WorldWideScience

Sample records for sludge wastewater treatment

  1. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  2. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  3. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  5. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  6. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  7. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  8. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    Science.gov (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  9. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  10. Anammox biofilm in activated sludge swine wastewater treatment plants.

    Science.gov (United States)

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  12. Wastewater and sludge management and research in Oman: An overview.

    Science.gov (United States)

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S

    2017-03-01

    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  13. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    Science.gov (United States)

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  14. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    Directory of Open Access Journals (Sweden)

    Chunyan Chai

    2015-03-01

    Full Text Available With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O, Sequencing Batch Reactor (SBR and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN concentration, mixed-liquor recycle (MLR rates and solids retention time (SRT and operation conditions (i.e., nitrite concentration are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and

  15. Management experience on microthrix parvicella bulking in an activated sludge wastewater treatment plant

    International Nuclear Information System (INIS)

    De Bortoli, N.; Mion, M.; Di Giorgio, G.; Goi, D.

    2005-01-01

    Activated sludge wastewater treatment processes may give inefficiencies due to biological imbalances involving biomass. In fact, external causes as temperature lowering can increase the proliferation of the filamentous bacterium Microthrix parvicella into activated sludge flocks. Microthrix parvicella increases may create dangerous bulking phenomena compromising secondary settling without varying bio-kinetic parameters. In this case of study, a method to defeat growth of Microthrix parvicella has been set up. Aluminium poly-chloride (PAC) has been added to activated sludge contained into oxidation tanks of a municipal wastewater treatment plant, where a large growth of Microthrix parvicella has been periodically observed. It has been demonstrated that a definite PAC concentration can reduce Microthrix parvicella proliferation into activated sludge flocks so bulking phenomena can be well reduced [it

  16. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  17. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  18. Potential investigation of Reusing Ardabil Municipal Wastewater Treatment Plant Sludge Based on AHP and TOPSIS Models

    Directory of Open Access Journals (Sweden)

    Bizhan Maghsoudlou Kamali

    2013-07-01

    Full Text Available Introduction :By ever-increasing of population, shortage of water resources and the necessity of wastewater treatment, huge volumes of sludge that is a byproduct of wastewater treatment, requires to be disposed in environmentally secure ways. The target of specifying strategic preferences of reuse of sludge has been to find the correct way of disposal or beneficial use of sludge. Material and methods: In this study, to select the best alternative for reuse of wastewater sludge two systematic methods are introduced, which four alternatives for reuse of sludge (use in agriculture, use in green space, biogas, desert combat are introduced and they are compared by four main parameters including: 1- physicochemical 2-biological 3 - economic, social and cultural, and 4 - environmental pollution situation, that each contains some criteria. In this study, first each of the related parameters and criteria are compared by the expert groups of and through questionnaire. Then these weights are entered into Expert Choice software for the analyze of AHP model and paired comparisons and weightings have been done on the related parameters and criteria. Ultimately, the output of the software is entered into TOPSIS software for the analyze of TOPSIS model until the best alternative is selected. Results: sludge of Ardabil municipal wastewater treatment plant, according to standards and EPA regulations is eligible to class B, and due to the chemical in terms of heavy metals have special (excellent quality and contains considerable quantities of organic substance, nutrients and micronutrients which indicates the fertilizer value of the sludge. Conclusion: The result of this comparison has shown that the application of sludge in green spaces is the most appropriate alternative and then use in agriculture, biogas alternative, and desert combat alternative are, respectively, placed in the second to fourth preference for the reuse of sludge derived from municipal

  19. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  20. Vitrification Studies with DOE Low-Level Mixed Waste Wastewater Treatment Sludges

    International Nuclear Information System (INIS)

    Cicero, C.A.; Andrews, M.K.; Bickford, D.F.; Hewlett, K.J.; Bennert, D.M.; Overcamp, T.J.

    1995-01-01

    Vitrification studies with simulated Low Level Mixed Waste (LLMW) sludges were performed at the Savannah River Technology Center (SRTC). These studies focused on finding the optimum glass compositions for four simulated LLMW wastewater treatment sludges and were based on both crucible-scale and pilot-scale studies. Optimum compositions were determined based on the maximum waste loading achievable without sacrificing glass integrity

  1. Toxicity formation and distribution in activated sludge during treatment of N,N-dimethylformamide (DMF) wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Chen, Xiurong, E-mail: xrchen@ecust.edu.cn; Lin, Fengkai; Ding, Yi; Zhao, Jianguo; Chen, Shanjia

    2014-01-15

    Highlights: • We studied mechanism of sludge organic toxicity formation in wastewater treatment. • The organic toxicity distributed mainly in the inner section of sludge flocs. • The organic toxicity of sludge increased with DMF initial concentrations increments. • The property of bacteria community correlates significantly with sludge toxicity. -- Abstract: The organic toxicity of sludge in land applications is a critical issue; however, minimal attention has been given to the mechanism of toxicity formation during high-strength wastewater treatment. To investigate the relevant factors that contribute to sludge toxicity, synthetic wastewater with N,N-dimethylformamide (DMF) was treated in a sequential aerobic activated sludge reactor. The acute toxicity of sludge, which is characterised by the inhibition rate of luminous bacteria T3, is the focus of this study. Using an operational time of 28 days and a hydraulic retention time of 12 h, the study demonstrated a positive relationship between the acute toxicity of sludge and the influent DMF concentration; the toxicity centralised in the intracellular and inner sections of extracellular polymeric substances (EPS) in sludge flocs. Due to increased concentrations of DMF, which ranged from 40 to 200 mg L{sup −1}, the sludge toxicity increased from 25 to 45%. The organic toxicity in sludge flocs was primarily contributed by the biodegradation of DMF rather than adsorption of DMF. Additional investigation revealed a significant correlation between the properties of the bacterial community and sludge toxicity.

  2. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank

  3. Radionuclide X-ray fluorescence determination of Mn, Fe, Cu, Zn and Pb in wastewaters and sludges from wastewater treatment plants in Bratislava (SR)

    International Nuclear Information System (INIS)

    Harangozo, M.; Toelgyessy, J.

    1997-01-01

    Radiometric X-ray fluorescence analysis was used for the determination of Mn, Fe, Cu, Zn and Pb in wastewater and sludges from three wastewater treatment plants in Bratislava (SR). Metals were determined in wastewaters after preconcentration by 8-hydroxyquinoline and in sludges by drying and pressing to pellets. 238 Pu and 109 Cd was used for excitation of fluorescence radiation. (author)

  4. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment.

    Science.gov (United States)

    Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ayşen

    2018-01-01

    This study investigates the effect of ultrasonication and microwave sludge disintegration/pre-treatment techniques on the anaerobic co-digestion efficiency of wastewater sludges with olive and grape pomaces. The effects of both co-digestion and sludge pre-treatment techniques were evaluated in terms of the organic removal efficiency and the biogas production. The "co-digestion" of wastewater sludge with both types of pomaces was revealed to be a much more efficient way for the biogas production compared to the single (mono) sludge digestion. The ultrasonication and microwave pre-treatments applied to the sludge samples caused to a further increase in biogas and methane yields. Based on applied specific energies, ultrasonication pre-treatment was found much more effective than microwave irradiation. The specific energy applied in microwave pre-treatment (87,000kj/kgTS) was almost 9 times higher than that of used in ultrasonication (10,000kj/kgTS), resulting only 10-15% increases in biogas/methane yield. Co-digestion of winery and olive industry residues with pre-treated wastewater sludges appears to be a suitable technique for waste management and energy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of activated sludge culture conditions on Waxberry wastewater

    Science.gov (United States)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  6. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    Science.gov (United States)

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    Science.gov (United States)

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  8. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  9. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    International Nuclear Information System (INIS)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-01-01

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  11. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N [Eurotec West A/S (DK); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H [Risoe National Laboratory, DTU (DK); Rasmussen, Soeren [SamRas (DK)

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  12. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N. (Eurotec West A/S (DK)); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H. (Risoe National Laboratory, DTU (DK)); Rasmussen, Soeren (SamRas (DK))

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  13. Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Municipal wastewater and sewage sludge is an abundant source of phosphorus (P), but its usage is often limited due to wastewater treatment methods and contaminants, mostly heavy metals (HM's). Three compartment (3C) electrodialysis (ED) was used to simultaneously extract HM's (Cd, Cr, Cu, Ni, Pb...... of heavy metals or recovery of phosphorus using ED, the end-products in wastewater treatment, like anaerobically digested sludge and reject-water streams, are therefore best to be treated....... pH using anaerobically digested sludge. The hydrolysis of OM during anaerobic digestion and the anaerobic conditions allowed for easier extraction of HM's such as Cd, Ni and Zn as they had fewer adsorption places, and improved P availability and extractability. Extraction of P from high...

  14. Extraction of bioflocculants from activated sludge and their application to wastewater treatment

    Directory of Open Access Journals (Sweden)

    Vasilieva Zh. V.

    2018-03-01

    Full Text Available Extracellular polymeric substances (EPS – biopolymers produced by the microorganisms – are effective flocculants of wastewater pollution and lack the shortcomings of traditional coagulants and flocculants, which can pose direct threat to health and human life, as well as to the sustainable existence of aquatic and terrestrial ecosystems. EPS do not form secondary contamination of their degradation intermediates, are biodegradable and eco-friendly. Industrial production of bacterial EPS is associated with high cost of growing specific microbial biomass and the functioning of technologies for the synthesis of microbial products. At the same time, there is an underused resource of excess activated sludge, which can be used as cheap substrate for producing bioflocculants and a possible measure to reduce costs. The conducted researches have shown the prospects of extracting EPS from excess activated sludge for their subsequent use as wastewater treatment bioflocculants. EPS extraction has been conducted using three methods: combination of centrifugation processes, extraction using the aqueous solution of disodium ethylenediaminetetraacetic acid, and precipitation with isopropyl alcohol (the EDTA method; combination of centrifugation, extraction with (NH22CO, precipitation and ethanol reprecipitation (the (NH22CO method; combination of activated sludge ultrasonic treatment, centrifugation, extraction with glacial acetic acid, and precipitation with acetone (the CH3COOH method. The research has shown that the extraction method affects not only the efficiency of EPS extraction, but also the possibility of EPS application for the purification of certain types of sewage. The (NH22CO method has shown the best extraction efficiency, but at the same time EPSs produced have not be able to perform fish processing wastewater treatment. The EDTA and CH3COOH methods are more preferable for producing efficient bioflocculants for fish processing wastewater

  15. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    Science.gov (United States)

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    Science.gov (United States)

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  17. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  18. Evaluation of Potentially Harmful Substances in Dried Sludge of Isfahan Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Bijan Bina

    2004-05-01

    Thus, taking into account the potential risks caused by presence of heavy metals in sludge and for the control of processes of sludge treatment and disposal and also protect of environmental health and enhauncement of public health level, specially for farmers and consumers of raw crops, needs sampling and characterization of sludge. In the present research concentration of 11 heavy metals and potentially toxic elements in dried sludge of Isfahan South and North and Shahinshahr wastewater treatment plants were determined using standard methods. Samples have been taken from dried sludge of treatment plants, and been measured after being prepared through atomic absorption apparatus and were compared with EPA enacted standards in regulation 40 CFR part 503. As well, fertilizer value parameters of sludge were measured and were compared with standards and guidelines. The results showed that the average concentration of above elements in all three treatment plants, not exceeded from EPA standards, however, regarding the accumulative property of these elements and lack of necessary protective effects of EPA standards, in using these sludges in the agricultural soils, the necessary caution and care should be taken, in other uses of sludges, however, there is no limitation.

  19. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    Science.gov (United States)

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  20. Toluene in sewage and sludge in wastewater treatment plants.

    Science.gov (United States)

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  1. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  2. Sludge reduction by aquatic worms in wastewater treatment : with emphasis on the potential application of Lumbriculus variegatus

    NARCIS (Netherlands)

    Elissen, H.J.H.

    2007-01-01

    In wastewater treatment plants (WWTPs), large amounts of biological waste sludge are produced. In the Netherlands, the application of this sludge in agriculture or disposal in landfills is no longer allowed, mainly because of its high heavy metal content. The sludge therefore generally is

  3. Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: Science or fiction? A review

    NARCIS (Netherlands)

    Ratsak, C.H.; Verkuijlen, J.

    2006-01-01

    Biological aerobic wastewater treatment plants (WWTPs) produce a lot of excess sludge. The costs for handling this residual product are increasing, so the search for alternative techniques to reduce the amount of sludge has to be continued. Activated sludge consists of inorganic and organic

  4. Biothane process. Methane-producing treatment of wastewaters in a granular sludge bed

    Energy Technology Data Exchange (ETDEWEB)

    Boulenger, P; Vesprille, B

    1982-01-01

    The Biothane-UASB (upflow anaerobic sludge blanket) process, an anaerobic fermentation system with 2 granular sludge beds, effectively treats wastewaters from cheese and starch manufacture and is suitable for other industrial effluents, such as sugar beet alcohol distillation wastewaters and biosynthesis wases.

  5. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    Science.gov (United States)

    Jafarinejad, Shahryar

    2017-09-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  6. Treatment of wastewater and sludge, and decomposition of endocrine disrupting chemicals with radiation

    International Nuclear Information System (INIS)

    Kudo, Hisaaki

    2006-01-01

    This country report describes the past and current research activities in Japan on radiation treatment of wastewater and sludge carried out by early 90s, and decomposition of endocrine disrupting chemicals that is going-on. (author)

  7. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  8. Enhancement of sludge granulation in anaerobic treatment of concentrated latex wastewater

    Directory of Open Access Journals (Sweden)

    Nugul Intrasungkha

    2008-04-01

    Full Text Available Recently, the upflow anaerobic sludge blanket (UASB reactor has become attractive for wastewater treatment with low energy requirement and biogas production. However, the start-up of an UASB reactor depends on the formation of granules. Therefore, this research aims to study the effect of AlCl3, CaCl2 and temperature on the granule formation process using real concentrated latex wastewater. The result shows that the optimum chemicals concentration of AlCl3 at 300 mg/l enhanced the biomass accumulation and sludge formation process. Approximately 50% of large granular size (0.5 mm 0.8 mm within 35 days, whereas the large granular sizes in reactorwithout AlCl3 supplement (R2 became visible within 63 days. Moreover, this experiment found that R1, R2 and R3 could reach steady state within 40, 55 and 45 days, respectively.

  9. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  10. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  11. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    Science.gov (United States)

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  12. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    Science.gov (United States)

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  13. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  14. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  15. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  16. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    Science.gov (United States)

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  17. Vermistabilization of Municipal Wastewater Sludge with Eisenia fetida

    Directory of Open Access Journals (Sweden)

    A Parvaresh, H Movahedian, L Hamidian

    2004-10-01

    Full Text Available Sludges are stabilized to reduce pathogens, eliminate offensive odors and inhibit, reduce or eliminate the potential for putrification. In this study, stabilization of municipal wastewater sludge with and without earthworms (Eisenia fetida was tested in a pilot study. The earthworms were fed at the optimum level of 0.75 kg-feed/kg-worm/day. Decomposition and stabilization of wastewater sludge occurred both in the presence and in the absence of earthworms during 9 weeks but the process was accelerated in their presence. Phosphorus content increased in the sludge with earthworms but decreased in it without them. Nitrogen content in the resulting vermicompost showed no difference with its quantity in the original substrate while it increased in the control treatment.

  18. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Harvesting biogas from wastewater sludge and food waste

    International Nuclear Information System (INIS)

    Chua, K H; Cheah, W L; Leong, Y P; Tan, C F

    2013-01-01

    Wastewater sludge and food waste are good source of biogas. Anaerobic treatment of slude and food waste able to produce biogas which is a potential renewable energy source. This study looks into the potential biogas generation and the effects of temperature on biogas generation. A lab scale reactor was used to simulate the biogas generation. The results show that wastewater sludge able to produced upto 44.82 ml biogas/kg of sludge. When mixed with food waste at a ratio of 30:70 (food waste), the biogas generated were 219.07 ml/kg of waste. Anaerobic of food waste alone produced biogas amount to 59.75 ml/kg of food waste. Anaerobic treatment also reduces the volume of waste. The effect of temperature shows that higher temperature produces more biogas than lower temperature.

  20. Inactivation of poliovirus by gamma irradiation of wastewater sludges

    International Nuclear Information System (INIS)

    Kaupert, Norma L.; Burgi, Elsa; Scolaro, L.

    1999-01-01

    The effect of gamma radiation on poliovirus infectivity seeded in sludge samples was investigated in order to determine the radiation dose required to inactivate 90% of viral infectivity (D 10 ). Sludges were obtained from anaerobic pretreated sewages produced by San Felipe, a wastewater treatment facility located at the Tucuman province, Argentina. A D 10 of 3.34 kGy was determined for poliovirus type III, Sabin strain, suspended in sludge samples. This value dropped to 1.92 kGy when the virus was suspended in water. A virucidal effect associated to sludges was also demonstrated. These results will be of interest when considering the dose of gamma radiation to be applied to wastewater sludges in order to preserve the environment from viral contamination. (author)

  1. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic

  2. Performance of Submerged Aerated Biofilters for Wastewater Treatment and Excess Biological Sludge Production

    Directory of Open Access Journals (Sweden)

    Mohammad A. Baghapour

    2007-01-01

    Full Text Available Minimizing sludge production in the treatment facility is a reasonable measure to reduce waste in sewage treatment, especially as regards excess biological sludge. In this regard, submerged aerated filters' (SAFs have recently found increasing applications in treatment facilities. Thanks to their treatment mechanism, they have greatly contributed to reduction of waste production and, thereby, to reduced treatment costs. Biomass growths of both attached and suspended types take place in these filters. However, little attention has been paid to suspended sludge production and to its relationship with the physical properties of the filter. The design and application criterion for these filters is the organic loadings on unit of area or unit of volume of the media used in these filters. In this study, four filters with different physical properties and different specific areas were loaded with synthetic wastewater made of low-fat dry milk powder for five different hydraulic retention times to evaluate excess sludge production rates in submerged aerated filters. It was shown that increasing specific area increased SCOD removal efficiency up to a maximum level in saturated growths after which point the removal efficiency remained unchanging or decreased. The results also revealed that decreased hydraulic retention times increased sludge production rates in all the study columns and that media with higher porosity levels produced less excess sludge despite lower pollutant removal efficiency.

  3. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    Science.gov (United States)

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  4. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    International Nuclear Information System (INIS)

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions

  5. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  6. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  7. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    Science.gov (United States)

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  8. Preliminary studies on the use of irradiation for decontaminating water and sludge in wastewater treatment plants in Chile

    International Nuclear Information System (INIS)

    Villanueva, Loreto; Schrader, Rosemarie

    1999-01-01

    This work describes the activities carried out to date by the Chilean Nuclear Energy Commission, CCHEN, in prospecting the application of gamma and electron beam irradiation to the decontamination of sewage water and sludge in the country. Sludge, in particular, will become a relevant environmental problem in the coming years, because of the large amounts that will be generated, due to the construction of many wastewater treatment plants in the country. The main study consisted of experimental gamma irradiation tests on representative samples of digested sludge from two pilot wastewater treatment plants operating in Santiago. This study showed the technical feasibility of using low irradiation doses, of around 2-3 kGy to significantly reduce the pathogen content in this sludge. Preliminary tests were also carried out to determine that the disinfected sludge was fit for agricultural use due to its nutrient content. A preliminary technical and economic evaluation is being prepared on the use of gamma irradiation for sludge disinfection, as a complement to the experimental studies. With this evaluation a feasible process has been outlined for using gamma irradiation in conjunction with conventional processes for the sludge disinfection or hygienization in domestic wastewater treatment plants, in order to produce a useful material for agricultural use that meets the demanding EPA standards when classified as class A sludge, which permits agricultural use without sanitary restrictions. Several evaluations have been made to determine the potential use of irradiation for water and industrial wastewater effluents decontamination, considering normative standards as well as technical and economic aspects. One of these has been the preliminary evaluation of using electron beam irradiation for disinfecting drinking water, which has the technical advantage of preventing the formation of trihalomethanes, that occur in water chlorination due to the presence of natural humic

  9. Ultrasound technology effect on wastewater sludge treatment; Efecto de los ultrasonidos en el tratamiento de lodos de depuradora de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mesas Diaz, J. A.

    2003-07-01

    The ultrasound technology has been used since long time ago in the medicine, food industry, cosmetics and cleaning systems; but during the last few years is when this technology has stated to be used in the wastewater and sludge treatment industry. The application of low frequency and high intensity ultrasound in the wastewater and sludge treatment has numerous benefits. The ultrasound technology improves the aerobic and anaerobic digestion process, increases the biogas production, improves the sludge dewatering, reduces the polymer consumption, reduces the final biosolids production, reduces or removes the bulking and foaming problems,and enhances nutrient removal (N, P). (Author) 7 refs.

  10. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  11. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chengyuan, E-mail: suchengyuan2008@126.com [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Li, Weiguang [School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Lu, Yuxiang; Chen, Menglin; Huang, Zhi [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China)

    2016-08-15

    Highlights: • Rhein has metabolic or physiological toxicity on methanogens in anaerobic granular sludge. • TCM wastewater containing rhein can be successfully treated by the combined treatment. • The productions of the EPS of granular sludge increased after pre-treatment. • Methanoregula, Methanobacterium, Methanosphaerula were predominant in the DC reactor after pre-treatment. - Abstract: The effect of a heterogeneous Fenton-like pre-treatment on the anaerobic processes, characteristics and microbial community of sludge was investigated for traditional Chinese medicine (TCM) wastewater containing rhein. When the concentrations of rhein were 50 mg/L and 100 mg/L, the toxic effect was physiological toxicity for anaerobic granular sludge. Using a single double circle (DC) reactor for the treatment of TCM wastewater containing rhein at concentrations of 15–20 mg/L, the chemical oxygen demand (COD) removal rate was 69%, and coenzyme F{sub 420} was nearly undetectable in the 3D-excitation-emission matrix (EEM) spectra of soluble microbial products (SMP). The abundances of Methanoregula, Methanobacterium, Methanosphaerula were only 5.57%, 2.39% and 1.08% in the DC reactor, respectively. TCM wastewater containing rhein could be successfully treated by the combination of the heterogeneous Fenton-like pre-treatment and the DC reactor processes, and the COD removal rate reached 95%. Meanwhile, the abundances of Methanoregula, Methanobacterium, Methanosphaerula increased to 22.5%, 18.5%, and 13.87%, respectively. For the bacterial community, the abundance of Acidobacteria-Gp6 decreased from 6.99% to 1.07%, while the abundances of Acidobacteria-Gp1 and Acidobacteria-Gp2 increased from 1.61% to 6.55% and from 1.28% to 5.87%, respectively.

  12. Effect of the presence of Actinomycetes in the activated sludge on the quality of the treated wastewater

    Directory of Open Access Journals (Sweden)

    Bezak-Mazur Elżbieta

    2017-01-01

    Full Text Available The aim of the study was to determine the effect of the Actinomycetes proliferation in the activated sludge on the quality of the treated wastewater and the sewage receiver. The river which is the sewage receiver flows near the wastewater treatment plant. The study was performed on the wastewater (raw and treated and on the river water samples (collected before and after wastewater discharge. The analysis of the research results, such as the content of total organic carbon (TOC, total phosphorus and oxygen consumption in the examined samples, permit the conclusion that the presence of relatively large population of the Actinomycetes in sewage sludge has a negative impact on the quality of the sewage receiver. Determining the effect of the Actinomycetes in the activated sludge on the wastewater treatment process involved the application of specific analyses, such as Sludge Biotic Index (SBI and the identification of filamentous bacteria in the activated sludge. The analysis of studies indicates that the presence of the Actinomycetes in the activated sludge adversely affects the efficiency of the wastewater treatment process.

  13. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  14. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area

    International Nuclear Information System (INIS)

    Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

    2014-01-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients ( 2 O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment. - Highlights: • All the 21 analyzed PhACs were detected in wastewater and 18 in sludge. • The removal of PhACs was insignificant

  15. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Vieira, J.M.

    1998-01-01

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m 3 /h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  16. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    Science.gov (United States)

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  17. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    Science.gov (United States)

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Activated sludge wastewater treatment plant modelling and simulation: state of the art

    DEFF Research Database (Denmark)

    Gernaey, Krist; Loosdrecht, M.C.M. van; Henze, Mogens

    2004-01-01

    This review paper focuses on modelling of wastewater treatment plants (WWTP). White-box modelling is widely applied in this field, with learning, design and process optimisation as the main applications. The introduction of the ASM model family by the IWA task group was of great importance......, providing researchers and practitioners with a standardised. set of basis models. This paper introduces the nowadays most frequently used white-box models for description of biological nitrogen and phosphorus removal activated sludge processes. These models are mainly applicable to municipal wastewater...... systems, but can be adapted easily to specific situations such as the presence of industrial wastewater. Some of the main model assumptions are highlighted, and their implications for practical model application are discussed. A step-wise procedure leads from the model purpose definition to a calibrated...

  19. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    OpenAIRE

    Tang Thi Chinh; Phung Duc Hieu; Bui Van Cuong; Nguyen Nhat Linh; Nguyen Ngoc Lan; Nguyen Sy Nguyen; Nguyen Quang Hung; Le Thi Thu Hien

    2018-01-01

    The sequencing batch reactor (SBR) has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater ...

  20. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  1. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Guildal, T.

    2015-01-01

    The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl...... on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while...

  2. Dissinfection of municipal sludge and wastewater by energized electrons

    International Nuclear Information System (INIS)

    Trump, J.G.; Wright, K.A.; Sinskey, A.J.; Shah, D.N.; Fernald, R.

    1979-01-01

    Laboratory studies at M.I.T. and high flow rate studies at the M.D.C. Deer Island Wastewater Treatment Plant in Boston have shown the practicality and cost effectiveness of disinfecting liquid municipal sludges by injecting energized electrons. A dosage of 400 Kilorads (4 Kilograys) reduces gram-negative bacteria, including coliforms, fecal coliforms, salmonellae and shigellae, in primary raw or anaerobically digested sludges to undetectable levels. Enteric viruses are reduced by one to two orders of magnitude. This treatment also destroys parasite eggs or renders them non-infectious. Model system studies indicate that trace toxic compounds such as PCBs in water are degraded. The estimated cost of sludge disinfection by electron treatment is about $0.80 per liquid tonne for modular systems of 650 liquid tonnes per day capacity. About 6 Kilowatt-hours of input electric power per tonne is required. The temperature rise of the disinfected watery sludge is about 2 0 C. Electron disinfection combined with subsurface soil injection offers an environmentally attractive, energy-efficient, and economic two -step process for land disposal of municipal sludges with water conservation and soil improvement benefits. Combined with widely-distributed ocean feeding, electron disinfection of the municipal sludge of coastal communities offers a safe marine nutrient for increasing fish population in treated ocean areas. The electron disinfection of effluent wastewater, in lieu of chlorination, is a future application which avoids the production of potentially toxic chlorinated hydrocarbons. (Author) [pt

  3. Kinetics of aerobically activated sludge on terylene artificial silk printing and dyeing wastewater treatment.

    Science.gov (United States)

    Guan, Bao-hong; Wu, Zhong-biao; Xu, Gen-liang

    2004-04-01

    Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics parameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the moderate-removal stage with B/Ckinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.

  4. A study of aeration treatment of uranium-contained wastewater by saccharomyces cerevisiae-activated sludge

    International Nuclear Information System (INIS)

    Xia Liangshu; Chen Zhongqing

    2006-01-01

    Experiments of the aeration treatment of uranium-contained wastewater by saccharomyces cerevisiae-activated sludge were carried out. The experimental results indicate that, saccharomyces cerevisiae (S.C) can accumulate UO 2 2+ effectively from aqueous solution: the removal ratio of 100 mg·L -1 UO 2 2+ is 78.2% when S.C dosage is 10 g·L -1 , while with 8 g·L -1 activated sludge (A.S.) added in the solution the ratio has increased to 96.3%; then, 5-10 min effluent settling is clarified as a result of sludge flocculation; the optimum conditions of biosorption of U from wastewater by S.C.-A.S. are at pH 5, A.S concentration=8 g·L -1 , added dry weight of S.C.=10 g·L -1 , granularity of S.C=100-120 mesh; the quantity of U increases with the enhanced initial concentration of UO 2 2+ in the process of biosorption by S.C.-A.S., but the removal ratio decreases. The uptake of U could be described by the Freundlich and the Langmuir adsorption isotherms, which demonstrated that the adsorption was regarded as a physical adsorption. (authors)

  5. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    Science.gov (United States)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  6. Electrodialytic removal of cadmium from wastewater sludge

    DEFF Research Database (Denmark)

    Jakobsen, M. R.; Fritt-Rasmussen, Janne; Nielsen, S.

    2004-01-01

    This paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid....../solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO"3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal...... was approximately the same. Chemical extraction experiments with acidic solutions showed that 5-10 times more Cd could be extracted from decomposed sludge than from fresh sludge. It is likely that the mobilization of Cd during decomposition of the sludge contributes to the efficient removal of Cd...

  7. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Zeng Lixi; Wang Thanh; Ruan Ting; Liu Qian; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80–52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C 11 and Cl 7,8 were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r 2 ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. - Highlights: ► Levels and distribution patterns of SCCPs were studied in sewage sludge in China. ► Concentrations of total SCCPs in sludge ranged from 0.8 to 52.7 μg/g dry weight. ► C 11 and Cl 7,8 were identified as the dominant congener groups within SCCPs. ► Significant linear relationships were found among SCCP congener groups (r 2 ≥ 0.9). ► SCCPs are present in household products and can be exposing to human. - High levels of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China have been found.

  8. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge

    OpenAIRE

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2013-01-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerpri...

  9. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... treatment processes to treat dairy wastewater such as activated sludge system .... Gas chromatograph. (Perkin Elmer, Auto system XL), equipped with thermal conductivity ..... Enzymatic hydrolysis of molasses. Bioresour. Tech.

  10. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qing, E-mail: qyan2005@hotmail.com [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); College of Geography Science and Tourism, Chongqing Normal University, Chongqing 400047 (China); Gao, Xu, E-mail: gaoxu@cqu.edu.cn [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Chen, You-Peng [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Guo, Jin-Song [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environments of Ministry of Education, Chongqing University, Chongqing 400045 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China)

    2014-02-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H{sub 2}O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant

  11. Hydrolysis rates of domestic wastewater sludge using biochemical ...

    African Journals Online (AJOL)

    Domestic wastewater treatment can be improved by reducing energy consumption and increasing carbon recovery, which can be achieved using anaerobic digestion of sludge with methane recovery at ambient temperature. Hydrolysis can be a limiting step in anaerobic digestion, and characterisation of hydrolysis rates ...

  12. Effect of Cambi Thermal Hydrolysis Process-Anaerobic digestion treatment on concentrations on phthalate plasticisers in wastewater sludge

    Science.gov (United States)

    The impact of the recently implemented Cambi Thermal Hydrolysis Process™-Anaerobic Digestion (TH-AD) solids treatment method on concentrations of 4 phthalate plasticisers in wastewater sludge samples was explored in this study. Samples were analysed for diisononyl phthalate (DiNP), diisodecyl phthal...

  13. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  14. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  15. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  16. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    International Nuclear Information System (INIS)

    Ongen, Atakan; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-01-01

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m 3 . • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity

  17. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ongen, Atakan, E-mail: aongen@istanbul.edu.tr; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-12-15

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m{sup 3}. • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

  18. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  19. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  20. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  1. Bioproducts for Sludge Reduction in Activated Sludge Systems Treating Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Alexandre V.M.F.

    2016-03-01

    Full Text Available The use of bioproducts that change the cellular metabolism and reduce microbial growth without affecting the organic matter removal is very promising for reducing the amount of sludge in wastewater treatment systems. In this study, two bioproducts were evaluated and compared with a well-known chemical (2,4-DiNitroPhenol – DNP in activated sludge treating petroleum refinery wastewater. In batch experiments, 10 mg/L of DNP, 0.8 mg/L of a bioproduct based on Folic Acid (FA and 10 mg/L of a bioproduct based on Stress Proteins (SP led to 30.6%, 43.2% and 29.8% lower disposal of total solids, respectively. Operating on a continuous regimen, the addition of 10 mg/L of the bioproduct based on SP led to 45.7% lower disposal for 50 days. In all cases, no loss of efficiency in the Chemical Oxygen Demand (COD removal was observed.

  2. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  3. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant

    OpenAIRE

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-01-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that u...

  4. Fate of nanosilver in wastewater treatment plants and their impact on nitrification activity in sewage sludge; Verhalten von Nanosilber in Klaeranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, Michael [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); HSR Hochschule fuer Technik, Rapperswil (CH). Inst. fuer Umwelt- und Verfahrenstechnik (UMTEC); Zuleeg, Steffen [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); KUSTER + HAGER Ingenieurbuero AG, St. Gallen (Switzerland); Kaegi, Ralf; Sinnet, Brian; Eugster, Jakob; Boller, Markus; Siegrist, Hansruedi [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland)

    2010-10-15

    The application of nanosilver is increasing. Knowledge on the fate and behavior of nanosilver in wastewater and wastewater treatment plants is scarce. Studies under real world conditions are completely lacking. We studied (1) the impact of nanosilver on the nitrification of sewage sludge, (2) quantified the mass flow of nanosilver in a pilot-plant, and (3) verified the mass balance in a full-scale municipal wastewater treatment plant where nanosilver is introduced to the municipal plant by an indirect discharger. The addition of four different nanosilver additives on ammonia oxidation in activated sludge has been studied in batch-reactors at two concentrations (1, 100 mg/L Ag) with two exposure times (2 h, 6 days). The pilot-plant treating 70 population equivalents of domestic wastewater is operated with a 12 day sludge age. Nanosilver was applied to the activated sludge tank within two sludge ages. The silver concentrations were measured in sludge and effluent samples during dosing and the following two sludge ages. The adsorption and speciation of silver particles has been analyzed using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Influent, effluent and sludge were sampled on a full-scale plant (60 000 equivalent inhabitants) and analyzed for silver. Silver nitrate, metallic nanosilver, nano-scaled silver chloride and microcomposite silver did not show any effect on ammonia oxidation after the addition of 1 mg/L Ag to the activated sludge (corresponding to 250 mg Ag per kg solids). In contrast, 100 mg/L Ag inhibited the nitrification process by 100 % after the addition of silver nitrate and 20-30 % after addition of colloidal polymer-coated nanosilver. A complete mass balance of the pilot-plant, a steady-state system with known fluxes, demonstrates significant enrichment of silver in the sewage sludge (96 %) after the addition of silver chloride to the plant and small losses of silver into the secondary effluent (4

  5. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  6. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    Science.gov (United States)

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  7. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    Science.gov (United States)

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G. (U. South Australia); (EPA); (Monash)

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  9. Anaerobic biodegradability essays from brewery wastewater using granular and flocculent sludges

    Directory of Open Access Journals (Sweden)

    C J Collazos Chávez

    2003-01-01

    Full Text Available At the beginning of nineties the colombian beer industry begun the application of anaerobic technology for the treatment of their wastewater efluents throught different regions of the country. These treatment plants have not been working appropriately due to different factors, and are creating concern among the industrial sector and the water pollution control agencies. This work constitutes the second phase of a research project designed to establish a selection and improvement criteria of the sludges used in the systems. It also looks to analyze other associated factors such as: waste, characteristics, operation conditions and design parameters. The investigation was conducted in two phases using granular and floculent sludges. This method was used for determining the anaerobic biodegradability of wastewater from two industrial plants.

  10. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  11. Nutrient content in maize fertilized with tannery sludge vermicompost and irrigated with domestic wastewater

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2016-11-01

    Full Text Available This study analyzed the macro and micronutrient content of maize leaves (Zea mays L. grown in soil containing tannery sludge vermicomposting and irrigated with wastewater. The arrangement of the treatments consisted of a factorial 2x6 (two types of irrigation and six kinds of fertilizer in a completely randomized design, with five repetitions, totaling sixty experimental units. The following experimental units, irrigated with supply water (A and household wastewater (R, were established: (T1 Control Soil, with no chemical fertilization and no vermicomposting; (T2 Soil + NPK; (T3 Soil + primary sludge vermicompost; (T4 Soil + P + primary sludge vermicompost; (T5 Soil + P + liming sludge vermicompost; and (T6 Soil + liming sludge vermicompost. For the leaf-tissue analysis, the opposite whole leaf below the first (upper ear was collected from each plant, excluding the midrib at the onset of the female inflorescence. The results showed that both wastewater and the tannery sludge vermicomposts can be a good source of nutrients for maize plants, since the macro and micronutrients in the leaves of plants were satisfactory and no signs or symptoms of toxicity were observed. While leaf analysis alone is insufficient to assess the nutritional status of plants, this study innovatively suggests the potential beneficial use of a combination of wastewater and tannery sludge vermicompost in the cultivation of corn, motivating new research.

  12. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  13. THE INFLUENCE OF CALCIUM HYPOCHLORITE DOSAGE ADJUSTMENT ON TAPIOCA WASTEWATER PRE-CHLORINATION TOWARD EFFICIENCY OF ACTIVATED SLUDGE TREATMENT

    Directory of Open Access Journals (Sweden)

    Happy Mulyani

    2016-11-01

    Full Text Available The objectives of this research are to study about influence of calcium hypochlorite dosage adjustment on tapioca wastewater chlorination toward efficiency of activated sludge treatment especially at MLVSS profile and percentage of COD removal. This research mainly divided into pre-chlorination and activated sludge treatment. Pre-chlorination taken place for 60 minutes at pH 8. The variation of calcium hypochlorite dosages which used are 58, 59, and 60 mg/L. Pre-chlorination effluent with no free chlorine residual then becomes activated sludge treatment influent. Sampling has done each aeration time interval 0, 2, 4, and 6 hour for analysis of COD and MLVSS content. Research result generally shows that addition of aeration time for each variation of calcium hypochlorite dosage will increase MLVSS and decrease COD content. Smallest value of COD effluent could achieved in the activated sludge treatment with calcium hipochlorite dosage 60 mg/L addition at influent during 4 hours aeration time. Addition of 58 mg/l calcium hypochlorite results highest MLVSS and percentage of COD removal.

  14. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    Directory of Open Access Journals (Sweden)

    Davood Nourmohammadi

    2013-01-01

    Full Text Available During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple.

  15. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla, Dept. de Ingenieria Quimica y Ambiental, Sevilla (Spain); Gutierrez, J.C. [Universidad Pablo de Olavide, Dept. de Ciencias Ambientales, Sevilla (Spain); Lebrato, J. [Universidad de Sevilla, Grupo Tratamiento de Aguas Residuales, Sevilla (Spain)

    2005-07-01

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (Author)

  17. Performance of Isfahan North Wastewater Treatment Plant in the Removal of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    nahid Navijouy

    2013-08-01

    Full Text Available Listeria and in particular Listeria monocytogenes is considered a ubiquitous foodborne pathogen which can lead listeriosis in human and animals. Listeriosis can be serious and may cause meningitis, septicemia and abortion in pregnant women. Although wastewater or sludge may contaminate foods of plant origin, there are no data on occurrence of Listeria spp. in wastewater and sludge in Iran. The purpose of current investigation was to study the occurrence of Listeria spp. in various samples of wastewater and sludge in Isfahan North wastewater treatment plant. Influent, effluent, raw sludge and dried sludge samples were collected from Isfahan North municipal wastewater treatment plant. L. monocytogenes were enumerated by a three–tube most probable number (MPN assay using enrichment Fraser broth. A total of 65 various samples from five step in 13 visits were collected. The presence of Listeria spp. also was determined using USDA procedure. Then, phenotypically identified L. monocytogenes were further confirmed by Polymerase Chain Reaction amplification. L. monocytogenes isolated from 76.9%, 38.5%, 84.6%, 69.2% and 46.2% of influent, effluent, raw sludge, stabilized sludge and dried sludge respectively. The efficiency of wastewater treatment processes, digester tank and drying bed in removal L. monocytogenes were 69.6%, 64.7% and 73.4% respectively. All phenotypically identified L. monocytogenes were further confirmed by Polymerase Chain Reaction. The results of present study have shown that Listeriaspp. and L. monocytogenes in particular, were present in wastewater treatment plant effluents and sludge at high level. The bacteria may spread on agriculture land and contaminate foods of plant origin. This may cause a risk of spreading disease to human and animals.

  18. Wastewater and Sludge Reuse Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Ioannis K. Kalavrouziotis

    2016-08-01

    Full Text Available Huge quantities of treated wastewater (TMWW and biosolids (sludge are produced every day all over the world, which exert a strong pressure on the environment. An important question that is raised is “what to do with them?”.An effort is put by the scientific community to eliminate the concept of “waste” and to replace it with the concept of “recycling of resources”, by means of effective management, which does not concern only the users, but all the other groups involved in the problem, such as facility administrators, operations, politicians, scientific community and the general population. Sludge concentration data showed that there exist 516 chemicals in biosolids which create a serious health risk. It is pointed out that this risk will be greatly exacerbated by chemical toxins present in the sludge which can predispose skin to infection by pathogens. Consequently, the need for science-based policies are necessary to effectively protect public health. The risk assessment due to sludge, is difficult to evaluate of due to the large number of unknown interactions involved. People living near the sludge application sites may suffer from such abnormalities as: eye, nose, and throat irritation, gastrointestinal abnormalities, as nausea, vomiting, diarrhea, including cough, difficulty in breathing, sinus congestion, skin infection and sores. Many problems seem to be related to biosolid and wastewater application in agriculture, which should be solved. A universal one, acknowledged as an “international health crisis” is the resistance of pathogens to antibiotics and to the evolution of multidrug resistance of bacteria”. Certain anthropogenically created environments have been identified as major sources of multidrug resistance bacteria such as in water treatment plants, concentrated animal feeding operations etc. All these, and many other health problems, render the safety of sludge and biosolid and wastewater agricultural reuse, for

  19. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    Science.gov (United States)

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Analysis of Pharmaceutical and Personal Care Compounds in Wastewater Sludge and Aqueous Samples using GC-MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitroshkov, Alexandre V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilmore, Tyler J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-15

    The Bioenergy Program at Pacific Northwest National Laboratory (PNNL) is evaluating the feasibility of converting wastewater sludge materials to fuels. Wastewater sludge from various municipalities will be used in the evaluation process and as with any municipal waste, there is the potential for residual contaminates to remain in the sludge following wastewater treatment. Many surveys and studies have confirmed the presence of pharmaceuticals in municipal wastewater and effluents (World Health Organization, 2011). Determination of the presence and concentrations of the contaminants is required to define the proper handling of this sludge. A list of targeted compounds was acquired from the literature and an analytical method was developed for the pharmaceutical and personal care compounds. The presence of organics complicated the analytical techniques and, in some cases, the precision of the results. However, residual concentrations of a range of compounds were detected in the wastewater sludge and the presence and concentrations of these compounds will be considered in identifying the appropriate handling of this material in conduct of research.

  1. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  2. Evaluation of an up-flow anaerobic sludge bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater.

    Science.gov (United States)

    Chen, Chunmao; Liang, Jiahao; Yoza, Brandon A; Li, Qing X; Zhan, Yali; Wang, Qinghong

    2017-11-01

    Novel diatomite (R1) and maifanite (R2) were utilized as support materials in an up-flow anaerobic sludge bed (UASB) reactor for the treatment of recalcitrant petroleum wastewater. At high organic loadings (11kg-COD/m 3 ·d), these materials were efficient at reducing COD (92.7% and 93.0%) in comparison with controls (R0) (88.4%). Higher percentages of large granular sludge (0.6mm or larger) were observed for R1 (30.3%) and R2 (24.6%) compared with controls (22.6%). The larger portion of granular sludge provided a favorable habitat that resulted in greater microorganism diversity. Increased filamentous bacterial communities are believed to have promoted granular sludge formation promoting a conductive environment for stimulation methanogenic Archaea. These communities had enhanced pH tolerance and produced more methane. This study illustrates a new potential use of diatomite and maifanite as support materials in UASB reactors for increased efficiency when treating refractory wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  4. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.

    2008-01-01

    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge.

  5. QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse.

    Science.gov (United States)

    Westrell, T; Schönning, C; Stenström, T A; Ashbolt, N J

    2004-01-01

    Hazard Analysis and Critical Control Points (HACCP) was applied for identifying and controlling exposure to pathogenic microorganisms encountered during normal sludge and wastewater handling at a 12,500 m3/d treatment plant utilising tertiary wastewater treatment and mesophilic sludge digestion. The hazardous scenarios considered were human exposure during treatment, handling, soil application and crop consumption, and exposure via water at the wetland-area and recreational swimming. A quantitative microbial risk assessment (QMRA), including rotavirus, adenovirus, haemorrhagic E. coli, Salmonella, Giardia and Cryptosporidium, was performed in order to prioritise pathogen hazards for control purposes. Human exposures were treated as individual risks but also related to the endemic situation in the general population. The highest individual health risk from a single exposure was via aerosols for workers at the belt press for sludge dewatering (virus infection risk = 1). The largest impact on the community would arise if children ingested sludge at the unprotected storage site, although in the worst-case situation the largest number of infections would arise through vegetables fertilised with sludge and eaten raw (not allowed in Sweden). Acceptable risk for various hazardous scenarios, treatment and/or reuse strategies could be tested in the model.

  6. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    Science.gov (United States)

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Economic assessment of biodiesel production from wastewater sludge.

    Science.gov (United States)

    Chen, Jiaxin; Tyagi, Rajeshwar Dayal; Li, Ji; Zhang, Xiaolei; Drogui, Patrick; Sun, Feiyun

    2018-04-01

    Currently, there are mainly two pathways of the biodiesel production from wastewater sludge including 1) directly extracting the lipid in sludge and then converting the lipid to biodiesel through trans-esterification, and 2) employing sludge as medium to cultivate oleaginous microorganism to accumulate lipid and then transferring the lipid to biodiesel. So far, the study was still in research stage and its cost feasibility was not yet investigated. In this study, biodiesel production from wastewater sludge was designed and the cost was estimated with SuperPro Designer. With consideration of converting the lipid in raw sludge to biodiesel, the unit production cost was 0.67 US $/kg biodiesel (0.59 US $/L biodiesel). When the sludge was used as medium to grow oleaginous microorganism to accumulate lipid for producing biodiesel, the unit production cost was 1.08 US $/kg biodiesel (0.94 US $/L biodiesel). The study showed that sludge has great potential in biodiesel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    Science.gov (United States)

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  9. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  10. Recovery of phosphorus from sewerage treatment sludge

    Energy Technology Data Exchange (ETDEWEB)

    Manuilova, Anastasia

    1999-07-01

    This thesis is a review of the current state of technologies for the removal of phosphorus from wastewater and sludge, and the recovery and re-use of phosphorus. It explains the need for phosphorus removal and describes the current removal processes. Focus is given to phosphorus crystallisation processes and to the processes which treat sewage treatment sludges into potential sources of phosphorus. An interesting possibility to recover phosphorus from sewage sludge by use of Psenner fractionation is also discussed. By this method, the following phosphate fractions of technological significance may be distinguished: (1) redox sensitive phosphates, mainly bound to Fe(OH){sub 3}; (2) phosphate adsorbed to surfaces (Al{sub 2}O{sub 3}), exchangeable against OH{sup -}, and alkali-soluble phosphate; (3) phosphate bound to CaCO{sub 3}, MgCO{sub 3} and in apatite; and (4) organically bound phosphate. The basic removal mechanisms, process schemes and treatment results are described. Two experiments with three different types of sludges from Henriksdal wastewater treatment plant in Stockholm were performed in the laboratory. It was shown that the addition of sodium hydroxide or hydrochloric acid cause the significant release of phosphate (about 80%) for all types of sludges. If a whole Psenner fractionation was performed the phosphate release is approximately 100%.

  11. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  12. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    Science.gov (United States)

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  13. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz; Saunders, Aaron Marc; Larsen, Poul

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called ‘The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)’. Comprehensive sets of samples have been collected......, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge...

  14. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-08

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading

  16. A Novel Method of Biological Start-up in Arak Activated Sludge Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Abdolreza Khalili

    2015-01-01

    Full Text Available Startup is one of the most important stages in the operation of a wastewater treatment plant (WWTP. In this paper, a novel method is presented for the startup of Arak Activated Sludge WWTP, which is shown to contain more advantages than other common methods. In this method, a portion of the inflow is initially allowed to enter gradually into an aeration basin prior to seeding. Under these conditions, less seeding is required due to the low flow of the influent and the low volume of the aeration basin. Once MLSS in the basin reaches the desired level, the rest of the system comes into operation and the sludge developed in the system is used for further seeding. In the case of the WWPT in Arak, it took about 2 months for the total MLSS to be developed and wasting the sludge to start because of the cold weather conditions in the region. The wasted sludge was controlled by the F/M ratio at a constant sludge age. During the start-up, the MLSS increase exhibited a linear trend and the low loading allowed for the variation in influent contaminants to be controlled. The effluent contaminants were below the standard levels recommended by the Environment Protection Organization. BOD5 and COD removals increased from 40% and 60% to 90% and TSS removal increased from 70% to 96%. Lower loading levels, better process control, and lower sludge processing costs are the benefits of this system

  17. PBDEs versus NBFR in wastewater treatment plants: occurrence and partitioning in water and sludge

    Directory of Open Access Journals (Sweden)

    Joyce Cristale

    2015-06-01

    Full Text Available This study evaluates the occurrence of flame retardants (FR in five wastewater treatment plants (WWTPs located close to Barcelona (NE Spain, an area with high urban and industrial pressures. Compounds studied include eight polybromodiphenyl ethers (PBDEs and eight New Brominated Flame Retardants (NBFRs, for which little information regarding their presence, partitioning and fate within the WWTPs is available. In unfiltered influent samples, PBDEs were not detected and bis(2-ethyl-1-hexyltetrabromophthalate was the only NBFR detected, and all WWTPs were efficient in eliminating this compound as no residues were found in the effluents. However, primary sludge contained from 279 to 2299 ng/g dry weight of ΣFR and the concentration increased in secondary (biological sludge. NBFRs accounted for the main FR detected in sludge, representing a 63-97% of the total load, and among PBDEs, BDE-209 was the most ubiquitous congener. Considering the amount of sludge generated in each WWTP, it was estimated that 0.34-17.2 kg of FR are released annually through the sludge, which can have negative environmental and health implications if sludge is used as biosolid in agriculture. Overall, this study provides a sampling design and analytical protocol to be used to determine the evolution of FR in WWTPs and compares the levels detected, considering that PBDEs are being phased out to be substituted by other compounds which also have high accumulative and recalcitrant properties.

  18. A simple empirical model for the clarification-thickening process in wastewater treatment plants.

    Science.gov (United States)

    Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T

    2015-01-01

    In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.

  19. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.

    Science.gov (United States)

    Aydin, Sevcan

    2016-07-01

    While anaerobic treatment is capable of treating pharmaceutical wastewater and removing antibiotics in liquid phases, solid phases may still contain significant amounts of antibiotics following this treatment. The main goal of this study was to evaluate the use of white-rot fungi to remove erythromycin, sulfamethoxazole, and tetracycline combinations from biosolids. The degradation potential of Trametes versicolor and Bjerkandera adusta was evaluated via the sequential treatment of anaerobic sludge. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used to identify competition between the autochthonous microbial communities and white-rot fungi. Solid-phase treatment using white-rot fungi substantially reduced antibiotic concentrations and toxicity in sludge. According to PCR-DGGE results, there is an association between species of fungus and antibiotic type as a result of the different transformation pathways of fungal strains. Fungal post-treatment of sludge represents a promising method of removing antibiotic combinations, therefore holding a significant promise as an environmentally friendly means of degrading the antibiotics present in sludge.

  20. Interlaboratory study for the validation of an ecotoxicological procedure to monitor the quality of septic sludge received at a wastewater treatment plant.

    Science.gov (United States)

    Robidoux, P Y; Choucri, A; Bastien, C; Sunahara, G I; López-Gastey, J

    2001-01-01

    Septic tank sludge is regularly hauled to the Montreal Urban Community (MUC) wastewater treatment plant. It is then discharged and mixed with the wastewater inflow before entering the primary chemical treatment process. An ecotoxicological procedure integrating chemical and toxicological analyses has been recently developed and applied to screen for the illicit discharge of toxic substances in septic sludge. The toxicity tests used were the Microtox, the bacterial-respiration, and the lettuce (Lactuca sativa) root elongation tests. In order to validate the applicability of the proposed procedure, a two-year interlaboratory study was carried out. In general, the results obtained by two independent laboratories (MUC and the Centre d'expertise en analyse environnementale du Quebec) were comparable and reproducible. Some differences were found using the Microtox test. Organic (e.g., phenol and formaldehyde) and inorganic (e.g., nickel and cyanide) spiked septic sludge were detected with good reliability and high efficiency. The relative efficiency to detect spiked substances was > 70% and confirms the results of previous studies. In addition, the respiration test was the most efficient toxicological tool to detect spiked substances, whereas the Microtox was the least efficient (septic sludge.

  1. Characterization of sludges of La Golondrina WWTP: sludges as final containers of the domestic wastewater pollution; Caracterizacion de fangos de la EDAR La Golondrina (EMACSA-Cordoba): su funcion como receptores finales de la contaminacion del agua residual urbana

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Alonso Perez de siles, L.; Rojas Moreno, F. J.

    2005-07-01

    Treatment of wastewater is to concentrate the original pollution in a by-product: the wastewater sludge or bio-solid. As example, La Golondrina WWTP (Cordoba-spain) promotes the production of 1,3 kg of sludge per m''3 of wastewater, yielding logically a treated water according to laws. Furthermore, the treatment process there applied reduces the levels of nine majority metals (Cu, Fe, Mn, Pb, Cd, Ni, Cr, Zn, Hg) from 2,72 mg/l to 1.42 mg/l in the treated water, generating almost, a sludge agrees with the spanish normative to sludge intended to agricultural use (its main fate). Summarizing, the treatment of wastewater supposes the concentration of the original biodegradable load into the sludge around 340 times, while metals exhibited a different concentration degree for each one (from 10.000 times for Fe, u pto 1-2 times for Cd and Hg). Finally, the concentration degree of a metal in the sludge is mainly led by the removed concentration of metal in the treatment process, and after, by the original concentration of metal in the influent wastewater. (Author) 24 refs.

  2. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  3. Extraction solvent’s effect on biogas production from mixtures of date seed and wastewater sludge

    Directory of Open Access Journals (Sweden)

    Radeef Wameed

    2017-01-01

    Full Text Available The objective of this study was to evaluate the impact of extraction solvent on biogas production from mixtures of date (Phoenix dactylifera seed and wastewater treatment sludge. Date palm seed is a locally produced waste which is used in different useful purposes. Date seed is rich in proteins, carbohydrates and lipids and have the potential for biogas enhancement. In this study, three extraction solvents, hexane, ethyl acetate and Ethanol:water (1:1, were used on two types of date seeds (locally known as Khalas and Khudari. Date seed powder of size 0.425 – 0.6 mm after extraction was mixed with wastewater treatment sludge at dry date seed/dry sludge solids ratios of 0%, 10%, 20%, 40%, 60%, and 80%. The study showed a direct relationship between biogas production and ratio of date seeds/wastewater sludge in the mixture. Furthermore, the results confirmed that the quantity of biogas produced from samples containing raw date seed was almost same as the quantity produced from samples containing date seed after extraction. The results revealed that the used extraction solvents had no effect on biogas production

  4. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  5. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    Science.gov (United States)

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Wastewater treatment technologies to satisfy 1990's energy conservation/pollution prevention goals

    International Nuclear Information System (INIS)

    Keith, L.W.; Beers, A.R.

    1993-01-01

    Anheuser-Busch, like most other companies, relied through the mid-1970's on end-of-pipe, energy-intensive aerobic treatment systems for its wastewater. Little if any attention was placed on source reduction. There are several factors that help explain why industry had adopted this approach. Energy was relatively cheap, sludge disposal was not a major problem and many municipalities provided wastewater treatment capacity to industry as an inducement for industry to locate there. The saying for A-B was open-quotes We know how to make beer - municipalities know how to treat our wastewater - let's not mix the two.close quotes The 1973 oil embargo and the resulting mid-1970's energy crisis changed Anheuser-Busch's wastewater treatment philosophy. The days of cheap energy and wastewater treatment were gone. This was only exaggerated by the more stringent treatment requirements resulting from the passage of PL92-500 (Clean Water Act). Increasing sludge disposal problems with associated increased disposal costs also occurred. From the mid-1970's to the mid-1980's Anheuser-Busch performed significant developmental work on land application of wastewater. This technology, which requires only about 10% of the energy of aerobic activated sludge treatment systems and produces no sludge for disposal, was installed at six Anheuser-Busch locations. During this time period considerable improvement was made in the area of waste load reduction. However, the main driving force was economics; that is, it was done if cheaper than wastewater treatment. Anheuser-Busch still had a basic end-of-pipe treatment philosophy

  7. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  8. Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling

    Directory of Open Access Journals (Sweden)

    Abdelsalam Elawwad

    2018-09-01

    Full Text Available Wastewater containing high ammonium concentrations is produced from various industrial activities. In this study, the author used a complex activated sludge model, improved by utilizing BioWin© (EnviroSim, Hamilton, Canada simulation software, to gain understanding of the problem of instability in biological nitrogen removal (BNR. Specifically, the study focused on BNR in an industrial wastewater treatment plant that receives high-strength ammonium wastewater. Using the data obtained from a nine-day sampling campaign and routinely measured data, the model was successfully calibrated and validated, with modifications to the sensitive stoichiometric and kinetic parameters. Subsequently, the calibrated model was employed to study various operating conditions in order to optimize the BNR. These operating conditions include alkalinity addition, sludge retention time, and the COD/N ratio. The addition of a stripping step and modifications to the configuration of the aerators are suggested by the author to increase the COD/N ratio and therefore enhance denitrification. It was found that the calibrated model could successfully represent and optimize the treatment of the high-strength ammonium wastewater.

  9. Winery wastewater treatment by heterogeneous Photo-Fenton process and activated sludges; Depuracion de efluentes vinicolas ediante tratamientos Foto-Fenton en fase heterogenea y lodos activos

    Energy Technology Data Exchange (ETDEWEB)

    Mosteo, R.; Lalinde, N.; Ormad, Maria O. M.; Ovelleiro, J. L.

    2007-07-01

    The system composed by heterogeneous Photon-Fenton assisted by solar light and biological treatment based on activated sludge process treats adequately real winery wastewaters. the previous stage based on heterogeneous Photo-Fenton process produces a partial degradation of winery wastewaters and achieves a yield of degradation of organic matter (measured as TOC) close to 50%. The activated sludge process in simple stage doesn't present any operation problems (bulking phenomenon) and achieves a yield of degradation of organic matter of 90%. (Author) 16 refs.

  10. Use of Lecane rotifers for limiting Thiothrix filamentous bacteria in bulking activated sludge in a dairy wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Kowalska Ewa

    2014-01-01

    Full Text Available Excessive growth of filamentous bacteria is a serious problem in many dairy wastewater treatment plants (WWTPs. The objective of the study was to determine whether Lecane inermis rotifers were able to reduce the density of Thiothrix bacteria in activated sludge originating from a dairy WWTP, as well as to identify the impact of rotifers on other organisms in sludge. On a laboratory scale, three experiments were conducted in which activated sludge with a predominance of Thiothrix was inoculated with rotifers at an initial concentration of app. 600 individuals/mL. The results showed that the rotifers, by feeding on the bacterium filaments, are able to reduce significantly the quantity of Thiothrix. A decline in Thiothrix abundance coincided with an improvement of the sedimentation properties of activated sludge. In addition, it was proven that Lecane inermis did not negatively affect the number of Protozoa and Metazoa in activated sludge.

  11. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, Aleksandra [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Fatone, Francesco; Di Fabio, Silvia [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Petrovic, Mira, E-mail: mpetrovic@icra.cat [Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 80010 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain); Cecchi, Franco [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Barcelo, Damia [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain)

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ss-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 {mu}g/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  12. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    International Nuclear Information System (INIS)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-01-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification–denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  13. The challenge of analyzing beta-blocker drugs in sludge and wastewater.

    Science.gov (United States)

    Scheurer, Marco; Ramil, Maria; Metcalfe, Chris D; Groh, Stefanie; Ternes, Thomas A

    2010-01-01

    In this study, different approaches were used to assess and overcome the severe effects of interference from the sample matrix from different types of sludges and wastewater on the analysis of nine beta-blockers and the beta sympathomimetic clenbuterol. The partitioning of the target compounds into sludge was investigated in wastewater treatment plants (WWTPs) in both Canada and Germany to evaluate whether this is an important mechanism for removal from sewage. Due to ion suppression in the electro spray interface, absolute recoveries were for certain compounds even lower than 20%. By using surrogate standards, acceptable relative recoveries of >75% were achieved for WWTP influents and effluents and for sludges. These matrix effects underline the need to use appropriate surrogate standards to aid in analyte quantitation. Using the developed methods, beta-blockers were detected at concentrations up to 2 microg/L in WWTP effluents, with metoprolol, sotalol, and atenolol present as the dominant compounds. Removal rates within WWTPs were highly inconsistent and ranged from 1-69%. Propranolol showed the greatest degree of partitioning into sludge with solid/water partition coefficients of one order of magnitude higher than those for all other compounds. However, even for propranolol, sorption did not contribute significantly to the overall elimination in WWTPs. It is likely that the removal of beta-blockers during waste water treatment can be attributed primarily to microbial biodegradation.

  14. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  15. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  16. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  17. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  18. Performance of a continuously operated flocculent sludge UASB reactor with slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; Zeeuw, W. de

    1988-01-01

    This investigation was carried out to assess the performance of a continuously operated, one-stage, flocculent sludge upflow anaerobic sludge blanket (UASB) reactor treating slaughterhouse wastewater at a process temperature of 30/sup 0/C. The results indicate that the type of substrate ingredients, coarse suspended solids, colloidal and soluble compounds in the wastewater, affect the performance of the reactor because of different mechanisms involved in their removal and their subsequent conversion into methane. Two different mechanisms are distinguished. An entrapment mechanism prevails for the elimination of coarse suspended solids while an adsorption mechanism is involved in the removal of the colloidal and soluble fractions of the wastewater. The results obtained lead to the conclusion that the system can satisfactorily handle organic space loads up to 5 kg COD m/sup -3/ day/sup -1/ at 30/sup 0/C. The data indicate, however, that continuing heavy accumulation of substrate components in the reactor is detrimental to the stability of the anaerobic treatment process as the accumulation can lead to sludge flotation and consequently to a complete loss of the active biomass from the reactor.

  19. Comparison between thermo balance and classic gravimetric method for determination of suspended solids in sludge from wastewater treatment plant

    International Nuclear Information System (INIS)

    Bruzzone, E.

    2009-01-01

    In this paper two methods for determination of suspended solids in sludge from wastewater treatment plants (activated, thickened and dry, in a range from 0.1 to 20-25%) are compared. Results are similar from statistic point of view between classic gravimetric method and thermo balance method. However the later seems better for its rapid and easy execution. [it

  20. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks.

    Science.gov (United States)

    Abusam, A; Keesman, K J

    2009-01-01

    The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In activated sludge systems, accurate estimation of the solids in the underflow stream will facilitate the calibration process and can lead to correct estimates of particularly kinetic parameters related to biomass growth. Using principles of compaction and consolidation, as in soil mechanics, a dynamic model of the sludge consolidation processes taking place in the secondary settling tanks is developed and incorporated to the commonly used double exponential settling model. The modified double exponential model is calibrated and validated using data obtained from a full-scale wastewater treatment plant. Good agreement between predicted and measured data confirmed the validity of the modified model.

  1. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... that plants with return sludge Side-Stream Hydrolysis (SSH) instead of the normal anaerobic process tank tended to have significantly fewer unwanted GAOs in contrast to many plants with traditional mainstream anaerobic tank and thus it was proposed that this system might be an effective strategy of control...

  2. Characterization of the variability of settling in wastewater treatment

    International Nuclear Information System (INIS)

    Cherif, Hayet; Touhami, Youssef; Shayeb, Hedi

    2009-01-01

    The processes of biological treatment of wastewater in activated sludge are complex dynamic processes are difficult to manage. The ability of the sludge settling is a key parameter for the overall effectiveness of pollution control process and for preserving the quality of the receiving environment. So for better management of wastewater treatment plants, a study of interactions between the couple reactor clarifier is necessary. A new management technique must notify the operator to problems related to sludge mainly to the loss of the sludge blanket which will have adverse effects on the environment. The approach is widely adopted and applied an approach aims to identify factors that may explain the observed phenomena in order to draw strategies that could improve the sludge settling on an industrial scale. The widely used approach is based on measuring Mohlman index and gives an impression, on the ability of the mud settling, but does not prevent the operator to anomalies that have places in the decanter.

  3. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172 ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  4. Domestic wastewater treatment using electron accelerator

    International Nuclear Information System (INIS)

    Borrely, Sueli I.

    1995-01-01

    This work aims the application of an industrial electron beam accelerator to disinfect sludge and to remove organic matter existent in the influent and effluent from the Mairipora domestic wastewater treatment plant. The in vitro Co-60 radiosensitivity of the major representative Salmonella species in wastewater from Sao Paulo city was also studied. (author). 66 refs., 19 figs., 12 tabs

  5. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    Science.gov (United States)

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. A solidification/stabilization process for wastewater treatment sludge from a primary copper smelter

    Directory of Open Access Journals (Sweden)

    Ivšić-Bajčeta Dragana

    2013-01-01

    Full Text Available Wastewater treatment sludge from primary copper smelter is characterized as hazardous waste that requires treatment prior disposal due to significant amount of heavy metals and arsenic. The aim of the presented study was to investigate the feasibility and the effectiveness of solidification/stabilization process of the sludge using fly ash and lime as binders. The effectiveness of the process was evaluated by Unconfined Compressive Strength (UCS testing, leaching tests (EN 12457-4 and Toxicity Characteristic Leaching Procedure (TCLP and Acid Neutralization Capacity (ANC test. All samples reached target UCS of 0.35 MPa. Calcium to silicon concentration ratio (cCa/cSi, determined by X-Ray Fluorescence (XRF analysis, was identified as main factor governing strength development. Inductively coupled plasma-optical emission spectrometry (ICP-OES analyses of solutions after leaching tests showed excellent stabilization of Cu, Ni, Pb and Zn (above 99 % and arsenic (above 90 % in samples with high Ca(OH2 content. Results of ANC test indicated that buffering capacity of solidified material linearly depended on Ca concentration in FA and lime. Sample with 20 % of binder heaving 50 % of FA and 50 % of lime met all requirements to be safely disposed. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  7. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  8. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  9. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  10. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    Science.gov (United States)

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  11. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received

  12. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics.

    Science.gov (United States)

    Niu, Lihua; Li, Yi; Xu, Lingling; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Cai, Wei; Wang, Linqiong

    2017-02-01

    Fungi are important contributors to the various functions of activated sludge wastewater treatment plants (WWTPs); however, the diversity and geographic characteristics of fungal populations have remained vastly unexplored. Here, quantitative polymerase chain reaction and 454 pyrosequencing were combined to investigate the abundance and diversity of the activated sludge fungal communities from 18 full-scale municipal WWTPs in China. Phylogenetic taxonomy revealed that the members of the fungal communities were assigned to 7 phyla and 195 genera. Ascomycota and Basidiomycota were the most abundant phyla, dominated by Pluteus, Wickerhamiella, and Penicillium. Twenty-three fungal genera, accounting for 50.1 % of the total reads, were shared by 18 WWTPs and constituted a core fungal community. The fungal communities presented similar community diversity but different community structures across the WWTPs. Significant distance decay relationships were observed for the dissimilarity in fungal community structure and altitudinal distance between WWTPs. Additionally, the community evenness increased from 0.25 to 0.7 as the altitude increased. Dissolved oxygen and the C/N ratio were determined to be the most dominant contributors to the variation in fungal community structure via redundancy analysis. The observed data demonstrated the diverse occurrence of fungal species and gave a marked view of fungal community characteristics based on the previously unexplored fungal communities in activated sludge WWTPs.

  13. The role of diatomite particles in the activated sludge system for treating coal gasification wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.Q.; Rao, P.H.; Zhang, H.; Xu, J.L. [Shanghai University of Engineering Science, Shanghai (China)

    2009-02-15

    Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L{sup -1} to 4518 mg.L{sup -1} and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlated to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.

  14. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    International Nuclear Information System (INIS)

    Ragsdale, R.G., Jr.

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented

  15. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  16. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  17. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    Science.gov (United States)

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.

    Science.gov (United States)

    Radjenović, Jelena; Petrović, Mira; Barceló, Damià

    2009-02-01

    case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.

  19. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  20. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    International Nuclear Information System (INIS)

    Dimitriou, I.; Rosenqvist, H.

    2011-01-01

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  1. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, I. [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE 750 07 Uppsala (Sweden); Rosenqvist, H. [Department of Agriculture-Farming Systems, Technology and Product Quality, Swedish University of Agricultural Sciences, P.O. Box 17, SE-261 21 Billeberga (Sweden)

    2011-02-15

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  2. Distribution of PCDD/Fs and organometallic compounds in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Lu Mang; Wu Xuejiao; Zeng Decai; Liao Yong

    2012-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organotin and organolead compounds were measured in sewage sludge samples collected from 24 wastewater treatment plants from 18 cities of 13 provinces in China. Total international toxicity equivalent (I-TEQ) values were evaluated for PCDD/Fs. The total concentration of PCDD/Fs ranged from 104.0 to 1661 pg/g dry weight (d.w.) and 2.51–75.21 pg I-TEQ/g d.w., indicating that all I-TEQs were below Chinese legislation limit value regulated for land application. The concentrations ranged from 258 to 3886, 126 to 1129, and 84–2133 ng/g as Sn d.w., for tributyltin (TBT), dibutyltin (DBT), and diphenyltin (DPhT), respectively. On the other side, organolead concentrations ranged from 85 to 668 with an average of 279 ng/g as lead. High concentrations of organolead compounds in sewage sludge indicated that the environmental impact of organolead compounds remains in China. - Highlights: ► The first study on PCDD/F distribution in sewage sludge in China on a national scale. ► The first study on organometallic compounds distribution in sewage sludge on a national scale. ► The persistence of tetraethyllead deserves attention. - This is the first study on the survey of the distributions of POPs and organometallic compounds in sewage sludge in China on a national scale.

  3. A computational technique for turbulent flow of wastewater sludge.

    Science.gov (United States)

    Bechtel, Tom B

    2005-01-01

    A computational fluid dynamics (CFD) technique applied to the turbulent flow of wastewater sludge in horizontal, smooth-wall, circular pipes is presented. The technique uses the Crank-Nicolson finite difference method in conjunction with the variable secant method, an algorithm for determining the pressure gradient of the flow. A simple algebraic turbulence model is used. A Bingham-plastic rheological model is used to describe the shear stress/shear rate relationship for the wastewater sludge. The method computes velocity gradient and head loss, given a fixed volumetric flow, pipe size, and solids concentration. Solids concentrations ranging from 3 to 10% (by weight) and nominal pipe sizes from 0.15 m (6 in.) to 0.36 m (14 in.) are studied. Comparison of the CFD results for water to established values serves to validate the numerical method. The head loss results are presented in terms of a head loss ratio, R(hl), which is the ratio of sludge head loss to water head loss. An empirical equation relating R(hl) to pipe velocity and solids concentration, derived from the results of the CFD calculations, is presented. The results are compared with published values of Rhl for solids concentrations of 3 and 6%. A new expression for the Fanning friction factor for wastewater sludge flow is also presented.

  4. Biological treatment of sludge digester liquids.

    Science.gov (United States)

    van Loosdrecht, M C M; Salem, S

    2006-01-01

    Nitrogen removal in side stream processes offers a good potential for upgrading wastewater treatment plants (WWTPs) that need to meet stricter effluent standards. Removing nutrients from these internal process flows significantly reduces the N-load to the main treatment plant. These internal flows mainly result from the sludge processing and have a high temperature and a high concentration of ammonia. Therefore, the required reactor volumes as well as the required aerobic SRT are small. Generally, biological treatment processes are more economical and preferred over physical-chemical processes. Recently, several biological treatment processes have been introduced for sludge water treatment. These processes are available now on the activated sludge market (e.g. SHARON, ANAMMOX and BABE processes). The technologies differ in concept and in the limitations guiding the application of these processes for upgrading WWTPs. This paper reviews and compares different biological alternatives for nitrogen removal in side streams. The limitations for selecting a technology from the available ones in the activated sludge market are noted and analysed. It is stressed that the choice for a certain process is based on more aspects than pure process engineering arguments.

  5. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    Science.gov (United States)

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  6. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  7. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: fate and mass balance

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Samara, Constantini

    2005-01-01

    The fate and the mass balance of persistent organic pollutants (POPs) during the conventional activated sludge treatment process were investigated in the wastewater treatment plant of the city of Thessaloniki, northern Greece. The POPs of interest were 7 polychlorinated biphenyls and 19 organochlorine pesticides. Target compounds were determined at six different points across the treatment system: the influent, the effluent of the primary sedimentation tank, the effluent of the secondary sedimentation tank, the primary sludge, the activated sludge from the recirculation stream, and the digested/dewatered sludge. The distribution of POPs between the dissolved and the adsorbed phases of wastewater and sludge was investigated. A good linear relationship between the distribution coefficients, K d , and the octanol-water partition coefficients, K ow , of the solutes was observed only in raw wastewater, suggesting that other factors affect the phase distribution of organic compounds in treated wastewater. For all POPs, a significant increase in partitioning with a decreasing solids concentration was observed, revealing an effect from non-settling microparticles remaining in the 'dissolved' phase during the separation procedure. A good linear relationship was also revealed between logK d and the dissolved organic carbon (DOC) content of wastewater, suggesting that DOC favors the advective transport of POPs in the dissolved phase. Almost all POPs showed good mass balance agreements at both the primary and the secondary treatment. The losses observed for some species could be attributed to biodegradation/biotransformation rather than volatilization. The relative distribution between the treated effluent and the waste sludge streams varied largely among different compounds, with p-p'-DDE being highly accumulated in the waste sludge (98%) but almost 60% of α-HCH remaining in the treated effluent

  8. Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization.

    Science.gov (United States)

    Wang, Lu; Chen, Xiurong; Wang, Hualin; Zhang, Yuying; Tang, Qingjie; Li, Jiahui

    2017-02-01

    Chlorella vulgaris was cultivated in different proportions of activated sludge extracts, which was from the treatment of the synthetic wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP). The nutrients, total nitrogen (TN) and total phosphorus (TP), were removed over 45% and 90%, respectively. The maximum reduction amount of ecotoxicity and total organic carbon (TOC) occurred in the 100% sludge group on the 8th day (68%; 86.2 mg L -1 ). The variations of Excitation-emission matrix spectra (EEMs) and TOC indicated that extracellular organic matters (EOM) produced by algae led to TOC increase in the medium. The cell density was close to each other for groups with sludge extract proportion below 50%; sludge extracts (below 75% addition) had a stimulating effect on the accumulation of chlorophyll-a in per unit algal cell. Superoxide dismutase (SOD) variation demonstrated that C. vulgaris response positively to sludge extracts addition. Lipid content in C. vulgaris was up to its maximum value on the 8th day. Considering the performance on nutrients removal, toxicity reduction and algal growth, the optimal cultivation period for C. vulgaris before harvesting was around 8 days with sludge extracts proportion below 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    Directory of Open Access Journals (Sweden)

    B. Subha

    2012-01-01

    Full Text Available Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2 of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81% was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87% was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction.

  10. Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Recently, gamma rays and electron beams have been successfully used on sludges and wastewater to eliminate pathogenic organisms and some toxic chemicals. Sufficient technical data are available for gamma treatment of sludges, permitting its application on the demonstration or commercial scale, but gaps in our knowledge exist for the practical application of electron-beam technology. The IAEA`s involvement in studies of radiation processing of sewage sludge dates back several years. A five-year Co-ordinated Research programme on Radiation Treatment of Sewage Sludge for Safe Reutilization, involving Canada, Germany, India, Indonesia, Italy, Japan, and the United State of America, was completed in 1990. This programme laid a solid foundation on which future programmes can be built. However, at present, information is limited on the availability of nutrients from sewage sludges to crops, its benefits as an organic amendment to soil, and the harmful effects of heavy metals on crop growth. Isotope and radiation techniques are valuable tools of potential use in finding answers to some of these questions. Refs, figs, tabs.

  11. Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings

    International Nuclear Information System (INIS)

    1997-10-01

    Recently, gamma rays and electron beams have been successfully used on sludges and wastewater to eliminate pathogenic organisms and some toxic chemicals. Sufficient technical data are available for gamma treatment of sludges, permitting its application on the demonstration or commercial scale, but gaps in our knowledge exist for the practical application of electron-beam technology. The IAEA's involvement in studies of radiation processing of sewage sludge dates back several years. A five-year Co-ordinated Research programme on Radiation Treatment of Sewage Sludge for Safe Reutilization, involving Canada, Germany, India, Indonesia, Italy, Japan, and the United State of America, was completed in 1990. This programme laid a solid foundation on which future programmes can be built. However, at present, information is limited on the availability of nutrients from sewage sludges to crops, its benefits as an organic amendment to soil, and the harmful effects of heavy metals on crop growth. Isotope and radiation techniques are valuable tools of potential use in finding answers to some of these questions

  12. Life cycle assessment of sewage sludge treatment and its use on land

    DEFF Research Database (Denmark)

    Yoshida, Hiroko

    factors per unit application of N fertiliser on land by fitting a linear mixed-effect model to the outcome of simulations with varying N application levels. It was evident that the effects of inorganic N fertiliser appear immediately after its application, while improvements in crop yield and emissions......Sewage sludge is generated as an end-product of wastewater treatment processes, and its management holds importance in the operation of wastewater treatment plants from both an economic and an environmental point of view. At the same time, the management of sewage sludge is becoming increasingly...... (LCAs) have been applied in the field of sewage sludge management for the past two decades. While providing a flexible platform for comparing a range of sewage sludge management options, a knowledge gap has been identified through the review of existing studies, including inconsistencies in pollutant...

  13. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    Science.gov (United States)

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  14. Sludge Recycle of Wastewater Treatment Plant via its Application as Powdered Activated Carbon for Removal of Methyl Tertiary-Butyl Ether (MTBE from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MR Zare

    2016-05-01

    Full Text Available Introduction: Nowadays, application of MTBE due to its physical and chemical characteristics including high solubility in water has been increased, resulting in its release into the water resources. On other hand, waste activated sludge derived from municipal wastewater treatment plant (MWTP contains high amount of carbon. Therefore, this study aimed to provide the activated carbon via sludge of MWTP as well as to evaluate its efficiency for MTBE removal. Methods: The effect of some parameters such as kind of activator, pH (2-10, contact time (0-240min, adsorbent dose (2-6g/L and initial concentration of MTBE (20-70mg/L was investigated on MTBE adsorption via activated carbon, after preparation of coal from wastewater sludge and activation of this coal via 3 molar solution of H2PO4,  and KOH as well as 5 molar solution of ZnCl2. MTBE concentration in solution was determined via Gas-Chromatography instrument. The obtained experimental data were modeled by adsorption model of Freundlich and Langmuir. Results: The maximum adsorbed MTBE per gram of activated carbon was obtained when the ZnCL2 was used as an activator; however, there was no statistically significant difference among different activators. In addition, maximum removal efficiency (about 50% was obtained in acidic pH of 4, 6g/L of activated carbon and 20mg/L of MTBE concentration. Results of adsorption isotherm showed that Freundlich adsorption model had a better compliance with the experimental data. Conclusion: Regarding the problems associated with sludge disposal of wastewater treatment plant, recycling of this sludge, as an adsorbent, can eliminate most of these problems. As a result, the economical features with respect to industrial scale application and the efficiency of this substance in removal of other pollutants are recommended to be investigated.

  15. The first year of management of the 'Nocera Superiore' wastewater treatment plant

    International Nuclear Information System (INIS)

    De Feo, G.; De Gisi, S.; Ferrante, A.; Galasso, M.; De Rosa, R.; Giuliani, A.; Guadagnolo, S.; Pucci, L.

    2009-01-01

    The wastewater treatment plant (WWTP) of Nocera Superiore, in the province of Salerno, in Southern Italy, was realized for the treatment of urban wastewater on behalf of the Special Project called 'CASMEZ per il Disinquinamento del Golfo di Napoli' (PS3). The WWTP was designed for 300,000 Equivalent Inhabitants during the summer period and it is based on the classic activated sludge process for the biological treatment of wastewater. Moreover, it has the anaerobic digestion of sludge but it does not use the primary sedimentation: this is the principal peculiarity of the plant. In this paper, after an accurate description of water and sludge lines, parameters related to the first year of functioning of the plant (2007) are deeply presented and discussed. Moreover, inlet and outlet wastewater are characterised with regard to the principal parameters (BOD5, COD, TSS, etc.). Finally, the removal efficacy for the parameters considered are represented in terms of applied and removed loads, showing a linear relationship. The performed analysis pointed out that the plant has functioned under its potentiality, but respecting the compliance limits. [it

  16. Research and development on municipal Wastewater treatment processes using electron beams

    International Nuclear Information System (INIS)

    Kashiwaya, Mamoru

    1994-01-01

    This paper was described concerning the experimental results and their engineering evaluations on electron beam irradiation treatment to effluent and sludge produced in existing municipal wastewater treatment plants implemented by the Japan Atomic Energy Research Institute and the study committee for past five years. Laboratory tests using an electron accelerator were carried out for the purposes of disinfection both to effluent and to dewatered sludge. And composting tests by a pilot-plant were also carried out to find the optimal conditions on design and operation, and initial and operational cost estimations for pelletized sludge with/without the irradiation. It was found that these applications to effluent, sludge and supernatant were quite effective. However, several problems awaiting solution were found from the tests and evaluating works on the matters of marketed electron accelerators. As the results of tests and evaluating works, electron beam irradiation treatment process applied to effluent should be carried out at the municipal wastewater treatment plants. Regenerated granular activated carbon treated by electron beam irradiation may also be applicable to remove hazardous organic substances in effluent. However, long-term tests by pilotplants will be necessary to determine the design criteria, operation and maintenance conditions, and so on. For composting of dewatered sludge produced at municipal wastewater treatment plants, several sizes of smaller electron accelerator are required to be on the market. Especially, medium and small sizes municipalities expect to install composting facilities in the plant. (J.P.N.)

  17. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    Science.gov (United States)

    Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  18. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Science.gov (United States)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  19. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    Science.gov (United States)

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes.

  20. Presence of helminth eggs in wastewater sludge; Presencia de huevos de helmintos en fangos de depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    GeovanPerez Ortiz, O. G.; Gomez Vera, D. [Estacion Depuradora de Aguas Residuales. Alboraia. Valencia (Spain); Faubell Brell, M. [Universidad de Valencia (Spain); Morenilla Martinez, J. J.; Bernacer Bonora, I. [Entididad Publica de Saneamiento. Valencia (Spain); Bernabeu Adrian, A. [S. A. Agricultures de la Vega. Valencia (Spain); Amores Blasco, S. [Depuracion de Aguas del Mediterraneo. Valencia (Spain)

    2000-07-01

    Land application is one of the best options for the elimination of wastewater sludge, because sludge is useful as conditioner and fertilizer in soils. However, land application represents a sanitary hazards due to the sludge's content in pathogenic agents. Helminth eggs are among these agents, and their hardness and resistance to adverse environmental conditions allows them to survive in soils for months. With this in mind, we have launched a study of the presence of helminth eggs in the sludge of a wastewater treatment plant in Alboraia (Valencia). The results show a concentration of helminth eggs in digestion sludge of 27.000 eggs/kg dry matter. We discuss the potential sanitary relevant of these results and the need to continue with this evaluation program. (Author) 20 refs.

  1. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Directory of Open Access Journals (Sweden)

    Zubayeda Zahan

    2016-01-01

    Full Text Available The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW with sewage sludge (SS, that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284±9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS.

  2. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  3. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  4. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  5. Treatment of dairy wastewater in UASB reactors inoculated with ...

    African Journals Online (AJOL)

    Treatment of dairy wastewater in UASB reactors inoculated with flocculent biomass. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... of using flocculent sludge in UASB reactors applied to the treatment of dairy ...

  6. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  7. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  8. Earthworm-microorganism interactions: a strategy to stabilize domestic wastewater sludge.

    Science.gov (United States)

    Zhao, Limin; Wang, Yayi; Yang, Jian; Xing, Meiyan; Li, Xiaowei; Yi, Danghao; Deng, Dehan

    2010-04-01

    The performance of a conventional biofilter (BF) and a vermifilter containing the earthworm, Eisenia foetida, (VF) for the treatment of domestic wastewater sludge were compared with the earthworm-microorganism interaction mechanisms involved in sludge stabilization. The results revealed that the presence of earthworms in the VF led to significant stabilization of the sludge by enhancing the reduction in volatile suspended solids (VSS) by 25.1%. Digestion by earthworms and the earthworm-microorganism interactions were responsible for 54% and 46% of this increase, respectively. Specifically, earthworms in the VF were capable of transforming insoluble organic materials to a soluble form and then selectively digesting the sludge particles of 10-200 microm to finer particles of 0-2 microm, which led to the further degradation of organic materials by the microorganisms in the reactor. Additionally, denaturing gradient gel electrophoresis (DGGE) profiles showed that there was an intensified bacterial diversity in the vermifilter due to the presence of earthworms, especially in response to the nutrients in their casts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method

    International Nuclear Information System (INIS)

    Ottosen, Lisbeth M.; Pedersen, Anne J.; Hansen, Henrik K.; Ribeiro, Alexandra B.

    2007-01-01

    Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed to the electrode compartments. Even though the matrices were very different the remediation was successful in all cases. After treatment the Cd concentration in the ashes allowed for spreading at agricultural land and the limiting concentration of 0.8 mg Cd/kg for the wastewater sludge was almost reached (0.84 and 0.88 mg Cd/kg). The main differences of the waste products influencing the remediation process were: the sludges had a high content of organic particles that were mobilized by electrophoresis and fouled the anion exchange membrane; the straw-ash contained a lot of chloride, which formed anionic complexes with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrix

  10. Evaluation of sludge management alternatives in Istanbul metropolitan area.

    Science.gov (United States)

    Cakmakci, M; Erdim, E; Kinaci, C; Akca, L

    2005-01-01

    The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the "Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan", 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in Istanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.

  11. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    Science.gov (United States)

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    Science.gov (United States)

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  13. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    Science.gov (United States)

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  14. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Hansen, Henrik K.

    2007-01-01

    in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed...... with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrix.......Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration...

  15. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  16. Evaluation and improvement of wastewater treatment plant performance using BioWin

    Science.gov (United States)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  17. Effect of Using Effective Microorganisms EM-1 on the Performance of Extended Aeration Activated Sludge in Treating Domestic Wastewater

    Directory of Open Access Journals (Sweden)

    Waleed M. Sheet

    2013-05-01

    Full Text Available       This research concerning with the effect of using the effective microorganisms on the efficiency of extended Aeration Activated Sludge Units which consist from many strain of Bacteria, Fungi and Actinomycetes  in addition to board spectrum of nutrient and elements which important to growth, The use of this product is practically applied by using two bench scale laboratory units where they are operated to treat the wastewater after completing and preparing the activated sludge units to work under the same conditions of temperature and detention time (DT.54One bench scale is fed with wastewater and the other is operated by using a mixture of EM-1 along with the wastewater. It is noticed that the use of EM-1 with wastewater has reduced the smell resulting from disintegration in the aeration basin. Further, the color of sludge in the unit where EM-1 is added is light brown which means more activity and vitality. Besides, the concentration of mixed liquor volatile suspended solids (MLVSS is increased by using EM-1 by 30% due to the increase of nutrients and a reduction in the sludge volume index (SVI which is an important factor in the performance of the secondary settling basins which means a reduction in bulking of sludge, which is considered one of the most notable operating problem in activated sludge units. As a result bulking of sludge reduced by25% when EM-1 is used. Thus, EM-1 has participated in solving three important operating problems suffered by operators of these treatment units easily and without using complicated technologies or appliances. Further, EM-1 improves the removal efficiency of the units about 6-8% due to the reduction in chemical oxygen demand in the treated wastewater leaving the unit by 32%.

  18. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  19. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    Science.gov (United States)

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  1. Wastewater sludge - the challenges. What are the potentials of utilising the resources in sludge?

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Helmut

    2003-07-01

    The actual best practice of urban water management has developed during the last 200 years and consists of: safe and reliable drinking water supply, sewerage to prevent hygienic problems and flooding in the settlements, mechanical -biological waste water treatment for receiving water protection. The hygienic and environmental goals of the urban water system have to be attained with a minimum of costs. Most of the drinking water supplied is used for the transport of pollution originating from human metabolism, washing and cleaning. Waste water contains all the substances which enter human metabolism as food, beverages, pharmaceuticals, a great variety of household chemicals and the substances discharged from trade and industry to the sewer system. Rain water is already contaminated by air pollution when it reaches the soil or other surfaces. Whatever material the rainwater gets into contact can be found in the waste water. As a consequence the composition of the waste water is a mirror of our civilisation and of human and urban metabolism. Waste water treatment results in two products which are closely related in their chemical composition: (1) treated waste water to be discharged to the receiving water, (2) wastewater sludge to be treated and disposed or (re)used without creating new (environmental) problems. All the compounds entering the waste water which are not completely degraded can be found in both products. The transfer coefficients between water and sludge differ widely and depend on physical and chemical equilibriums. The potentially hazardous compounds in the effluent and in the sludge belong to these compounds. Source control therefore is necessary for water protection and at the same time for low concentrations of potentially hazardous compounds in the sludge. It is also clear that improved biological treatment efficiency (longer sludge age) also results in lower loads of organic pollutants in the sludge, while physical-chemical treatment steps result

  2. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Energy Technology Data Exchange (ETDEWEB)

    Cristale, Joyce [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Ramos, Dayana D. [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Dantas, Renato F. [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain); School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP (Brazil); Machulek Junior, Amilcar [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Lacorte, Silvia [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Sans, Carme; Esplugas, Santiago [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  3. The study of leachability and toxicity of sludge after neutralization of Saraka and Robule AMD wastewaters

    Directory of Open Access Journals (Sweden)

    Gardić Vojka

    2017-01-01

    Full Text Available Acid mine drainage (AMD waters are one of the most important ecological risks at the global level because of its high heavy metals content and strong acidity. Treatment of AMD water is a complex and expensive. One of the most widely used treatment process is the neutralization process of AMD. The result of neutralization is the production of sludge which may contain various other (heavy metals, depending on the chemical characteristics of the mine water treated. In this paper, leachability and toxicity of the sludges obtained during the neutralization process of wastewater from Saraka and Robule acid mine drainage and the sludges after the stabilization process at different temperatures is tested. Sludge produced in the neutralization process of Robule AMD R4 (40 and stabilized on 105°C and 200°C shows a H8-corrosiveness characteristic. Stabilized sludge show tendency to lower leachability of zinc and copper, but without influence on sulphate leachability. Sludges that show a H8-corrosiveness needs additional stabilization/neutralization pretreatment prior temperature treatment.

  4. Optimal policies for activated sludge treatment systems with multi effluent stream generation

    Directory of Open Access Journals (Sweden)

    Gouveia R.

    2000-01-01

    Full Text Available Most industrial processes generate liquid waste, which requires treatment prior to disposal. These processes are divided into sectors that generate effluents with time dependent characteristics. Each sector sends the effluent to wastewater treatment plants through pumping-stations. In general, activated sludge is the most suitable treatment and consists of equalization, aeration and settling tanks. During the treatment, there is an increase in the mass of microorganisms, which needs to be removed. Sludge removal represents the major operating costs for wastewater treatment plants. The objective of this work is to propose an optimization model to minimize sludge generation using a superstructure in which the streams from pumping-stations can be sent to the equalization tank. In addition, the aeration tank is divided into cells that can be fed in series and parallel. The model relies on mass balances, kinetic equations, and the resulting Nonlinear Programming problem generates the best operational strategy for the system feed streams with a high substrate removal. Reductions of up to 30 % can be achieved with the proposed strategy maintened BOD efficiency removal upper than 98 %.

  5. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan

    2016-03-01

    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  6. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  7. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  8. Heavy metal sequestration by humic substances during phyto-treatment of sewage sludges

    International Nuclear Information System (INIS)

    Peruzzi, E.; Doni, S.; Macci, C.; Ceccanti, B.; Masciandaro, G.

    2009-01-01

    The presence of heavy metals in sludges stabilized in a reed bed system, may affect their use for agricultural purposes; however, the environmental impact of sludges depends on the availability and phyto toxicity of their heavy metal. The aim of this paper was to determine the effectiveness of a reed bed (Phragmites Australia) sludge treatment system in two urban wastewater treatment plants in Italy after two-year period of operation: by estimating the process of sludge stabilization, following conventional and non conventional parameters related with the evolution of organic matter quality Water soluble Carbon, Dehydrogenase activity, Fulvic Acids, Humic Acids, Pyrolytic indices or organic matter Mineralization and Humification); by following the heavy metal speciation bioavailability in sludges. (Author)

  9. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  10. An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal

    Directory of Open Access Journals (Sweden)

    Tarantini Mario

    2007-01-01

    Full Text Available The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .

  11. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  12. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    International Nuclear Information System (INIS)

    Sumantri, Indro; Purwanto,; Budiyono

    2015-01-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration

  13. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  14. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  15. Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology

    Directory of Open Access Journals (Sweden)

    Isam Alyaseri

    2017-03-01

    Full Text Available The aim of this study is to use the life cycle assessment method to measure the environmental performance of the sludge incineration process in a wastewater treatment plant and to propose an alternative that can reduce the environmental impact. To show the damages caused by the treatment processes, the study aimed to use an endpoint approach in evaluating impacts on human health, ecosystem quality, and resources due to the processes. A case study was taken at Bissell Point Wastewater Treatment Plant in Saint Louis, Missouri, U.S. The plant-specific data along with literature data from technical publications were used to build an inventory, and then analyzed the environmental burdens from sludge handling unit in the year 2011. The impact assessment method chosen was ReCipe 2008. The existing scenario (dewatering-multiple hearth incineration-ash to landfill was evaluated and three alternative scenarios (fluid bed incineration and anaerobic digestion with and without land application with energy recovery from heat or biogas were proposed and analyzed to find the one with the least environmental impact. The existing scenario shows that the most significant impacts are related to depletion in resources and damage to human health. These impacts mainly came from the operation phase (electricity and fuel consumption and emissions related to combustion. Alternatives showed better performance than the existing scenario. Using ReCipe endpoint methodology, and among the three alternatives tested, the anaerobic digestion had the best overall environmental performance. It is recommended to convert to fluid bed incineration if the concerns were more about human health or to anaerobic digestion if the concerns were more about depletion in resources. The endpoint approach may simplify the outcomes of this study as follows: if the plant is converted to fluid bed incineration, it could prevent an average of 43.2 DALYs in human life, save 0.059 species in the area

  16. Integrated copper-containing wastewater treatment using xanthate process.

    Science.gov (United States)

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  17. Pre-study for the development of R and D-program for the plant DEPRA (demonstration and testing of technologies for wastewater and sludge treatment). Final report; Voruntersuchung zur Ausarbeitung der F und E-Konzeption der DEPRA. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.

    2002-07-01

    The purpose of the planned demonstration and testing plant (DEPRA) in Bremerhaven is to have a possibility to demonstrate and test new or further developed wastewater and sludge treatments in industrial scale. With that DEPRA will contribute to transfer attained results of research and development as soon as possible in to practice. The plant DEPRA will provide extensive possibilities of process control of different stages of wastewater and sludge treatment as well as the operation of additional process stages. The demonstration and testing plant should be open for research institutes and commercial users in Germany as well as for European countries in order to offer a possibility for projects concerning water purification. The aim of this study was to compile the framework of research projects for DEPRA. This report indicates trends of development for purification of municipal and industrial wastewater and sludge treatment whereas the potential of innovation for short, middle and long time implementation is considered. (orig.)

  18. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    Wastewater discharged from the edible oil industry contains a very concentrated amalgamation of organic and inorganic materials making it a problematic effluent to treat. The aim of this study was to evaluate the activated sludge treatment of edible oil effluent from a sunflower oil processing company in KwaZulu-Natal.

  19. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge.

    Directory of Open Access Journals (Sweden)

    Reti Hai

    Full Text Available BACKGROUND: The increasing use of multiwalled carbon nanotubes (MWCNTs will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS: To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS: Three triplicate sequencing batch reactors (SBR were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS: Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day impact on nutrient removal from wastewater. After long-term (180 days exposure to 1 mg/L MWCNTs, the average total nitrogen (TN removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION: MWCNTs have adverse effects on

  20. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  1. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  2. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  3. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.

    2008-01-01

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m 2 /h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  4. Polymeric polyelectrolytes obtained from renewable sources for biodiesel wastewater treatment by dual-flocculation

    Directory of Open Access Journals (Sweden)

    E. A. M. Ribeiro

    2017-06-01

    Full Text Available Biodiesel wastewater generally contains high levels of oils, soaps and glycerol residues. This needs wastewater treatment. In this study, the biodiesel wastewater treatment was tested (industrial wastewater (EFID and laboratory wastewater (EFLB from biodiesel by performing flocculation and dual-flocculation with renewable polymers. Tannin and cationic hemicellulose (CH were used as cationic flocculant, and cellulose acetate sulfate (CAS was used as an anionic flocculant. Polyacrylamide (PAM was used as a reference anionic flocculant for result efficiencies analysis obtained with CAS (renewable source flocculant. The treatment efficacy in wastewater was evaluated by: turbidity removal, sludge volume formed, chemical oxygen demand (COD and total suspended solids (TSS. The obtained sludge was studied using thermogravimetric analysis (TG. The dual-flocculation application condition of the 25% proportion of tannin (T and 75% proportion of cationic hemicelluloses (i.e., T25/CH75 showed EFLB turbidity removal of 89.1% and 89.5% for CAS and PAM additions respectively, and for EFID of 67% and 41% for CAS and PAM additions respectively. The dual-flocculation performance suggested that the polyelectrolytes obtained from renewable sources can be used for treating biodiesel wastewater.

  5. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    Science.gov (United States)

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  6. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    Science.gov (United States)

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  7. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  8. The survival of pathogens in soil treated with wastewater sludge and in potatoes grown in such soil.

    Science.gov (United States)

    Chale-Matsau, J R B; Snyman, H G

    2006-01-01

    The prevalence of pathogens on potatoes (Solanum tuberosum) grown in soil amended with a pathogen rich wastewater sludge was investigated. Bacteria of the family Enterobacteriaceae are important pathogens causing intestinal and systemic illness of humans and other animals. Type B sludge was used. Sludges investigated are the high metal and the low metal sludges. Microorganisms in the sludge-amended soil were using culture-based technique. Salmonella and E. coli were observed in tested soil samples. No microorganisms were isolated from control samples taken throughout the process of the experiment. At harvest time, some of the potato samples from LMS soil were contaminated. These potatoes were subjected to further investigation using molecular techniques (polymerase chain reaction) with fD1 and rP2 as primers. Organisms identified from the sequenced potato peel samples with the BLAST search tool included Enterobacter agglomerans (Pantoea agglomerans), several Buttiauxella spp., Pectobacterium spp., Erwinia spp. and a few Pantoea spp. Other than the E. agglomerans, which is commonly found in the gut and upper respiratory tract of humans and in the environment, all the other species identified were found to be mainly either plant or soil pathogens. The E. agglomerans are not primary pathogens but secondary opportunistic pathogens particularly in immunocompromised individuals. These results suggest that growing high risk crops using wastewater sludge contaminated soil may lead to limited infestation of produce with primary pathogens. It appears that the use of HMS due to early pathogen die-off provides less risk of infection than the LMS. However, proper treatment of wastewater sludge to reduce pathogen load is essential prior to its use as soil conditioner.

  9. Feasibility analysis of a sewage sludge treatment by an irradiation plant in Mexico

    CERN Document Server

    Moreno, J; Colin, A; Tavera, L

    2002-01-01

    Technical and economic analyses of an irradiation plant for sewage sludge treatment determined that an appropriate place for the first sludge electron irradiator in Mexico would be the sewage water treatment plant located north of Toluca in the State of Mexico. This treatment plant is mainly used for domestic wastewater and produces an approximate volume of 70 ton d-] liquid sewage sludge. Considering a 50 k W power of a 10 MeV electron linear accelerator, an irradiation dose of S KGy and a treatment capacity of 346 tons per day, it is estimated that the treatment cost would be of $9.00 US dollars per ton. (Author)

  10. Comparison of bioindicator eukaryotes of activated sludge biocenoses on two water-treatment plants: a case study

    Directory of Open Access Journals (Sweden)

    Achmadulina Farida Y.

    2017-06-01

    Full Text Available Activated sludge biocenoses were compared on waste-water treatment plants in the city of Kazan, Russian Federation and the city of Teplice, Czech Republic. Based on Palia-Kovnatski index, Acanthamoeba in Kazan, Epistylis in Teplice, and Acanthamoeba and Centropyxis were dominant genera in both plants. The major subdominant generas identified were Arcella, Opercularia and Aspidisca. This indicates high nitrification ability, high water purification potential and matured activated sludge. Chemical composition of the waste-water was identified as the main factor determining the sludge biocenoses diversity. Higher sludge biodiversity (Shannon, Margalef, and Sorensen indexes was found in Kazan corresponding to more concentrated inflow water.

  11. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  12. Innovative wastewater treatment process with reduced energy consumption and regeneration of nutrients

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Fitsios, E.; Angelidaki, Irini

    Treatment of municipal wastewater by anaerobic digestion was investigated. A new process is described here, where anaerobic digestion of municipal wastewater is the main step for removal of organic matter, resulting in much lower sludge production. Steps for removal nutrients are also included. T...

  13. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.

    Science.gov (United States)

    Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M

    2018-06-01

    In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1  mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.

  14. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    Science.gov (United States)

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2006-01-01

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  16. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  17. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  18. Occurrence of Clostridium difficile in two types of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Mahnaz Nikaeen

    2015-07-01

    Full Text Available Wastewater is a potential environmental source of Clostridium difficile, although a direct link with community-acquired C. difficile infection (CA-CDI in humans has not yet been established. The present study was performed to determine the occurrence of C. difficile in two types of wastewater treatment plants (WWTPs in Isfahan, Iran. A total of 95 samples were taken from a conventional activated sludge treatment plant and a waste stabilization ponds system, and analyzed for the presence of C. difficile. C. difficile was found in 13.6% (3/22 of digested sludge samples. However, no C. difficile was detected in inlet and outlet samples or in raw sludge of activated sludge. C. difficile was also detected in 5% (2/40 of the samples from waste stabilization ponds. Polymerase chain reaction (PCR analysis showed that all strains of C. difficile detected were toxigenic (tcdB gene positive. This study shows that C. difficile was present in WWTPs, which might constitute a potential source of community-acquired C. difficile infection.

  19. Barley Seed Germination/Root Elongation Toxicity Test For Evaluation Of Sludge Pre-Treatment

    DEFF Research Database (Denmark)

    Eriksson, Eva; Kusk, Kresten Ole; Barrett Sørensen, Mie

    Application of sludge from wastewater treatment plants (WWTPs) on agricultural land is an approach for nutrient recycling that rise challenges due to recalcitrant and harmful pollutants. In this study we assessed the feasibility of a seed germination test to evaluate sludge ecotoxicity and compared...... germination responses from two test parameters, root elongation and seed germination (sprouts elongation) of the barley (Hordeum vulgare). 2nd objective was to evaluate sewage sludge pre-treatments at batch-scale of sludge samples from two WWTPs using anaerobic digestion, and thermal and ozonation pre......-treatments. Glyphosate and eco-labelled soil were used as references. Inhibition of germination of seeds exposed to the glyphosate and sludge was registered and thus germination was successfully applied for sludge ecotoxicity assessment, and using the root elongation as the end-point was both faster and more precise...

  20. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    OpenAIRE

    Masłoń Adam

    2017-01-01

    Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTP...

  1. Multistage A-O Activated Sludge Process for Paraformaldehyde Wastewater Treatment and Microbial Community Structure Analysis

    Directory of Open Access Journals (Sweden)

    Danyang Zheng

    2016-01-01

    Full Text Available In recent years, the effect of formaldehyde on microorganisms and body had become a global public health issue. The multistage combination of anaerobic and aerobic process was adopted to treat paraformaldehyde wastewater. Microbial community structure in different reaction stages was analyzed through high-throughput sequencing. Results showed that multistage A-O activated sludge process positively influenced polyformaldehyde wastewater. The removal rates of formaldehyde were basically stable at more than 99% and those of COD were about 89%. Analysis of the microbial diversity index indicated that the microbial diversity of the reactor was high, and the treatment effect was good. Moreover, microbial community had certain similarity in the same system. Microbial communities in different units also showed typical representative characteristics affected by working conditions and influent concentrations. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant fungal genera in the phylum level of community composition. As to family and genus levels, Peptostreptococcaceae was distributed at various stages and the dominant in this system. This bacterium also played an important role in organic matter removal, particularly decomposition of the acidified middle metabolites. In addition, Rhodobacteraceae and Rhodocyclaceae were the formaldehyde-degrading bacteria found in the reactor.

  2. Heavy metals and polycyclic aromatic hydrocarbons in sludge from three industrial wastewater treatment plants of the industrial parks of Isfahan province

    Directory of Open Access Journals (Sweden)

    Saeed Mardan

    2015-01-01

    Conclusion: The concentration and composition of PAHs and HMs in sewage sludge varied and depended mainly on the quantity and type of industrial wastewater accepted by the WWTPs. There is a pyrene in sewage samples that is a carcinogenic. The concentration of HMs in sewage sludge was above of standard levels. Finally, we are not recommended the using of industrial sewage sludge in agriculture because of the high value of HMs was found in samples.

  3. Nitrogen removal from urban wastewater by activated sludge ...

    African Journals Online (AJOL)

    This study deals with nitrogen removal from urban wastewater employing the activated sludge process at low temperature. It aims at determining the performances and rates of nitrification, and characterising the autotrophic biomass (concentration and kinetic parameters) at 11°C and for F/M ratios higher than the ...

  4. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    Science.gov (United States)

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable.

  5. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    Science.gov (United States)

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  6. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  7. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  8. Radioactivity of sludge in Finland in 1988-1990

    International Nuclear Information System (INIS)

    Puhakainen, M.; Rahola, T.

    1991-06-01

    Sludge samples from wastewater treatment plants were studied by the Finnish Centre for Radiation and Nuclear Safety from 1979 onwards. Sampling of sludge was extended to include more sewage treatment plants after the accident at the Chernobyl nuclear power station. The study was continued in some of the wastewater treatment plants in order to continuously follow the level of and changes in the fallout radioactivity. Sludge samples were also taken from treatment plants in communities close to the nuclear power stations at Loviisa and Olkiluoto. For a long time the most frequently detected nuclide in sewage sludge was 137 Cs originating from Chemobyl. The 137 Cs activity concentration in sludge varied in 1988 from 68 to 750, in 1989 from 16 to 480 and in 1990 from 11 to 300 Bq kg - 1 dry weight. The activation products in sludge originating from nuclear power stations in Finland were some becquerels per kilo, at the most about twenty becquerels per kilo dry weight. The most frequently detected medical radionuclide was 131 I, frequently detected in almost all wastewater treatment plants

  9. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  10. Monitoring of total metal concentration in sludge samples: Case study for the mechanical–biological wastewater treatment plant in Velika Gorica, Croatia

    International Nuclear Information System (INIS)

    Filipović, Josip; Grčić, Ivana; Bermanec, Vladimir; Kniewald, Goran

    2013-01-01

    In this paper, monitoring of total metal concentration in sludge samples from wastewater treatment process is elaborated. The presented results summarize the analyses of sludge samples in a period from 2008 to 2012. Possible sources of pollutions are given. Primarily, waste solid samples were collected from different pretreatment steps: (A) coarse grid, (B) fine grid and (C) aerated sand grease grid. Samples of A and B followed a repeatable pattern in 2008 and 2010. According to the results from 2008, samples of C contained measurable concentration of the following metals (mg/kg dry matter): Zn (21), Ni (1.05) and Ba (14.9). Several types of sludge samples were analyzed: fresh raw sludge (PS; 6–12 hour old), the sludge from the digester for anaerobic sludge treatment (DS; 48–72 hour old), samples from lagoons where the sludge is temporarily deposited (DOS and DOSold; 30–120 days) and sludge samples from agricultural areas (AA; aged over 180 days). Additionally, samples of dehydrated sludge (DEHS and DEHSold; 90–180 days) were collected upon construction of equipment for sludge dehydration in 2011. An analysis of total metal concentrations for Cu, Zn, Cr, Pb, Ni, Hg, Cd, Ba, As, Se, Sb, Co, Mo, Fe and Mn was performed by flame atomic absorption spectrometry (FAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). The most recent results (year 2011) indicated a high concentration of heavy metals in PS samples, exceeding the MCLs (mg/kg dry matter): Cu (2122), Zn (5945), Hg (13.67) and Cd (6.29). In 2012 (until July), only a concentration of Cu exceeded MCL (928.75 and 1230.5 in DS and DEHS, respectively). A composition of sludge was variable through time, offering the limited possibility for future prediction. The sludge is being considered as a hazardous waste and a subject of discussion regarding disposal. - Highlights: ► Summarized 5-year monitoring data for heavy metals in sludge ► Partially determined sources of pollution by

  11. Monitoring of total metal concentration in sludge samples: Case study for the mechanical–biological wastewater treatment plant in Velika Gorica, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Filipović, Josip [Town Office for Physical Planning and Environmental Protection, Velika Gorica County, Trg kralja Tomislava 34, 10410 Velika Gorica (Croatia); Grčić, Ivana, E-mail: igrcic@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb Marulićev trg 19, 10000 Zagreb (Croatia); Bermanec, Vladimir [Institute of Mineralogy and Petrology, Faculty of Science, University of Zagreb, Horvatovac bb, 10000 Zagreb (Croatia); Kniewald, Goran [Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2013-03-01

    In this paper, monitoring of total metal concentration in sludge samples from wastewater treatment process is elaborated. The presented results summarize the analyses of sludge samples in a period from 2008 to 2012. Possible sources of pollutions are given. Primarily, waste solid samples were collected from different pretreatment steps: (A) coarse grid, (B) fine grid and (C) aerated sand grease grid. Samples of A and B followed a repeatable pattern in 2008 and 2010. According to the results from 2008, samples of C contained measurable concentration of the following metals (mg/kg dry matter): Zn (21), Ni (1.05) and Ba (14.9). Several types of sludge samples were analyzed: fresh raw sludge (PS; 6–12 hour old), the sludge from the digester for anaerobic sludge treatment (DS; 48–72 hour old), samples from lagoons where the sludge is temporarily deposited (DOS and DOSold; 30–120 days) and sludge samples from agricultural areas (AA; aged over 180 days). Additionally, samples of dehydrated sludge (DEHS and DEHSold; 90–180 days) were collected upon construction of equipment for sludge dehydration in 2011. An analysis of total metal concentrations for Cu, Zn, Cr, Pb, Ni, Hg, Cd, Ba, As, Se, Sb, Co, Mo, Fe and Mn was performed by flame atomic absorption spectrometry (FAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). The most recent results (year 2011) indicated a high concentration of heavy metals in PS samples, exceeding the MCLs (mg/kg dry matter): Cu (2122), Zn (5945), Hg (13.67) and Cd (6.29). In 2012 (until July), only a concentration of Cu exceeded MCL (928.75 and 1230.5 in DS and DEHS, respectively). A composition of sludge was variable through time, offering the limited possibility for future prediction. The sludge is being considered as a hazardous waste and a subject of discussion regarding disposal. - Highlights: ► Summarized 5-year monitoring data for heavy metals in sludge ► Partially determined sources of pollution by

  12. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    Science.gov (United States)

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  13. Upgrading of Wastewater Treatment Plants Through the Use of Unconventional Treatment Technologies: Removal of Lidocaine, Tramadol, Venlafaxine and Their Metabolites

    Directory of Open Access Journals (Sweden)

    Wilhelm Püttmann

    2012-09-01

    Full Text Available The occurrence and removal efficiencies of the pharmaceuticals lidocaine (LDC, tramadol (TRA and venlafaxine (VEN, and their major active metabolites monoethylglycinexylidide (MEGX, O-desmethyltramadol (ODT and O-desmethylvenlafaxine (ODV were studied at four wastewater treatment plants (WWTPs equipped with activated sludge treatment technologies. In parallel to activated sludge treatment, the removal efficiency of the compounds in pilot- and full-scale projects installed at the WWTPs was investigated. Within these projects two different treatment methods were tested: adsorption onto powdered/granulated activated carbon (PAC/GAC and ozonation. The metabolite MEGX was not detected in any sample. The concentrations of the target analytes in wastewater effluents resulting from activated sludge treatment ranged from 55 to 183 (LDC, 88 to 416 (TRA, 50 to 245 (ODT, 22 to 176 (VEN and 77 to 520 ng L−1 (ODV. In the pilot project with subsequent treatment with PAC/GAC, the mean concentrations of the analytes were between

  14. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  15. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  16. Anaerobic treatment of agro-industrial wastewaters for COD removal in expanded granular sludge bed bioreactor

    Directory of Open Access Journals (Sweden)

    Abumalé Cruz-Salomón

    2017-12-01

    Full Text Available Untreated agro-industrial wastewaters are undesirable in the aquatic environment due to the presence of high organic matter contents. However, they may constitute a large potential for biogas production. The present investigation is focused on three laboratory-scale anaerobic expanded granular sludge bed (EGSB bioreactors, continuously operated for 60 d under mesophilic condition with the aim of exploring the feasibility of treating three most significant agro-industrial wastewaters in Chiapas, Mexico (i.e., cheese whey, vinasse, and coffee-processing wastewater. The EGSB bioreactors were operated with a hydraulic retention time (HRT of 6 d under stable conditions (i.e., buffer index (BI of 0.31, 0.34, and 0.03, generating a maximum chemical oxygen demand (COD removal efficiency of 91, 74, and 96% with an average methane production of 340, 245, and 300 mL/g COD∙d for cheese whey, vinasse, and coffee-processing wastewater, respectively. According to the obtained results, the EGSB bioreactors could be a sustainable alternative to simultaneously solve the environmental problems and to produce bioenergy.

  17. Combination of alkaline and microwave pretreatment for disintegration of meat processing wastewater sludge.

    Science.gov (United States)

    Erden, G

    2013-01-01

    Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability.

  18. Acid fermentation of municipal sludge: the effect of sludge type and origin on the production and composition of volatile fatty acids

    International Nuclear Information System (INIS)

    Ucisik, A. S.; Schmidit, J. E.; Henze, M.

    2009-01-01

    Due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production, new wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment would be of great value. In this study, the feasibility of implementing acid fermentation process on different types of municipal sludge to increase soluble chemical oxygen demand (SCOD), especially short-chain volatile fatty acids (VFAs) was investigated by batch and semi-continuous experiments. (Author)

  19. Optimizing the selection of small-town wastewater treatment processes

    Science.gov (United States)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  20. Fate and behaviour of ZnO engineered nanoparticles in a simulated domestic wastewater treatment plant

    CSIR Research Space (South Africa)

    Chaúquea, EFC

    2013-08-01

    Full Text Available Wastewater treatment plants (WWTPs) employ activated sludge processes to treat domestic wastewater using a consortium of bacteria essentially to degrade organic matter. However, bacteria activity is inhibited by toxic substances; thus, potentially...

  1. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Chhetri, Ravi Kumar [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Ooi, Gordon [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Litty, Klaus [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Christensson, Magnus [AnoxKaldnes, Klosterängsvägen 11A, 226 47 Lund (Sweden); Kragelund, Caroline [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Bester, Kai, E-mail: kb@envs.au.dk [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark)

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h{sup −1}, from 0 to 7.78 × 10{sup −1} h{sup −1}, from 0 to 7.86 × 10{sup −1} h{sup −1} and from 0 to 1.07 × 10{sup −1} h{sup −1} for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase

  2. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M.S.; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R.; Bester, Kai

    2015-01-01

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h −1 , from 0 to 7.78 × 10 −1 h −1 , from 0 to 7.86 × 10 −1 h −1 and from 0 to 1.07 × 10 −1 h −1 for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step

  3. Treatment of Synthetic Wastewater by Aerobic¬-anaerobic Bioreactor with Granular Sludge Developed for Removal of Nutrients

    Directory of Open Access Journals (Sweden)

    Malihe Amini

    2014-05-01

    Full Text Available The excessive accumulation of nutrient (C, N, and P discharge to surface water can pose serious ecological problems that affect the health of aquatic life and consequently that of human and animals. It is, therefore, necessary to remove these substances from wastewaters for reducing their harm to environments. A novel upflow aerobic/anoxic flocculated sludge bioreactor (UAASB will be establish and apply as a single treatment unit for carbon, nitrogen and phosphorus removal. In this study, nutrients (C, N and P removal efficiency in a time-based control UAASB reactor has studied. Analyze of nutrients removal efficiency were investigated from wastewater using optimization of factors and effects of variables: COD/N/P ratio and flow rate. Results of experiments showed that COD/N/P ratio 1000/250/2 and Q 7 L/h in HRT 6 h, F/M 0.054 kg COD/kg MLVSS.h and OLR 0.15 kg/m3.h were desirable for removal of nutrients from wastewater in aerobic/anaerobic bioreactor. In these conditions SVI 53.12 mL/g, COD removal efficiency 86% and PO43- removal efficiency 97.5% were showed. According all results of responses for best nutrient removal, UAASB bioreactor is desirable for removal efficiency of C and P.

  4. Wastewater and sludge reuse in agriculture

    Science.gov (United States)

    Kalavrouziotis, Ioannis

    2016-04-01

    The reuse of Municipal wastewaters (TMWW) for irrigation of crops, and of sludge for the amendment of soils, is a multidimensional disposal practice aiming at: (i) minimizing the environmental problems by releasing the pressure exerted by these two inputs on the environment, (ii) providing the growing plants with water and nutrients and (ii) improving soil fertility and productivity, The research work conducted in our University in relation to accomplishing a safe reuse has been focused on the study of the following aspects of reuse: (i) heavy metal accumulation in soils and plants with emphasis on their edible part. This aspect has been studied by conducting a series of experiments aiming at the study of the accumulation of heavy metals in soils, and in plant roots, stalks, leaves and fruits. The conclusions drawn so far with regard to the order of accumulation of heavy metals are: Roots>leaves>stalks>fruits ( edible parts) (ii) interactions between heavy metals, plant nutrients and soil chemical and physical properties. After the examinations of hundreds of interactions, and the development of a quantification of the interactions contribution, it was found that considerable quantities of heavy metals and nutrients are contributed to the soil and to various plant parts , emphasizing the important role of the elemental interactions in plants.(iii) assessment of soil pollution with heavy metals based on pollution indices, Three pollution Indices have been established by our research team and were proposed internationally for application in actual practice for the prediction of soil pollution due to long term reuse of wastewater and sludge. These indices are as follows: (a) Elemental pollution Index (EPI), (b) Heavy Metal Load (HML), and (c) Total Concentration Factor (TCF) and (iv) construction of a computer program for the control of the reuse of TMWW and sludge, and forecasting soil pollution due to accumulation of heavy metal by means of pollution indices.

  5. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  6. Technical-economical, agronomical, pedological, hygienic and normative aspects of municipal wastewater sludges; Aspetti tecnico-economici, agronomici, pedologici, igienico-sanitari e normativi dei fanghi di depurazione civile

    Energy Technology Data Exchange (ETDEWEB)

    Ottavi, C [ENEA, Rome (Italy). Dip. Ambiente; Ottaviani, M [Istituto Superiore di Sanita, Rome (Italy). Lab. di Igiene Ambientale; Figliolia, A [Istituto Sperimentale per la Nutrizione delle Piante, Rome (Italy)

    1995-12-01

    This review is intended to give an overview on the technical, economical, agronomical, pedological and hygienic aspects of sludges from treatment plants of civil wastewater, Both Italian and European regulations on the sludge disposal are considered.

  7. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  8. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    Science.gov (United States)

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  9. Current status of radiation treatment of water and wastewater

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1997-01-01

    This is a brief review of the current status of radiation treatment of surface water, groundwater, wastewaters, and sewage sludges. Sources of ionizing radiation, and combination radiation methods for purification are described in some detail. Special attention is paid to pilot and industrial facilities. (author)

  10. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    Science.gov (United States)

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  11. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  13. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  14. Characterization of Wastewater for Modelling of Activated Sludge Processes

    DEFF Research Database (Denmark)

    Henze, Mogens

    1992-01-01

    The fractionation of organic matter in the various parts which are used for mathematical modelling is discussed. The fractions include inert soluble, readily biodegradable, rapidly hydrolyzable, slowly hydrolyzable, biomass and inert suspended material. Methods for measuring are also discussed....... Fractionation of biomass in wastewater and in activated sludge is difficult at present, as methods are only partly developed. Nitrogen fractions in wastewater are mainly inorganic. The organic nitrogen fractions are coupled to the organic COD fractions. The fractions of COD, biomass and nitrogen found...

  15. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F

    2010-02-01

    This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  17. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    Science.gov (United States)

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to

  18. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.

    Science.gov (United States)

    Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L

    2018-06-19

    Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.

  19. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  20. Municipal wastewater treatment for effective removal of organic matter and nitrogen

    International Nuclear Information System (INIS)

    Grebenevich, E.V.; Zaletova, N.A.; Terentieva, N.A.

    1987-01-01

    The organic matter, as well as nitrogen and phosphorus, are nutrient substances. Their excess concentrations in water receiving bodies lead to eutrophication, moreover, the nitrogen content in water bodies is standardized according the sanitary-toxicological criterion of harmfulness: NH 4 + -N ≤0,39-2,0 mgl - , NO 3 -N ≤9,1-10 mgl - . The municipal wastewater contain, usually, organic matter estimated by BOD 150-200 mgl - , and COD 300-400 mgl - , the nitrogen compounds 50-60 mgl - , and NH 4 + -N 20-25 mgl - . NO x -N are practically absent. Their presence indicated on discharge of industrial wastewater. The total phosphorus is present in the concentration of 15 mgl - , PO 4 - - P 5-8 mgl - . Activated sludge process has been most widely used in the USSR for municipal wastewater treatment. The activated sludge is biocenoses of heterotrophic and auto trophic microorganisms. They consume nutrient matters, transferring pollution of wastewater by means of enzyme systems in acceptable forms. C, N and P-containing matters are removed from wastewater by biological intake for cell synthesis. Moreover C- containing matters are removed by oxidation to CO 2 and H 2 O. P-containing compounds under definite conditions associate with solid fraction of activated sludge and thus simultaneously removed from wastewater. The removal of nitrogen in addition to biosynthesis is carried out only in the denitrification process, when oxygen of NO x -N is used for oxidation of organic matter and produced gaseous nitrogen escapes into the atmosphere

  1. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  2. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  3. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  4. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    Science.gov (United States)

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  5. Nanoparticles in Constanta-North Wastewater Treatment Plant

    Science.gov (United States)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  6. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  7. Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid–water distribution coefficients

    International Nuclear Information System (INIS)

    Arvaniti, Olga S.; Ventouri, Elpida I.; Stasinakis, Athanasios S.; Thomaidis, Nikolaos S.

    2012-01-01

    Highlights: ► Eighteen PFCs were determined in wastewater and sludge samples using LC–MS/MS. ► PFPeA, PFOA and PFOS were the dominating compounds in both WWTPs. ► No significant decrease or even increase of most PFCs was noticed in effluents. ► Distribution coefficients of PFCs were calculated for different types of sludge. ► Sorption potential was affected by the target compound and the type of sludge. - Abstract: The concentrations of eighteen perfluorinated compounds (PFCs: C5–C14 carboxylates, C4, C6–C8 and C10 sulfonates and 3 sulfonamides) were determined in wastewater and sludge samples originating from two different wastewater treatment plants (WWTPs). The analytes were extracted by solid phase extraction (dissolved phase) or sonication followed by solid phase extraction (solid phase). Qualitative and quantitative analyses were performed by LC–MS/MS. According to the results, perfluoropentanoic acid (PFPeA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were dominant in wastewater and sludge samples from both plants. The average concentrations in the raw and treated wastewater ranged up to 75.7 ng L −1 (perfluorotridecanoic acid, PFTrDA) and 76.0 ng L −1 (PFPeA), respectively. Concentrations of most PFCs were higher in effluents than in influents, indicating their formation during wastewater treatment processes. In sewage sludge, the average concentrations ranged up to 6.7 ng g −1 dry weight (PFOS). No significant seasonal variations in PFCs concentrations were observed, while higher concentrations of PFOA, PFOS and perfluorononanoic acid (PFNA) were determined in the WWTP receiving municipal and industrial wastewater. Significantly different distribution coefficient (K d ) values were determined for different PFCs and different type of sludge, ranging between 169 L kg −1 (PFHxS) to 12,922 L kg −1 (PFDA).

  8. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    Science.gov (United States)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  9. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    Science.gov (United States)

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  10. Uses of biogas produced by digestion of wastewater sludge. The SIAAP's experience feedback and projects

    International Nuclear Information System (INIS)

    Amosse, S.; Nedelec, R.

    2010-01-01

    The SIAAP, in charge of the purification of the Great Paris wastewaters (8 M inhabitants), handles 2.7 Mm 3 /day. Five wastewater treatment plants permit to dean these wastewaters before they are discharged into the receiving environment: 'Seine Aval' (Acheres, 1,7 Mm 3 /day), 'Seine Amont' (Valenton, 600 000 m 3 /day), 'Seine Centre' (Colombes, 240 000 m 3 /day), 'Seine Gresillons' (Triel-sur-Seine, 100 000 m 3 /day) and 'Marne Aval' (Noisy-Le-Grand, 40 000 m 3 /day). Biogas produced by digestion of sludge provides a part of the energy required by the five sewage treatment works. Energy recovered from biogas have been used by the SAV site since 1940. As soon as the first part of this plant started up, biogas was used as fuel to heat digester, to produce power through biogas engines and to drive blowers. In the 60's and 70's, dual-fuel engines were brought into service, and then in 1992, a gas turbine was installed. Nowadays, a combined heat and power (cogeneration) project is in progress with the installation of two gas turbines, each generating 5 MW. All of these installations had allowed a 70% energetic autonomy ratio on 'Seine Aval' site. Then, new treatment units were introduced. Thus, energy consumption has increased, with only 60 % of energy demands being covered. By 2020, a complete make-over of the 'Seine Aval' plant will be done. This should allow to cover about 70% of energy demands, partly thanks to biogas reuse. New plants are currently being constructed. All of them will include sludge digestion process providing biogas. With the 'Seine Gresillons' plant upgrading, digestion process will occur on site. Biogas will be used in a cogeneration system to produce both electricity (that would be either used on site or sold commercially, this has not been decided by now) and heat for digesters heating. The new 'Seine Moree' plant will be built in the city of Blanc-Mesnil. A partnership with the Syctom (an association in charge of treatment and reuse of the

  11. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    Science.gov (United States)

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  12. The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge.

    Science.gov (United States)

    Tezcan Un, Umran; Onpeker, Suzan Eroglu; Ozel, Emel

    2017-09-15

    This research experimentally investigates the treatment of authentic electroplating wastewater with high Cr(VI) content by electrocoagulation with the obtained sludge being reused as a raw material to produce inorganic pigments. A zero waste process is introduced to help conserve resources and to minimize environmental effects. The effects of operational parameters on electrocoagulation are determined in a batch stirred reactor using an iron electrode. The best performance was observed when a current density 20 mA/cm 2 , pH 2.4 and 0.05 M NaCl electrolyte were maintained. The initial Cr(VI) concentration of 1000 mg/L was almost completely abated (∼100%) at an energy cost of 2.68 kWh/m 3 , fulfilling the EPA guideline of 2.77 mg/L within a single step process. The sludge was characterized using XRD and XRF showing that the sludge is a rich source of iron and chromium and can be reused to produce value added ceramic pigments. Pigments prepared in this way appeared to be reddish brown and black color in transparent glaze and were also characterized using XRD and XRF. In this study, a zero waste process is successfully introduced with ∼100% Cr(VI) removal, with subsequent reuse of the resulting sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  14. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  15. Treatment of grain distillation wastewaters in an upflow anaerobic ...

    African Journals Online (AJOL)

    In operation of the full-scale upflow anaerobic sludge bed (UASB) system at the Stellenbosch Farmers' Winery (SFW) Wellington distillery, a problem encountered in the treatment of grain distillation wastewater was the accumulation of a floating scum layer. On occasion this was so severe that it forced shutdown of the UASB ...

  16. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  17. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  18. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Young; Seok, Hyun-Woo [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Kwon, Hye-Ok; Choi, Sung-Deuk [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of); Seok, Kwang-Seol [Chemical Research Division, National Institute of Environmental Research, Incheon 22689 (Korea, Republic of); Oh, Jeong Eun [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑{sub 11}PFAAs concentrations were detected in the influent and effluent from the paper (median: 411 ng/L) and textile (median: 106 ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49–66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0 ng/g) and chemical (median: 81.5 ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146 ton/yr. The textile industry had the highest discharge load with 0.055 ton/yr (PFOA: 0.039 ton/yr, PFOS: 0.010 ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489 ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. - Highlights: • 11 PFAAs in wastewater and sludge from 5 industrial sectors were investigated. • PFOA and PFOS were the dominant in wastewater while PFOS was predominant in sludge. • The total discharge loads from 5 industrial sectors 0.146 ton/yr. • The textile industry showed the highest discharge load with 0.055 ton/yr.

  19. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    Science.gov (United States)

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  20. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  1. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    Science.gov (United States)

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs

  2. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Removal of phosphorus from wastewater using ferroxysorb sorption media produced from amd sludge

    Science.gov (United States)

    Sibrell, P.L.; Tucker, T.W.; Kehler, T.; Fletcher, J.W.

    2008-01-01

    Treatment of acid mine drainage (AMD), whether with lime, limestone, caustic or simple aeration, nearly always results in generation of a metal hydroxide sludge. Disposal of the sludge often constitutes a significant fraction of the operating cost for the AMD treatment plant. Research at the USGS - Leetown Science Center has shown that AMD sludge, with its high content of aluminum and iron oxides, has a high affinity of phosphorus (P). Anthropogenic sources of P are associated with eutrophication and degradation of aquatic environments, resulting in anoxic dead zones in certain sensitive waterways. In this paper, we describe a method of converting the AMD sludge from a liability into an asset - Ferroxysorb P removal media - which can be used to remove excess P from wastewater. Three different Ferroxysorb media samples were produced from differing AMD sources and tested for P removal. Adsorption isotherms confirmed that the media had a high sorption capacity for P, as high as 19,000 mg/kg. The technology was demonstrated at an active fish hatchery, where the media remained in service for over three months without stripping or regeneration. Over that period of time, the calculated P removal was 50%, even at a very low influent P concentration of 60 parts per billion. In summary, use of the AMD-derived Ferroxysorb sorption media will reduce AMD treatment costs while at the same time helping to resolve the pressing environmental issue of eutrophication and degradation of sensitive waterways.

  4. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    Science.gov (United States)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  5. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4

    OpenAIRE

    Ma, Chao; Wen, Hanquan; Xing, Defeng; Pei, Xuanyuan; Zhu, Jiani; Ren, Nanqi; Liu, Bingfeng

    2017-01-01

    Background Simultaneous wastewater treatment and lipid production by oleaginous microalgae show great potential to alleviate energy shortage and environmental pollution, because they exhibit tremendous advantages over traditional activated sludge. Currently, most research on wastewater treatment by microalgal are carried out at optimized temperature conditions (25?35??C), but no information about simultaneous wastewater treatment and lipid production by microalgae at low temperatures has been...

  6. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment.

    Science.gov (United States)

    Bai, Yaohui; Huo, Yang; Liao, Kailingli; Qu, Jiuhui

    2017-10-01

    Traditional wastewater treatments based on activated sludge often encounter the problems of bulking and foaming, as well as malodor. To solve these problems, new treatment technologies have emerged in recent decades, including the ecological wastewater treatment process, which introduces selected local plants into the treatment system. With a focus on the underlying mechanisms of the ecological treatment process, we explored the microbial community biomass, composition, and function in the treatment system to understand the microbial growth in this system and its role in pollutant removal. Flow cytometry analysis revealed that ecological treatment significantly decreased influent bacterial quantity, with around 80% removal. 16S rRNA gene sequencing showed that the ecological treatment also altered the bacterial community structure of the wastewater, leading to a significant change in Comamonadaceae in the effluent. In the internal ecological system, because most of microbes aggregate in the plant rhizosphere and the sludge under plant roots, we selected two plant species (Nerium oleander and Arundo donax) to study the characteristics of rhizosphere and sludge microbes. Metagenomic results showed that the microbial community composition and function differed between the two species, and the microbial communities of A. donax were more sensitive to seasonal effects. Combined with their greater biomass and abundance of metabolic genes, microbes associated with N. oleander showed a greater contribution to pollutant removal. Further, the biodegradation pathways of some micropollutants, e.g., atrazine, were estimated.

  7. Impact of accelerated electrons on activating process and foaming potential of sludge

    International Nuclear Information System (INIS)

    Cuba, V.; Pospisil, M.; Mucka, V.; Silber, R.; Jenicek, P.; Dohanyos, M.; Zabranska, J.

    2002-01-01

    Complete text of publication follows. Presently, anaerobic and/or aerobic biological treatment is the cheapest and the most effective method of wastewater and sludge processing. However, due to some non-biodegradable substances present in wastewater and also due to limited capacity of wastewater treatment plants, it is necessary to find effective processes, that would be complementary to existing sludge treatment methods. Beside chemical and physical processes, radiation technology seems to offer improvement of effectivity of biological treatment. The paper describes possibilities of irradiation in activating process. Activated sludge can be affected in all its parameters, including physico chemical properties, such as sedimentation rate, or resulting volume of sludge. For the purpose of this research, laboratory experimental reactors simulating activating process were operated. According to previous results, accelerated electrons were used for irradiation, for e-beam seems to be more expedient than gamma irradiation. Reactor with irradiated sludge has been compared with the one without irradiation. It is shown, that pre-irradiation of sludge can positively affect following process of activation. Beside the activating process, another goal has been pursued. Radiation can strongly affect sludge foaming potential. Biological foaming caused by surfactant microorganisms, represents quite serious problem in many wastewater treatment plants, especially in digesters. It was proved that after irradiation foaming potential of sludge decreases. Pre-irradiation of activated sludge with relatively low doses also results in reduction of number of pathogenic microorganisms, presented in sludge

  8. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    Directory of Open Access Journals (Sweden)

    Luca Zuliani

    2016-10-01

    Full Text Available Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  9. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    Science.gov (United States)

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  10. DISCUSSION ON LEGAL AND PRACTICAL JUSTIFICATION OF USING WASTEWATER SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2015-11-01

    Full Text Available Unjustifiable introduction to the soil of sewage sludge from a Białystok wastewater treatment facility was subject to an investigation conducted by the District Public Prosecutor in Białystok, who charged the Institute of Environmental Protection – National Research Institute (IEP-NRI with the task to produce (based on the investigation acts an expert opinion “on unlicensed disposal of municipal wastewater sludge under conditions which can threaten human life or health or significantly depress the quality of land surface or cause large scale damage to the environment, i.e. the deed provided for under Article 183 §1 of the Penal Code as well as other deeds”. The opinion was elaborated by Professor Jan Siuta, a head of the Land Protection Department at the IEP-NRI. The outline of his opinion was sent to the Minister of the Environment together with guidelines for necessary activities to be taken following the provisions of Article 96 §1 of the Waste Law of December 14, 2012 (Official Journal of 8 January 2013, item 21. The opinion notwithstanding, the Minister of the Environment was sent a critical commentary on the Appendix 1 to the order of the Minister of the Environment as of March 21, 2006 (Official Journal No 49, item 356 on waste types and conditions for their recycling in the R14 process. The commentary focused on the application of “furnace waste from carbon fired power plants to produce the so-called reclamation coating; the waste needs to be mixed 1 : 1 with dehydrated sludge and applied as maximally 1 m thick layer in the case of shrub planting and 2 m thick layer in the case of tree planting”. It should be added that in the latter case it is admitted to use as much as up to 10 000 tonnes of wastewater sludge per one ha. The Department of Waste Management replied in writing to both notes directed to Ministry of the Environment; voicing the statement that the enforced regulations do not need to be amended since they remain

  11. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    Science.gov (United States)

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  12. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    Science.gov (United States)

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  13. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint. © The Author(s) 2014.

  14. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  15. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  16. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  18. Study of the aerobic biological treatment of slaughterhouse wastewater by membrane process

    International Nuclear Information System (INIS)

    Ben yahmed, Nesrine

    2011-01-01

    The objective of this work is to study the performance of aerobic treatment of slaughterhouse wastewater by a side-stream membrane bioreactor (MBR) with semi-frontal filtration and to evaluate the sludge production generated by this system treatment. The MBR was fed with a flow rate of 5 L/d. The wastewater used in this study was collected from the WWTP Ellouhoum following pretreatment operations. They are characterized by an average total COD concentration of approximately 2 g/L. The mass load applied to the system was 0.18 g COD/gVSS.d. The results show that COD and total nitrogen removal efficiencies are respectively estimated at 90.66 pour cent and 92.86 pour cent. Treatment with MBR also allows a total elimination of TSS, fecal coliforms and pathogens. With a total biomass recycling, low sludge yield (Yobs) of 0.106 gTSS/g COD eliminated was obtained.

  19. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates.

    Science.gov (United States)

    Tay, J H; Show, K Y; Lee, D J; Hong, S Y

    2004-01-01

    The disposal of sludge from wastewater treatment presents highly complex problems to any municipality. Most of the sludge disposal methods have varying degrees of environmental impact. Hence, it is necessary to explore potential areas of reuse in order to alleviate sludge disposal problems and to conserve natural resources. Industrial sludge and marine clay are two forms of high-volume wastes. Using these wastes as a resource of raw materials to produce construction aggregates would enable large-scale sludge reuse. The aggregates were produced at various sludge-clay combinations containing 0, 20, 50, 80 and 100% clay contents, respectively. The pelletized aggregates displayed lower particle densities ranged between 1.48 and 2.25 g/cm3, compared to the density of granite at 2.56 g/cm3. Good 28-day concrete compressive strength of 38.5 N/mm2 achieved by the 100% sludge aggregate was comparable to the value of 38.0 N/mm2 achieved of the granite control specimens. The leachate contamination levels from the aggregates after 150 days were found acceptable when used in concrete, indicating insignificant environmental contamination. The heat flow study showed increases in heat flow at the temperatures of 480 degrees C and between 660 degrees C and 900 degrees C, indicating a need for the extension of heating time around these temperatures.

  20. Removal of Antibiotics in Biological Wastewater Treatment Systems—A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X)

    DEFF Research Database (Denmark)

    Polesel, Fabio; Andersen, Henrik Rasmus; Trapp, Stefan

    2016-01-01

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing...... observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT......), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from...

  1. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    criteria involve sludge disposal strategies and electrical energy consumption. However, there is a need to develop a systematic methodology to quantify relevant environmental indicators; comprising information of the wastewater treatment system in a life cycle perspective. Also, to identify which...... are the parameters that have the greatest influence on the potential environmental impacts of the systems analyzed. In this study, we present a systematic methodology for the analysis of the operation of two modern wastewater treatment technologies: Biological removal of nitrogen and organic matter by activated...... sludge (Scenario 1), and anaerobic removal of organic matter by a continuous stirred tank reactor (Scenario 2). Both technologies were applied to wastewater coming from a fish meals industry and a pet food industry discharging about 250 to 260 thousand cubic meters of wastewater per year. The methodology...

  2. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, Olga S.; Stasinakis, Athanasios S., E-mail: astas@env.aegean.gr

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4–C14, C16, C18 carboxylates; C4–C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and

  3. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment

    International Nuclear Information System (INIS)

    Arvaniti, Olga S.; Stasinakis, Athanasios S.

    2015-01-01

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4–C14, C16, C18 carboxylates; C4–C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and

  4. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  5. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in northeastern Spain, which comprises four ponds operating in series.

  6. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  7. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    Science.gov (United States)

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  8. The viability of biological treatment at Ibi wastewater treatment station; Viabilidad del tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Flor Garcia, M.V.; Morenilla Martinez, J.J.; Ruiz Zapata, R.

    1996-06-01

    In this study, we have proved the viability of biological treatment of leaving waters from Ibi Wastewater Treatment Station, where water is subject to the action of coagulant agents, following a physical and chemical process. the experience was based on wastewater treatment by using activated sludge, at experimental scale in a pilot plant. During the experiments, we controlled the main parameters which indicate treatment success; namely, Suspended Solids (SS), pH, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), in addition to other substances such as nutrients and toxicants, and inhibitors of bio metabolism. (Author) 6 refs.

  9. Legislation concerning the energy reuse of sludge from waste water treatment plant in the region of Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Mislej, V. (Vodovod-Kanalizacija, Ljubljana (Slovenia)), Email: vmislej@vo-ka.si; Grilc, V. (National Inst. of Chemistry, Ljubljana (Slovenia)), Email: viktor.grilc@ki.si

    2009-07-01

    The legislation on waste management in Slovenia was markedly renovated in the year 2008. The main changes were related to the treatment of biologically degradable wastes, which was extended to the energy-from-waste option. New regulations in Slovenia have set criteria on which wastes can be processed and transformed into a solid recovered fuel and the conditions concerning its quality and use. The legislation also outlines other process conditions for placing sewage sludge on the market as a secondary solid fuel and its application in various thermal processes. Sewage sludge represents the largest share of wastes. generated at biological wastewater treatment plants (BWWTP). In fresh form it is formed as excess active sludge formed during biological treatment of municipal wastewater and may be consecutive stabilized by an aerobic or anaerobic process. Anaerobic stabilization (digestion)of the raw gravity thickened sludge, followed by mechanical and thermal dehydration transform the fresh sludge into stable dry granules. In this form it is suitable for marketing and utilization in thermal processes. The main problems may be low calorific value and relative high metals content (especially mercury) and sulphur. Sulphur and cadmium are not among the limiting parameters of the noted technical specification for alternative fuels, so the new regulation in Slovenia will be appealed. (orig.)

  10. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  11. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment

    NARCIS (Netherlands)

    Kappel, C.; Kemperman, A.J.B.; Temmink, B.G.; Zwijnenburg, A.; Rijnaarts, H.; Nijmeijer, K.

    2014-01-01

    As water shortages are increasing, the need for sustainable water treatment and the reuse of water is essential. Water reuse from wastewater can be accomplished in a membrane bioreactor (MBR) in the secondary activated sludge stage of a wastewater treatment plant. To remove viruses, dissolved

  12. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) - a tool for understanding activated sludge population dynamics and community stability.

    Science.gov (United States)

    Mielczarek, A T; Saunders, A M; Larsen, P; Albertsen, M; Stevenson, M; Nielsen, J L; Nielsen, P H

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.

  13. Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan

    2008-01-01

    The evaluation of activated sludge control strategies in wastewater treatment plants (WWTP) via mathematical modelling is a complex activity because several objectives; e.g. economic, environmental, technical and legal; must be taken into account at the same time, i.e. the evaluation of the alter...

  14. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.

    Science.gov (United States)

    Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David

    2018-03-20

    The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.

  15. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Decomposition of colored wastewater for recycling water by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Tanabe, Hiroko; Sekiguchi, Masayuki; Sawai, Teruko

    1995-01-01

    Utilization of advanced treated water from wastewater treatment plants for the restoration of waterway is in progress to improve the waterside environment. However, the colored wastewater containing molasses pigments, melanoidins, is not decolorized by activated sludge process, and the water can not be applied for recycling water. We have studied the radiation treatment for decolorization of wastewater discharged from baker's yeast factory. The decolorization after decomposition of colored biorefractory organic substances in wastewater, enhancement in biodegradability and effective decrease in values of COD were observed after gammaray irradiation. Although the decrease in values of COD was observed, however chromaticity was not improved after the combined treatment of wastewater by radiation together with activated sludge. The result suggests that it is necessary to find the optimum conditions for stimulation of sludge in the combined treatment. (author)

  17. Conversion of sewage treatment plants on sludge digestion. Energetic and economic optimization potential

    International Nuclear Information System (INIS)

    Schmitt, Theo G.; Gretzschel, Oliver

    2014-03-01

    Investigations within the framework of the state-commissioned project ''Re-evaluation of wastewater purification plants with anaerobic sludge treatment with due consideration to framework conditions in terms of the energy and the wastewater management situation in Rhineland-Palatinate'', abbreviated ''NAwaS'', have shown that due to the rise in energy prices and availability of innovative techniques and methods it can be economically efficient, from a plant capacity of 10,000 inhabitants upwards, to convert sewage treatment plants to sludge digestion. Findings from the NAwaS project show the state of Rhineland-Palatinate to have a large potential for the conversion of sewage treatment plants to sludge digestion. Depending on the rate of price increase as well as interest rates the use of digester gas could permit an increase in electricity output by up to 50% over today's levels. Moreover, converted plants would be able to almost completely cover their own heat demand and in addition permit energy savings totalling an expected 5 kWh/(inhabitant x a). If one incorporates the possibilities offered by the procurement of sludge or suitable co-substrates from outside sources, by retrofitting sewage plants with combined heat and power stations or micro gas turbines as well as by process optimisation in existing digestion plants, this gives a further significant increase in potential production capacity and hence economic efficiency. In some of the sewage plants the above measures for saving energy and boosting energy production will even lead to energy self-sufficiency. [de

  18. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    Science.gov (United States)

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Rheological characterisation of municipal sludge: a review.

    Science.gov (United States)

    Eshtiaghi, Nicky; Markis, Flora; Yap, Shao Dong; Baudez, Jean-Christophe; Slatter, Paul

    2013-10-01

    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Anaerobic on-site treatment of black water and dairy parlour wastewater in UASB-septic tanks at low temperatures.

    Science.gov (United States)

    Luostarinen, Sari A; Rintala, Jukka A

    2005-01-01

    Anaerobic on-site treatment of synthetic black water (BW) and dairy parlour wastewater (DPWW) was studied in two-phased upflow anaerobic sludge blanket (UASB)-septic tanks at low temperatures (10-20 degrees C). At all temperatures, total chemical oxygen demand (COD(t)) removal was above 90% with BW and above 80% with DPWW and removal of total suspended solids (TSS) above 90% with both wastewaters. Moreover, dissolved COD (COD(dis)) removal was approx. 70% with both wastewaters indicating good biological activity of the sludges. With BW, a single-phased reactor was found sufficient for good COD removals, while with DPWW, a two-phased process was required. Temperature optimum of reactor sludges was still 35 degrees C after long (398d) operation. Most of the nutrients from BW were removed with TSS, while with DPWW nutrient removal was low. In conclusion, UASB-septic tank was found feasible for (pre)treatment of BW and DPWW at low temperatures.

  1. Continues treatment of oily sludge at Colombian refineries

    International Nuclear Information System (INIS)

    Echeverria, Victor; Monsalve, Gladys; Vidales, Humberto

    2002-01-01

    The Colombian Petroleum institute - ICP, the research and development branch of Ecopetrol has developed a unique technological package used to treat oily sludge in a continuous way. The sludge comes from a refinery with 220000 barrels of crude per day load, located in the Middle Madgalena River Valley in Colombia. The technological package allows for a) the recovery of the hydrocarbon contained in oily wastes (up to 50%) b) the elimination of the oil contained in solid using a biodegradation process and, c) the availability economically and technically feasible solution to handle oily sludge generated in the refinery. The oily treated in this process come from maintenance of refinery's equipment and also from the physical chemical separation process at the industrial wastewater treatment plant. Oily sludge is a complex system where light and heavy oils, contaminated water and contaminated solids coexist in the form of direct, inverse and multiple emulsions. The comprehensive technological package allows the treatment of oily sludge in a cost effective way. ICP technological package developed includes technologies combining mechanical, thermal, chemical and electrostatic dehydration techniques and stimulated and intensive bioremediation to decontamination of solids saturated with residual oil. This technological package brings a solution to old environmental problem caused by the inappropriate final disposal of oily wastes such as storage in ponds, marshes and open pits: Nowadays wastes generated are treated in a continuous process that is environmentally friendly and economically profitable

  2. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  3. Comparative Environmental Life Cycle Assessment of Alternative Uses of Wastewater Carbon Content

    DEFF Research Database (Denmark)

    Kroghsbo, Nena; Nicolaisen, Janna; Wenzel, Henrik

    Alternative scenarios for the wastewater and sludge treatment configurations in urban wastewater treatment were studied with the aim of comparing their environmental aspects. As the reference, a conventional activated sludge treatment was chosen including a primary settling and biogas made from...... the mixed primary and secondary sludge. This reference was then compared to an alternative use of the mixed sludge for the fermentative generation of polyhydroxyalkanoates, PHA and subsequent use of the PHA to substitute polypropylene on the polymer markets. This comparison allows for assessing...... the environmental priorities between biogas and PHA formation from the carbon content of the sludge. Further, the elimination of the primary settling with the aim of using the carbon content of the wastewater for enhanced nitrogen removal in the activated sludge process was studied. This comparison allows...

  4. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    Science.gov (United States)

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  5. Characterization of Industrial Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternate Reuse Applications.

    Science.gov (United States)

    Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S

    2015-11-01

    Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.

  6. Technical note The formulation of synthetic domestic wastewater ...

    African Journals Online (AJOL)

    Technical note The formulation of synthetic domestic wastewater sludge medium to study anaerobic biological treatment of acid mine drainage in the laboratory. ... Journal Home > Vol 42, No 2 (2016) > ... Domestic wastewater sludge is however highly variable in its composition, making laboratory experimentation difficult.

  7. Beyond the conventional life cycle inventory in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo-Toja, Yago, E-mail: yago.lorenzo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Alfonsín, Carolina [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Amores, María José; Aldea, Xavier; Marin, Desirée [Cetaqua, Water Technology Centre, 08940 Cornellà de Llobregat, Barcelona (Spain); Moreira, María Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain)

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO{sub 2} emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. - Highlights: • The influence of LCI quality on the environmental assessment

  8. Application of a membrane bioreactor for winery wastewater treatment.

    Science.gov (United States)

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  9. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  10. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  11. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  12. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. CH4...... emission factors were between 1 and 21% of CH4 production, and between 0.2 and 3.2% of COD influent. The main CH4 emitting sources at the five plants were sludge treatment and energy production units. The lowest CH4 emission factors were obtained at plants with enclosed sludge treatment and storage units...... in international guidelines. This study showed that measured CH4 and N2O emission rates from wastewater treatment plants were plant-specific and that emission rates estimated using models in current guidelines, mainly meant for reporting emissions on the country scale, were unsuitable for Scandinavian plant...

  13. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  14. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  15. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Science.gov (United States)

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bases for a sewage sludge treatment plant by irradiation in Mexico

    International Nuclear Information System (INIS)

    Alcantara, Jaime M.; Cruz, Arturo C.

    1997-01-01

    A good place for the first sludge irradiator in Mexico would be the Toluca Norte sewage water treatment plant. This plant has a definitive biological treatment, and handles only domestic wastewater and assures therefore good and stead sewage sludge quality, and has capacity do deliver sufficient sludge (approximately 22,000 ton.y -1 or 70 ton.d -1 ) to the irradiator. Capital and operating cost calculations for a sewage sludge plant by irradiation in Mexico were done using a mathematical model considering a 50 k W electron linear accelerator of 10 MeV beam energy, an irradiation dose of 5 kGy, a treatment capacity of 346 ton.d -1 , an absorption efficiency of 40%, an electricity consumption of 400 k W, an operating mode of 325 days per year and one shift per day. Total annual operating costs is estimated to be $1,007,900 for treating 346 ton.d -1 with irradiation dose of 5 kGy, including both fixed ($664,000) and variable costs ($343,920). The unit cost at maximum utilization was obtained as $9.00 per ton. (author). 16 refs., 3 tabs

  17. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.

    Science.gov (United States)

    Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing

    2009-08-15

    The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  18. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution

    International Nuclear Information System (INIS)

    Zhang Hongzi; Xiang Hai; Zhang Guoliang; Cao Xia; Meng Qing

    2009-01-01

    The presence of high-strength oil and grease (O and G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O and G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O and G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O and G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12 h was required for removing approximately 95% of O and G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  19. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong

    2015-01-01

    TM is a hybrid process, based on the integrated fixed-film activated sludge technology, where plastic carriers for biofilm growth are suspended within activated sludge. To investigate the potential of a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series...

  20. Detection of radionuclides originating from a nuclear power plant in sewage sludge

    International Nuclear Information System (INIS)

    Puhakainen, M.; Suomela, M.

    1999-01-01

    Sewage sludge is a sensitive indicator of radionuclides entering the environment. Radionuclides originating in nuclear power stations have been detected in sludge found at wastewater treatment plants in communities near the power plants (NPP). The main contributor is the radionuclide discharges of the NPPs into the atmosphere, but workers may transmit small amounts through their clothes or skin, or from internal contamination. The purpose of the present investigation was to determine the amounts of radionuclides in sewage sludge and to obtain information on transport of the radionuclides from the NPPs to the wastewater treatment plants. Under normal operating conditions and during annual maintenance and refuelling outages at the Loviisa and Olkiluoto NPPs, sewage sludge samples were taken at wastewater treatment plants in communities located in the vicinity of the plants. With the exception of 131 I, the most significant activities in discharges into the air from the Loviisa NPP were due to 110 mAg. The latter was also noted most frequently in the sewage sludge at the wastewater treatment plant in the town of Loviisa about 10 km from the Loviisa pressurised water reactor (PWR) NPP. The other nuclides probably originating from the Loviisa NPP were 51 Cr, 54 Mn, 58 Co, 59 Fe, 60 Co, 110 mAg and 124 Sb. In the wastewater treatment plant in the town of Rauma, about 10 km from the Olkiluoto boiling water reactor (BWR) NPP, the only nuclides possibly origination from the NPP were 54 Mn, 58 Co and 60 Co. In the wastewater treatment plant, the variation in concentration of 60 Co in sludge did not correlate with the activities measured in precipitation. The occurrence of the nuclide in the treatment plant did not correlate over time with the amounts of discharge from the NPP. This suggests that at least some of the activity was transported to the wastewater treatment plant via routes other than precipitation. Small amounts may be transported within NPP workers to sewage

  1. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies

    Directory of Open Access Journals (Sweden)

    S. Sathian

    2014-06-01

    Full Text Available In this work, sequential batch reactor (SBR was employed for the treatment of textile dye wastewater. The performance of four white rot fungi (WRF viz. Coriolus versicolor, Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was evaluated in pure and mixed combinations in terms of decolorization. From the results it was found that the combination of Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was best and they were used in the SBR. The process parameters like air flow rate, sludge retention time (SRT and cycle period were optimized using response surface methodology (RSM. At these optimized conditions, treatment of textile dye wastewater was carried out at various initial dye wastewater concentration and hydraulic retention time. The performance of SBR was analyzed in terms of decolorization, COD reduction and sludge volume index (SVI. From the results it was found that a maximum decolorization and COD reduction of 71.3% and 79.4%, respectively, was achieved in the SBR at an organic loading rate of 0.165 KgCOD/m3 d. The sludge volume index (SVI was found to be low in the range of 90–103 mL/g. The kinetic study was carried out using a first order based model and the degradation follows the first order system.

  2. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  3. The Use of Biochemical Processes in Sludge Treatment

    Directory of Open Access Journals (Sweden)

    Mohammed S. Shahaab

    2012-03-01

    Full Text Available The feasibility of using combination of effective microorganism (EM1 and conventional chemical conditioner was evaluated in this study to assess and discern the dewatering properties of the secondary sludge that produced from wastewater treatment plant of the medical assembly in Mosul city. Conventional coagulants such as lime, Alum, and ferrous sulfate, six doses for each coagulant type i.e5- 30(10 - 60 (and (25 -150mg/l(  respectively, were used in the sludge conditioning processes for enhancement of the sludge dewatering capacity. The characteristics of conditioned sludge, such as specific resistance of filtration (SRF (were determined at each dose.Experimental results indicated that effective microorganism seeds have a passive effect on SRF value which was about   % 71.4(and (%75(in lime and ferrous sulfate respectively.While in Alum conditioning process a significant effect on SRF reduction was accomplished which was about %-47.9( and (- %32.8( for effective microorganism and Alum dose increments respectively. The best Alum dosage, for minimum SRF 0.98348×10 12 m /kg, was 60 mg/l at 1 % of effective microorganism.

  4. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Masłoń Adam

    2017-01-01

    Full Text Available Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTPs, energy consumption is often correlated with the magnitude and type of pollutant load, which can influence the treatment methods and technologies used in the WWTP. In many cases wastewater treatment plants are operated without optimized measures for process optimization. A detailed study of the energy consumption should be executed in order to determine the optimization potential. This paper presents the energy consumption in municipal wastewater treatment plant in Rzeszów (Poland. In the year 2016, parameters of raw and treated wastewater were tested. The data related to energy consumption in plants allowed us to determine the energy intensity coefficients. Total consumption was measured. Indicators of energy consumption per cubic meter and removed load were calculated.

  5. Characterization and evaluation of potential reuse options for wastewater sludge and combined sewer system sediments in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Mendez, J.M.; Barrios, J.A.; Salgado, G.; Sheinbaum, C.

    2003-07-01

    Combined sewer systems generate sediments that have characteristics similar to those of primary sludge. Mexico City has such a system composed of a network of pipes, regulation structures (dams, basins) and open channels. The annual generation of sediments is estimated in 2.8 Mm{sup 3}, which includes 0.41 Mm{sup 3} of sludge. As a result, the total capacity for transporting water is reduced considerably, making necessary to extract yearly an approximate 0.85 Mm{sup 3} of those materials and to send them to a final disposal site with a capacity that is being exhausted. As part of the local Governmental effort, this project evaluates the quality of sediments from 6 dams, 4 regulation basins, 2 open channels, and 3 transfer stations. Also, sludge from 20 wastewater treatment plants was sampled. The results showed an important presence of lead and hydrocarbons in some sediments, and some sludge samples contained arsenic and nickel above the limits. Moreover, microbial levels exceeded the limits in all the sediments and sludge samples. Erosion was linked to the generation of an important amount of sediments based on lead concentration. A classification was established to determine the degree of contamination of the sediments as well as the required treatment to allow their potential reuse. (author)

  6. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    OpenAIRE

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete d...

  7. Co-disposal of sewage sludge and solid wastes-it works

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, D B

    1977-10-01

    The problem of sludge disposal is one of more sludge than ever before, few suitable land disposal or land application sites, the ocean dumping option being phased out, and energy cost so high or supplies so few as to make incineration a questionable endeavor. The energy required to run a wastewater treatment plant and the heat needed to incinerate the sludge may be available in the same community in the form of municipal solid waste. Municipal sludge has a heat value of about 10,000 Btu/lb of dry solids; it is autogenous at>30% solids. Codisposal techniques are discussed which use the energy produced by the combustion of solid waste to dewater the sludge to its autogenous point. One approach is to use sewage sludge incinerators, in many cases already installed at the wastewater treatment plant, and to use the organic portion of solid waste as a fuel to dry, burn, and reduce the volume of the sludge that must ultimately be disposed. A second approach would use a solid waste incinerator, solid waste-fired steam generator, or waterwall combustion unit to burn dewatered sludge. Both approaches are being demonstrated or used. Thermal sludge disposal at wastewater treatment plants normally is carried out in multiple-hearth or fluidized-bed incinerators. The experiences of such plants in the US and Europe are summarized.

  8. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... is a framework that can be used in whole plant modelling, which consists of different fields such as activated sludge, anaerobic digestion, sidestream treatment, membrane bioreactors, metabolic approaches, fate of micropollutants and biofilm processes. The main objective of this consensus building paper...... notational framework which allows unique and systematic naming of state variables and parameters of biokinetic models in the wastewater treatment field. The symbols are based on one main letter that gives a general description of the state variable or parameter and several subscript levels that provide...

  9. Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater

    Directory of Open Access Journals (Sweden)

    Mohini Verma

    2018-04-01

    Full Text Available Landfill leachate and municipal wastewater at various ratios (1:20, 1:10, 1:7 and 1:5 were subjected to coagulation and electrocoagulation (EC. Alum was used in conventional coagulation at pH 6 and aluminum plate as electrode was used in EC at a current density of 386 A/m2 with 5 cm inter electrode spacing. Treatment efficiency was assessed from removal of chemical oxygen demand (COD, total suspended solids (TSS, turbidity, ammonia, nitrate and phosphate. At 1:5 ratio of landfill leachate to municipal wastewater, highest COD removal was with 3.8 g/L alum whereas highest turbidity removal was with 3.3 g/L alum during coagulation. EC exhibited almost similar removal efficiency for all the parameters at different ratios tested except for COD which was considerably higher at 1:20 ratio. Aluminum consumption from electrode was 0.7 g/L following EC as compared to 3.8 g/L alum used in coagulation. The amount of sludge produced was found to be higher with EC as compared to coagulation which could be due to the fact that the electrochemical method was performed for a longer duration than conventional coagulation. For minimal sludge generation, EC reaction time should be ∼30 min. Further studies with EC process on costing and sludge generation will help to advance the technology for wastewater treatment.

  10. Selection of diazotrophic bacteria isolated from wastewater treatment plant sludge at a poultry slaughterhouse for their effect on maize plants

    Directory of Open Access Journals (Sweden)

    Jorge Avelino Rodriguez Lozada

    Full Text Available ABSTRACT The economic and environmental costs of nitrogen fertilization have intensified the search for technologies that reduce mineral fertilization, for example atmospheric nitrogen-fixing (diazotrophic bacteria inoculation. In this context, the present study addressed the isolation and quantification of diazotrophic bacteria in the sludge from treated wastewater of a poultry slaughterhouse; a description of the bacteria, based on cell and colony morphology; and an assessment of growth and N content of maize plants in response to inoculation. Sixteen morphotypes of bacteria were isolated in six N-free culture media (JMV, JMVL, NFb, JNFb, LGI, and LGI-P. The bacteria stained gram-positive, with 10 rod- and six coccoid-shaped isolates. To evaluate the potential of bacteria to promote plant growth, maize seeds were inoculated. The experiment consisted of 17 treatments (control plus 16 bacterial isolates and was carried out in a completely randomized design with six replicates. The experimental units consisted of one pot containing two maize plants in a greenhouse. Forty-five days after planting, the variables plant height, leaf number, stem diameter, root and shoot fresh and dry weight, and N content were measured. The highest values were obtained with isolate UFV L-162, which produced 0.68 g total dry matter per plant and increased N content to 22.14 mg/plant, representing increments of 74 and 133%, respectively, compared with the control. Diazotrophs inhabit sludge from treated wastewater of poultry slaughterhouses and can potentially be used to stimulate plant development and enrich inoculants.

  11. Life cycle assessment of wastewater treatment options for small and decentralized communities.

    Science.gov (United States)

    Machado, A P; Urbano, L; Brito, A G; Janknecht, P; Salas, J J; Nogueira, R

    2007-01-01

    Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA) is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The present study used a LCA approach for comparing alternative wastewater treatment processes for small and decentralised rural communities. The assessment was focused on two energy-saving systems (constructed wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the global warming indicator. Options for reduction of life cycle impacts were assessed including materials used in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed when concrete was replaced by HDPE.

  12. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis

    DEFF Research Database (Denmark)

    Niero, Monia; Pizzol, Massimo; Gundorph Bruun, Henrik

    2014-01-01

    Wastewater treatment has nowadays multiple functions and produces both clean effluents and sludge, which is increasingly seen as a resource rather than a waste product. Technological as well as management choices influence the performance of wastewater treatment plants (WWTPs) on the multiple...... functions. In this context, Life Cycle Assessment (LCA) can determine what choices provide the best environmental performance. However, the assessment is not straightforward due to the intrinsic space and time-related variability of the wastewater treatment process. These challenges were addressed...... in a comparative LCA of four types of WWTPs, representative of mainstream treatment options in Denmark. The four plant types differ regarding size and treatment technology: aerobic versus anaerobic, chemical vs. combined chemical and biological. Trade-offs in their environmental performance were identified...

  13. Survey in organic contaminants content in sewage sludge from the Emilia Romagna region

    International Nuclear Information System (INIS)

    Mantovi, P.; Sassi, D.; Piccinini, S.; Rossi, L.

    2008-01-01

    Data was collected on the organic pollutants cited in the Working document on sludge, 3. draft (AOX, LAS, DEHP, NPE, PAH, PCB, PCDD/F), for sewage sludge deriving from 12 municipal-industrial wastewater treatment plants and 7 agro-industrial wastewater treatment plants located in the Emilia-Romagna region (Italy), taking samples in spring, summer and winter. The limit values given in the Working document were sporadically exceeded. The most frequent contamination was associated with LAS, in particular in the winter period. Results confirmed lower organic contaminant contents in sludge of agro-industrial origin, compared to sludge from municipal-industrial wastewater treatment plants, with generally not detectable values for the majority of organic pollutants. Comparison of the results collected in this survey with values recorded in other European countries shows that the organic contaminant content of sewage sludge obtained in plants in the Emilia-Romagna region, excepting LAS, is reasonable [it

  14. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  15. Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF) System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

    OpenAIRE

    Mohammad Javad Ghannadzadeh; Ahmad Jonidi Jafari; Abbas Rezaee; Fatemeh Eftekharian; Ali Koolivand

    2016-01-01

    Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF) system in elimination of phenolic compounds from water. Methods: D. magna cultures were used as toxicity index of phenol and 2,4-DNP mixtures after treatment by a pilot BFUSBF system which...

  16. Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry.

    Science.gov (United States)

    Buyukkamaci, Nurdan; Koken, Emre

    2010-11-15

    Excessive water consumption in pulp and paper industry results in high amount of wastewater. Pollutant characteristics of the wastewater vary depending on the processes used in production and the quality of paper produced. However, in general, high organic material and suspended solid contents are considered as major pollutants of pulp and paper industry effluents. The major pollutant characteristics of pulp and paper industry effluents in Turkey were surveyed and means of major pollutant concentrations, which were grouped in three different pollution grades (low, moderate and high strength effluents), and flow rates within 3000 to 10,000m(3)/day range with 1000m(3)/day steps were used as design parameters. Ninety-six treatment plants were designed using twelve flow schemes which were combinations of physical treatment, chemical treatment, aerobic and anaerobic biological processes. Detailed comparative cost analysis which includes investment, operation, maintenance and rehabilitation costs was prepared to determine optimum treatment processes for each pollution grade. The most economic and technically optimal treatment processes were found as extended aeration activated sludge process for low strength effluents, extended aeration activated sludge process or UASB followed by an aeration basin for medium strength effluents, and UASB followed by an aeration basin or UASB followed by the conventional activated sludge process for high strength effluents. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China

    International Nuclear Information System (INIS)

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-01-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of 85% in A/O process and 60–77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. - Highlights: • UV-234 and UV-329 were the predominated compounds in residential wastewater. • The A/O treatment process had higher removal effect than the BAF treatment process. • Removal efficiency of UV filters was not significantly influenced by season changes. • Effluent from the WWTP was not the

  18. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    International Nuclear Information System (INIS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-01-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5 /COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3 . Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3 . Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  19. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bural, Cavit B.; Demirer, Goksel N. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Kantoglu, Omer [Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training Center, 06982, Kazan, Ankara (Turkey); Dilek, Filiz B., E-mail: fdilek@metu.edu.t [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)

    2010-04-15

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD{sub 5}/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm{sup -3}. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm{sup -3}. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  20. Behaviour of pharmaceuticals and psychotic drugs in conventional and advanced wastewater treatments

    International Nuclear Information System (INIS)

    Cortacans Torre, J. A.; Castillo Gonzalez, I. del; Hernandez Lehmann, A.; Hernandez Munoz, A.; Rodriguez Barrera, X.

    2009-01-01

    The occurrence of various pharmaceuticals and psychotic drugs in wastewater and their removal rates in a conventional wastewater treatment plant has been investigated. The psychoactive drugs are poorly removed in the biological step. However, most pharmaceuticals except of carbamazepine, are significantly biodegraded depending the removal degree on the type of compound and on the sludge retention time of the biological treatment. Also, the removal efficiency of conventional tertiary treatments and ultrafiltration and nano filtration membranes using two pilot plants was examined. the effects of retaining pharmaceuticals with ultrafiltration and nano filtration membranes do not greatly differ despite the difference in their pore size. (Author) 25 refs.

  1. Treatment of slaughterhouse wastewater in an upflow anaerobic sludge blanket reactor: Sludge characteristics

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2016-01-01

    Conclusion: Application of slaughterhouse wastewater as feed wastewater demonstrated that the slaughterhouse wastewater to be more effective in promoting the formation of anaerobic granules and granule size in UASB reactor.

  2. Design of a pilot plant to study wastewater treatability. Utilization to nitrification-denitrification treatment of urban wastewater; Diseno de una plant pilot para estudios de tratabilidad de aguas residuales. Aplicacion a la nitrificacion/desnitrificaciond e aguas urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E.; Vilches, L. F.; Pineda, D.; Garcia, A.; Fernandez-Pereira, C.

    2002-07-01

    The conventional design and the operation of secondary treatment of urban wastewater treatment plants presents different problems such as bulking foaming, the removal of nutrients as nitrogen and phosphorus, and the excess of sludge. to prevent these problems the use of selectors was initially proposed to selects the floc-formers bacteria against the filamentous microorganisms. In addition, these configurations removed nitrogen by the nitrification-denitrification mechanism and some of them removed both nitrogen and phosphors. In the last years, new systems have been developed to remove nitrogen, reducing the consumption of oxygen and the production of sludge by the use of different microorganisms, and by modifying environmental and operational conditions. To study the treatment urban wastewater in conditions similar to those existing in wastewater treatment plants and to improve the design and operational parameters of a large scale wastewater treatment plant, a versatile pilot plant has been designed. The main components of the plant are described in this paper. (Author) 18 refs.

  3. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... sludge instead of imported commercial anaerobic granulated sludge. Over the ... biogas, granulated anaerobic sludge, industrial wastewater. ... production of methane by methanogenic bacteria. Compared with other treatment processes, USAB ... effluent collector; 8, gas outlet; 9, gas collector; 10, side-arm ...

  4. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  5. Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.

    Science.gov (United States)

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2018-05-01

    In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  7. Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment.

    Science.gov (United States)

    Kreuzinger, N; Farnleitner, A; Wandl, G; Hornek, R; Mach, R

    2003-01-01

    Incomplete nitrification at an activated sludge plant for biological pre-treatment of rendering plant effluents led to a detailed investigation on the origin and solution of this problem. Preliminary studies revealed that an inhibition of ammonia oxidising microorganisms (AOM) by process waters of the rendering plant was responsible for the situation. We were able to show a correlation between the existence of specific AOM and nitrification capacity expressed as oxygen uptake rate for maximal nitrification (OURNmax). Only Nitrosospira sp. was found in the activated sludge of the rendering plant and another industrial wastewater treatment plant with problems in nitrification, while reference plants without nitrification problems showed Nitrosomonas spp. as the predominant ammonia oxidising bacteria. By accompanying engineering investigations and experiments (cross-feeding experiments, operation of a two-stage laboratory plant) with molecular biological methods (DGGE--Denaturing Gradient Gel Electrophoresis) we were able to elaborate an applicable solution for the rendering plant. Laboratory experiments with a two-stage process layout finally provided complete nitrification overcoming the inhibiting nature of process waters from the rendering plant. DGGE analysis of the second stage activated sludge from the laboratory plant showed a shift in population structure from Nitrosospira sp. towards Nitrosomonas spp. simultaneous to the increase of nitrification capacity. Nitrification capacities comparable to full-scale municipal wastewater treatment plants could be maintained for more than two months. As the design of wastewater treatment plants for nitrification is linked to the growth characteristics of Nitrosomonas spp., established criteria can be applied for the redesign of the full-scale plant.

  8. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors.

    Directory of Open Access Journals (Sweden)

    Wenda Tao

    Full Text Available To understand the diversity and abundance of antibiotic resistance genes (ARGs in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs were investigated and compared with sludge samples from three sewage treatment plants (STPs using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm. Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes was higher than that in STP aerobic sludge (118 subtypes. In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.

  9. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    Science.gov (United States)

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  10. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae.

    Science.gov (United States)

    Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni

    2005-10-01

    This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.

  11. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  12. Efficiency of Worm Reactors in Reducing Sludge Volume in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Azam Naderi

    2017-01-01

    Full Text Available The activated sludge process is the most widely used on a global scale for the biological treatment of both domestic and industrial effluents. One problem associated with the process, however, is the high volume of sludge produced. Excess sludge treatment and disposal account for up to 60% of the total operating costs of urban wastewater treatment plants due to the stringent environmental regulations on excess sludge disposal. These strict requirements have encouraged a growing interest over the last few years in reducing sludge volumes produced at biological treatment plants and a number of physical, chemical, and mechanical methods have been accordingly developed for this purpose. The proposed methods are disadvantaged due to their rather high investment and operation costs. An alternative technology that avoids many of these limitations is the worm reactor. In this study, the characteristics of this technology are investigated while the related literature is reviewed to derive the optimal conditions for the operation of this process in different situations.

  13. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  14. Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Xinbo Tian

    2017-07-01

    Full Text Available Sludge production in wastewater treatment plants is increasing worldwide due to the increasing population. This work investigated the effects of ultrasonic (ULS, ultrasonic-ozone (ULS-Ozone and ultrasonic + alkaline (ULS+ALK post-treatments on the anaerobic digestion of sewage sludge in semi-continuous anaerobic reactors. Three conditions were tested with different hydraulic retention times (HRT, 10 or 20 days and sludge recycle ratios (R = QR/Qin (%: 50 or 100%. Biogas yield increased by 17.8% when ULS+ALK post-treatment was applied to the effluent of a reactor operating at 20 days HRT and at a 100% recycle ratio. Operation at 10 days HRT also improved the biogas yield (277 mL CH4/g VSadded (VS: volatile solids versus 249 mL CH4/g VSadded in the control. The tested post-treatment methods showed 4–7% decrease in effluent VS. The post-treatment resulted in a decrease in the cellular ATP (Adenosine tri-phosphate concentration indicating stress imposed on microorganisms in the reactor. Nevertheless, this did not prevent higher biogas production. Based on the results, the post-treatment of digested sludge or treating the sludge between two digesters is an interesting alternative to pre-treatments.

  15. Selection criteria for wastewater treatment technologies to protect drinking water.

    Science.gov (United States)

    von Sperling, M

    2000-01-01

    The protection of water bodies used as sources for drinking water is intimately linked to the adoption of adequate technologies for the treatment of the wastewater generated in the catchment area. The paper presents a general overview of the main technologies used for the treatment of domestic sewage, with a special emphasis on developing countries, and focussing on the main parameters of interest, such as BOD, coliforms and nutrients. A series of tables, figures and charts that can be used for the preliminary selection of treatment technologies is presented. The systems analysed are: stabilisation ponds, activated sludge, trickling filters, anaerobic systems and land disposal. Within each system, the main process variants are covered. Two summary tables are presented, one for quantitative analysis, including easily usable information based on per capita values (US$/cap, Watts/cap, m2 area/cap, m3 sludge/cap), and another for a qualitative comparison among the technologies, based on a one-to-five-star scoring system. The recent trend in tropical countries in the use of UASB (Upflow Anaerobic Sludge Blanket) reactors is also discussed.

  16. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  17. Composting of sewage sludge from wastewater treatment plant mixed with a recirculated vegetal fraction in two ratios; Compostaje de fangos de E.D.A.R. en pilas con dos proporciones diferentes de estructurante vegetal recirculado

    Energy Technology Data Exchange (ETDEWEB)

    Plana, R.; Dominguez, J. [Universidad de Vigo (Spain); Aguilera, F.

    2002-07-01

    Due to the next European Directives that are being prepared about the waste management, specially about the organic fraction (U. S. W. sewage sludges, pig slurries, etc.) it will be necessary a previous biological treatment of the waste before spreading it on the soil. the current work studies the windrow composting of sewage sludge from an urban wastewater treatment plant mixed with a recirculated vegetal fraction in two different volumetric ratios (2:1 and 1:1). Temperature and oxygen consumption are measured to control the composting process, as well as the turning frequency and the quantity of products that is degradated. Although the process reaches thermofilic temperatures in both windrow, it is showed that in the 2:1 ratio more sludge is proportionally degradated. An economic study of the composting of this sewage sludge in different composting methods (dynamic and semi static) was made. (Author) 7 refs.

  18. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs.

    Science.gov (United States)

    Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min

    2017-03-01

    The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3  d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3  d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Bester, Kai

    2015-01-01

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m 3 m 2 h −1 the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds

  20. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica; Bester, Kai, E-mail: kb@dmu.dk

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m{sup 3} m{sup 2} h{sup −1} the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds.

  1. The application of the electron beam process in water and wastewater treatment: Fundamental and applied studies

    International Nuclear Information System (INIS)

    Cooper, W.J.; Tobien, T.

    2001-01-01

    We have undertaken a three phase research project that has as the overall goal to better understand the application of the EB process to water, wastewater and sludge treatment. We have conducted studies to examine bimolecular rate constants for several halogenated methanes, several of which are common disinfection by-products when chlorination is practised. The second phase examines the ability to destroy odour causing compounds, we have selected thioanisole as the model compound, in wastewater and sludge treatment. The third phase of our study is to better understand the destruction mechanism and kinetic modelling of the fuel oxygenate, methyl tert-butyl ether, a common ground water contaminant in the US. We report here several new and re-evaluated bimolecular rate constants and the results of large scale EB treatment of water containing the compounds under study. ( author)

  2. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2011-09-01

    Degradation of bisphenol A (BPA), an endocrine disruptor, from wastewater sludge (WWS) has attracted great interest recently. In the present study, the effects of different pre-treatment methods, including ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) was assessed in terms of increase in solubilization of WWS and simultaneous degradation of BPA. Among US, FO and FS pre-treatment, higher suspended solids (SS), volatile suspended solids (VSS), chemical oxygen demand (COD) and soluble organic carbon (SOC) solubilization (39.7%, 51.2%, 64.5% and 17.6%, respectively) was observed during a ferro-sonication pre-treatment process carried out for 180 min, resulting in higher degradation of BPA (82.7%). In addition, the effect of rheological parameters (viscosity and particle size) and zeta potential on the degradation of BPA in raw and different pre-treated sludges were also investigated. The results showed that a decrease in viscosity and particle size and an increase in zeta potential resulted in higher degradation of BPA. BPA degradation by laccases produced by Sinorhizobium meliloti in raw and pre-treated sludge was also determined. Higher activity of laccases (207.9 U L(-1)) was observed in ferro-sonicated pre-treated sludge (180 min ultrasonic time), resulting in higher removal of BPA (0.083 μg g(-1)), suggesting concomitant biological degradation of BPA. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  4. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  5. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  6. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  7. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  8. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges.

    Science.gov (United States)

    Boyle, N J; Evans, G M

    2013-01-01

    The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2-4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be

  9. Aerobic granular sludge : Scaling up a new technology

    NARCIS (Netherlands)

    De Kreuk, M.K.

    2006-01-01

    Most conventional wastewater treatment plants need a large surface area for the treatment of their sewage. This is due to the open structure of the biomass used to convert the polluting components in wastewater. Because of the flocculated growth, sludge concentrations in reaction tanks are low and

  10. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    Science.gov (United States)

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.

  11. MiDAS Field Guide – a Comprehensive Online Source of Information About the Microbes of Activated Sludge

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Saunders, Aaron Marc

    this information in MiDAS field guide (www.midasfieldguide.org). MiDAS taxonomy gives a solid foundation for the study of microbial ecology of the wastewater treatment processes. The online MiDAS field guide links the identity of genera that are important for the wastewater treatment process to details about...... guide to the microbes of activated sludge by comparing microbial community composition in 32 WWTPs located worldwide. This will facilitate a better understanding of the ecology of the ecosystem of activated sludge. Reference: McIlroy et al. MiDAS: the field guide to the microbes of activated sludge...... on a survey of 25 full-scale Danish wastewater treatment plants over 6 years and using MiDAS taxonomy, we have collected more than 150 key organisms in activated sludge wastewater treatment systems, linked their identity with available information on their function and distribution and included...

  12. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Wijetunga, Somasiri; Li Xiufen; Jian Chen

    2010-01-01

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  13. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  14. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  15. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    Science.gov (United States)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  16. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  17. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Treatment of variable and intermittently flowing wastewaters.

    Science.gov (United States)

    Kocasoy, Günay

    1993-11-01

    The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

  19. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    International Nuclear Information System (INIS)

    El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S.

    2009-01-01

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H 2 O 2 dose, Fe +2 , COD:H 2 O 2 ratio and Fe +2 :H 2 O 2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l -1 for ρ-hydroxy-benzaldhyde to 3.273 mg l -1 for cinnamic acid

  20. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes.

    Science.gov (United States)

    Yavuz, Y; Ögütveren, Ü B

    2018-02-01

    In this study electrocoagulation (EC) of industrial estate wastewater taken from the inlet of wastewater treatment plant was investigated using sacrificial iron electrodes. Employing a pole changer to homogenous consumption of electrodes, studies on the parameters such as current density, supporting electrolyte concentration and initial pH, which have significant effects on COD removal and hence the energy consumption, were performed. Hydrogen peroxide was used in different concentrations to observe its effects on COD removal efficiency and the energy consumption. Sludge productions were also calculated for all experiments. COD removal efficiency of ∼92% was obtained at the best experimental conditions (i = 30 mA/cm 2 , SE = 3 mM Na 2 SO 4 , pH = original pH (∼6) of the wastewater, 1500 mg/L H 2 O 2 ) with an energy cost of €3.41/m 3 wastewater treated and the sludge production of 5.45 g per g COD removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China.

    Science.gov (United States)

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-08-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of UV filters was >85% in A/O process and 60-77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks

    NARCIS (Netherlands)

    Abusam, A.; Keesman, K.J.

    2009-01-01

    The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In

  3. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  4. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    International Nuclear Information System (INIS)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-01-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  5. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    International Nuclear Information System (INIS)

    Santos, Sílvia C.R.; Boaventura, Rui A.R.

    2015-01-01

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD 5 removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD 5 removals above 91% and average color removals of 60–69%

  6. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  7. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    wastewater-derived products, and to relate this to the availability from other P-containing waste products and mineral P fertiliser. This included aspects of development over time and soil accumulation, as well as effects of soil pH and the spatial distribution in soil. The P sources applied in this PhD work...... reserves. Wastewater represents the largest urban flow of P in waste. Hence, knowledge about plant P availability of products from the wastewater treatment system, and also comparison to other waste P sources and mineral P is essential to obtain an efficient recycling and to prioritise between different P...... recycling options. The work of this PhD focused on the plant P availability of sewage sludge, a P-rich residue from wastewater treatment which is commonly applied to agricultural soil in Denmark. The overall objective of the PhD work was to evaluate the plant availability of P in sewage sludge and other...

  8. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    Science.gov (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  10. COMBINED COMPOST AND VERMICOMPOSTING PROCESS IN THE TREATMENT AND BIOCONVERSION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh and M. R. Shamansouri

    2005-10-01

    Full Text Available Traditional thermophillic composting is commonly for treatment of sludge. A related technique as vermicomposting process, using earthworms to breakdown sludge, is also becoming popular. These two techniques have their inherent advantages and disadvantages. The combined approach suggested in this study to enhance the overall process and improve the products qualities. Two systems,vermicomposting and combined compost vermicomposting processes, have been investigated in this study. The sludge used in this study was obtained from the drying beds of South Isfahan wastewater treatment plant.The sludge mixed with sawdust to provide C/N ratio of 25/1.Eisenia fetida was the species of earthworms used in the vermicomposting processes.The results obtained indicates reduction in the amount of volatile solids,total carbon and C/N ratio with the vermicompost age,which indicates the reduction in the biodegradable organic content and mineralization of sludge. Also increase in phosphorus concentration by the end process because of mineralization of organic matter. The results indicate that, a system that combines the two mentioned processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and homogenous; the product could meet the pathogen reduction requirements.

  11. Treatment and remediation of a wastewater lagoon using microelectrolysis and modified DAT/IAT methods.

    Science.gov (United States)

    Wu, Qiong; Hua, Tao; Zhou, Qixing

    2011-01-01

    To examine treatment and remediation of a wastewater lagoon with poor biodegradability, a typical wastewater lagoon in Tianjin, China, was treated and remedied using microelectrolysis and modified demand aeration tank (DAT)/intermittent aeration tank (IAT) methods. After pretreatment by microelectrolysis, the removal efficiency of chemical oxygen demand (COD) was up to 64.6% and the ratio of BOC/COD in the effluent increased from 0.013 to 0.609. The removal rates of COD(Cr) and NH4(+)-N were affected by sludge backflow rate, mixed liquor suspended solids (MLSS), and hydraulic retention time (HRT) in the modified DAT/IAT reactor. The highest removal rates of COD(Cr) and NH4(+)-N were up to 78.9% and 62.6%, respectively, when the sludge backflow rate was 38.0 mL/min, the total HRT was 8.0 hr and MLSS was 4088.0 mg/L. In this case, some protozoa and metazoa were observed in activated sludge and biofilm carriers. Most of chrominance was removed by microelectrolysis treatment, while the modified DAT/IAT methods were more effective for COD(Cr) and NH4(+)-N removal.

  12. Integrated aerobic biological-chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate.

    Science.gov (United States)

    Solís, Rafael R; Rivas, Francisco Javier; Ferreira, Leonor C; Pirra, Antonio; Peres, José A

    2018-01-28

    The oxidation of Winery Wastewater (WW) by conventional aerobic biological treatment usually leads to inefficient results due to the presence of organic substances, which are recalcitrant or toxic in conventional procedures. This study explores the combination of biological and chemical processes in order to complete the oxidation of biodegradable and non-biodegradable compounds in two sequential steps. Thus, a biological oxidation of a diluted WW is carried out by using the activated sludge process. Activated sludge was gradually acclimated to the Diluted Winery Wastewater (DWW). Some aspects concerning the biological process were evaluated (kinetics of the oxidation and sedimentation of the sludge produced). The biological treatment of the DWW led to a 40-50% of Chemical Oxygen Demand (COD) removal in 8 h, being necessary the application of an additional process. Different chemical processes combining UVA-LEDs radiation, monoperoxysulfate (MPS) and photocatalysts were applied in order to complete the COD depletion and efficient removal of polyphenols content, poorly oxidized in the previous biological step. From the options tested, the combination of UVA, MPS and a novel LaCoO 3 -TiO 2 composite, with double route of MPS decomposition through heterogeneous catalysis and photocatalysis, led to the best results (95% of polyphenol degradation, and additional 60% of COD removal). Initial MPS concentration and pH effect in this process were assessed.

  13. Pathogens in Sludge: A Case of Sufficient Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Lesilind, R. Aarne

    2003-07-01

    There is increasing pressure in many countries to strengthen the regulations controlling the land disposal of wastewater sludges. In this paper I argue that although there is little doubt that sludges from wastewater treatment contain pathogenic organisms, not only are there no data to show that such disposal is a public health problem, but I want to suggest that small doses of pathogens in the environment provide a ''sufficient challenge'' that actually enhances public health. There therefore seems little reason, from a public health standpoint, to pass stricter sludge disposal regulations. (author)

  14. Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction

    Directory of Open Access Journals (Sweden)

    E. S. M. Borges

    2009-09-01

    Full Text Available Most works reported in the literature focus on thermal treatment of waste activated sludge at temperatures in the range of 160 to 180ºC. This research aimed at evaluating the thermal treatment of excess anaerobic sludge at much lower temperatures, using biogas generated in the wastewater treatment process as the energy source for heating a simplified thermal reactor. Direct burning of the biogas allowed an increase in the sludge temperature up to values close to 75ºC, for a 7-hour heating period. Sludge samples taken at different heating times showed that the thermal disintegration of the organic fraction allowed increases in the concentration of protein, carbohydrate, lipid and COD parameters by 30 to 35 times, as well as a 50% increase in the biogas production. Moreover, the simplified thermal treatment system proved to be an effective alternative for recovering energy from biogas and for controlling methane emissions to the atmosphere.

  15. Safety in wastewater treatment: the pure oxygen system

    International Nuclear Information System (INIS)

    Giagnoni, L.

    1998-01-01

    Though the active sludge process represent, nowadays, the main reference system referring to installations for wastewater treatments, nevertheless systems that exploit the pure oxygen properties constitute an alternative method to the traditional cycle. The following essay is divided into two parts: the first one deals with the fundamental concepts related to the active sludge process and to the alternative system proposed, mentioned before, and includes a short account of the functional characteristics and a brief comparison with traditional methods; the second part represents the head corpus of the work and deals with the problems related to the safety with particular reference to the risk of an explosion meanwhile the process. Moreover, it's drawn attention to the fundamental role of security systems that, nowadays, get frequently used in such kind of installations. On this subject, furthermore, it's pointed out the great importance of the whole preliminary treatments in the planning phase, with particular reference to the processes used for stripping [it

  16. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  17. Performance Evaluation of Moving Bed Bio Film Reactor in Saline Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2013-06-01

    Full Text Available Background and purpose:Moving Bed Biofilm Reactor is an aerobic attached growth with better biofilm thickness control, lack of plugging and lower head loss. Consequently, this system is greatly used by different wastewater treatment plants. High TDS wastewater produced petrochemical, leather tanning, sea food processing, cannery, pickling and dairy industries. The aim of this study was to evaluate the performance of MBBR in saline wastewater treatment. Materials and methods: In this study, 50 percent of a cylindrical reactor with 9.5 liter occupied media with 650 m2.m-3. In the first step, hydraulic regime was evaluated and startup reactor was done by sanitary sludge. Bio film was generated with glucose as the sole carbon source in synthetic wastewater. MBBR performance evaluation was performed in 6:30 and 8:45 with saline wastewater after bio film produced on media. Results: After 83 days of passing MBBR operation with saline wastewater containing 3000-12000 mg.L-1 TDS, organic loading rate of 2.2-3.5 kg/m3.d COD removal efficiency reached 80-92%. Conclusion: Moving bed biofilm reactor is effective in organic load elimination from saline wastewater.

  18. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  19. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  20. An innovative concept for handling and operation of the wastewater treatment plant of Cottbus

    International Nuclear Information System (INIS)

    Spiller, K.; Schmitt, J.

    1994-01-01

    A new concept for handling and operating the wastewater treatment plant of Cottbus, with computerized modelling and an expert system as integral parts of process analysis and decision-making, is developed. Optimized plant operation and process stability is to be achieved by conrolling process-dependent dosage of wastewater coming from sludge treatment and from faecal wastewater. With the treatment plant still being built, a thorough analysis of the influent and the resulting process conditions is done, using the computerized model. Results and consequences for process optimization are presented in this article. Special attention has to be given to load smoothing and optimization of denitrification, influencing process stability and quality. Thereby not only the legal requirements can be fulfilled but improvement of effluent quality also could be achieved, reducing total nitrogen in the effluent by as much as 50%, lowering wastewater treatment costs by allowing lower control levels and fees to be payed. (orig.) [de

  1. Keynote address: Federal overview of municipal sludge management

    International Nuclear Information System (INIS)

    Hathaway, W.B.

    1979-01-01

    The proper disposal of sewage sludge is becoming an increasing problem on solid waste management systems throughout the country. Currently 18,000 municipal wastewater treatment plants are generating about 5 million tons of sludge a year. This is expected to double in the next 8 to 10 years. The environmental aspects of sludge disposal are discussed

  2. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    Science.gov (United States)

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for

  3. Two years of the operation of a domestic MBR wastewater treatment plant

    Science.gov (United States)

    Pikorová, Tina

    2012-06-01

    The paper evaluates the results of data obtained from two years of observing an actual domestic wastewater treatment plant (WWTP) with an immersed membrane module. The domestic MBR (membrane bioreactor) WWTP was linked to a dwelling with four residents. Two different commercial flat sheet membrane modules were investigated. The membrane modules, as well as the whole WWTP, were tested with different fluxes as well as the response of the membrane and activated sludge to different conditions, such as actual peak wastewater flows, extremes temperatures (a winter below 5 °C), and high pH values.

  4. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Pauwels, B.; Ngwa, F.; Deconinck, S.; Verstraete, W.

    2005-01-01

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  5. Elemental transport and distribution in soils amended with incinerated sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H

    2003-05-01

    Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.

  6. Adverse effects of erythromycin on the structure and chemistry of activated sludge

    International Nuclear Information System (INIS)

    Louvet, J.N.; Giammarino, C.; Potier, O.; Pons, M.N.

    2010-01-01

    This study examines the effects of erythromycin on activated sludge from two French urban wastewater treatment plants (WWTPs). Wastewater spiked with 10 mg/L erythromycin inhibited the specific evolution rate of chemical oxygen demand (COD) by 79% (standard deviation 34%) and the specific N-NH 4 + evolution rate by 41% (standard deviation 25%). A temporary increase in COD and tryptophan-like fluorescence, as well as a decrease in suspended solids, were observed in reactors with wastewater containing erythromycin. The destruction of activated sludge flocs was monitored by automated image analysis. The effect of erythromycin on nitrification was variable depending on the sludge origin. Erythromycin inhibited the specific nitrification rate in sludge from one WWTP, but increased the nitrification rate at the other facility. - Erythromycin toxicity on activated sludge is expected to reduce pollution removal.

  7. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  8. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data.

    Science.gov (United States)

    Poulsen, Tjalfe G; Hansen, Jens Aage

    2009-11-01

    Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.

  9. Radiation Treatment for Recycling of Industrial Wastewater for Industrial Usage - Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zones

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, Khomsaton Abu; Sharif, Jamaliah; Selambakkanu, Sarala; Ming, Ting Teo; Isnin, Natsha; Osman, Hasnul Nizam; Azmi, Khasmidatul Akma M.K; Dahlan, Khairul Zaman Hj Mohd; Yahya, Nasehir khan Em [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia)

    2012-07-01

    In this research, activated sludge system and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives are to study the effect of hydraulic retention time (HRT) in activated sludge and effect of absorbed dose, current and energy to the characteristic of mix industrial wastewater and Di(2-ethylhexyl) phthalate(DEHP) added in the wastewater. DEPH is a type of plasticizer and quantified by GC-MS. Microbe identification in activated sludge was also carried out in this study. At 48hrs HRT, percentage reduction for COD, color, suspended solid were 62.3%, 36.7% and 67.1% respectively. While at 24hrs HRT, COD, color and suspended solid were reduce by 26.0%, 14.9% and 61.3% respectively. Microbial analysis showed six bacteria present in the activated sludge based on 16SrRNA gene sequences. Mixed industrial wastewater was irradiated using electron beam at 1Mev, 5mA and 10mA in a batch system with 3, 6, 8,10 and 12kGy doses. COD, color and suspended solid reduced with the increasing of absorbed dose. Mixed industrial wastewater added with DEPH in the second batch was irradiated with dose up to 300kGy. Concentration of DEHP also reduced with increasing of dose and more effectively decreased in acidic and aerated condition. (author)

  10. Radiation Treatment for Recycling of Industrial Wastewater for Industrial Usage - Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zones

    International Nuclear Information System (INIS)

    Bakar, Khomsaton Abu; Sharif, Jamaliah; Selambakkanu, Sarala; Ming, Ting Teo; Isnin, Natsha; Osman, Hasnul Nizam; Azmi, Khasmidatul Akma M.K; Dahlan, Khairul Zaman Hj Mohd; Yahya, Nasehir khan Em

    2012-01-01

    In this research, activated sludge system and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives are to study the effect of hydraulic retention time (HRT) in activated sludge and effect of absorbed dose, current and energy to the characteristic of mix industrial wastewater and Di(2-ethylhexyl) phthalate(DEHP) added in the wastewater. DEPH is a type of plasticizer and quantified by GC-MS. Microbe identification in activated sludge was also carried out in this study. At 48hrs HRT, percentage reduction for COD, color, suspended solid were 62.3%, 36.7% and 67.1% respectively. While at 24hrs HRT, COD, color and suspended solid were reduce by 26.0%, 14.9% and 61.3% respectively. Microbial analysis showed six bacteria present in the activated sludge based on 16SrRNA gene sequences. Mixed industrial wastewater was irradiated using electron beam at 1Mev, 5mA and 10mA in a batch system with 3, 6, 8,10 and 12kGy doses. COD, color and suspended solid reduced with the increasing of absorbed dose. Mixed industrial wastewater added with DEPH in the second batch was irradiated with dose up to 300kGy. Concentration of DEHP also reduced with increasing of dose and more effectively decreased in acidic and aerated condition. (author)

  11. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  12. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  13. Treatment of heavy oil wastewater by UASB-BAFs using the combination of yeast and bacteria.

    Science.gov (United States)

    Zou, Xiao-Ling

    2015-01-01

    A novel system integrating an upflow anaerobic sludge blanket (UASB) reactor and a two-stage biological aerated filter (BAF) system was investigated as advanced treatment of heavy oil wastewater with large amounts of dissolved recalcitrant organic substances and low levels of nitrogen and phosphorus nutrients. #1 BAF, inoculated with two yeast strains (Candida tropicalis and Rhodotorula dairenensis), was installed in the upper reaches of #2 BAF inoculated with activated sludge. During the 180-day study period, the chemical oxygen demand (COD), ammonia nitrogen (NH3-N), oil and polyaromatic hydrocarbons (PAHs) in the wastewater were removed by 90.2%, 90.8%, 86.5% and 89.4%, respectively. Although the wastewater qualities fluctuated and the hydraulic retention time continuously decreased, the effluent quality index met the national discharge standard steadily. The UASB process greatly improved the biodegradability of the wastewater, while #1 BAF played an important role not only in degrading COD but also in removing oil and high molecular weight PAHs. This work demonstrates that the hybrid UASB-BAFs system containing yeast-bacteria consortium has the potential to be used in bioremediation of high-strength oily wastewater.

  14. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    Science.gov (United States)

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  15. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  16. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    OpenAIRE

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; G?mez, Ignacio; Navarro-Pedre?o, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (ne...

  17. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant.

    Science.gov (United States)

    Bhuptawat, Hitendra; Folkard, G K; Chaudhari, Sanjeev

    2007-04-02

    Moringa oleifera is a pan tropical, multipurpose tree whose seeds contain a high quality edible oil (up to 40% by weight) and water soluble proteins that act as effective coagulants for water and wastewater treatment. The use of this natural coagulant material has not yet realised its potential. A water extract of M. oleifera seed was applied to a wastewater treatment sequence comprising coagulation-flocculation-sedimentation-sand filtration. The study was laboratory based using an actual wastewater. Overall COD removals of 50% were achieved at both 50 and 100mg/l M. oleifera doses. When 50 and 100mg/l seed doses were applied in combination with 10mg/l of alum, COD removal increased to 58 and 64%, respectively. The majority of COD removal occurred during the filtration process. In the tests incorporating alum, sludge generation and filter head loss increased by factors of 3 and 2, respectively. These encouraging treatment results indicate that this may be the first treatment application that can move to large scale adoption. The simple water extract may be obtained at minimal cost from the presscake residue remaining after oil extraction from the seed. The regulatory compliance issues of adopting 'new materials' for wastewater treatment are significantly less stringent than those applying to the production of potable water.

  18. Anaerobic wastewater treatment in single-and double-stage digesters; Tratamiento anaerobio de aguas residuales en digestores de simple y doble etapa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Lopez, M.; Vazquez Garcia, M. J.; Pena Caamano, P.; Soto Castineira, M. [Universidad da Coruna (Spain)

    2000-07-01

    Anaerobic treatment are a major alternative in wastewater treatment due to simplicity and lower power requirements, although greater understanding of this process and its technology is needed to make it possible. The most important concepts and parameters developed to treat medium-and high-load effluents are defined and various technologies are discussed, including: anaerobic filter (AF), upflow anaerobic sludge blanket (UASB) reactors, fluidized bed (FB) reactors, expanded granular sludge beds (EGSB). To determine the efficiency in municipal wastewater treatment, a pilot plant was constructed with a UASB reactor, obtaining elimination efficiency values of 60-65% for total COD and 55% for TSS. Finally a comparative chart of aerobic versus anaerobic treatment is provided, high-lighting the major possibilities offered by the latter. (Author) 28 refs.

  19. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  20. MiDAS Field Guide – a Comprehensive Online Source of Information About the Microbes of Activated Sludge

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Saunders, Aaron Marc

    activated sludge wastewater treatment systems, linking their identity with available information on their function and distribution. The guide includes the approx. 100 abundant genera that are present in most treatment plants (based on a survey of 25 full-scale Danish wastewater treatment plants...... are provided. The MiDAS Field Guide is a continuously developing resource where all working in the field are invited to contribute....... that would be otherwise excluded from analyses. The MiDAS database importantly provides a common taxonomy for the field that gives a solid foundation for the study of microbial ecology of the activated sludge process and related wastewater treatment processes, such as biofilms and granular sludge. Each genus...

  1. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups.

    Science.gov (United States)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca; Nierychlo, Marta; Kristensen, Jannie Munk; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

    2017-01-01

    Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design and operation. Amplicon sequencing of the 16S rRNA gene allows high-throughput monitoring of these systems. The MiDAS field guide is a public resource providing amplicon sequencing protocols and an ecosystem-specific taxonomic database optimized for use with wastewater treatment facility samples. The curated taxonomy endeavours to provide a genus-level-classification for abundant phylotypes and the online field guide links this identity to published information regarding their ecology, function and distribution. This article describes the expansion of the database resources to cover the organisms of the anaerobic digester systems fed primary sludge and surplus activated sludge. The updated database includes descriptions of the abundant genus-level-taxa in influent wastewater, activated sludge and anaerobic digesters. Abundance information is also included to allow assessment of the role of emigration in the ecology of each phylotype. MiDAS is intended as a collaborative resource for the progression of research into the ecology of wastewater treatment, by providing a public repository for knowledge that is accessible to all interested in these biotechnologically important systems. http://www.midasfieldguide.org. © The Author(s) 2017. Published by Oxford University Press.

  2. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    Science.gov (United States)

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  3. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    Science.gov (United States)

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (pRemoval efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer

    International Nuclear Information System (INIS)

    Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon

    2007-01-01

    Failure in nitrogen removal of cokes wastewater occurs occasionally during summer season (38 deg. C) due to the instability of nitrification process. The objective of this study was to examine why the nitrification process is unstable especially in summer. Various parameters such as pH, temperature, nutrients and pollutants were examined in batch experiments using activated sludge and wastewater obtained from a full-scale cokes wastewater treatment facility. Batch experiments showed that nitrification rate of the activated sludge was faster in summer (38 deg. C) than in spring or autumn (29 deg. C) and the toxic effects of cyanide, phenol and thiocyanate on nitrification were reduced with increasing temperature. Meanwhile, experiment using continuous reactor showed that the reduction rate in nitrification efficiency was higher at 38 deg. C than at 29 deg. C. In conclusion, the instability of full-scale nitrification process in summer might be mainly due to washing out of nitrifiers by fast growth of competitive microorganisms at higher temperature under increased concentrations of phenol and thiocyanate

  5. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    Science.gov (United States)

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  6. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  7. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Directory of Open Access Journals (Sweden)

    Oskar Modin

    Full Text Available New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC per g volatile suspend solids (VSS for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  8. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    Science.gov (United States)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  9. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  10. Granulation for Coking Wastewater Treatment in a Coupled Anaerobic-Aerobic Reactor

    Science.gov (United States)

    Dong, Chunjuan; Lv, Bingnan

    2018-06-01

    A coupled anaerobic-aerobic granular bio-film reactor was employed with two operation stages: Stage I, granular sludge was formed from digestion sludge using brewery wastewater, and Stage II, granular sludge was acclimatized using coking wastewater. Two oxygenation methods (i.e. A and B) were employed to acclimatize the granules. For method A, dissolved O 2 was supplied through a continuous oxygenation way of 800-15000ml-min-1 . And for method B, dissolved O2 was supplied of 800-15000ml-min-1 18-12 times at 20-60min intervals, 1h each time. The experimental results showed that granules could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules lack of nutrition, and it was the key factor for granules forming to add little loose granules. It took only about 6 months for granules acclimation using coking wastewater. Both oxygenation methods could run well when acclimatizing the granules. However, method A could have comparatively high and stable operation effect. The actual coking wastewater had distinct inhibition effect on the granules, but the supplement of some oxygen could promote the recovery of SMA, and NaHCO3 supplement could also weaken the inhibition effect of the CWW. Method A had more strongly activity recovery ability than method B.

  11. Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants

    DEFF Research Database (Denmark)

    Falås, Per; Andersen, Henrik Rasmus; Ledin, Anna

    2012-01-01

    During the last decade, several screening programs for pharmaceuticals at Swedish wastewater treatment plants (WWTPs) have been conducted by research institutes, county councils, and wastewater treatment companies. In this study, influent and effluent concentrations compiled from these screening...... programs were used to assess the occurrence and reduction of non-antibiotic pharmaceuticals for human usage. The study is limited to full-scale WWTPs with biological treatment. Based on the data compiled, a total of 70 non-antibiotic pharmaceuticals have been detected, at concentrations ranging from a few...... WWTPs were identified. Further comparison based on the biological treatment showed lower reduction degrees for several pharmaceuticals in trickling filter plants compared to activated sludge plants with nitrogen removal....

  12. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  13. COMPARISON OF THE FRACTIONS OF COD IN RAW WASTEWATER INFLUENT FOR SMALL AND LARGE SEWAGE TREATMENT

    Directory of Open Access Journals (Sweden)

    Joanna Smyk

    2016-06-01

    Full Text Available The article presents a comparison of the share fraction of COD in raw wastewater in treatment plants which flow in a small amount of wastewater and the sewage treatment with high flow. Compared the constructed wetlands with an average capacity of 4 dm3/m,, the treatment plant with biological deposits with an average capacity of 8 dm3/m, and a sewage treatment plant with activated sludge in Bialystok with a capacity of about 70 000 dm3/m. The lowest percentages of dissolved fraction of soluble organic non-biodegradable substances SI was reported in raw sewage in small sewage treatment plants. Based on the available data wasn’t found significant correlation between the factions XI, SS, XS in raw sewage and the amount of wastewater.

  14. Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept.

    Science.gov (United States)

    Li, Xiling; Luo, Jinghai; Guo, Gang; Mackey, Hamish R; Hao, Tianwei; Chen, Guanghao

    2017-05-15

    This study aimed to develop an aerobic granular sludge process for the efficient treatment of highly saline wastewater and understand the granulation process in a seawater-based multi-ion matrix. Five identical sequencing batch airlift reactors (SBARs) are used to treat synthetic saline sewage with different proportions of real seawater (0%-100%). The results confirm that aerobic granular sludge can be successfully developed with various proportions of seawater up to 100% and show that seawater not only significantly accelerates granulation but also generates stronger granular structures than does freshwater. The increased presence of gel-forming alginate-like exopolysaccharides in the granules explains why a greater proportion of seawater leads to higher density and improves the cohesive strength of the granules. SEM-EDX analysis further revealed substantial presence of both Ca 2+ and Mg 2+ phosphate in the granule core as well as in the outer layers providing extra bridging forces in addition to alginate-like exopolysaccharides for accelerating the granule formation and maintaining the structure. It is hoped that this work could explore another approach for saline sewage treatment and bring some clues for the mystery of granulation mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  16. Full scale electron beam systems for treatment of water, wastewater and medical waste

    International Nuclear Information System (INIS)

    Waite, T.D.; Kurucz, C.N.; Cooper, W.J.; Brown, D.

    1998-01-01

    High energy electron accelerators have been used in numerous applications for several decades. In the early 1980's several attempts to use electron accelerators for the disinfection of sludge proved that the technology could be used for that application. One such facility was designed, built and tested for one year at the Miami-Dade Virginia Key Wastewater Treatment Plant. The process successfully disinfected anaerobically digested sludge. However, due to changing local regulations the process was never implemented. Now this process may provide a viable alternative for the ultimate destruction of toxic and hazardous organic chemicals from water and sludges. When high energy electrons impact an aqueous solution, with or without particulate matter present, reactive transient species are formed. The three transient species of most interest are the aqueous electron, e - aq, hydrogen radical, H·, and the hydroxyl radical, ·OH. The relative concentration of these radicals in an irradiated solution of pure water is 44, 10 and 46%, respectively. The absolute concentration of the radicals is dose and water quality dependent, but is in excess of mM levels in potable, raw and secondary wastewater effluent at our facility. This paper describes the facilities at the Electron Beam Research Facility (EBRF) in Miami, FL. The accelerator is a 1.5 MeV, 50 mA insulated core transformer type. Several areas of research have been the focus of the studies with an interdisciplinary team of faculty and students in engineering and science. The areas included are, inactivation of bacteria in raw and chlorinated and unchlorinated secondary wastewater and the changes in biochemical oxygen demand and chemical oxygen demand in the raw and unchlorinated secondary wastewater. The removal of toxic chemicals has also been studied in some detail. These studies have been conducted both at the EBRF and using 60 Co gamma irradiation. To examine the effect of water quality on the destruction of the

  17. Opportunities for energy conservation and load shaping in sludge management systems

    International Nuclear Information System (INIS)

    Burton, F.L.

    1992-11-01

    Expansion of both water and wastewater treatment plants increases the quantity of resulting sludge that must be processed. This report focuses on alternative sludge processing technologies, which may pre sent opportunities for managing the amount of electricity required to power processing equipment. Overall, the report provides information on the electrotechnologies used in sludge management systems, defines opportunities in the design and operation of water and wastewater sludge management systems for more efficient use of electric power, and identifies possible areas for research and development that would enhance the design of energy-efficient systems. The sludge operations and processes covered in this report include pumping, thickening, stabilization, conditioning and dewatering, heat drying, and thermal reduction

  18. Municipal wastewater treatment in Mexico: current status and opportunities for employing ecological treatment systems.

    Science.gov (United States)

    Zurita, Florentina; Roy, Eric D; White, John R

    2012-06-01

    The aim of this paper is to evaluate the current status of municipal wastewater (MWW) treatment in Mexico, as well as to assess opportunities for using ecological treatment systems, such as constructed wetlands. In 2008, Mexico had 2101 MWW treatment plants that treated only 84 m3/s of wastewater (208 m3/s ofMWW were collected in sewer systems). Unfortunately, most treatment plants operate below capacity owing to a lack of maintenance and paucity of properly trained personnel. The main types of treatment systems applied in Mexico are activated sludge and waste stabilization ponds, which treat 44.3% and 18% of the MWW collected, respectively. As in many other developing nations around the world, there is a great need in Mexico for low-cost, low-maintenance wastewater treatment systems that are both economically and environmentally sustainable. In 2005, 24.3 million Mexicans lived in villages of less than 2500 inhabitants and 14.1 million lived in towns with 2500-15,000 inhabitants. An opportunity exists to extend the use of ecological treatment systems to these low population density areas and considerably increase the percentage of MWW that is treated in Mexico. Small-scale and medium-size constructed wetlands have been built successfully in some states, primarily during the past five years. Several barriers need to be overcome to increase the adoption and utilization of ecological wastewater technology in Mexico, including: a lack of knowledge about this technology, scarce technical information in Spanish, and the government's concentration on constructing MWW treatment plants solely in urban areas.

  19. Design and operation of UASB—A/O process for treatment starch and VB12 wastewater

    Directory of Open Access Journals (Sweden)

    Yuanyuan CHEN

    2016-12-01

    Full Text Available Starch and VB12 wastewater with higher COD and ammonia nitrogen concentration, contains a large number of difficult biodegradable material, complex composition, is difficult to deal with. In recent years, with the increasingly stringent wastewater discharge standards, require the use of a stable and efficient wastewater treatment process for purification treatment of high concentration of ammonia nitrogen in wastewater and the refractory organic pollutants, to achieve discharge standards. Upflow Anaerobic Sludge Blanket (UASB—Anoxic/Oxic(A/O process was employed in a wastewater treatment of starch and Vitamin B12 wastewater, which was 5 000 m3/d with highly concentrated organic pollutants and ammonia. The efficiency and reliability of the process has been proven. The results of the system operation show that the concentration of the effluent COD, ammonia and total nitrogen (TN were at 78.4 mg/L, 18.7 mg/L and 41.1 mg/L, and the treatment efficiencies of COD, ammonia and TN reached over 99%, 92.1%, 82.7%, respectively, when the influent COD and TN concentration were in the ranges of 8 544~9 720 mg/L and 240~250 mg/L. The quality of the treated wastewater met the first-class discharge standards in Integrated Wastewater Discharge Standard(GB 8978—1996.

  20. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH.

    Science.gov (United States)

    Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming

    2018-07-01

    High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.