 3} m{sup -3} d{sup -1} when the factor was enlarged from four to 18. The gas composition displayed a certain uniformity in methane, between 80 and 70%, while carbon dioxide showed no significant changes for those factors. Nitrogen varied in a complementary way regarding the aforementioned gases, whereas only traces of hydrogen and sulphur were found. (author)

  17. Optimization of a new plug flow slurry bioreactor for polycyclic aromatic hydrocarbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gamati, S.; Bergeron, S.; Menard, P.-A.; Truong, T.V. [Sodexen Group, Laval, PQ (Canada)

    2001-07-01

    The first-phase development of a new bioslurry reactor capable of efficiently and economically treating polycyclic aromatic hydrocarbon (PAH) contaminated soils and sediments had been presented in the past by Sodexen. Some innovations had been required to the design, such as specifically-designed submerged aerators to improve the mixing and aeration of high slurry solid content. Another improvement had been the development of adapted bacterial consortia to different molecular weight PAH soil matrices. The optimization of the plug flow reactor (PFR) was found to require yet other modifications. The installation of a hydrocyclone, and the modification of the water nozzle design to minimize soil accumulation was effected. Using a contaminated soil with PAHs and total petroleum hydrocarbon initial concentrations of 500 parts per million (ppm) and 30 000 ppm, treatment tests were performed with the optimized 200 L pilot-scale continuously-fed plug-flow reactor. The inoculation approaches, various operational parameters, namely feed rate, air flow, and recirculation rate were studied under various conditions. The bioreactor was efficient and rapid in the soil-phase separation, and significant sand washing effects, as indicated by the results. Furthermore, the addition of an emulsifying agent (aqueous solution of cyclodextrin) resulted in the significant increase of soil bacteria population. The addition of an organic compost provided target nutrients and buffered soil pH, which seemed more efficient in enhancing PAH biodegradation. The experiment was successful in meting the cleanup criteria. Some of the contributing factors were the improved PAH bioavailability and better operational control including oxygen distribution, mixing homogeneity, reactor temperature and inoculum regeneration. 1 fig.

  18. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean C. [United Technologies Research Center, East Hartford, CT (United States); Davis, Timothy D. [United Technologies Research Center, East Hartford, CT (United States); Peles, A. [United Technologies Research Center, East Hartford, CT (United States); She, Ying [United Technologies Research Center, East Hartford, CT (United States); Sheffel, Joshua [United Technologies Research Center, East Hartford, CT (United States); Willigan, Rhonda R. [United Technologies Research Center, East Hartford, CT (United States); Vanderspurt, Thomas H. [United Technologies Research Center, East Hartford, CT (United States); Zhu, Tianli [United Technologies Research Center, East Hartford, CT (United States)

    2011-09-30

    This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood

  19. Freeform Extrusion of High Solids Loading Ceramic Slurries. Part 2. Extrusion Process Control (Preprint)

    National Research Council Canada - National Science Library

    Mason, Michael S; Huang, Tieshu; Landers, Robert G; Leu, Ming C; Hilmas, Gregory E

    2006-01-01

    Part I of this paper provided a detailed description of a novel fabrication machine for high solids loading ceramic slurry extrusion processes and presented an empirical model of the ceramic extrusion...

  20. USAGE OF PLASTIC LITTER MADE FROM SEPARATED SLURRY IN FARM ANIMAL BREEDINGS ESPECIALLY IN CATTLE

    Directory of Open Access Journals (Sweden)

    M. ŠOCH

    2009-10-01

    Full Text Available The observation was performed in two dairy cows´ herds of Holstein breeding stabled in brick buildings with loose box stabling system. The separated slurry was used as litter in one of the building, classical stabling regime with straw litter was used in the other one. The experiment ascertained a significant tendency to reduction of microorganisms and parasites quantity in separated slurry modified by biometric treatment through the method of managed composting process. There was quite a small quantity of microorganisms and parasites in samples taken from litter of separated slurry and only after three weeks a gradual proliferation of them began. From the viewpoint of the dairy cows´ state of health, the quantity and quality of their milk production, the cleanness of their body surface, the periods of their lying and other ascertained welfare parameters under given microclimatic conditions the application of separated slurry as plastic litter fully complied.

  1. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Sørensen, Peter; Elsgaard, Lars

    2008-01-01

    Received for publication June 18, 2007. Acidification of slurry with sulfuric acid is a recent agricultural practice that may serve a double purpose: reducing ammonia emission and ensuring crop sulfur sufficiency. We investigated S transformations in untreated and acidified pig slurry stored for up...... to 11 mo at 2, 10, or 20°C. Furthermore, the fertilizer efficiency of sulfuric acid in acidified slurry was investigated in a pot experiment with spring barley. The sulfate content from acidification with sulfuric acid was relatively stable and even after 11 mo of storage the majority was in the plant...... sulfur-containing compounds and investigations are needed into the relationship between odor development and the C and S composition of the slurry....

  2. Increasing the effectiveness of flotation of large classes of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblin, N.D.; Gruba, I.V.; Samoylov, A.I.

    1983-01-01

    The possibility of increasing the effectiveness of flotation of coal slurries which contain particles of +0.3 millimeters with the use of the proposed technology is shown. The obtained data are confirmed during experimental industrial tests.

  3. Novel instrumentation for online monitoring of stationary beds and their height for settling slurries

    CSIR Research Space (South Africa)

    Ilgner, Hartmut J

    2016-06-01

    Full Text Available on Multiphase Technology 2016, Banff, Canada 8 – 10 June 2016 Novel instrumentation for online monitoring of stationary beds and their height for settling slurries H J Ilgner ABSTRACT: Novel instrumentation has been developed to detect stationary...

  4. SYSTEM OF CONTROL AND MANAGEMENT OF THE PROCESS OF THE MORTAR SLURRY PREPARATION

    Directory of Open Access Journals (Sweden)

    D. M. Kukuj

    2007-01-01

    Full Text Available The technological schema of automatic flow line allowing to prepare with minimum charges of manual labor the refined from solid additives mortar slurry with stable density is presented in the article.

  5. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Hutchings, Nicholas John; Peters, Gregory

    2014-01-01

    on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil......Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range...... of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000. kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient...

  6. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  7. Slurry rheology of limestone and its effects on wet ultra-fine grinding

    OpenAIRE

    He, Mingzhao

    2005-01-01

    This thesis investigates rheology of limestone slurries and its effects on wet ultra-fine grinding in order to reduce energy cost and increase the throughput and the product fineness. The influences of solids concentration, molecular weight of a dispersant, particle size and distribution, and temperature on the rheological behaviours of limestone slurries have been investigated with rotational and cone-plate viscometers. The results reveal that when the solids concentration of a limestone slu...

  8. Valorisation of Phosphorus Extracted from Dairy Cattle Slurry and Municipal Solid Wastes Digestates as a Fertilizer

    DEFF Research Database (Denmark)

    Oliveira, V.; Ottosen, Lisbeth M.; Labrincha, J.

    2016-01-01

    that when using HNO3, 100 % of P content was extracted from dairy cattle slurry (2.0\\pH\\3.3) and 90 % from MSW digestates (1.2\\pH\\1.5). The maximum extraction was obtained after 2.5 h for dairy cattle slurry and 48 h for MSW digestates. The extraction efficiencies using NaOH were only 22 % for dairy cattle...

  9. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  10. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading.

    Science.gov (United States)

    Feng, Bo; Xiong, Feng; Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio.

  11. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading.

    Directory of Open Access Journals (Sweden)

    Bo Feng

    Full Text Available In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio.

  12. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.; Row, T.H.

    1984-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures.

  13. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-09-29

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number

  14. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  15. Influence of different fibre sources in diets for growing pigs on chemical composition of faeces and slurry and ammonia emission from slurry

    DEFF Research Database (Denmark)

    Hansen, Michael Jørgen; Chwalibog, André; Tauson, Anne-Helene

    2007-01-01

    The present study was carried out to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, in diets for growing pigs influenced the concentration of short-chain fatty acids (SCFA) in faeces, pH-value in faeces and slurry, excretion of nitrogen in urin...... pulp, soya bean hulls and pectin residue in diets for growing pigs may alter the chemical composition of faeces and slurry, whereas, the effect on ammonia emission under dynamic conditions requires further investigations....

  16. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulk waste removal campaign).

  17. Feeding Your Baby

    Medline Plus

    Full Text Available ... care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your baby Common ... X Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in ...

  18. Properties of slurries made of fast pyrolysis oil and char or beech wood

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2014-01-01

    The properties of slurries made of pyrolysis oil mixed with wood, char or ground char were investigated with respect to phase transitions, rheological properties, elemental compositions, and energy density. Also the pumping properties of the slurries were investigated at temperatures of 25, 40...... and 60 C and solid loadings from 0 to 20 wt%. The phase transitions of the wood slurry samples were observed at lower solid loadings compared to the char slurry samples. The apparent viscosity of the slurry samples was found to be considerably impacted by solid loading (0e20 wt%) and temperature (25e60 C......), especially in the phase transition region. The slurry viscosities with 20 wt% char loading, 20 wt% ground char loading and 15 wt% wood loading (at a shear rate of 100 s1) are 0.7, 1.0 and 1.7 Pa.s, respectively at 60 C and these values increases 1.2e1.4 times at 40 C and 3e4 times at 25 C. The wood, char...

  19. Effect of particle size distribution on the rheology of oil-coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Wang, Y.; Xiong, C. [China University of Mining and Technology, Beijing (China)

    2007-02-15

    The rheological behaviour of Shenhua coal-oil slurry was studied as a function of solids concentration, particle size and size distribution. At a certain particle size distribution the apparent viscosity of coal slurry increases with the increase of solid concentration. Coal slurries were found to exhibit a wide spectrum of flow behaviour ranging from Newtonian at low concentrations to shear-thinning and pseudoplastic with a yield stress at higher concentrations. By adding a narrow-sized coarse coal fraction to the finer coal slurry, a flow characteristics optimum coarse-to-fine particle ratio of 40:60 exists at which the slurry is Newtonian. The significant improvement in the rheological behavior with changing the particle size distribution may be explained in terms of spatial rearrangement of the particles and apparent dilution effect. The results indicate that, with a careful control of the particle size distribution, it is possible to prepare an optimum oil-coal slurry which has a low viscosity but with high solids loadings. 10 refs., 4 figs., 3 tabs.

  20. Microbial and Oligosaccharides Treatments of Feces and Slurry in Reducing Ammonia of the Poultry Farm

    Directory of Open Access Journals (Sweden)

    Y. Yusrizal

    2012-12-01

    Full Text Available This study was conducted to investigate the effectiveness of Lactobacillus sp and fructooligosaccaride (FOS to reduce the volatile ammonia formation from chicken excreta and layer slurry. For each treatment-replication, 150 g of fecal material were collected from the poultry farm and placed in 500 ml beaker glass. The fecal sample was then treated with 2% Lactobacillus sp (2.6x106 cfu/g and 2% FOS and covered with plastic wraps. The volatile ammonia contents and pH were measured after one hour of standing (0 d and repeated at 48 h intervals for 6 d. For the dropping slurry study, 300 g of each layer dropping slurry sample were used. Results indicated that 2% Lactobacillus sp or FOS supplementations in the feces and dropping slurry after 1 h up to 6 d reduced the ammonia odor formation, fecal pH, and moisture content. The Lactobacillus sp and FOS treated manure resulted in increasing Lactobacillus sp count and reducing in E. coli, Salmonella, and Campylobacter in 6 days for both feces and layer dropping slurry. In addition, reducing moisture content was observed in treated manure. It is concluded that Lactobacillus sp and FOS reduced the volatile ammonia formation and pathogenic bacteria from chicken excreta and layer slurry.

  1. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    Science.gov (United States)

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Population fluctuation in soil meso- and macrofauna by the successive application of pig slurry

    Directory of Open Access Journals (Sweden)

    Rodrigo Ferreira da Silva

    2016-06-01

    Full Text Available ABSTRACT Pig farming has increased in recent years, resulting in the production of a large quantity of liquid manure, which can be used as a source of organic fertiliser. The aim of this work was to determine the influence of pig slurry on the community of soil fauna in a system of direct seeding. The study was carried out in an experimental area in the town of Taquaruçu do Sul, in the state of Rio Grande do Sul, Brazil. The experimental design was of randomised blocks in a (4 + 1 x 4 factorial scheme, comprising five fertilisation treatments, 0 (no fertiliser, 20, 40 and 80 m3 of pig slurry ha-1 and one additional treatment (mineral fertiliser, with four evaluations corresponding to the number of slurry application (1st, 2nd, 3rd and 4th application, and four replications. The soil fauna was sampled using PROVID traps. The following were evaluated: the relative frequency of the groups of soil fauna, the populations of springtails and mites, density, richness, Simpson's dominance index and the Shannon diversity index. The populations of mites and springtails, and indices of diversity, richness and dominance are influenced by the successive application of pig slurry. Successive applications of pig slurry increase the diversity of the soil fauna by reducing the population of organisms of the Order Collembola. Canonical correlation analysis showed an association between the number of springtails and 80 m3 of pig slurry ha-1 after the third application.

  3. Development and application of a new CMP slurry for phase change memory

    Science.gov (United States)

    Yu, Lei; Liu, Weili; Liu, Bo; Song, Zhitang

    2016-10-01

    In this paper, the development of a new chemical mechanical planarization (CMP) slurry for phase change material GeSbTe (GST) and its application in the manufacturing process of phase change memory based on GST is presented. The basic abrasive of the slurry was special colloid silica which was chosen from several kinds of colloid silica with different surface treatment and stable pH range. Oxidizer, chelator, inhibitor and protective agent were added to the colloid silica to accelerate the polishing rate and protect the surface. A series of CMP experiments were carried out on a 4-inch experimental platform to confirm and optimize the performance of the slurry with different ratio of reagents. After the recipe was frozen, the slurry was used in the CMP process of manufacturing the phase change memory on 12-inch wafers. The results on blanket wafers show that the remove rate, endurance life, residue control is at the same level with those of the old slurry, while the scratch control is much better than that of the old one. The final results on both metal line structure and blade structure show that the new slurry has much better performance than the old one on oxide loss, scratch and erosion control.

  4. Kinetic modeling of cement slurry synthesized with Henna extract in oil well acidizing treatments

    Directory of Open Access Journals (Sweden)

    Amir Hossein Aghajafari

    2016-06-01

    Full Text Available Acidizing treatment in petroleum reservoirs is a short-term and viable strategy to preserve the productivity of a well. There is a major concern for the degradation of cement sheath integrity, leading to poor zonal isolation and environmental issues. Therefore, it is essential to understand how the cement behaves when attacked by hydrochloric acid. In this study, a cement slurry by incorporation of the Henna extract, as an environmentally friendly cement additive, was synthesized as a potential solution to solve this problem. The characteristics of the treated cement slurry were compared with a reference slurry (w/c = 0.44 which is composed of only cement and water. A kinetic study was carried out to evaluate the adsorption behavior of the cement slurries exposed to an acid solution with 0.1 M HCl in a range of 25 to 55 °C conditions. The features of the cement slurries were evaluated by multiple analytical techniques such as XRD, FTIR, TG, and DSC analysis. From the experimental data, it is concluded that the second-order Lagergren kinetic model revealed to be the best in describing kinetic isotherms taken, because the margin between experimental and calculated values was minor for this model. The results of the characterization and HCl interaction kinetic studies underlined the prominent protective role of Henna extract-modified cement slurry in the enhancement of the cement resistance against acid attack and utilization in environmentally favorable oil well acidizing treatments.

  5. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    Science.gov (United States)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  6. Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process

    Directory of Open Access Journals (Sweden)

    Moisés Bueno

    2014-08-01

    Full Text Available Nowadays, cold technology for asphalt pavement in the field of road construction is considered as an alternative solution to conventional procedures from both an economic and environmental point of view. Among these techniques, bituminous slurry surfacing is obtaining an important role due to the properties of the obtained wearing course. The functional performance of this type of surfaces is directly related to its rough texture. Nevertheless, this parameter has a significant influence on the tire/road noise generation. To reduce this undesirable effect on the sound performance, new designs of elastic bituminous slurries have been developed. Within the FENIX project, this work presents the acoustical characterization of an experimental bituminous slurry with crumb rubber from wasted automobile tires incorporated by the dry process. The obtained results show that, under controlled operational parameters, the close proximity sound levels associated to the experimental slurry are considerably lower than those emitted by a conventional slurry wearing course. However, after one year of supporting traffic loads and different weather conditions, the evaluated bituminous slurry, although it conserves the original noise reduction properties in relation to the conventional one, noticeably increases the generated sound emission. Therefore, it is required to continue improving the design of experimental surfaces in order to enhance its long-term performance.

  7. Experimental characterization of slurry bubble-column reactor hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shollenberger, K.A.; Torczynski, J.R.; Jackson, N.B.; O`Hern, T.J.

    1997-09-01

    Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of slurry bubble column reactors (SBCRs) at industrially relevant conditions is discussed. Gas liquid flow experiments are performed on an industrial scale. Gamma densitometry tomography (GDT) is applied to measure radial variations in gas holdup at one axial location. Differential pressure (DP) measurements are used to calculate volume averaged gas holdups along the axis of the vessel. The holdups obtained from DP show negligible axial variation for water but significant variations for oil, suggesting that the air water flow is fully developed (minimal flow variations in the axial direction) but that the air oil flow is still developing at the GDT measurement location. The GDT and DP gas holdup results are in good agreement for the air water flow but not for the air oil flow. Strong flow variations in the axial direction may be impacting the accuracy of one or both of these techniques. DP measurements are also acquired at high sampling frequencies (250 Hz) and are interpreted using statistical analyses to determine the physical mechanism producing each frequency component in the flow. This approach did not yield the information needed to determine the flow regime in these experiments. As a first step toward three phase material distribution measurements, electrical impedance tomography (EIT) and GDT are applied to a liquid solid flow to measure solids holdup. Good agreement is observed between both techniques and known values.

  8. Coal slurry combustion optimization on single cylinder engine

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  9. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  10. Transport and survival of Cryptosporidium Parvum Oocysts in Soil Columns Following Applications of Raw and Separated Liquid Slurry

    DEFF Research Database (Denmark)

    Petersen, H.H.; Enemark, Heidi L.; Olsen, A.

    in the leachates from soil columns to which Cryptosporidium positive slurry had been injected. Although recovery rates were low, regardless of slurry type, C. parvum oocysts were detected from all soil columns. Variations in the leachate patterns were recorded between soil columns added raw and liquid slurry......The widespread waterborne pathogen Cryptosporidium parvum is primarily transmitted to humans via contaminated drinking and recreational water. Nearly all drinking water in Denmark is groundwater, but this can be contaminated with oocysts from application of contaminated manure to the field. Oocysts...... simulated rainfall and six 20 cm long replicate intact soil columns. Two types of contaminated slurry, namely raw slurry and the separated liquid fraction of the slurry were applied ten cm into the soil, following irrigation once a week over a four week period. C. parvum oocysts were detected...

  11. On-farm measurement of electrical conductivity for the estimation of ammonium nitrogen concentration in pig slurry

    OpenAIRE

    Yagüe Carrasco, María Rosa; Quílez Sáez de Viteri, Dolores

    2012-01-01

    Pig (Sus scrofa domesticus) slurry (PS) is commonly applied as fertilizer to agricultural fields. Knowledge of PS nitrogen content is essential for good management, but PS nitrogen content is highly variable not only between farms but also within a farm. Laboratory analysis of animal slurries is often expensive and impractical for routine farmer use. Therefore, when slurry is spread on land its fertilizer value is generally unknown resulting in risk of pollution. In this work, ...

  12. A membrane slurry reduces postoperative adhesions in rat models of abdominal surgery.

    Science.gov (United States)

    Greenawalt, Keith E; Colt, M Jude; Corazzini, Rubina L; Krauth, Megan C; Holmdahl, Lena

    2011-06-01

    Sodium hyaluronate and carboxymethylcellulose (HA-CMC) membrane is an effective barrier material for limiting postoperative adhesions, but can be difficult to apply in certain situations due to its physical properties. We tested whether HA-CMC membrane hydrated in saline (slurry) is an effective alternative to HA-CMC membrane for preventing surgical adhesions in rat models of abdominal surgery. All studies were performed in rat cecal abrasion or sidewall defect models of adhesion formation. Adhesions were examined 7 d after surgery. In separate studies, the effects of variations in slurry composition, volume, and site of application on anti-adhesive properties were studied and compared with untreated controls. Finally, the effectiveness of HA-CMC membrane slurry for preventing adhesions was compared with that of conventional HA-CMC membrane. Application of HA-CMC membrane slurry to traumatized tissue resulted in a significant reduction in the incidence of adhesions compared with untreated controls in both rat surgery models. Slurry was equally effective when applied in low and high film-to-volume formulations, but had minimal effect when applied in a small volume or at a location distal to the injury. Comparison of HA-CMC membrane slurry and conventional HA-CMC membrane indicated similar efficacy for reducing postoperative adhesions. In rat models of abdominal surgery, HA-CMC membrane slurry reduced postoperative adhesion formation and may be an effective alternative for HA-CMC membrane in situations where its use is limited by its physical properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Evaluating slurry broadcasting and injection to ley for phosphorus losses and fecal microorganisms in surface runoff.

    Science.gov (United States)

    Uusi-Kämppä, Jaana; Heinonen-Tanski, Helvi

    2008-01-01

    The recent growth in the size of dairy cattle farms and the concentration of farms into smaller areas in Finland may increase local water pollution due to increased manure production and slurry application to grass. Therefore, a field study was conducted to monitor losses of total phosphorus (TP), dissolved reactive phosphorus (DRP), and fecal microorganisms in surface runoff from a perennial ley. Cattle slurry was added once a year in June 1996-1997 (Study I) and biannually in June and October 1998-2000 (Study II). The slurry was surface broadcast or injected into the clay soil. The field had a slope of 0.9 to 1.7%. Mineral fertilizer was applied on control plots. Biannual slurry broadcasting increased DRP (p microorganisms in surface runoff waters. The highest losses of TP (2.7 kg ha(-1) yr(-1)) and DRP (2.2 kg ha(-1) yr(-1)) and the highest numbers of fecal coliforms (880 colony-forming units [CFU] per 100 mL) and somatic coliphages (2700 plaque-forming units [PFU] per 100 mL) were measured after broadcasting slurry to wet soil followed by rainfall in fall 1998. Injection reduced the TP and DRP losses in surface runoff by 79 and 86%, respectively, compared with broadcasting (17 Oct. 1998-27 Oct. 1999). Corresponding numbers for fecal coliforms were 350 CFU (100 mL)(-1) and for somatic coliphages were 110 PFU (100 mL)(-1) in surface runoff after injection in October 1998. Slurry injection should be favored when spreading slurry amendments to grassland to avoid losses of P and fecal microorganisms in runoff to surface waters.

  14. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.R. [Reclamation Technology, Inc., Athens, GA (United States); Dudka, S.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States); Johnson, D.O. [Argonne National Lab., IL (United States)

    1997-12-31

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10{sup -8} to 10{sup -1} cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems.

  15. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, M., E-mail: marco.carozzi@unimi.it [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy); Ferrara, R.M.; Rana, G. [Consiglio per la Ricerca e sperimentazione in Agricoltura, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani, 5 – 70125 Bari (Italy); Acutis, M. [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy)

    2013-04-01

    To evaluate the best practices in reducing ammonia (NH{sub 3}) losses from fertilised arable lands, six field trials were carried out in three different locations in northern Italy. NH{sub 3} emissions from cattle slurry were estimated considering the spreading techniques and the field incorporation procedures. The measurements were performed using long term exposure samplers associated to the determination of the atmospheric turbulence and the use of the backward Lagrangian stochastic (bLS) model WindTrax. The results obtained indicate that the NH{sub 3} emission process was exhausted in the first 24–48 h after slurry spreading. The slurry incorporation technique was able to reduce the NH{sub 3} losses with respect to the surface spreading, where a contextual incorporation led to reductions up to 87%. However, the best abatement strategy for NH{sub 3} losses from slurry applications has proved to be the direct injection into the soil, with a reduction of about 95% with respect to the surface spreading. The results obtained highlight the strong dependence of the volatilisation phenomenon by soil and weather conditions. - Highlights: ► Ammonia emissions from land-application of slurry were quantified. ► We examined and compared six different agronomic treatments in three locations. ► The faster was the soil-incorporation of slurry, the lower was the ammonia loss. ► The direct injection of slurry was found to be the best abatement strategy. ► The environmental factors were able to strongly influence the ammonia emission.

  16. EPA OIG's RSS Feed

    Science.gov (United States)

    EPA OIG's RSS Feed - The EPA OIG offers an XML news feed (RSS) covering all of our publications and news. To use our pre-made feed, click on the link below, copy the URL, then paste it into your prefferred feed reader.

  17. Biogas slurry – An alternative growth media for algae cultivation in algiculture systems with simultaneous reduction algal predation

    Directory of Open Access Journals (Sweden)

    Abitha R

    2015-04-01

    Full Text Available Biogas slurry provides a complete and high growth rate producing algal cultivation medium thus offsetting the high cultivation costs of raising algal cultures in synthetic growth media. Robust mixed algal consortia can also be cultivated in non-traditional media such as wastewater or biogas slurry along with flooded agricultural crops such as paddy (Algiculture. This greatly enhances the Nsustainability of the algae cultivation. However, since the biogas slurry contains its own set of predators of algal biomass (grazers, it is now important to study the productivities attainable by using slurry in the conventional open ponds and Algiculture setup and understand its impact on grazer population dynamics. In this study we have used diluted biogas slurry (1:10 as growth media and compared algal growth and grazing /predation characteristics for algae cultivated under four treatments namely, Bold’s basal media (M, biogas slurry (S, Algiculture (ALGI, Algiculture with biogas slurry as growth stimulant (ALGI-S. The algal biomass cultivated in slurry based systems gave rise to a productivity of 6.8 g/m2/d as harvestable biomass with simultaneous reduction in the algal mass sacrificed to grazers. We thus attempt to show that biogas slurry may be used as a potential growth media especially in Algiculture system which tends to be vulnerable to grazer attack and loss of algal population.

  18. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.

    1992-08-01

    The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in Illinois are mixed with coal slurry solids (CSS) from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids.

  19. A summary report on feed preparation offgas and glass redox data for Hanford waste vitrification plant: Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Merz, M.D.

    1996-03-01

    Tests to evaluate feed processing options for the Hanford Waste Vitrification Plant (HWVP) were conducted by a number of investigators, and considerable data were acquired for tests of different scale, including recent full-scale tests. In this report, a comparison was made of the characteristics of feed preparation observed in tests of scale ranging from 57 ml to full-scale of 28,000 liters. These tests included Pacific Northwest Laboratory (PNL) laboratory-scale tests, Kernforschungszentrums Karlsruhe (KfK) melter feed preparation, Research Scale Melter (RSM) feed preparation, Integrated DWPF Melter System (IDMS) feed preparation, Slurry Integrated Performance Testing (SIPT) feed preparation, and formic acid addition to Hanford Neutralized Current Acid Waste (NCAW) care samples.` The data presented herein were drawn mainly from draft reports and include system characteristics such as slurry volume and depth, sweep gas flow rate, headspace, and heating and stirring characteristics. Operating conditions such as acid feed rate, temperature, starting pH, final pH, quantities and type of frit, nitrite, nitrate, and carbonate concentrations, noble metal content, and waste oxide loading were tabulated. Offgas data for CO{sub 2}, NO{sub x}, N{sub 2}O, NO{sub 2}, H{sub 2} and NH{sub 3} were tabulated on a common basis. Observation and non-observation of other species were also noted.

  20. Acoustically enhanced combustion of micronized coal water slurry fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, G. M.; Scaroni, A. W.; Yavuzkurt, S.; Reethof, G.; Ramachandran, P.; Ha, M. Y.

    1989-05-01

    A multi-faceted investigation has been carried out to demonstrate analytically and experimentally, that a high intensity acoustic field can be substantially enhance the convective transfer processes occurring during MCWSF (micronized coal water slurry fuel) combustion. The initial stage of the investigation dealt with elucidating the transient as well as time-averaged efforts of high intensity acoustic fields on the heat and mass transfer between a single spherical particle and its environment. A two-dimensional unsteady computer code was developed, which employs the unsteady conservation of mass, momentum, and energy equations for laminar flow in spherical coordinates. One objective of the present project was the modeling of MCWSF combustion in a laboratory scale combustor with and without the application of a sonic field. The influence of various operating parameters (sound frequency and level, etc.) on sonic enhancement could thus be studied. The combustion of pulverized coal (PC) was also modeled for the sake of comparison. The first of the two coal combustion experiments was performed using a flat flame methane-air burner. Micronized coal was injected in the same direction as, and burned together with the methane. The final investigation was carried out in a 300,000 Btu/h sonic combustor. For the runs conducted, SPLs of 156 dB and 145 dB, respectively, were measured below the fuel injection point and before the exit to the combustor. Frequency was held at 1400 Hz. Finally, an attempt was made to model the runs performed in the down-fired unit, using the PCGC-2 code. 61 refs., 60 figs., 8 tabs.

  1. Tin-wall hollow ceramic spheres from slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.T.; Cochran, J.K.

    1992-12-31

    The overall objective of this effort was to develop a process for economically fabricating thin-wall hollow ceramic spheres from conventional ceramic powders using dispersions. This process resulted in successful production of monosized spheres in the mm size range which were point contact bonded into foams. Thin-wall hollow ceramic spheres of small (one to five millimeter) diameter have novel applications as high-temperature insulation and light structural materials when bonded into monolithic foams. During Phase 1 of this program the objective as to develop a process for fabricating thin-wall hollow spheres from powder slurries using the coaxial nozzle fabrication method. Based on the success during Phase 1, Phase 2 was revised to emphasize the assessment of the potential structural and insulation applications for the spheres and modeling of the sphere formation process was initiated. As more understanding developed, it was clear that to achieve successful structural application, the spheres had to be bonded into monolithic foams and the effort was further expanded to include both bonding into structures and finite element mechanical modeling which became the basis of Phase 3. Successful bonding techniques and mechanical modeling resulted but thermal conductivities were higher than desired for insulating activities. In addition, considerable interest had been express by industry for the technology. Thus the final Phase 4 concentrated on methods to reduce thermal conductivity by a variety of techniques and technology transfer through individualized visits. This program resulted in three Ph.D. theses and 10 M.S. theses and they are listed in the appropriate technical sections.

  2. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Lam; Dimitri Gidaspow

    2000-09-01

    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  3. Application of Laser Ionization Time-of-Flight Mass Spectrometry for the Direct Measurement of a Silane Coupling Agent in Slurries.

    Science.gov (United States)

    Fujii, Takaaki; Uchimura, Tomohiro

    2017-01-01

    Laser ionization time-of-flight mass spectrometry (LI-TOFMS) was applied to the direct measurement of a silane coupling agent in slurries. In the present study, a slurry with dispersed TiO 2 nanoparticles treated with phenyltriethoxysilane (PTES) was prepared. As a result, the peaks for PTES could be observed from the slurry sample containing unreacted PTES, and no peaks were observed from the slurry sample where unreacted PTES was removed by washing. This method can be used to directly analyze surface coating agents, such as PTES in slurries, and would be useful for obtaining a direct understanding of the characteristics of slurries.

  4. Reduction of odorous compounds emissions from swine slurry by electrolytic treatments and copper addition

    Directory of Open Access Journals (Sweden)

    Mauro Podrecca

    2017-02-01

    Full Text Available Swine livestock farms represent potential sources of emissions of gaseous compounds and odors in relation to slurry management, manure treatment, and particularly, storage. Electrolytic treatments of slurries were proposed to solve this pressing problem. Electrolytic treatment consists of the passage of a low electric current through the liquid phase of swine manure in storage basins determined by two or more electrodes with alternated polarisation. We investigated the mechanisms of odour reduction and evaluated the effects of current intensity and of anodically dissolved copper (Cu2+ ions. Fresh swine slurry was subject to electrolytic treatment in a bench top experiment, at 25 mA and 75 mA for 32 days with either copper or graphite electrodes. Emissions of methane, hydrogen sulphide, and volatile fatty acids were measured. Effects of copper addition to fresh swine slurry were also monitored in a bench top scale trial. Reduction of emissions was found to be due to both current passage and copper dissolution. Reduction of foul emissions in graphite electrodes assays resulted lower than in copper electrodes assays, although the direct additions of Cu2+ ions had a much larger effect than could be predicted from the results of electrolytic treatments with copper electrodes, probably due to the greater uniformity in distribution in swine manure. A simple empiric odour threshold value normalised index, odour offensiveness index of slurries, was found to be effective in differentiating treatments.

  5. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, D.P.; Irvine, R.L. [Univ. of Notre Dame, IN (United States)

    1995-12-31

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies.

  6. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field

    Science.gov (United States)

    Zhang, Shaohui; Hua, Yumei; Deng, Liangwei

    2016-01-01

    The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003) compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils. PMID:27058548

  7. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  8. Spring barley yield and nitrogen recovery after application of peat manure and pig slurry

    Directory of Open Access Journals (Sweden)

    P. K. MATTILA

    2008-12-01

    Full Text Available The effectiveness of peat manure, manufactured of pig slurry and moderately humified Sphagnum peat (slurry:peat ca. 1:1.5 v/v, as nitrogen (N source for spring barley was investigated in a four.year field experiment on a clay loam soil in south-western Finland. Pig slurry, NPK fertilizer and plain peat were used as references. Manures were incorporated before sowing or surface-applied after sowing in spring at an ammoniacal N rate of.54.106 kg.ha-1 with or without supplementary NPK fertilizer (40.kg N.ha-1. Soil moisture conditions were varied by different irrigation treatments. Peat manure produced 5.15% higher grain yields than pig slurry, with the largest difference after surface application. Incorporation was more important for slurry than for peat manure in increasing N uptake and yield. Soil moisture deficit in spring and early summer limited the availability of manure N. Part of the manure N that was not available in the early growing period was apparently taken up by the crop later. Consequently, N concentration tended to be higher with lower yields, and differences in the recovery of manure N were smaller than the differences in grain yield. Supplementation of manures with inorganic fertilizer N increased yield by 37%, on average, and improved the N recovery.;

  9. Novel Fischer-Tropsch slurry catalysts and process concepts for selective transportation fuel production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Withers, H.P. Jr.; Eliezer, K.F.; Mitchell, J.W.

    1987-12-01

    The preparation, characterization and performance of cobalt and ruthenium carbonyl cluster-based catalysts for use in slurry-phase Fischer-Tropsch (FT) technology was investigated. The use of metal carbonyls as active metal precursor allows for the possible control of metal particle size on the support surface and thus offers the potential for better control of activity and selectivity of the FT reaction. Accomplishments included reproducible catalyst preparation, improvements in activity by use of a silica support, understanding diffeences between nitrate and carbonyl precursors, a nd good activity maintenance in the slurry reactor. A CO/sub 2/(CO)/sub 8/Zr(OPr)/sub 4/SiO/sub 2/ catalyst (3.5% CO, 6.6% Zr) was developed as the most active system in the slurry reactor and also gave the best liquid fuel selectivity. Silica support provided the highest catalyst activities. This catalyst was successfully tested in an extended slurry-phase run that achieved 6 months on stream with a 10% loss in activity. Ru catalysts showed the highest activity in the fixed-bed reactor but deactivated rapidly in the slurry reactor. In the analysis of the kinetic data, catalyst deactivation was assumed to proceed linearly between baseline experients at fixed temperture. Causes of the deactivation are not fully understood. 27 refs., 37 figs., 20 tabs.

  10. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field

    Directory of Open Access Journals (Sweden)

    Shaohui Zhang

    2016-04-01

    Full Text Available The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003 compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils.

  11. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    Science.gov (United States)

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry.

    Science.gov (United States)

    Jin, Hongmei; Chang, Zhizhou

    2011-06-01

    Digested slurry samples from twenty-one large-scale anaerobic digestion plants together with intensive pig and dairy farms in Jiangsu Province of China were collected and analyzed for total and dissolved concentrations of Zn, Cu and As, as well as chemical characteristics. The results showed that total concentrations of Zn, Cu and As in digested pig slurries were concentrated to chemical fractions of heavy metals in digested slurries were not only dependent on the total concentrations of heavy metals in raw manures but also on conditions of digestion and storage. Oxidation pond systems could significantly cripple the total contents of heavy metals in digested slurries, and the removal effect was better in multi-oxidation-pond systems than that in primary-oxidation-pond systems. However, the chemical fractions of heavy metals in digested slurries changed in a complicated manner when stored in oxidation ponds, due to the suspended solid deposition, elements reduction, as well as variations of pH values and oxidation-reduction potential.

  13. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  14. Attenuation of groundwater contamination caused by cattle slurry: a plot-scale experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Periago, E.L. [Department of Vegetal Biology and Soil Science, Faculty of Sciences, As Lagoas (Spain); Delgado, A.N.; Diaz-Fierros, F. [Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, Santiago de Compostela (Spain)

    2002-09-01

    Infiltration of contaminants was investigated in a flat pasture plot Lolium perenne L. which received 250 m{sup 3}/ha of cattle slurry. Lysimeters and piezometers had previously been installed in the plot to sample groundwater at different depths. Water samples were analyzed for pH, conductivity.NH{sub 4}{sup +}, NO{sub 3}{sup -}, orthophosphate, Cl{sup -}, Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+} and chemical oxygen demand (COD), and for faecal coliforms and faecal streptococci. Contaminant concentrations in water samples taken in lysimeters at a depth of 5 cm (2 h after slurry application) were already from 22% to 83% of raw slurry. After slurry application and after 150 mm of rainfall, contaminant concentrations in groundwater were in all depths less than 95% of those initially measured in the slurry. For all contaminants except Cl{sup -}, NO{sub 3}{sup -}, K{sup +} and COD, concentrations in groundwater measured before application were reached within 15 days. Mechanical retention was the principal mechanism of attenuation of microorganism and COD levels, whereas cations were attenuated by sorption to soil matrix. Dilution by rain water had less significant effects, accounting for about a tenfold reduction in contaminant levels. (author)

  15. Pig slurry composting as a nitrogen source in proso millet crop

    Directory of Open Access Journals (Sweden)

    Alieze Nascimento da Silva

    2016-03-01

    Full Text Available With the intensification of pig farming systems, in Brazil, the production of swine waste has increased considerably, leading to water and soil contamination, due to its improper release. Pig slurry composting is an alternative that can be used in order to avoid or reduce negative impacts, especially for producers with physically limited farm areas, or those who intend to increase the number of animals in their production units. This study aimed at evaluating the influence of pig slurry compost doses on the agronomic characteristics and grain yield of proso millet. A randomized blocks design experiment was installed with four replications and five treatments: control without fertilization, control with mineral fertilizer (NPK and pig slurry compost doses (4.0 Mg ha-1, 8.0 Mg ha-1; 12.0 Mg ha-1. The pig slurry composting increased the dry matter yield, number of grains per plant and grain yield of proso millet, when compared to the control with or without mineral fertilizer. The proso millet yield, at the doses of 8.0 Mg ha-1 and 12.0 Mg ha-1 of pig slurry, was superior than for both the control without fertilization and the control with the recommended mineral fertilizer, with the latter reaching a maximum agronomic efficiency at the dose of 8.0 Mg ha-1.

  16. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1993-12-31

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  17. Swine slurry application and soil management on double-cropped oat/maize

    Directory of Open Access Journals (Sweden)

    Marlo Adriano Bison Pinto

    2014-06-01

    Full Text Available The swine production in southern Brazil is concentrated in small farms that use residues as a nutrient source for crops of economic interest. This study aimed to evaluate the use of swine slurry associated with tillage systems on double-cropped oat/maize. The experiment was carried out in the 2009/2010 and 2010/2011 cropping seasons, in Taquaruçu do Sul, Rio Grande do Sul State, Brazil. The experimental design was randomized blocks in a factorial scheme, with four replications. Treatments consisted of the interaction of four swine slurry doses (no swine slurry, 20 m3 ha-1, 40 m3 ha-1 and 80 m3 ha-1 and mineral fertilization, in three tillage systems (no-tillage, chiseling and chiseling + disking. The swine slurry application on doublecropped oat/maize increased the dry matter and grain yield. The 80 m3 ha-1 dose provided a response statistically similar to the mineral fertilization recommended for maize. The interaction between the 80 m3 ha-1 dose and the immediate incorporation of slurry into the soil reduced N losses by ammonia volatilization, promoting a significant increase in maize grain yield, when grown on a clayish soil.

  18. Type II preliminary pilot-plant evaluation of a coal-liquefaction residue - water slurry using vaccum-tower bottoms from the H-Coal liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.M.; Robin, A.M.

    1982-09-01

    About 6.7 tons of vacuum tower bottoms (residue) which were obtained during the liquefaction of Illinois No. 6 coal from the H-Coal liquefaction process pilot plant at Catlettsburg, Kentucky were successfully gasified at Texaco's Montebello Research Laboratory. The single 9.5-hour run with H-Coal liquefaction residue-water slurry was completed at 750 to 760 psig gasifier pressure. The run consisted of two test periods, each at a different gasifier temperature. Over 99.6 percent conversion of carbon in the feed to syngas was achieved yielding 32.9 to 33.7 standard cubic feet of dry syngas per pound of residue charged. The oxygen requirement was about 1.0 pound of oxygen per pound of residue. The dry syngas contained 78.5 to 79.7 (vol.) percent carbon monoxide plus hydrogen.

  19. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-12-31

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240{degrees}C, 0.5 to 1.5 MPa, H{sub 2}/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R{sub H{sub 2+Co}} = (a P{sub CO}P{sub H{sub 2}})/(1 + b P{sub CO}){sup 2}. The apparent activation energy was 93 to 95 kJ/mol. Data from previous studies on cobalt-based Fischer-Tropsch catalysts are also well correlated with this rate expression.

  20. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.