WorldWideScience

Sample records for sludge treatment system

  1. Life cycle assessment comparing the treatment of surplus activated sludge in a sludge treatment reed bed system with mechanical treatment on centrifuge

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Hoeve, Marieke ten; Nielsen, Steen

    2018-01-01

    or the centrifuge and terminated by land application of the final sludge product. The environmental impacts caused by the sludge treatment reed bed system strategy were comparable to or lower than those caused by the mechanical sludge treatment method. The impacts on climate change were the same for all...

  2. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  3. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. SNF sludge treatment system preliminary project execution plan

    International Nuclear Information System (INIS)

    Flament, T.A.

    1998-01-01

    The Fluor Daniel Hanford, Inc. (FDH) Project Director for the Spent Nuclear Fuel (SNF) Project has requested Numatec Hanford Company (NHC) to define how Hanford would manage a new subproject to provide a process system to receive and chemically treat radioactive sludge currently stored in the 100 K Area fuel retention basins. The subproject, named the Sludge Treatment System (STS) Subproject, provides and operates facilities and equipment to chemically process K Basin sludge to meet Tank Waste Remediation System (TWRS) requirements. This document sets forth the NHC management approach for the STS Subproject and will comply with the requirements of the SNF Project Management Plan (HNF-SD-SNFPMP-011). This version of this document is intended to apply to the initial phase of the subproject and to evolve through subsequent revision to include all design, fabrication, and construction conducted on the project and the necessary management and engineering functions within the scope of the subproject. As Project Manager, NHC will perform those activities necessary to complete the STS Subproject within approved cost and schedule baselines and turn over to FDH facilities, systems, and documentation necessary for operation of the STS

  5. Excess sludge reduction in activated sludge processes by integrating ultrasound treatment

    International Nuclear Information System (INIS)

    Perez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralon, G.; Fdz-Polanco, F.

    2009-01-01

    Biological sludge produced in the activated sludge process can be minimised modifying the water line, the sludge line or the final disposal strategy. Selecting the water line the general idea is to reduce the sludge producing the yield coefficient by means of the called lysis cryptic growth process. The main techniques referenced in literature are onization, chlorination and chemical and heat treatment. Ultrasounds are widely used to increase anaerobic biodegradability but are not reported as system to control excess sludge production. (Author)

  6. Sumi-sludge system; Sumisurajji system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    The subject facilities, delivered to Kakegawa City, Shizuoka Prefecture, in December, 1999, are the first machine by the heavy load denitrification processing system adaptive to purifying tank sludge 'Sumi-sludge system'. It enhanced the capacity of 84 kl/day by about 30% to 109 kl/day through the remodeling of the existing facilities. Its major specifications are capacity: 109 kl/day (human wastes 18 kl/day, purifying tank sludge 91 kl/day) and final effluent quality: pH 5.8-8.6, BOD 10 mg/l or less, COD 20 mg/l or less, SS 10 mg/l or less, T-N 10 mg/l or less, T-P 1 mg/l or less, chromaticity 30 degrees or less, coliform group quantity 3,000 pieces/ml or less. It has the following features. (1) Bio-treatment load is reduced by dehydrating human wastes and purifying tank sludge in the prestage of the bio-treatment. (2) Bio-treatment and flocculation separating treatment are integrated. (3) A high-speed flocculation sedimentation tank 'Sumi-thickner' is employed in the solid-liquid separator, enabling stable solid-liquid separation. (translated by NEDO)

  7. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  8. Environmental Assessment of Sewage Sludge Management – Focusing on Sludge Treatment Reed Bed Systems

    DEFF Research Database (Denmark)

    Larsen, Julie Dam

    profiles of the STRB system technology and a mechanical treatment technology, constituting a basis for decision-making in relation to choice of technology. A major part of the project involved performance of fieldwork and laboratory work. Data were collected at three Danish, well-operated STRB systems...... assessment were based on international acknowledged standards and recommendations. An attributional LCA approach was chosen, and the loadings and savings for all impact categories were normalised to people equivalents (PE) (the annual loadings and savings provided by one average person). Three sludge...... gasses CH4 and N2O were larger for mechanical dewatered sludge, the net environmental loadings provided to the impact category Climate Change by this technology (S-CEN) and the STRB system technology (S-STRB and S-SPA) ended up being equally sized (9.010-4 PE), despite of higher biological activity...

  9. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  10. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  11. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  12. Optimal policies for activated sludge treatment systems with multi effluent stream generation

    Directory of Open Access Journals (Sweden)

    Gouveia R.

    2000-01-01

    Full Text Available Most industrial processes generate liquid waste, which requires treatment prior to disposal. These processes are divided into sectors that generate effluents with time dependent characteristics. Each sector sends the effluent to wastewater treatment plants through pumping-stations. In general, activated sludge is the most suitable treatment and consists of equalization, aeration and settling tanks. During the treatment, there is an increase in the mass of microorganisms, which needs to be removed. Sludge removal represents the major operating costs for wastewater treatment plants. The objective of this work is to propose an optimization model to minimize sludge generation using a superstructure in which the streams from pumping-stations can be sent to the equalization tank. In addition, the aeration tank is divided into cells that can be fed in series and parallel. The model relies on mass balances, kinetic equations, and the resulting Nonlinear Programming problem generates the best operational strategy for the system feed streams with a high substrate removal. Reductions of up to 30 % can be achieved with the proposed strategy maintened BOD efficiency removal upper than 98 %.

  13. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  14. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  15. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  16. Treatment and disposal of refinery sludges: Indian scenario.

    Science.gov (United States)

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  17. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  18. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55 0 C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  19. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.

    Science.gov (United States)

    Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing

    2009-08-15

    The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  20. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution

    International Nuclear Information System (INIS)

    Zhang Hongzi; Xiang Hai; Zhang Guoliang; Cao Xia; Meng Qing

    2009-01-01

    The presence of high-strength oil and grease (O and G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O and G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O and G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O and G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12 h was required for removing approximately 95% of O and G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  1. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  2. Characteristics of biosolids from sludge treatment wetlands for agricultural reuse

    DEFF Research Database (Denmark)

    Uggetti, Enrica; Ferrer, Ivet; Nielsen, Steen

    2012-01-01

    Sludge treatment wetlands (STW) consist of constructed wetlands systems specifically developed for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soi...... legal limits for land application of the sludge. Our results suggest that biosolids from the studied STW can be valorised in agriculture, especially as soil conditioner....

  3. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  4. Siloxane removal and sludge disintegration using thermo-alkaline treatments with air stripping prior to anaerobic sludge digestion

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Fujime, Motochika; Takaoka, Masaki; Fujimori, Takashi; Appels, Lise; Dewil, Raf

    2015-01-01

    Highlights: • Siloxanes hamper the energy-use of anaerobic digestion biogas. • D5 siloxane was considered as target compound in this study. • The treatment removed 80% of D5 in sewage sludge at 55 °C and 135 g-NaOH kg −1 -VTS. • D5 removal and the disintegration of VSS in the sludge were correlated. • At the optimal conditions, the costs of anaerobic digestion were notably diminished. - Abstract: A thermo-alkaline treatment with air stripping was applied before anaerobic sludge digestion for both siloxane removal and sludge disintegration. The treatment was expected to increase the amount of biogas produced and to reduce the amount of siloxane in the gas. Adding sodium hydroxide (NaOH) to the sludge improved the removal of siloxane from the sludge, with approximately 90% of the siloxane removed to the gas phase using a thermo-alkaline treatment. Over 80% of decamethylcyclopentasiloxane (D5) could be removed under the following conditions: 55 °C treatment temperature, 135 g-NaOH kg −1 volatile total solids (VTS), and 0.5 L min −1 air-stripping rate. The disintegration ratio of volatile suspended solids (VSS) in the sludge was correlated with the D5 removal ratio. Because most of the siloxane was adsorbed to, or was contained in the VSS, the siloxane removal ratio increased with VSS disintegration. Finally, the energy consumption and operational costs of this system were evaluated for several scenarios. Thermo-alkaline treatment at the indicated operational conditions had the lowest operating costs for a 400 m 3 day −1 anaerobic sludge digestion system

  5. Sludge Treatment Project Engineered Container Retrieval And Transfer System Prelminary Design Hazard And Operability Study

    International Nuclear Information System (INIS)

    Carro, C.A.

    2011-01-01

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m 3 of KW Basin floor and pit sludge, 18.4 m 3 of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m 3 of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand

  6. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  7. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is

  8. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  9. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    WESTRA, A.G.

    1999-01-01

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  10. Heavy metal sequestration by humic substances during phyto-treatment of sewage sludges

    International Nuclear Information System (INIS)

    Peruzzi, E.; Doni, S.; Macci, C.; Ceccanti, B.; Masciandaro, G.

    2009-01-01

    The presence of heavy metals in sludges stabilized in a reed bed system, may affect their use for agricultural purposes; however, the environmental impact of sludges depends on the availability and phyto toxicity of their heavy metal. The aim of this paper was to determine the effectiveness of a reed bed (Phragmites Australia) sludge treatment system in two urban wastewater treatment plants in Italy after two-year period of operation: by estimating the process of sludge stabilization, following conventional and non conventional parameters related with the evolution of organic matter quality Water soluble Carbon, Dehydrogenase activity, Fulvic Acids, Humic Acids, Pyrolytic indices or organic matter Mineralization and Humification); by following the heavy metal speciation bioavailability in sludges. (Author)

  11. Operational strategy, economic and environmental performance of sludge treatment reed bed systems - based on 28 years of experience

    DEFF Research Database (Denmark)

    Nielsen, S.; Larsen, Julie Dam

    2016-01-01

    Sludge treatment reed bed (STRB) systems have been used for dewatering and mineralisation of sludge in Europe since 1988. STRB systems provide substantial environmental, economic, and operational benefits compared to mechanical sludge dewatering solutions such as belt presses and centrifuges....... They require less energy, no chemicals, reduce the sludge volume and produce bio solids with dry solid contents up to 20-40% under Danish climate conditions, depending on the sludge quality. Experience has shown that sludge treated in STRBs represents a high quality product with a low content of pathogens...... compared to conventional mechanical dewatering devices, delivering an economic break-even of about 3-5 years. This paper provides an overview of the operation and maintenance costs and environmental benefits of a typical STRB based on the experiences gained from the operation of a large number of STRBs...

  12. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    Science.gov (United States)

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    Science.gov (United States)

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  14. Sludge digesters - important components of biological sewage treatment systems. Faulbehaelter - wichtige Bausteine der biologischen Abwasserklaerung

    Energy Technology Data Exchange (ETDEWEB)

    Perthen, R [Ing.-Buero Perthen, Schwabach (Germany)

    1992-05-01

    Following some general explanations regarding the function of sludge digesters as components of sewage treatment systems, the paper deals with a sludge digester system in Bottrop. It consists of four egg-shaped reactors with a useful content of 15 000 m[sup 3]. The plant is designed for daily digestion of 3 000 m[sup 3] and a period of digestion of 20 days. Briefly described are the design blueprints tendered, special proposals regarding the construction of the shells and for the design of the base or foundation, as well as the actual construction work and special static and design features. (LU).

  15. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    Science.gov (United States)

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution

  17. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  18. Biological treatment of sludge digester liquids.

    Science.gov (United States)

    van Loosdrecht, M C M; Salem, S

    2006-01-01

    Nitrogen removal in side stream processes offers a good potential for upgrading wastewater treatment plants (WWTPs) that need to meet stricter effluent standards. Removing nutrients from these internal process flows significantly reduces the N-load to the main treatment plant. These internal flows mainly result from the sludge processing and have a high temperature and a high concentration of ammonia. Therefore, the required reactor volumes as well as the required aerobic SRT are small. Generally, biological treatment processes are more economical and preferred over physical-chemical processes. Recently, several biological treatment processes have been introduced for sludge water treatment. These processes are available now on the activated sludge market (e.g. SHARON, ANAMMOX and BABE processes). The technologies differ in concept and in the limitations guiding the application of these processes for upgrading WWTPs. This paper reviews and compares different biological alternatives for nitrogen removal in side streams. The limitations for selecting a technology from the available ones in the activated sludge market are noted and analysed. It is stressed that the choice for a certain process is based on more aspects than pure process engineering arguments.

  19. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  20. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  1. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  2. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  3. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-01-01

    Studies reported herein have shown that a treatment of 55 0 C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads γ radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron-beam (which, for all practical purposes, is equivalent to γ irradiation for a given absorbed dose) was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  4. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  5. Irradiation treatment of sewage sludge: History and prospects

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Zhou Ruimin; Zhu Jinliang

    1998-01-01

    This paper first reviews the history of irradiation treatment of sewage sludge in the world. The first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 and used 60 Co as irradiation source. Since then, many sludge irradiators were constructed in U.S.A., India, Japan, Canada, Poland, etc., which used 60 Co, 137 Cs or electron beam as irradiation sources. The paper then describes some basic research on irradiation treatment of sewage sludge including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge. Some proposals have been suggested for further development of this technology in the future

  6. An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal

    Directory of Open Access Journals (Sweden)

    Tarantini Mario

    2007-01-01

    Full Text Available The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .

  7. Efficiency of Worm Reactors in Reducing Sludge Volume in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Azam Naderi

    2017-01-01

    Full Text Available The activated sludge process is the most widely used on a global scale for the biological treatment of both domestic and industrial effluents. One problem associated with the process, however, is the high volume of sludge produced. Excess sludge treatment and disposal account for up to 60% of the total operating costs of urban wastewater treatment plants due to the stringent environmental regulations on excess sludge disposal. These strict requirements have encouraged a growing interest over the last few years in reducing sludge volumes produced at biological treatment plants and a number of physical, chemical, and mechanical methods have been accordingly developed for this purpose. The proposed methods are disadvantaged due to their rather high investment and operation costs. An alternative technology that avoids many of these limitations is the worm reactor. In this study, the characteristics of this technology are investigated while the related literature is reviewed to derive the optimal conditions for the operation of this process in different situations.

  8. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  9. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  10. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  11. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    DRINIE

    2003-07-03

    Jul 3, 2003 ... separation, on-site applications of such processes (especially fat traps) are often ... edible oil effluent treatment on sludge settleability, floc structure and activity of .... Poor FOG removal was noted in the MLE system as just 7%.

  12. Opportunities for energy conservation and load shaping in sludge management systems

    International Nuclear Information System (INIS)

    Burton, F.L.

    1992-11-01

    Expansion of both water and wastewater treatment plants increases the quantity of resulting sludge that must be processed. This report focuses on alternative sludge processing technologies, which may pre sent opportunities for managing the amount of electricity required to power processing equipment. Overall, the report provides information on the electrotechnologies used in sludge management systems, defines opportunities in the design and operation of water and wastewater sludge management systems for more efficient use of electric power, and identifies possible areas for research and development that would enhance the design of energy-efficient systems. The sludge operations and processes covered in this report include pumping, thickening, stabilization, conditioning and dewatering, heat drying, and thermal reduction

  13. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    International Nuclear Information System (INIS)

    Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis; Johnson, Mike W.

    2012-01-01

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

  14. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  15. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  16. Continues treatment of oily sludge at Colombian refineries

    International Nuclear Information System (INIS)

    Echeverria, Victor; Monsalve, Gladys; Vidales, Humberto

    2002-01-01

    The Colombian Petroleum institute - ICP, the research and development branch of Ecopetrol has developed a unique technological package used to treat oily sludge in a continuous way. The sludge comes from a refinery with 220000 barrels of crude per day load, located in the Middle Madgalena River Valley in Colombia. The technological package allows for a) the recovery of the hydrocarbon contained in oily wastes (up to 50%) b) the elimination of the oil contained in solid using a biodegradation process and, c) the availability economically and technically feasible solution to handle oily sludge generated in the refinery. The oily treated in this process come from maintenance of refinery's equipment and also from the physical chemical separation process at the industrial wastewater treatment plant. Oily sludge is a complex system where light and heavy oils, contaminated water and contaminated solids coexist in the form of direct, inverse and multiple emulsions. The comprehensive technological package allows the treatment of oily sludge in a cost effective way. ICP technological package developed includes technologies combining mechanical, thermal, chemical and electrostatic dehydration techniques and stimulated and intensive bioremediation to decontamination of solids saturated with residual oil. This technological package brings a solution to old environmental problem caused by the inappropriate final disposal of oily wastes such as storage in ponds, marshes and open pits: Nowadays wastes generated are treated in a continuous process that is environmentally friendly and economically profitable

  17. Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Zhang, Guangming; Ma, Weifang; Wu, Hao; Ma, Boqiang

    2012-11-01

    Alkaline pretreatment combined with high pressure homogenization (HPH) was applied to promote sewage sludge disintegration. For sewage sludge with a total solid content of 1.82%, sludge disintegration degree (DD(COD)) with combined treatment was higher than the sum of DD(COD) with single alkaline and single HPH treatment. NaOH dosage ⩽0.04mol/L, homogenization pressure ⩽60MPa and a single homogenization cycle were the suitable conditions for combined sludge treatment. The combined sludge treatment showed a maximum DD(COD) of 59.26%. By regression analysis, the combined sludge disintegration model was established as 11-DD(COD)=0.713C(0.334)P(0.234)N(0.119), showing that the effect of operating parameters on sludge disintegration followed the order: NaOH dosage>homogenization pressure>number of homogenization cycle. The energy efficiency with combined sludge treatment significantly increased compared with that with single HPH treatment, and the high energy efficiency was achieved at low homogenization pressure with a single homogenization cycle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    Science.gov (United States)

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nitrogen mineralisation and greenhouse gas emission from the soil application of sludge from reed bed mineralisation systems

    DEFF Research Database (Denmark)

    Gómez-Muñoz, B; Larsen, Julie Dam; Bekiaris, G

    2017-01-01

    A sludge treatment reed bed system (STRB) is a technology used for dewatering and stabilising sewage sludge via assisted biological mineralisation, which creates a sludge residue suitable for use as fertiliser on agricultural land. We evaluated the effect of sludge residue storage time (stabilisa......A sludge treatment reed bed system (STRB) is a technology used for dewatering and stabilising sewage sludge via assisted biological mineralisation, which creates a sludge residue suitable for use as fertiliser on agricultural land. We evaluated the effect of sludge residue storage time...... (stabilisation time) for three STRBs on soil N mineralisation and CO2 and N2O emissions in soil. The experiment revealed that the N mineralisation rate and emissions of CO2 and N2O decreased as a function of treatment time in the STRBs. Mixed sludge residue (sludge residue subjected to different treatment times......) for the three STRBs resulted in N mineralisation rates similar to the sludge residue subjected to a shorter treatment time but lower N2O emissions similar to the values of the older sludge residue. This finding reveals that combining fresh and more stabilised sludge residue ensures high N availability...

  20. Arsenic in an alkaline AMD treatment sludge: Characterization and stability under prolonged anoxic conditions

    International Nuclear Information System (INIS)

    Beauchemin, Suzanne; Fiset, Jean-Francois; Poirier, Glenn; Ablett, James

    2010-01-01

    lower redox state in the systems, and even under these imposed treatments, only weakly reducing conditions (Mn threshold) developed. The results suggest that As(V) in AMD sludge will remain stable under prolonged anoxic conditions as long as Mn(IV) is present and organic matter accumulation is negligible.

  1. COMBINED COMPOST AND VERMICOMPOSTING PROCESS IN THE TREATMENT AND BIOCONVERSION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh and M. R. Shamansouri

    2005-10-01

    Full Text Available Traditional thermophillic composting is commonly for treatment of sludge. A related technique as vermicomposting process, using earthworms to breakdown sludge, is also becoming popular. These two techniques have their inherent advantages and disadvantages. The combined approach suggested in this study to enhance the overall process and improve the products qualities. Two systems,vermicomposting and combined compost vermicomposting processes, have been investigated in this study. The sludge used in this study was obtained from the drying beds of South Isfahan wastewater treatment plant.The sludge mixed with sawdust to provide C/N ratio of 25/1.Eisenia fetida was the species of earthworms used in the vermicomposting processes.The results obtained indicates reduction in the amount of volatile solids,total carbon and C/N ratio with the vermicompost age,which indicates the reduction in the biodegradable organic content and mineralization of sludge. Also increase in phosphorus concentration by the end process because of mineralization of organic matter. The results indicate that, a system that combines the two mentioned processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and homogenous; the product could meet the pathogen reduction requirements.

  2. Removal of siloxanes in sewage sludge by thermal treatment with gas stripping

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Omori, Keigo; Takaoka, Masaki; Mizuno, Tadao

    2014-01-01

    Highlights: • A new treatment of sewage sludge were studied to reduce siloxanes in biogas. • D5 of cyclic siloxane concentrations were the highest in sewage sludge. • Under optimal conditions, most of siloxanes in the sludge were removed previously. • By this treatment, CH 4 was 1.6-fold larger and siloxane in biogas 95% lower. - Abstract: In this study, thermal treatment with gas stripping of sewage sludge before anaerobic digestion to reduce siloxanes in the sludge and accelerate the anaerobic digestion was studied experimentally. Regarding siloxanes in the sludge, D5 concentrations were the highest. Siloxane concentrations in the digested sludge were decreased, versus those in thickened sludge, because siloxanes in the sludge are moved to the biogas during the anaerobic digestion. Thermal treatment and gas stripping experiments were conducted. The optimum conditions for siloxane removal from sludge were found to be thermal treatment with gas stripping at 80 °C with 0.5 L/min of air flow for 48 h. Under these conditions, approximately 90% of all siloxanes in the sludge were removed. Next, anaerobic digestion experiments were conducted with the optimally treated sludge and untreated sludge. The biogas volume of the optimally treated sludge was 1.6-fold larger than that of the untreated sludge. Furthermore, D5 contents in biogas from the optimally treated sludge were 95% lower than in biogas from untreated sludge. Thus, thermal treatment with gas stripping of sludge before anaerobic digestion was effective in increasing biogas amounts, decreasing siloxane concentrations in the biogas, and reducing the need for a siloxane removal process from the biogas

  3. Recovery of phosphorus from sewerage treatment sludge

    Energy Technology Data Exchange (ETDEWEB)

    Manuilova, Anastasia

    1999-07-01

    This thesis is a review of the current state of technologies for the removal of phosphorus from wastewater and sludge, and the recovery and re-use of phosphorus. It explains the need for phosphorus removal and describes the current removal processes. Focus is given to phosphorus crystallisation processes and to the processes which treat sewage treatment sludges into potential sources of phosphorus. An interesting possibility to recover phosphorus from sewage sludge by use of Psenner fractionation is also discussed. By this method, the following phosphate fractions of technological significance may be distinguished: (1) redox sensitive phosphates, mainly bound to Fe(OH){sub 3}; (2) phosphate adsorbed to surfaces (Al{sub 2}O{sub 3}), exchangeable against OH{sup -}, and alkali-soluble phosphate; (3) phosphate bound to CaCO{sub 3}, MgCO{sub 3} and in apatite; and (4) organically bound phosphate. The basic removal mechanisms, process schemes and treatment results are described. Two experiments with three different types of sludges from Henriksdal wastewater treatment plant in Stockholm were performed in the laboratory. It was shown that the addition of sodium hydroxide or hydrochloric acid cause the significant release of phosphate (about 80%) for all types of sludges. If a whole Psenner fractionation was performed the phosphate release is approximately 100%.

  4. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    International Nuclear Information System (INIS)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma; Voldoire, Camille F.; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-01-01

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers

  5. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Voldoire, Camille F. [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Newton, Kelly; Praptiwi, Radisti [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Collingnon, Lea [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Dreyfus, Jennifer [Allwater, Adelaide Services Alliance, Wakefield St, Adelaide, SA 5001 (Australia); Hobson, Peter [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Gaget, Virginie [University of Adelaide, Ecology and Environmental Sciences, School of Biological Sciences, Adelaide, SA 5005 (Australia); Newcombe, Gayle, E-mail: gayle.newcombe@sawater.com.au [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia)

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers.

  6. Treatment of off-gas from lagoon sludge thermal decomposition

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Ga, M. J.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has launched a decommissioning program of the uranium conversion plant in 2001. The treatment of the sludge waste, which was generated during the operation of the plant and stored in the lagoon, is one of the most important tasks in the decommissioning program of the plant. The major compounds of the lagoon sludge are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and uranium compounds. The minor compounds are iron, magnesium, aluminum, silicon and phosphorus. A treatment process of the sludge was developed as figure 1 based on the results of the sludge characteristics and the developed treatment technologies. A treatment of off-gas evolved from the nitrate salts thermal decomposition is one of the important process. Off-gas treatment by using a selective catalytic reduction (SCR) method was investigated in this study

  7. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  9. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  10. Septage unit treatment by sludge treatment reed beds for easy management and reuse: performance and design considerations.

    Science.gov (United States)

    Kim, Boram; Bel, Thomas; Bourdoncle, Pascal; Dimare, Jocelyne; Troesch, Stéphane; Molle, Pascal

    2018-01-01

    Sustainable treatment and management of fecal sludge in rural areas require adapted solutions. Rustic and simple operating processes such as sludge treatment reed beds (STRB) have been increasingly considered for this purpose. The biggest full scale (2,600 m 2 of STRB) septage treatment unit in France had been built in Nègrepelisse with the final objectives of reusing treated sludge and leachates for agriculture spreading and tree irrigation, respectively. The aim of this investigation was to validate the treatment chain of this installation. The obtained field data showed firstly that the overall removal efficiencies of STRB were satisfactory and stable. Removal rates higher than 98% for chemical oxygen demand and suspended solids and a 95% for Kjeldahl nitrogen represented so far a beneficial septage treatment by STRB. The highlighted necessity of a suitable complementary leachate treatment (before tree irrigation) justified the presence of the second stage of vertical flow constructed wetland. The sludge deposit drying and mineralization efficiencies were on the right track. According to hydrotextural diagram analysis, surface deposit was however found to have high deformability probably due to the youth of the installation. An in-depth understanding of STRB system needs continuous long-term studies.

  11. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sludge disinfection by combined treatment of bleaching powder and irradiation

    International Nuclear Information System (INIS)

    Harsoyo

    1987-01-01

    Sludge disinfection by combined treatment of bleaching powder and irradiation. Disinfection of sludge by combined treatment of bleaching powder and irradiation has been investigated. Sludge were obtained from water and waste sanitation department (Dinas Kebersihan) DKI located at Kebon Nanas, Jakarta. Sludge were mixed with bleaching powder at the concentration of 0, 10 and 20 mg/l and then irradiated in multipurpose panoramic batch irradiator (PANBIT) with doses of 2, 4, 6, 8, and 10 kGy and a dose rate 9 kGy/h. The reducing colony form unit caused by the combined treatment depend on type bacteria observed in sludge. Pathogenic bacteria as Clostridium still survive at a dose of 10 kGy on sludge containing 20 mg/l bleaching powder, but Salmonella, Shigella, and Vibrio were not detected in this experiment, neither in the control nor in the irradiated samples. (author). 14 refs.; 4 figs

  13. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  14. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2016-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...

  15. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  16. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  17. Fate of zinc in an electroplating sludge during electrokinetic treatments.

    Science.gov (United States)

    Liu, Shou-Heng; Wang, H Paul

    2008-08-01

    Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.

  18. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-01-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD rem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  19. Technology for improving sludge concentration; Odei noshukusei kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Sludge generating in a sewage treatment plant is disposed through the processes such as concentration, dehydration, and incineration in sludge disposal facilities. In recent years, there has been a trend that this sludge increases in volume as well as worsens in the concentration. A case is predictable where the sludge load to the dehydrating process is so large that the sludge can no longer be processed in sufficient quantity. In the meantime, if sludge is ozone-treated, viscous substance on the surface of sludge particles can be separated with a comparatively small amount of ozone, with sludge concentration enhanced. At Meidensha, an experimental plant was set up for the ozone treatment of sludge in a sludge intensive treatment plant of a metropolis, with a verification experiment carried out for a sludge concentration improving system by ozone. As a result of comparison of the treatment performance between an assessment system for performing ozone treatment and a reference system for not performing, the average value of the sludge concentration of a gravity concentration tank was 1.9% of the reference system against 1.7% of the assessment system in a continuous treatment experiment in the summer, while the solid collection ratio was 65.8% of the reference system against 95.5% of the assessment system, enabling a superior improving effect to be obtained. (NEDO)

  20. Research on Treatment Technology and Device of Oily Sludge

    Science.gov (United States)

    Wang, J. Q.; Shui, F. S.; Li, Q. F.

    2017-12-01

    Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.

  1. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification

    International Nuclear Information System (INIS)

    Moon, Jihong; Mun, Tae-Young; Yang, Won; Lee, Uendo; Hwang, Jungho; Jang, Ensuk; Choi, Changsik

    2015-01-01

    Highlights: • Hydrothermal treatment (HT) is energy efficient and increases fuel energy density. • Pyrolysis and steam gasification were performed with sewage sludge before/after HT. • Product gases resembled those from wood chips, particularly at high temperature. • HT increases sludge lignin content, possibly enhancing methane yield of product gas. • HT can improve sewage sludge for use as an alternative to biomass and fossil fuels. - Abstract: Hydrothermal treatment is a promising option for pretreatment drying of organic waste, due to its low energy consumption and contribution to increasing fuel energy density. In this study, the characteristics of hydrothermally treated sewage sludge were investigated, and pyrolysis and steam gasification were performed with the sludge before and after hydrothermal treatment. The overall composition of product gases from treated sludge was similar to that obtained from steam gasification of wood chips, particularly under high-temperature conditions. In addition, the increase in lignin content of sewage sludge following hydrothermal treatment could help enhance methane yield in product gas during pyrolysis and steam gasification. The findings suggest that hydrothermal treatment is an appropriate method for improving sewage sludge for use as an alternative to biomass and fossil fuels

  2. Evaluation of a microwave based reactor for the treatment of blackwater sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mawioo, Peter M., E-mail: p.mawioo@unesco-ihe.org [Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M. [Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Brdjanovic, Damir [Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2016-04-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. - Highlights: • There is lack of fast and efficient fecal sludge treatment options in emergencies. • Microwave treatment is rapid and efficient in sludge volume and pathogen reduction. • Power and contact time can be varied to reach diverse levels of sludge treatment.

  3. Evaluation of a microwave based reactor for the treatment of blackwater sludge

    International Nuclear Information System (INIS)

    Mawioo, Peter M.; Rweyemamu, Audax; Garcia, Hector A.; Hooijmans, Christine M.; Brdjanovic, Damir

    2016-01-01

    A laboratory-scale microwave (MW) unit was applied to treat fresh blackwater sludge that represented fecal sludge (FS) produced at heavily used toilet facilities. The sludge was exposed to MW irradiation at different power levels and for various durations. Variables such as sludge volume and pathogen reduction were observed. The results demonstrated that the MW is a rapid and efficient technology that can reduce the sludge volume by over 70% in these experimental conditions. The concentration of bacterial pathogenic indicator E. coli also decreased to below the analytical detection levels. Furthermore, the results indicated that the MW operational conditions including radiation power and contact time can be varied to achieve the desired sludge volume and pathogen reduction. MW technology can be further explored for the potential scaling-up as an option for rapid treatment of FS from intensively used sanitation facilities such as in emergency situations. - Highlights: • There is lack of fast and efficient fecal sludge treatment options in emergencies. • Microwave treatment is rapid and efficient in sludge volume and pathogen reduction. • Power and contact time can be varied to reach diverse levels of sludge treatment.

  4. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  5. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.

    Science.gov (United States)

    Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A microbiological study on sewage sludge treatment

    International Nuclear Information System (INIS)

    Sermkiattipong, Ngamnit; Ito, Hitoshi; Hashimoto, Shoji.

    1990-09-01

    Isolation and identification of salmonellae in sewage sludge cake and radiation sensitivities of the isolated strains were studied. Disinfection of the sludge by heat or radiation and effect of such treatment on composting were also carried out. Five groups of O-antigen and seven serotypes of salmonellae were identified from the sludge cakes. D 10 values of the salmonellae in phosphate buffer were ranged from 0.16 to 0.22 kGy and those in sludge were about three times larger. Total bacterial counts and coliforms in the sludges were determined to be 4.6 x 10 7 - 5.1 x 10 9 and 1.3 x 10 5 - 1.1 x 10 9 colony forming unit (cfu/g). After irradiation at 20 kGy by gamma ray or electron beam, decrease of total bacterial count was 5 - 7 log cycles and a dose of 5 kGy was enough to eliminate all of the coliforms. Coliforms decreased rapidly by heating at 65degC, but only one log cycle decrease was observed in total bacterial count. By heating at 100degC, total bacterial count decreased rapidly. Two peaks were observed in CO 2 evolution curves of radiation disinfected sludge composting, but only one peak in heat disinfected sludge composting. (author)

  7. Evaluation of integrated sludge worm and catfish farming with biofloc system

    Directory of Open Access Journals (Sweden)

    Dedi Pardiansyah

    2015-05-01

    Full Text Available ABSTRACTCurrently, supply of sludge worm (Tubifex sp. merely came from wild, so that it could not meet demand for fish hatchery. Additionally, harvest from the wild did not have a quality assurance, due to the possibility of sludge worm becoming an agent of disease. This study was conducted to evaluate the production of sludge worm culture by utilizing catfish culture waste (Clarias sp. in bioflok system. In this system, water from catfish culture media flowed into sludge worm culture media using recirculation systems. This study used a completely randomized design with four treatments and two replications, in which treatment A (addition of catfish culture waste from intensive system, treatment B (addition of catfish culture waste from biofloc system, treatment C (the addition of fermented chicken manure at the beginning of experiment as negative control, and treatment D (addition of fermented chicken manure at the beginning of experiment and then every five days as positive control. The results showed that the highest production was obtained by treatment B at biomass growth of 0.97 kg/m2 and sludge worm density of 388.000 individu/m2. Keywords: sludge worm, biofloc, chicken manure, catfish, catfish culture waste  ABSTRAK Saat ini pasokan cacing sutra (Tubifex sp. hanya berasal dari alam, sehingga belum mencukupi permintaan untuk kegiatan pembenihan ikan. Selain itu, hasil tangkapan dari alam tidak memiliki jaminan kualitas, karena cacing sutra dapat menjadi agen penyakit. Penelitian ini dilakukan untuk mengevaluasi hasil produksi budidaya cacing sutra dengan memanfaatkan limbah budidaya ikan lele (Clarias sp. sistem bioflok. Pada sistem ini, air dari media budidaya ikan lele dialirkan ke media pemeliharaan cacing sutra menggunakan sistem resirkulasi. Penelitian ini menggunakan rancangan acak lengkap dengan empat perlakuan dan dua ulangan, yaitu perlakuan A (pemberian limbah ikan lele sistem intensif, perlakuan B (pemberian limbah ikan lele

  8. Sewage sludge treatment, utilisation and disposal; Schlammbehandlung, -verwertung und -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In view of recent events and the resulting emotional and political decisions, the issue of sewage sludge treatment and disposal in Germany. must be seen in a new light. First, a new concept for sewage sludge management must be developed as recent legislation interferes with the 'classic' strategy of utilisation in agriculture, dumping and combustion. Scientists and sewage plant owners must find new ways to implement the specifications of the Act on Recycling and Waste Management. This ATV-DVWK training course discusses subjects that may be helpful on the new path. Starting from current legislation, problems, decision criteria and cost of sewage sludge treatment are gone into. Dimensioning fundamentals for sewage treatment plants re presented, and new and established treatment methods, operational problems and pollution problems are discussed. Further subjects are recycling of useful materials from sewage sludge, co-treatment of organic materials in fermenters, and disposal concepts for small and medium-sized communities. (orig.)

  9. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  10. Study of the sludge sedimentation dynamics by means of an optical system

    International Nuclear Information System (INIS)

    Giacoman Vallejos, G.; Ponce Caballero, C.; Quintal Franco, C.; Perez Cortes, M.

    2009-01-01

    Nowadays, the problem of water contamination causes the optimization of the processes carried out in wastewater treatment plants to improve the pollutants removal efficiency. In this work, an optical system was implemented to measure the sedimentation speed of sludge in wastewaters, this parameter is very important for designing mechanisms that deposit the sludge in the sediment lower levels of treatment plants. The results obtained with the optical system proposed agree with those obtained using graduate test tube techniques, and provide higher sedimentation speed accuracy. (Author)

  11. Analysis of lagoon sludge characteristics for choice of treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Hwang, D. S.; Choi, Y. D.; Lee, K. I.; Hwang, S. T.; Jung, K. J. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The Korea Atomic Energy Research Institute has launched a decommissioning program of uranium conversion plant. One of the important tasks in the decommissioning program is the treatment of the sludge, which was generated during operation and stored in the two ponds of the lagoon. The treatment requires the volume reduction of lagoon sludges for the low cost of the program and the conversion of the chemical forms, including uranium, for the acceptance at the final disposal site. The physical properties, such as densities, were measured and chemical compositions and radiological properties were analyzed. The denitration was a candidate process which would satisfy the requirements for sludge treatment, and the characteristics of thermal decomposition and dissolution with water were analyzed. The main compounds of the sludge were ammonium and sodium nitrate from conversion plant and calcium nitrate, calcium carbonate from Ca precipitation and impurities of the yellow cake. The content of uranium, thorium and Ra-226 was high in pond-1 and low in pond-2 because those were removed during Ca precipitation. On the base of the characteristics of the sludge and available technologies, reviewed in this study and being developed in Korea Atomic Energy Research Institute, two processes were proposed and evaluated in points of the expected technological difficulties. And the cost for treatment of sludges are estimated for both processes. 79 refs., 44 figs., 37 tabs. (Author)

  12. Examination of sludge accumulation rates and sludge characteristics for a decentralized community wastewater treatment systems with individual primary clarifier tanks located in Wardsville (Ontario, Canada).

    Science.gov (United States)

    Lossing, Heather; Champagne, Pascale; McLellan, P James

    2010-01-01

    In conventional septic systems, settling and partial treatment via anaerobic digestion occurs in the septic tank. One of the byproducts of solids separation in the septic tank is a semi-liquid material known as septage, which must be periodically pumped out. Septage includes the liquid portion within the tank, as well as the sludge that settles at the bottom of the tank and the scum that floats to the surface of the liquid layer. A number of factors can influence septage characteristics, as well as the sludge and scum accumulation rates within the tank. This paper presents the results of a 2007 field sampling study conducted in Wardsville (Ontario, Canada). The field study examined 29 individual residential two-chamber septic tanks in a community serviced by a decentralized wastewater treatment system in operation for approximately 7 years without septage removal. The field investigation provided a comprehensive data set that allowed for statistical analysis of the data to assess the more critical factors influencing solids accumulation rates within each of the clarifier chambers. With this data, a number of predictive models were developed using water usage data for each residence as an explanatory variable.

  13. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  14. Case study on utilization of radiation in sludge treatment

    International Nuclear Information System (INIS)

    Kawakami, Waichiro

    1984-01-01

    The utilization of radiation to sludge treatment has been studied as a case study of the utilization of radiation to environmental protection by the society for the utilization of radiation in Japan Atomic Industrial Forum Inc., and the result is presented in this paper. The examined radiation sources to sterilize sludge were γ-ray and electron beam, and sludge was irradiated in the forms of slurry or cake. Four treatment conditions by the combination of the radiation sources and the sludge conditions were examined. From the examined results, it was estimated that in the case one (γ-ray and slurry), the output of 25 kW or 1.6 million curie was required for the sludge treatment capacity of 250 tons/day, in the case two (electron beam and slurry), an accelerator of 20 mA or 60 mA was required for the capacity of 250 or 750 tons/day, respectively, in the case three (γ-ray and cake), a radiation source of 0.6 million curie was required for the capacity of 50 tons/day, and in the case four (electron beam and cake), an accelerator of 4 mA or 12 mA was required for the capacity of 50 tons/day or 150 tons/day. (Yoshitake, I.)

  15. THE EFFECT OF THE SLUDGE RECYCLE RATIO IN AN ACTIVATED SLUDGE SYSTEM FOR THE TREATMENT OF AMOL'S INDUSTRIAL PARK WASTEWATER

    Directory of Open Access Journals (Sweden)

    BAHAR HOSSEINI

    2008-09-01

    Full Text Available An activated sludge aeration tank and a sedimentation basin were used to treat Amol’s industrial park effluents originating from all industrial units. A continuous system was implemented and the kinetic parameters were measured.The parameters such as rate constant, substrate utilization rate constant, yield and decay coefficient were 2.12 d-1, 232.4 mg l-1, 0.33 g/g of substrate and 0.096 d−1, respectively. The hydraulic retention times (HRT were in the range of 9 to 27 h. The sludge recycle ratios in the range from 0.3 to 1 were considered. The COD removal, SVI and DO were determined and the optimal values were obtained. It was observed that at HRT of 16 h and the sludge recycle ratio of 0.85, the COD removal and SVI were 95 and 85 %, respectively. The sludge recycle ratio greater than 0.85 had no significant effect on the COD removal.

  16. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  17. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  18. Hygienization performances of innovative sludge treatment solutions to assure safe land spreading.

    Science.gov (United States)

    Levantesi, C; Beimfohr, C; Blanch, A R; Carducci, A; Gianico, A; Lucena, F; Tomei, M C; Mininni, G

    2015-05-01

    The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.

  19. System for the Reduction of Substances in Reject Water from Reed-Bed Sludge Mineralization Plants

    DEFF Research Database (Denmark)

    2004-01-01

    The invention is a system for the reduction of substances in reject water from reed-bed sludge mineralization plants (also referred to as sludge dewatering reed-beds). The systems utilizes the composition of substances in reject water from reed-beds and that of sludge to reduce substance mass from...... the reject water via recirculation into a mixed reactor and back onto the reed-beds. The mixed rector consists of a container in which sludge (that is typically loaded directly on to reed-beds) is mixed with recirculated reject water from reed-beds. The sludge mixture has a definable hydraulic retention time...... of by sending it back to the head of a wastewater treatment plant. The system has proven to reduce the mass of nitrogen, COD, and water in the reject water, and can possibly reduce phosphorus and other substances. The overall effect is a reduction in the substance recycle within a wastewater treatment plant...

  20. K East basin sludge volume estimates for integrated water treatment system

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin

  1. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    Science.gov (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  2. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  3. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  4. Sewage sludge treatment and disposal. Experiences and perspectives; Klaerschlammbehandlung und -entsorgung. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N.; Mueller, J. [comps.] [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1997-09-01

    Topics of the proceedings are: sewage sludge treatment and sewage sludge disposal by means of: thermal treatment, fermentation, composting, wet oxidation, hydrolysis, disposal in agriculture, economical aspects of sewage sludge treatment. This book deals with theoretical aspects and practical examples. (SR)

  5. Evaluation of Potentially Harmful Substances in Dried Sludge of Isfahan Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Bijan Bina

    2004-05-01

    Thus, taking into account the potential risks caused by presence of heavy metals in sludge and for the control of processes of sludge treatment and disposal and also protect of environmental health and enhauncement of public health level, specially for farmers and consumers of raw crops, needs sampling and characterization of sludge. In the present research concentration of 11 heavy metals and potentially toxic elements in dried sludge of Isfahan South and North and Shahinshahr wastewater treatment plants were determined using standard methods. Samples have been taken from dried sludge of treatment plants, and been measured after being prepared through atomic absorption apparatus and were compared with EPA enacted standards in regulation 40 CFR part 503. As well, fertilizer value parameters of sludge were measured and were compared with standards and guidelines. The results showed that the average concentration of above elements in all three treatment plants, not exceeded from EPA standards, however, regarding the accumulative property of these elements and lack of necessary protective effects of EPA standards, in using these sludges in the agricultural soils, the necessary caution and care should be taken, in other uses of sludges, however, there is no limitation.

  6. Modelling Cr(VI) removal by a combined carbon-activated sludge system

    International Nuclear Information System (INIS)

    Orozco, A. Micaela Ferro; Contreras, Edgardo M.; Zaritzky, Noemi E.

    2008-01-01

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2

  7. Anaerobic Treatment Of Percolate From Faecal Sludge Drying Beds ...

    African Journals Online (AJOL)

    Composite percolate samples, from sludge drying beds of a pilot co-composting plant in Kumasi, Ghana, were characterised and subjected to laboratory scale anaerobic treatment. Two categories of percolate samples were investigated; samples seeded with anaerobic sludge and samples without seeding. The average ...

  8. Biological treatment of petroleum sludges in liquid/solids contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H F [Remediation Technologies, Inc., Kent, WA (USA)

    1989-10-01

    Biological treatment of hazardous wastes (bioremediation) is now recognized as an effective and cost-efficient approach for on-site cleanup of petroleum-contaminated soils and sludges. These strategies may require pretreatment of oily sludges produced as refinery wastes. Recent work has shown that liquid/solids contact (LSC) bioreactors are capable of adequate pretreatment at lower cost than competing technologies. Since LSC operations aim to maximize microbial numbers and activity, inexpensive microbiological monitoring can provide rapid feedback on performance. LSC technology represents a method for rapid biological treatment of petroleum sludges in a contained reactor. The technology has proven highly effective for a variety of oil refinery sludges, with degradation rates up to ten times faster than those observed during land treatment. The most promising use of LSC is a pretreatment. Because biological treatment in LSC can degrade and detoxify contaminants rapidly and relatively inexpensively, with little risk of off-site contamination, this technology should be considered by refiners having to close sites or treat current waste-streams. 7 refs., 1 figs., 1 tab.

  9. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  10. RESPIROMETRIC ACTIVITY OF ACTIVATED SLUDGE AND BIOFILM IN IFAS-MBBR SYSTEM

    Directory of Open Access Journals (Sweden)

    Paula Piechna

    2017-07-01

    Full Text Available The aim of the presented study was: a assessment of activity of microorganisms developed in form of activated sludge and biofilm, b indirect assessment of the role of analyzed biocoenoses in removal of organic compounds in hybrid reactor with moving bed. Oxygen uptake rate tests (OUR have been used, and obtained results were presented as volumetric activity (expressed in mg O2/L · h and mass activity (expressed as mg O2/g VTS · h. Tests were conducted for three different variants, in which, as the biomass: 1 biofilm was used, 2 activated sludge was used, 3 biofilm and activated sludge were used. The biomass was collected from aerobic reactor from a wastewater treatment plant working in IFAS-MBBR system. The highest volumetric activity was observed for variant with biofilm and activated sludge, and the lowest for variant with biofilm only. Nonetheless, the highest value of oxygen uptake rate related to total volatile solids was observed for variant with biofilm and the lowest for activated sludge. Obtained results suggest, that during this research, at the wastewater treatment plant, the main role in removal of organic pollutants played the biomass developed in form of activated sludge.

  11. Metal fractionation in sludge from sewage UASB treatment.

    Science.gov (United States)

    Braga, A F M; Zaiat, M; Silva, G H R; Fermoso, F G

    2017-05-15

    This study evaluates the trace metal composition and fractionation in sludge samples from anaerobic sewage treatment plants from six cities in Brazil. Ten metals were evaluated: Ni, Mn, Se, Co, Fe, Zn, K, Cu, Pb and Cr. Specific methanogenic activity of the sludge was also evaluated using acetic acid as the substrate. Among the essential trace metals for anaerobic digestion, Se, Zn, Ni and Fe were found at a high percentage in the organic matter/sulfide fraction in all sludge samples analyzed. These metals are less available for microorganisms than other metals, i.e., Co and K, which were present in significant amounts in the exchangeable and carbonate fractions. Cu is not typically reported as an essential metal but as a possible inhibitor. One of the samples showed a total Cu concentration close to the maximal amount allowed for reuse as fertilizer. Among the non-essential trace metals, Pb was present in all sludge samples at similar low concentrations and was primarily present in the residual fraction, demonstrating very low availability. Cr was found at low concentrations in all sludge samples, except for the sludge from STP5; interestingly, this sludge presented the lowest specific methanogenic activity, indicating possible Cr toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  13. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N [Eurotec West A/S (DK); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H [Risoe National Laboratory, DTU (DK); Rasmussen, Soeren [SamRas (DK)

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  14. Selective hydrolysis of wastewater sludge. Part 1. Model calculations and cost benefit analysis for Esbjerg West waste water treatment plant, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    OEstergaard, N. (Eurotec West A/S (DK)); Thomsen, Anne Belinda; Thygesen, Anders; Bangsoe Nielsen, H. (Risoe National Laboratory, DTU (DK)); Rasmussen, Soeren (SamRas (DK))

    2007-09-15

    The project 'Selective hydrolysis of wastewater sludge' investigates the possibilities of utilizing selective hydrolysis of sludge at waste water treatment plants to increase the production of biogas based power and heat, and at the same time reduce power consumption for handling and treatment of nitrogen and sludge as well as for disposal of the sludge. The selective hydrolysis system is based on the fact that an anaerobic digestion before a hydrolysis treatment increases the hydrolysis efficiency, as the production of volatile organic components, which might inhibit the hydrolysis efficiency, are not produced to the same extent as may be the case for a hydrolysis made on un-digested material. Furthermore it is possible to separate ammonia from the sludge without using chemicals; it has, however, proven difficult to treat wastewater sludge, as the sludge seems to be difficult to treat in the laboratory using simple equipment. Esbjerg Wastewater Treatment Plant West, Denmark, is used as model plant for the calculations of the benefits using selective hydrolysis of sludge as if established at the existing sludge digester system. The plant is a traditional build plant based on the activated sludge concept in addition to traditional digester technology. The plant treats combined household and factory wastewater with a considerable amount of the wastewater received from the industries. During the project period Esbjerg Treatment Plant West went through considerable process changes, thus the results presented in this report are based on historical plant characteristics and may be viewed as conservative relative to what actually may be obtainable. (BA)

  15. Combined aerobic and physicochemical treatment of pharmaceutical industry sludge

    International Nuclear Information System (INIS)

    Asia, Q.I.; Ademoroti, A.M.C.

    2005-01-01

    Composite samples of sludge obtained from a pharmaceutical factory were analysed for their pollution characteristics. The samples were then treated by integrated aerobic biological and physicochemical methods. The analysis revealed that the BOD and COD of the sludge liquor were high, as well as were the levels of solids concentration, nitrogen, phosphorus and bacterial count. These showed that sludge from this industry had a high pollution potential, and therefore needed treatment before disposal or reuse in other applications. Percentage solids reduction achieved were in the range of 26.1 to 29% of total soluble solids, 26.1 to 33% of suspended solids, and 43 to 52% of volatile solids, BOD and COD reductions were in the range of 96.1 to 98.2% and 96.8 to 98.4% respectively. Ammonia nitrogen reductions in this sludge were about 85.2 to 93.3%. Total nitrogen and phosphorus were also found to be appreciably reduced by the combined aerobic and physicochemical treatment methods. (author)

  16. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    Directory of Open Access Journals (Sweden)

    Chunyan Chai

    2015-03-01

    Full Text Available With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O, Sequencing Batch Reactor (SBR and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN concentration, mixed-liquor recycle (MLR rates and solids retention time (SRT and operation conditions (i.e., nitrite concentration are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and

  17. A conceptual chemical solidification/stabilization system to remediate radioactive raffinate sludge

    International Nuclear Information System (INIS)

    Carpenter, D.J.; Ansted, J.P.; Foldyna, J.T.

    1994-01-01

    Past operations at the U.S. Department of Energy's (DOE) Weldon Spring, Missouri, Superfund Site included the manufacture of nitroaromatic-based munitions and the production of uranium and thorium metal from ore concentrates. These operations generated a large quantity of diverse contaminated waste media including raffinate sludge, soil, sediment, and building debris. These various waste media are contaminated with varying amounts of radionuclides nitroaromatics, metals, metalloids, non-metals, polychlorinated biphenyls (PCBs) and asbestos. The volumes and diversity of contaminants and waste media pose significant challenges in identifying applicable remedial technologies, particularly for the excavation and treatment of the water-rich raffinate sludge. This paper presents the results of comprehensive efforts to develop a conceptual chemical solidification/stabilization (CSS) system to treat a variety of waste media. The emphasis of this paper is the treatment of a water-rich refractory raffinate sludge and site contaminated soils both radioactive and nonradioactive. The conceptual system design includes raffinate sludge excavation, dewatering, and CSS processing (reagent selection and formulation, reagent and waste storage and metering, and product mixing). Many innovations were incorporated into the design, producing a system that can process the various waste types. Additionally, the radioactive and hazardous constituents are sufficiently immobilized to allow the secured disposal in a waste cell of the treated product. The conceptual CSS system can also produce a variety of treated product types, ranging from a monolithic form to a compactible soil-like medium. The advantages of this system flexibility are also presented

  18. Greenhouse gas emissions from the mineralisation process in a Sludge Treatment Reed Bed system: Seasonal variation and environmental impact

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen; Scheutz, Charlotte

    2017-01-01

    Greenhouse gas emission data from the mineralisation process in Sludge Treatment Reed Bed systems (STRB) are scarce. The aim of this study was to quantify the emission rates of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and to investigate seasonal variations in order to estimate ...

  19. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    Science.gov (United States)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  20. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  1. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    Science.gov (United States)

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  2. Barley Seed Germination/Root Elongation Toxicity Test For Evaluation Of Sludge Pre-Treatment

    DEFF Research Database (Denmark)

    Eriksson, Eva; Kusk, Kresten Ole; Barrett Sørensen, Mie

    Application of sludge from wastewater treatment plants (WWTPs) on agricultural land is an approach for nutrient recycling that rise challenges due to recalcitrant and harmful pollutants. In this study we assessed the feasibility of a seed germination test to evaluate sludge ecotoxicity and compared...... germination responses from two test parameters, root elongation and seed germination (sprouts elongation) of the barley (Hordeum vulgare). 2nd objective was to evaluate sewage sludge pre-treatments at batch-scale of sludge samples from two WWTPs using anaerobic digestion, and thermal and ozonation pre......-treatments. Glyphosate and eco-labelled soil were used as references. Inhibition of germination of seeds exposed to the glyphosate and sludge was registered and thus germination was successfully applied for sludge ecotoxicity assessment, and using the root elongation as the end-point was both faster and more precise...

  3. Water and sludge treatment device provided with a system for irradiating by accelerated charged particles

    International Nuclear Information System (INIS)

    Azam, Guy; Bensussan, Andre; Levaillant, Claude; Huber, Harry; Mevel, Emile; Tronc, Dominique.

    1977-01-01

    Treatment system for a fluid made up of water and sludge, provided with a system for irradiating the fluid by a beam of accelerated charged particles comprising means for obtaining a constant flow of the fluid to be treated, facilities for monitoring this flow, an irradiation channel located on the path of the beam, in which the fluid to be treated can flow, a portion of this channel having at least one window transparent to the beam of accelerated particles. A safety system associated with the system for monitoring the characteristics of the beam and with the system for monitoring the flow of the fluid to be treated, stops the flow of the fluid and the recycling of the fluid defectively treated [fr

  4. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    Science.gov (United States)

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  5. Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction

    Directory of Open Access Journals (Sweden)

    E. S. M. Borges

    2009-09-01

    Full Text Available Most works reported in the literature focus on thermal treatment of waste activated sludge at temperatures in the range of 160 to 180ºC. This research aimed at evaluating the thermal treatment of excess anaerobic sludge at much lower temperatures, using biogas generated in the wastewater treatment process as the energy source for heating a simplified thermal reactor. Direct burning of the biogas allowed an increase in the sludge temperature up to values close to 75ºC, for a 7-hour heating period. Sludge samples taken at different heating times showed that the thermal disintegration of the organic fraction allowed increases in the concentration of protein, carbohydrate, lipid and COD parameters by 30 to 35 times, as well as a 50% increase in the biogas production. Moreover, the simplified thermal treatment system proved to be an effective alternative for recovering energy from biogas and for controlling methane emissions to the atmosphere.

  6. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  7. Considerations in the public acceptance of sewage sludge irradiation systems

    International Nuclear Information System (INIS)

    Dix, G.P.

    1975-01-01

    Considerations associated with public acceptance of municipal sewage sludge irradiation systems are discussed including the benefit to society, public information and safeguards. Public acceptance of products is based upon the benefit to society as measured by reduced consumer costs, minimization of public risk and enhancement of the quality of life and the environment. When viewed in this positive light, the sludge irradiator has high potential benefits to the community. If large-scale engineering experiments show that sludge irradiation is more cost-effective than other methods, reduced consumer costs would result. Today many sewage plants do not consistently remove pathogens from sludge; sludge irradiation could be an effective method of pathogen removal and result in avoidance of a major public risk. The sludge irradiator may be able to clean up recreational areas, reduce noxious odours from sewage treatment facilities, and reduce the energy requirements for producing fertilizer and soil conditioners and conserve their mineral content. Plant safeguards must be explained to dispel public concern that the contents of the source can be released to the sludge accidentally. This will be the main issue within the technical sector of the public, and the design, procedural and administrative safeguards of the plant must be fully explained. The primary risk associated with sludge irradiators will be the remote possibility of source leakage into the sludge. The various safeguards in sludge irradiation plants are discussed in detail including the form of the radionuclide, encapsulation, the irradiation chamber, safeguards instrumentation, shielding and thermal safeguards. (Author)

  8. Anammox biofilm in activated sludge swine wastewater treatment plants.

    Science.gov (United States)

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  10. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  11. Experimental continuous sludge microwave system to enhance dehydration ability and hydrogen production from anaerobic digestion of sludge.

    Science.gov (United States)

    Zhou, Cuihong; Huang, Xintong; Zeng, Meng

    2018-05-01

    Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.

  12. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  13. Renewable alkenes from the hydrothermal treatment of polyhydroxyalkanoates-containing sludge

    NARCIS (Netherlands)

    Torri, Cristian; Detert Oude Weme, Tom; Samorì, Chiara; Kiwan, Alisar; Brilman, Derk W.F.

    2017-01-01

    Polyhydroxyalkanoates (PHA) are a key constituent of excess sludge produced by Aerobic Sewage Sludge Treatment plants. The accumulation of significant amount of PHA inside aerobic microbial cells occurs when a surplus of an easily degradable carbon source (e.g., volatile fatty acids, VFA) is found

  14. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: fate and mass balance

    International Nuclear Information System (INIS)

    Katsoyiannis, Athanasios; Samara, Constantini

    2005-01-01

    The fate and the mass balance of persistent organic pollutants (POPs) during the conventional activated sludge treatment process were investigated in the wastewater treatment plant of the city of Thessaloniki, northern Greece. The POPs of interest were 7 polychlorinated biphenyls and 19 organochlorine pesticides. Target compounds were determined at six different points across the treatment system: the influent, the effluent of the primary sedimentation tank, the effluent of the secondary sedimentation tank, the primary sludge, the activated sludge from the recirculation stream, and the digested/dewatered sludge. The distribution of POPs between the dissolved and the adsorbed phases of wastewater and sludge was investigated. A good linear relationship between the distribution coefficients, K d , and the octanol-water partition coefficients, K ow , of the solutes was observed only in raw wastewater, suggesting that other factors affect the phase distribution of organic compounds in treated wastewater. For all POPs, a significant increase in partitioning with a decreasing solids concentration was observed, revealing an effect from non-settling microparticles remaining in the 'dissolved' phase during the separation procedure. A good linear relationship was also revealed between logK d and the dissolved organic carbon (DOC) content of wastewater, suggesting that DOC favors the advective transport of POPs in the dissolved phase. Almost all POPs showed good mass balance agreements at both the primary and the secondary treatment. The losses observed for some species could be attributed to biodegradation/biotransformation rather than volatilization. The relative distribution between the treated effluent and the waste sludge streams varied largely among different compounds, with p-p'-DDE being highly accumulated in the waste sludge (98%) but almost 60% of α-HCH remaining in the treated effluent

  15. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  16. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    Science.gov (United States)

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Possibility of radiation application to sludge treatment in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1980-01-01

    Interest in the effective use of sludge, which is generated increasingly with the propagation of sewage, is being enhanced in Japan. On the other hand, attention is given to the return of sludge to soil in agriculture for the purpose of putting organic material into agricultural land. For this purpose, of course, heavy metals and toxic chemicals must not be contained in sludge, but further inactivation of the pathogens, parasite ova and seeds in sludge is considered to be required. Japan Atomic Energy Research Institute investigated the radiation disinfection of dehydrated cake forming 80% of the sludge taken out of treatment plants in Japan. As a result of the examination of the change in the number of bacteria by ..gamma.. irradiation, 0.5 Mrad was decided to be the suitable dose for sanitating sludge regardless of season, at which dose the coliform group decreased greatly. It seems that sludges are required to be composted in Japan. Radiation disinfection has the advantage of composting under the optimum temperature condition for fermentation, because it does not require high temperature during fermentation aiming at the sterilization of pathogens. However, it is desirable to use large output accelerators combining with the radiation process for the purpose of reusing treated water in order to reduce the process cost.

  18. Possibility of radiation application to sludge treatment in Japan

    International Nuclear Information System (INIS)

    Takehisa, Masaaki

    1980-01-01

    Interest in the effective use of sludge, which is generated increasingly with the propagation of sewerage, is being enhanced in Japan. On the other hand, attention is given to the return of sludge to soil in agriculture for the purpose of putting organic material into agricultural land. For this purpose, of course heavy metals and toxic chemicals must not be contained in sludge, but further inactivation of the pathogens, parasite ova and seeds in sludge is considered to be required. Japan Atomic Energy Research Institute investigated the radiation disinfection of dehydrated cake forming 80% of the sludge taken out of treatment plants in Japan. As a result of the examination of the change in the number of bacteria by γ irradiation, 0.5 Mrad was decided to be the suitable dose for sanitating sludge regardless of season, at which coliform group decreased greatly. It seems that sludges are required to be composted in Japan. Radiation disinfection has the advantage of composting under the optimum temperature condition for fermentation, because it is not required to keep high temperature during fermentation aiming at the sterilization of pathogens. However, it is desirable to use large output accelerators combining with the radiation process for the purpose of reusing treated water in order to reduce the process cost. (Wakatsuki, Y.)

  19. A Novel Method of Biological Start-up in Arak Activated Sludge Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Abdolreza Khalili

    2015-01-01

    Full Text Available Startup is one of the most important stages in the operation of a wastewater treatment plant (WWTP. In this paper, a novel method is presented for the startup of Arak Activated Sludge WWTP, which is shown to contain more advantages than other common methods. In this method, a portion of the inflow is initially allowed to enter gradually into an aeration basin prior to seeding. Under these conditions, less seeding is required due to the low flow of the influent and the low volume of the aeration basin. Once MLSS in the basin reaches the desired level, the rest of the system comes into operation and the sludge developed in the system is used for further seeding. In the case of the WWPT in Arak, it took about 2 months for the total MLSS to be developed and wasting the sludge to start because of the cold weather conditions in the region. The wasted sludge was controlled by the F/M ratio at a constant sludge age. During the start-up, the MLSS increase exhibited a linear trend and the low loading allowed for the variation in influent contaminants to be controlled. The effluent contaminants were below the standard levels recommended by the Environment Protection Organization. BOD5 and COD removals increased from 40% and 60% to 90% and TSS removal increased from 70% to 96%. Lower loading levels, better process control, and lower sludge processing costs are the benefits of this system

  20. Bioproducts for Sludge Reduction in Activated Sludge Systems Treating Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Alexandre V.M.F.

    2016-03-01

    Full Text Available The use of bioproducts that change the cellular metabolism and reduce microbial growth without affecting the organic matter removal is very promising for reducing the amount of sludge in wastewater treatment systems. In this study, two bioproducts were evaluated and compared with a well-known chemical (2,4-DiNitroPhenol – DNP in activated sludge treating petroleum refinery wastewater. In batch experiments, 10 mg/L of DNP, 0.8 mg/L of a bioproduct based on Folic Acid (FA and 10 mg/L of a bioproduct based on Stress Proteins (SP led to 30.6%, 43.2% and 29.8% lower disposal of total solids, respectively. Operating on a continuous regimen, the addition of 10 mg/L of the bioproduct based on SP led to 45.7% lower disposal for 50 days. In all cases, no loss of efficiency in the Chemical Oxygen Demand (COD removal was observed.

  1. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    International Nuclear Information System (INIS)

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    2013-01-01

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of the subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially

  3. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    Energy Technology Data Exchange (ETDEWEB)

    Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20211, Piedmont, CA 94620 (United States); Honeyman, James O. [CH2M HILL Plateau Remediation Company, P.O. Box 1600 H7-30, Richland, WA (United States); Stegen, Gary [Lucas Engineering and Management Services, Inc., 1201 Jadwin Avenue, Suite 102, Richland, WA 99352 (United States)

    2013-07-01

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of the subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially

  4. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    Science.gov (United States)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  5. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...... production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases.The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and, (2...

  6. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  7. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  8. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  9. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  10. Feasibility analysis of a sewage sludge treatment by an irradiation plant in Mexico

    CERN Document Server

    Moreno, J; Colin, A; Tavera, L

    2002-01-01

    Technical and economic analyses of an irradiation plant for sewage sludge treatment determined that an appropriate place for the first sludge electron irradiator in Mexico would be the sewage water treatment plant located north of Toluca in the State of Mexico. This treatment plant is mainly used for domestic wastewater and produces an approximate volume of 70 ton d-] liquid sewage sludge. Considering a 50 k W power of a 10 MeV electron linear accelerator, an irradiation dose of S KGy and a treatment capacity of 346 tons per day, it is estimated that the treatment cost would be of $9.00 US dollars per ton. (Author)

  11. Applying Ionizing Radiation for the Treatment of Sewage Sludge for Reuse

    International Nuclear Information System (INIS)

    Elammari, M.; Mashai, M.; Dehmani, K.; Abokhabta, S.; Akrim, M.

    2004-01-01

    The increased waste production by human activities world wide raised the problem of how to get red of this waste which cause undesirable impact on human and the surrounding environment. Sewage sludge generally contains high concentrations of pathogens even after digestion or after treating with other conventional methods. This paper brings to light the radiation treatment of sludge by ionizing radiation as a simple and reliable process for sludge disinfection and also the effect of Gamma radiation on sludge characteristics and heavy metals which exist in the sludge. Samples of moist sludge were brought from Elhadba Elkhadra waste water treatment plant, the main sewage water treatment plant in the City of Tripoli; they were collected in sterile plastic bags from different locations. Samples were then irradiated using gamma irradiator at Tajura Research Centre with a dose rate of 10 Gy/min, using a Co60 Gamma irradiator. They received a dose ranged between 0 -5 kGy with an increment of 1 kGy. Microorganisms are damaged when exposed to gamma radiation and the extent of damage is proportional to the radiation dose absorbed by the organism. Gamma irradiation greatly reduced the pathogen density in the investigated samples, as the 5 kGy dose was sufficient to terminate the total bacterial count for all microorganisms. A 3 kGy was only needed to demolish Enterobacter ease, Total coliform and Fecal coliform, whereas spore forming needed a dose of 4 kGy for complete elimination. (authors)

  12. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  13. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  14. Performance of Submerged Aerated Biofilters for Wastewater Treatment and Excess Biological Sludge Production

    Directory of Open Access Journals (Sweden)

    Mohammad A. Baghapour

    2007-01-01

    Full Text Available Minimizing sludge production in the treatment facility is a reasonable measure to reduce waste in sewage treatment, especially as regards excess biological sludge. In this regard, submerged aerated filters' (SAFs have recently found increasing applications in treatment facilities. Thanks to their treatment mechanism, they have greatly contributed to reduction of waste production and, thereby, to reduced treatment costs. Biomass growths of both attached and suspended types take place in these filters. However, little attention has been paid to suspended sludge production and to its relationship with the physical properties of the filter. The design and application criterion for these filters is the organic loadings on unit of area or unit of volume of the media used in these filters. In this study, four filters with different physical properties and different specific areas were loaded with synthetic wastewater made of low-fat dry milk powder for five different hydraulic retention times to evaluate excess sludge production rates in submerged aerated filters. It was shown that increasing specific area increased SCOD removal efficiency up to a maximum level in saturated growths after which point the removal efficiency remained unchanging or decreased. The results also revealed that decreased hydraulic retention times increased sludge production rates in all the study columns and that media with higher porosity levels produced less excess sludge despite lower pollutant removal efficiency.

  15. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint. © The Author(s) 2014.

  16. REDUCTION OF EXCESS SLUDGE PRODUCTION IN AN ACTIVATED SLUDGE SYSTEM BASED ON LYSIS-CRYPTIC GROWTH, UNCOUPLING METABOLISM AND FOLIC ACID ADDITION

    Directory of Open Access Journals (Sweden)

    V. F. Velho

    Full Text Available Abstract The following sludge reduction alternatives were tested in wastewater biological reactors: oxic-settling-anaerobic (OSA-process; ultrasonic disintegration (UD; chlorination (CH; 3,3',4',5-tetrachlorosalicylanilide (TCS; and folic acid (FA. Compared to the control system, UD reduced 55% of the sludge production, and greater substrate and nutrient removal efficiency was achieved. CH worsened the sludge settleability and increased the SVI values; the system achieved 25% of sludge reduction. OSA showed 50% and 60% of sludge reduction after 16 and 10 hours under anaerobic conditions, respectively. The observed sludge yield during TCS addition was decreased by 40%, and the sludge settleability worsened. FA presented the highest sludge reduction (75%, and the system improved the nutrient removal efficiency by 30% compared to the control system and maintained the sludge properties. Acute toxicity conducted with Daphnia magna classified the effluent from the sludge reduction systems as non-toxic for discharge into water sources.

  17. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application.

    Science.gov (United States)

    Jin, Zhengyu; Chang, Fengmin; Meng, Fanlin; Wang, Cuiping; Meng, Yao; Liu, Xiaoji; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2017-10-01

    Aiming at closed-loop sustainable sewage sludge treatment, an optimal and economical pyrolytic temperature was found at 400-450 °C considering its pyrolysis efficiency of 65%, fast cracking of hydrocarbons, proteins and lipids and development of aromatized porous structure. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) tests demonstrated the development of adsorptive functional groups and crystallographic phases of adsorptive minerals. The optimal sludge-char, with a medium specific surface area of 39.6 m 2  g -1 and an iodine number of 327 mgI 2 g -1 , performed low heavy metals lixiviation. The application of sludge-char in raw sewage could remove 30% of soluble chemical oxygen demand (SCOD), along with an acetic acid adsorption capacity of 18.0 mg g -1 . The developed mesopore and/or macropore structures, containing rich acidic and basic functional groups, led to good biofilm matrices for enhanced microbial activities and improved autotrophic nitrification in anoxic stage of an A/O reactor through adsorbed extra carbon source, and hence achieved the total nitrogen (TN) removal up to 50.3%. It is demonstrated that the closed-loop sewage sludge treatment that incorporates pyrolytic sludge-char into in-situ biological sewage treatment can be a promising sustainable strategy by further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  19. [Effect of different sludge retention time (SRT) on municipal sewage sludge bioleaching continuous plug flow reaction system].

    Science.gov (United States)

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2012-01-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.

  20. INNOVATIVE REMEDIATION AND MONITORING SYSTEM INSIDE AN AREA USED FOR PAPER SLUDGE RECOVERY

    Directory of Open Access Journals (Sweden)

    Valerio Marroni

    2010-12-01

    Full Text Available An innovative bioremediation technology and strategy were applied to a former-quarry area in Imola (BO – Italy concerned by an incorrect environmental restoration of paper sludge, with subsequent uncontrolled biogas production and migration to the adjacent area. An Emergency Plan was implemented by the isolation of the buried sludge area and a characterization project was performed to define an appropriate permanently safe recovery. An innovative biological in situ treatment, avoiding paper sludge removal, was adopted; it was based on the use of tailored compost and enzymes to reduce methane production and concentration. This was integrated by specific monitoring piezometers for both biogas (CH4, CO2 and oxygen monthly measurements, and also the application of a respirometric technique application to buried sludge for assessing its stabilisation under aerobic and anaerobic conditions. This communication describes the strategy used, the treatment and monitoring system and the results of 3 years field pilot application. Monitoring work is still in progress.

  1. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  2. Impact of urban waste water treatment on sludge utilization and disposal with special emphasis on thermal treatment

    International Nuclear Information System (INIS)

    Gammeltoft, P.

    1993-01-01

    The acceptance of the European Communities Directive 9/271/CEE concerning urban waste water treatment by all the EC Member States will result in a sewage sludge production increase of 2 to 3 times the actual amounts (for the year 2000 the forecast is about 30 million tonnes per year). All the traditional sewage sludge treatment methods (agricultural, disposal, compost, thermal treatment) entail costs which are always increasing because of the stricter requirements; in addition EC policy is oriented towards the reduction of the quantity of sludge production. In some situations, drying and subseque incineration may thus be the only practicable method of disposal, particularly, in very large urban agglomerations

  3. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    Science.gov (United States)

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  4. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  5. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  6. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    Science.gov (United States)

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  7. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    Science.gov (United States)

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  8. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  9. Enhanced integrated nonthermal treatment system study

    International Nuclear Information System (INIS)

    Biagi, C.; Schwinkendorf, B.; Teheranian, B.

    1997-02-01

    The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer

  10. Treatment aerobic conjugate of sludges of septic tanks and household organic solid wastes

    Directory of Open Access Journals (Sweden)

    Wanderson Barbosa da Silva Feitosa

    2009-12-01

    Full Text Available It was aimed at to evaluate the co-composting as technological alternative to the treatment of sludges of septic tanks with household organic solid wastes originating from cities of small and medium loads. The sludges and the domiciliary organic solid waste were collected in Cabaceiras, Caraúbas and Queimadas, state of Paraíba. The experiment consisted of four treatments with three repetitions, totaling 12 reactors, of cylindrical configuration in polyethylene of 100 L of capacity. Each reactor was fed with 50 kg substratum with variable composition in function of the sludge fraction: 0%, 10%, 20% and 30%. The manual turning was accomplished three times a week and the temperature was monitored daily. The total destruction of helminth eggs in period differentiated in function of the sludges fraction (14, 28, 35 and 63 days and the medium transformation of 54.1% of sludges in biosolids class A and class B, with favorable characteristics to the use in agricultural cultures in 91 days, expressed the viability of the treatment for co-composting of sludges of tanks septic multichamber of collective use for the cities of small and medium load.

  11. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  12. Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry.

    Science.gov (United States)

    Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin

    2014-01-01

    The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.

  13. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  14. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  15. Research for waste water treatment technology with low production of excessive active sludge

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available The article reflects the possibility to create a technological scheme of waste water treatment of domestic and similar type of sewage within minimal amount of excessive active sludge by means of bioreactors with immobilized feed. There are various aspects to be considered: technical, economic, social and ecological. According to the above it is strongly needed to provide a combination of proper waste water treatment, minimal sludge formation and the possibility for a further use of the sludge. One of the ways to achieve the goal above is to use an immobilized feed in the aeration tank. The necessary experiments were carried out in the department of waste water treatment and water ecology. The article includes the scheme of the facility and other parameters of the experiments, which has been carried. The combination of aerobic and anaerobic processes helps to provide proper quality of integrated biological treatment. Chambers of the aeration reactor were also equipped with the polymer feed of various structures. The sludge treatment that was also strongly needed was made by means of aerobic stabilization with the use of ejecting aeration. The results of experiment showed a good effect in both components – sewage and sludge treatment. Afterwards there was also an industrial model launched which confirmed the results of the previous stage.

  16. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  17. Corrosivity of cement pastes with addition of sludge generated in water treatment plant

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Martins, B.E.D.B.S.; Couto, V.M.P.; Carvalho, L.J.; Almeida, V.C.

    2011-01-01

    The amount of sludge produced in a water treatment plant (WTP) is an important economic factor in the context of waste treatment. The present article has the objective of study the corrosion of cement pastes produced with blended sludge. Aqueous extracts were produced from the milling of masses containing 5%, 10% and 30% of sludge in relation to cement after 28 days of healing. These extracts were used for polarization assays in order to determine the corrosiveness of the folders when in contact with the used fittings. Moreover, other chemical analysis tests were carried out for sludge characterization: X-ray fluorescence and X-ray diffraction. The obtained results point to the possibility of use of the studied cement masses in the development of construction materials promoting the economic reuse of WTP sludge before discarded in landfills. (author)

  18. Effects of sewage sludge on the yield of plants in the rotation system of wheat-white head cabbage-tomato

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2013-01-01

    Full Text Available This research was carried to determine the effects of sewage sludge applications on the yield and yield components of plants under crop rotation system. The field experiments were conducted in the Bafra Plain, located in the north region of Turkey. In this research, the “wheat-white head cabbage-tomato” crop rotation systems have been examined and the same crop rotation has been repeated in two separate years and field trials have been established. Seven treatments were compared: a control without application of sludge nor nitrogen fertilization, a treatment without sludge, but nitrogen and phosphorus fertilization, applied at before sowing of wheat and five treatments where, respectively 10, 20, 30, 40 and 50 tons sludge ha-1. The experimental design was a randomized complete block with three replications. The results showed that all the yield components of wheat and yield of white head cabbage and tomato increased significantly with increasing rates of sewage sludge as compared to control. As a result, 20 t ha-1 of sewage sludge application could be recommended the suitable dose for the rotation of wheat-white head cabbage-tomato in soil and climatic conditions of Bafra Plain.

  19. Recent development in the treatment of oily sludge from petroleum industry: a review.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Zeng, Guangming

    2013-10-15

    Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.

    Science.gov (United States)

    Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David

    2018-03-20

    The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.

  1. Bases for a sewage sludge treatment plant by irradiation in Mexico

    International Nuclear Information System (INIS)

    Alcantara, Jaime M.; Cruz, Arturo C.

    1997-01-01

    A good place for the first sludge irradiator in Mexico would be the Toluca Norte sewage water treatment plant. This plant has a definitive biological treatment, and handles only domestic wastewater and assures therefore good and stead sewage sludge quality, and has capacity do deliver sufficient sludge (approximately 22,000 ton.y -1 or 70 ton.d -1 ) to the irradiator. Capital and operating cost calculations for a sewage sludge plant by irradiation in Mexico were done using a mathematical model considering a 50 k W electron linear accelerator of 10 MeV beam energy, an irradiation dose of 5 kGy, a treatment capacity of 346 ton.d -1 , an absorption efficiency of 40%, an electricity consumption of 400 k W, an operating mode of 325 days per year and one shift per day. Total annual operating costs is estimated to be $1,007,900 for treating 346 ton.d -1 with irradiation dose of 5 kGy, including both fixed ($664,000) and variable costs ($343,920). The unit cost at maximum utilization was obtained as $9.00 per ton. (author). 16 refs., 3 tabs

  2. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  3. Assessment of sludges and tank bottoms treatment processes

    International Nuclear Information System (INIS)

    Bhutto, A.W.; Bazmi, A.A.

    2005-01-01

    The petroleum refining industries generate considerable amounts of sludge and tank bottoms as waste. Petroleum refinery receives crude oil containing emulsified water and solids. As the crude oil storage tanks are repeatedly filled and emptied, the water and solids settle towards the bottom as sludge. For tanks that have been in service for several years, the sludge accumulation becomes several feet deep, results in a loss of ullage in refinery crude storage tanks. The accumulation of crude storage tank bottoms is a serious problem experienced by local refineries. The refinery sludge waste is categorized as hazardous waste, which is at present buried in the tankform ground. Since the no hazardous material land filling option available, the disposal of these hazardous materials has become a major problem because of the ISO-14000 certification requirements and expectation of stakeholder. To maximize the waste oil recovery from sludge and tank bottoms and to minimize the volume of the hazardous waste, a number of waste recovery and treatment processes are available. The process designs and unit operations of each process are different and each has its own merits, in terms of the technical complexity, operation friendliness, and costs and economics. A study on each of these technologies and the subsequent tide-up to the existing unit operations is conducted, and the associated technical comparisons are made. (author)

  4. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.

    Science.gov (United States)

    Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan

    2017-01-01

    Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1  NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1  N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1  N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1  NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.

  5. Design characteristics of the Sludge Mobilization System

    International Nuclear Information System (INIS)

    McMahon, C.L.

    1990-01-01

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above

  6. Treatment of liquid separated from sludge by the method using electron beam and ozone in combination

    International Nuclear Information System (INIS)

    Hosono, Masakazu; Arai, Hidehiko; Aizawa, Masaki; Shimooka, Toshio; Shimizu, Ken; Sugiyama, Masashi.

    1995-01-01

    Since the liquid separated from sludge in the dehydration or concentration process of sewer sludge contains considerable amount of organic compositions that are hard to be decomposed by microorganisms, it has become difficult to be treated by conventional activated sludge process. In the case of discharging the separated liquid into closed water areas, the higher quality treatment is required. The method of using electron beam irradiation and ozone oxidation in combination for cleaning the liquid separated from sludge was examined, therefore, the results are reported. The water quality of the sample from the sludge treatment plant in A City is shown. The method of bio-pretreatment, the treatment method by using electron beam and ozone in combination, and the method of analyzing the water quality are described. The effect of the treatment by activated sludge process, as the effect of the treatment by the combined use of electron beam and ozone, the change of COD and TOC, the change of chromaticity, the change of gel chromatogram, and the reaction mechanism are reported. In this paper, only the basic concept on the model plant for applying the method of the combined use of electron beam and ozone to the treatment of the liquid separated from sludge is discussed. (K.I.)

  7. Toluene in sewage and sludge in wastewater treatment plants.

    Science.gov (United States)

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  8. Treatment of high-strength synthetic sewage in a laboratory-scale upflow anaerobic sludge bed (UASB) with aerobic activated sludge (AS) post-treatment.

    Science.gov (United States)

    Banihani, Qais H; Field, Jim A

    2013-01-01

    Performance of a combined system up-flow anaerobic sludge blanket (UASB) followed by aerobic treatment activated sludge (AS) for removal of carbonaceous and nitrogenous contaminants at an average temperature of 25°C was investigated. The combined system was fed with high strength synthetic sewage having chemical oxygen demand (COD) of 2500 mg L(-1). The organic loading rate (OLR) of the UASB reactor was increased gradually from 1.1 to 3.8 gCOD L(r) (-1) d(-1). At steady state condition, the UASB reactor achieved removal efficiency up to 83.5% of total COD (COD(tot)), 74.0% of volatile fatty acid (VFA) and 94.0% of protein. The combined system performed an excellent organic removal pushing the overall removal efficiency of COD(tot), VFA and protein to 91.0%, 99.9% and 98.2%, respectively. When the OLR of the UASB increased to 4.4 g COD L(r) (-1) d(-1), the UASB was overloaded and; thus, its effluent quality deteriorated. In respect to nitrogen removal, both partial nitrification and complete nitrification took place in aerobic post-treatment. When the dissolved oxygen (DO) concentration was >2.0 mg L(-1), complete nitrification (period B) occurred with an average nitrification efficiency of 96.2%. The partial nitrification occurred due to high OLR to AS during the overloading event (period A) and when DO concentration was <2.0 mg L(-1) (period C). The maximum accumulated nitrite concentration in periods A, B and C were 90.0, 0.9 and 75.8 mg NO(-) (2) -N L(-1), respectively. The nitrogen balance results of periods A and C indicated that there was a discrepancy between the amount of ammonium nitrogen removed and the amount of oxidized nitrogen formed. This suggests the occurrence of simultaneous nitrification/denitrification (SND) in aerobic post-treatment.

  9. Leachate Treatment from Sarimukti Landfill Using Ozone with Sludge from Water Treatment Plant as a Catalyst

    Directory of Open Access Journals (Sweden)

    Yudha Ramdhani Muhammad

    2018-01-01

    Full Text Available Leachate is the liquid waste from anaerobic decomposition in a landfill. The ozonation process can be used for leachate treatment. Sludge from sedimentation in water treatment plant contains 5.96% of Al and 9.35% of Si which can affect of its cation exchange capacity and affects the active site in the catalyst. This study aims to determine the effectivity of sludge in the ozonation process to treat leachate. A 1,5 L semi-batch reactor containing 1 L sample was used in this experiment with the rate of oxygen supply was at 4 L/min taken from ambient air. Two groups of sludge weighing 1.5 grams, 3.0 grams and 4.5 grams were used and activate with physically and chemically activated. The best result was obtained by the physically activated sludge with mass of 4.5 gram O3-L-4,5 AF. The differences of removal efficiency between O3-L-4,5 AF with the control (O3 for turbidity were respectively 13.02% and 7.81%, for EC were 10.57% and 8.29%, for COD were 49.44% and 37.50%, and for residual ozone concentration at the end of contact time were 7.6 mg/L and 9.7 mg/L. It can be concluded that activaed sludge and ozonation can be used as a catalyst in leachate treatment.

  10. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    Science.gov (United States)

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  11. Treatment of pond sludge at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Wienand, J.; Tyler, R.; Baldwin, C.

    1992-01-01

    The treatment of low-level radioactive/hazardous materials sludges from five inactive solar evaporation settling ponds at the Rocky Flats Plant is discussed. The paper presents information on the following topics: history of the ponds; previous pond cleanout activities; current approach to the problem with respect to water management, sludge management, regulatory actions, and disposal; and future processing technology needs in the areas of polymer solidification, microwave solidification, joule-heated glass melters, and advanced technology incineration

  12. Life cycle assessment of sewage sludge treatment and its use on land

    DEFF Research Database (Denmark)

    Yoshida, Hiroko

    factors per unit application of N fertiliser on land by fitting a linear mixed-effect model to the outcome of simulations with varying N application levels. It was evident that the effects of inorganic N fertiliser appear immediately after its application, while improvements in crop yield and emissions......Sewage sludge is generated as an end-product of wastewater treatment processes, and its management holds importance in the operation of wastewater treatment plants from both an economic and an environmental point of view. At the same time, the management of sewage sludge is becoming increasingly...... (LCAs) have been applied in the field of sewage sludge management for the past two decades. While providing a flexible platform for comparing a range of sewage sludge management options, a knowledge gap has been identified through the review of existing studies, including inconsistencies in pollutant...

  13. The agricultural use of water treatment plant sludge: pathogens and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Ignacio Nadal Rocamora

    2015-12-01

    Full Text Available The use of water treatment plant sludge to restore degraded soils is customary agricultural practice, but it could be dangerous from the point of view of both health and the environment. A transient increase of either pathogenic or indicator microbial populations, whose persistence in time is variable and attributed to the characteristics of the soil (types of materials in the soil, any amendments (origin and treatments it has undergone or the weather (humidity and temperature mainly, has often been detected in soils treated with this kind of waste. Given their origin, water treatment plant sludges could lead to the transmission of a pathogens and b antibiotic-resistant microorganisms to human beings through the food chain and cause the spreading of antibiotic resistances as a result of their increase and persistence in the soil for variable periods of time. However, Spanish legislation regulating the use of sludges in the farming industry is based on a very restricted microbiological criterion. Thus, we believe better parameters should be established to appropriately inform of the state of health of soils treated with water treatment plant sludge, including aspects which are not presently assessed such as antibiotic resistance.

  14. The Use of Biochemical Processes in Sludge Treatment

    Directory of Open Access Journals (Sweden)

    Mohammed S. Shahaab

    2012-03-01

    Full Text Available The feasibility of using combination of effective microorganism (EM1 and conventional chemical conditioner was evaluated in this study to assess and discern the dewatering properties of the secondary sludge that produced from wastewater treatment plant of the medical assembly in Mosul city. Conventional coagulants such as lime, Alum, and ferrous sulfate, six doses for each coagulant type i.e5- 30(10 - 60 (and (25 -150mg/l(  respectively, were used in the sludge conditioning processes for enhancement of the sludge dewatering capacity. The characteristics of conditioned sludge, such as specific resistance of filtration (SRF (were determined at each dose.Experimental results indicated that effective microorganism seeds have a passive effect on SRF value which was about   % 71.4(and (%75(in lime and ferrous sulfate respectively.While in Alum conditioning process a significant effect on SRF reduction was accomplished which was about %-47.9( and (- %32.8( for effective microorganism and Alum dose increments respectively. The best Alum dosage, for minimum SRF 0.98348×10 12 m /kg, was 60 mg/l at 1 % of effective microorganism.

  15. Experience with a pilot plant for sewage sludge: Experiments on the inactivation of viruses in sewage sludge after a radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a Cobalt-60-plant were, till now, limited to the attempts to isolate virus from the sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in those sludge samples virus presence could be proven only on a rather irregular basis, an experiment was devised in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. Furthermore one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content was determined before and after the radiation treatment. In 33 sludge samples examined before hygienization, presence of one or several viruses occurred in 8 samples. With the 33 capsules examined after hygienization with 300 krad, only 2 showed presence of virus. Suspensions of attenuated polio virus type I packed into synthetic capsules with a medium virus dosis of 10sup(6.92) JD 50/0.1 were immersed into sludge. In 6 experiments it was found that after hygienization, virus dosis was reduced to an average value of 10sup(5.4) JD 50/0.1 ml. Accordingly, the experimental results showed that after the radiation treatment the reduction of the exposed virus was more than 90%. Under natural conditions the investigation of the sewage sludge samples showed presence of virus 4 times less after hygienization than in the samples examined before hygienization. (orig./AK) [de

  16. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review

    International Nuclear Information System (INIS)

    Fonollosa, E.; Nieto, A.; Peñalver, A.; Aguilar, C.; Borrull, F.

    2015-01-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. - Highlights: • In this review we discuss the methods used to determine radionuclides in sludge from DWTP. • We summarize the different coagulants used and the consequences in the characteristics of the sludge. • We mention different possibilities to reuse the sludge generated in DWTPs

  17. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    Science.gov (United States)

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  18. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  19. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    International Nuclear Information System (INIS)

    Geuther, J.; Conrad, E.A.; Rhoadarmer, D.

    2009-01-01

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described

  20. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  1. Availability of uranium present in the sludge generated at two stations of potable water treatment

    International Nuclear Information System (INIS)

    Munoz-Serrano, A.; Baeza, A.; Salas, A.; Guillen, J.

    2013-01-01

    During the treatment is carried out in a Station Potable Water Treatment Plant sludge enriched are produced in components that have been removed from the water. The concentration and availability of radionuclides accumulated in a sludge during coagulation-flocculation will condition possible later use, so it is essential to carry out the characterization of sludge and its chemical speciation. (Author)

  2. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Energy Technology Data Exchange (ETDEWEB)

    Cristale, Joyce [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Ramos, Dayana D. [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Dantas, Renato F. [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain); School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP (Brazil); Machulek Junior, Amilcar [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Lacorte, Silvia [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Sans, Carme; Esplugas, Santiago [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  3. Management experience on microthrix parvicella bulking in an activated sludge wastewater treatment plant

    International Nuclear Information System (INIS)

    De Bortoli, N.; Mion, M.; Di Giorgio, G.; Goi, D.

    2005-01-01

    Activated sludge wastewater treatment processes may give inefficiencies due to biological imbalances involving biomass. In fact, external causes as temperature lowering can increase the proliferation of the filamentous bacterium Microthrix parvicella into activated sludge flocks. Microthrix parvicella increases may create dangerous bulking phenomena compromising secondary settling without varying bio-kinetic parameters. In this case of study, a method to defeat growth of Microthrix parvicella has been set up. Aluminium poly-chloride (PAC) has been added to activated sludge contained into oxidation tanks of a municipal wastewater treatment plant, where a large growth of Microthrix parvicella has been periodically observed. It has been demonstrated that a definite PAC concentration can reduce Microthrix parvicella proliferation into activated sludge flocks so bulking phenomena can be well reduced [it

  4. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    Science.gov (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    Science.gov (United States)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  6. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    Science.gov (United States)

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  7. Toxicity formation and distribution in activated sludge during treatment of N,N-dimethylformamide (DMF) wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Chen, Xiurong, E-mail: xrchen@ecust.edu.cn; Lin, Fengkai; Ding, Yi; Zhao, Jianguo; Chen, Shanjia

    2014-01-15

    Highlights: • We studied mechanism of sludge organic toxicity formation in wastewater treatment. • The organic toxicity distributed mainly in the inner section of sludge flocs. • The organic toxicity of sludge increased with DMF initial concentrations increments. • The property of bacteria community correlates significantly with sludge toxicity. -- Abstract: The organic toxicity of sludge in land applications is a critical issue; however, minimal attention has been given to the mechanism of toxicity formation during high-strength wastewater treatment. To investigate the relevant factors that contribute to sludge toxicity, synthetic wastewater with N,N-dimethylformamide (DMF) was treated in a sequential aerobic activated sludge reactor. The acute toxicity of sludge, which is characterised by the inhibition rate of luminous bacteria T3, is the focus of this study. Using an operational time of 28 days and a hydraulic retention time of 12 h, the study demonstrated a positive relationship between the acute toxicity of sludge and the influent DMF concentration; the toxicity centralised in the intracellular and inner sections of extracellular polymeric substances (EPS) in sludge flocs. Due to increased concentrations of DMF, which ranged from 40 to 200 mg L{sup −1}, the sludge toxicity increased from 25 to 45%. The organic toxicity in sludge flocs was primarily contributed by the biodegradation of DMF rather than adsorption of DMF. Additional investigation revealed a significant correlation between the properties of the bacterial community and sludge toxicity.

  8. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  9. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  10. Effects of Physico-Chemical Post-Treatments on the Semi-Continuous Anaerobic Digestion of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Xinbo Tian

    2017-07-01

    Full Text Available Sludge production in wastewater treatment plants is increasing worldwide due to the increasing population. This work investigated the effects of ultrasonic (ULS, ultrasonic-ozone (ULS-Ozone and ultrasonic + alkaline (ULS+ALK post-treatments on the anaerobic digestion of sewage sludge in semi-continuous anaerobic reactors. Three conditions were tested with different hydraulic retention times (HRT, 10 or 20 days and sludge recycle ratios (R = QR/Qin (%: 50 or 100%. Biogas yield increased by 17.8% when ULS+ALK post-treatment was applied to the effluent of a reactor operating at 20 days HRT and at a 100% recycle ratio. Operation at 10 days HRT also improved the biogas yield (277 mL CH4/g VSadded (VS: volatile solids versus 249 mL CH4/g VSadded in the control. The tested post-treatment methods showed 4–7% decrease in effluent VS. The post-treatment resulted in a decrease in the cellular ATP (Adenosine tri-phosphate concentration indicating stress imposed on microorganisms in the reactor. Nevertheless, this did not prevent higher biogas production. Based on the results, the post-treatment of digested sludge or treating the sludge between two digesters is an interesting alternative to pre-treatments.

  11. Experience with a pilot plant for the irradiation of sewage sludge: Experiments on the inactivation of viruses in sewage sludge after radiation treatment

    International Nuclear Information System (INIS)

    Epp, C.

    1975-01-01

    Investigations examining the virus inactivating effect of a 60 Co-plant have up to now been limited to attempts to isolate virus from sludge samples taken from sewage sludge before and after irradiation with 300 krad. As in these sludge samples the presence of virus could be proved only on a rather irregular basis, an experiment was carried out in which defined virus quantities were packed into capsules and mixed with the digested sludge. At the end of the hygienization process these capsules were removed from the sludge and examined for virus content. In addition one radiation volume (5.6 m 3 ) was infected with attenuated polio virus type I and the virus content of the sludge titrated before and after the radiation treatment. (author)

  12. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  13. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  14. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  15. Sludge Treatment Evaluation: 1992 Technical progress

    International Nuclear Information System (INIS)

    Silva, L.J.; Felmy, A.R.; Ding, E.R.

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO 3 , NO 2 , PO 4 , SO 4 , and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model

  16. Sludge Treatment Evaluation: 1992 Technical progress

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  17. Ozonation and Thermal Pre-Treatment of Municipal Sewage Sludge-Implications for Toxicity and Methane Potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    2013-01-01

    The aim of this study was to determine effects on methane potential and overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 degrees C). In general both treatments produced increased methane potential. Thermal treatment...... by ozone treatment and digestion. No statistical significant reduction in concentrations of included pharmaceuticals could be observed....

  18. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  19. Ultrasound technology effect on wastewater sludge treatment; Efecto de los ultrasonidos en el tratamiento de lodos de depuradora de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mesas Diaz, J. A.

    2003-07-01

    The ultrasound technology has been used since long time ago in the medicine, food industry, cosmetics and cleaning systems; but during the last few years is when this technology has stated to be used in the wastewater and sludge treatment industry. The application of low frequency and high intensity ultrasound in the wastewater and sludge treatment has numerous benefits. The ultrasound technology improves the aerobic and anaerobic digestion process, increases the biogas production, improves the sludge dewatering, reduces the polymer consumption, reduces the final biosolids production, reduces or removes the bulking and foaming problems,and enhances nutrient removal (N, P). (Author) 7 refs.

  20. Wastewater and sludge management and research in Oman: An overview.

    Science.gov (United States)

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S

    2017-03-01

    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  1. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  2. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  3. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    Science.gov (United States)

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  4. Vitrification Studies with DOE Low-Level Mixed Waste Wastewater Treatment Sludges

    International Nuclear Information System (INIS)

    Cicero, C.A.; Andrews, M.K.; Bickford, D.F.; Hewlett, K.J.; Bennert, D.M.; Overcamp, T.J.

    1995-01-01

    Vitrification studies with simulated Low Level Mixed Waste (LLMW) sludges were performed at the Savannah River Technology Center (SRTC). These studies focused on finding the optimum glass compositions for four simulated LLMW wastewater treatment sludges and were based on both crucible-scale and pilot-scale studies. Optimum compositions were determined based on the maximum waste loading achievable without sacrificing glass integrity

  5. Modular sludge collection system for a nuclear steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.; Bein, J.D.; Powasaki, F.S.

    1986-01-01

    A sludge collection system is described for a vertically oriented nuclear steam generator wherein vapors produced in the steam generator pass through means for separating entrained liquid from the vapor prior to the vapor being discharged from the steam generator. The sludge collection system comprises: an upwardly open chamber for collecting the separated liquid and feedwater entering the steam generator; upwardly open sludge collecting containers positioned within the chamber, wherein each of the containers includes a top rim encompassing an opening leading to the interior of each container; generally flat, perforated covers, each of the covers being positioned over one of the openings such that a gap is formed between the cover and the adjacent top rim; sludge agitating means on at least one of the containers; and sludge removal means on at least one of the containers

  6. Oil sludge treatment using thermal and ash vitrification technology

    International Nuclear Information System (INIS)

    Rohyiza Baan; Sharifah Aishah, S.A.K.; Mohamad Puad Abu; Mohd Abdul Wahab Yusof

    2010-01-01

    In this paper, an experimental study of crude oil sludge terminal for volume reduction and radionuclide stability was treated by using integrated thermal treatment system. The pre-thermal treatment of oil sludge was carried out in fluidized bed combustor at temperature 500 degree Celsius, and then the ash produced from that process was vitrified in high temperature furnace at temperature above 1000 degree Celsius. The main contents of oil sludge are composed of 80% carbon, 11% sulphur, 50% volatile matter and 30% ash. The high heating value was 35,722 kJ/ kg. Analysis by gamma spectrometer was showed the radionuclide as Ra-226 (52.23 Bq/ kg), Ra-228 (47.48 Bq/ kg), K-40 (172.55 Bq/ kg), whereas analysis by neutron activation analysis (NAA) for U (0.5 μg/ g) and Th (0.5 μg/ g) was present in low concentration. Trace elements as Ba, Cd, Cr, Hg, As, Pb, Al, Zn, Ni was determine by using ICPMS. Thermal analysis has shown loss of mass and residual decomposition in the TG and DTA curves. The concentration of radionuclide in ash from fluidized bed combustor process was increased for Ra-226 (264.27 Bq/ kg) and Ra-228 (253.77 Bq/ kg). The slag was produced from ash vitrification process was characterized by X-ray fluorescence (XRF) and showed that silica oxide and potassium oxide were found. The slag characterization by X-ray diffraction (XRD) showed that slag composed of crystalline. The toxicity characteristic leaching procedure (TCLP) test showed that the slag resulted in very low leachability of heavy metals. Most of the toxic metals are fixed in the vitrification process and the leachate values meet the standard level of Malaysian Department of Environmental (DOE) of hazardous materials. The average concentration of each element varied between 1.5-14.0 mg/ kg. (author)

  7. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges.

    Science.gov (United States)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M; Ingall, Ellery D; Tang, Yuanzhi

    2018-04-01

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique) and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.; Ingall, Ellery D.; Tang, Yuanzhi

    2018-04-01

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique) and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.

  9. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  10. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    Science.gov (United States)

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  11. Ozonation and thermal pre-treatment of municipal sewage sludge – Implications for toxicity and methane potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    The aim of this study was to determine the effects on the methane potential and the overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 °C). In general both treatments gave an increased methane potential. The thermal t...... treatment resulted in higher chemical oxygen demand (COD)-solubilisation, while the highest volatile fatty acids (VFA) increase was obtained with ozonation. The sludges had inhibiting effects in a barley seed germination assay and a yeast oestrogen screen both before and after pre...

  12. Co-hydrothermal treatment of fallen leaves with iron sludge to prepare magnetic iron product and solid fuel.

    Science.gov (United States)

    Gu, Lin; Li, Binglian; Wen, Haifeng; Zhang, Xin; Wang, Liang; Ye, Jianfeng

    2018-06-01

    The hydrothermal carbonization (HTC) was performed on Metasequoia Leaves (ML) in the presence of iron sludge, both of which were generated as solid residuals. The relations between sludge, char's properties and operating conditions were systemically investigated. Iron sludge primarily catalyzed the efficient formation of char with higher heating value (HHV) becoming 1.15-1.65 times of ML (18.21 MJ/kg) and was meanwhile reduced to magnetite. The hydrated Fe ions in octahedron crystals acted as nucleophiles facilitating the dehydration and decarboxylation reactions. The increased HHV is found strong temperature dependent while prolonging the residence time is more preferable for low organic acids generation. Thermogravimetric analysis confirmed the iron sludge enhanced conversion of volatile to fixed carbon. The as-prepared solid char showed better stability after catalytic HTC treatment, having ignition temperature increased from 253 to 426 °C as compared to the char prepared without iron sludge addition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Heavy metals in a degraded soil treated with sludge from water treatment plant

    Directory of Open Access Journals (Sweden)

    Teixeira Sandra Tereza

    2005-01-01

    Full Text Available The application of water treatment sludge (WTS to degraded soil is an alternative for both residue disposal and degraded soil reclaim. This study evaluated effects of the application of water treatment sludge to a Typic Hapludox soil degraded by tin mining in the National Forest of Jamari, State of Rondonia, Brazil, on the content of heavy metals. A completely randomized experimental design with five treatments was used: control (n = 4; chemical control, which received only liming (n = 4; and rates D100, D150 and D200, which corresponded to 100, 150 and 200 mg of N-sludge kg-1 soil (n = 20, respectively. Thirty days after liming, period in which soil moisture was kept at 70% of the retention capacity, soil samples were taken and analyzed for total and extractable Fe, Cu, Mn, Zn, Cd, Pb, Ni, and Cr. The application of WTS increased heavy-metal contents in the degraded soil. Although heavy metals were below their respective critical limits, sludge application onto degraded areas may cause hazardous environmental impact and thus must be monitored.

  14. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  15. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  16. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment.

    Science.gov (United States)

    Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ayşen

    2018-01-01

    This study investigates the effect of ultrasonication and microwave sludge disintegration/pre-treatment techniques on the anaerobic co-digestion efficiency of wastewater sludges with olive and grape pomaces. The effects of both co-digestion and sludge pre-treatment techniques were evaluated in terms of the organic removal efficiency and the biogas production. The "co-digestion" of wastewater sludge with both types of pomaces was revealed to be a much more efficient way for the biogas production compared to the single (mono) sludge digestion. The ultrasonication and microwave pre-treatments applied to the sludge samples caused to a further increase in biogas and methane yields. Based on applied specific energies, ultrasonication pre-treatment was found much more effective than microwave irradiation. The specific energy applied in microwave pre-treatment (87,000kj/kgTS) was almost 9 times higher than that of used in ultrasonication (10,000kj/kgTS), resulting only 10-15% increases in biogas/methane yield. Co-digestion of winery and olive industry residues with pre-treated wastewater sludges appears to be a suitable technique for waste management and energy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. INTEGRATED WASTE WATER TREATMENT ACCOMPANIED BY MINIMAL GENERATION OF EXCESSIVE ACTIVATED SLUDGE OR SEDIMENT

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay Alekseevich

    2012-12-01

    ments held. A combination of aerobic and anaerobic processes helps provide the proper quality of integrated biological treatment. Chambers of the aeration reactor are also equipped with the polymer feed of various compositions. Sludge treatment that is also strongly needed was performed by means of aerobic stabilization accompanied by ejecting aeration. The experiment findings demonstrate its substantial effect in terms of both components, including sewage and sludge treatment.

  18. Wastewater sludge - the challenges. What are the potentials of utilising the resources in sludge?

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Helmut

    2003-07-01

    The actual best practice of urban water management has developed during the last 200 years and consists of: safe and reliable drinking water supply, sewerage to prevent hygienic problems and flooding in the settlements, mechanical -biological waste water treatment for receiving water protection. The hygienic and environmental goals of the urban water system have to be attained with a minimum of costs. Most of the drinking water supplied is used for the transport of pollution originating from human metabolism, washing and cleaning. Waste water contains all the substances which enter human metabolism as food, beverages, pharmaceuticals, a great variety of household chemicals and the substances discharged from trade and industry to the sewer system. Rain water is already contaminated by air pollution when it reaches the soil or other surfaces. Whatever material the rainwater gets into contact can be found in the waste water. As a consequence the composition of the waste water is a mirror of our civilisation and of human and urban metabolism. Waste water treatment results in two products which are closely related in their chemical composition: (1) treated waste water to be discharged to the receiving water, (2) wastewater sludge to be treated and disposed or (re)used without creating new (environmental) problems. All the compounds entering the waste water which are not completely degraded can be found in both products. The transfer coefficients between water and sludge differ widely and depend on physical and chemical equilibriums. The potentially hazardous compounds in the effluent and in the sludge belong to these compounds. Source control therefore is necessary for water protection and at the same time for low concentrations of potentially hazardous compounds in the sludge. It is also clear that improved biological treatment efficiency (longer sludge age) also results in lower loads of organic pollutants in the sludge, while physical-chemical treatment steps result

  19. Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment.

    Science.gov (United States)

    Liang, Jieying; Ning, Xun-An; An, Taicheng; Sun, Jian; Zhang, Yaping; Wang, Yujie

    2016-08-15

    This paper reports, for the first time, a combined technique of ultrasound (US) with KMnO4 degradation of aromatic amines in a textile-dyeing sludge. The reaction mechanisms and the degradation kinetics of aromatic amines at various operating parameters (KMnO4 dosage, US power density and pH) were systematically examined by the combined system of US-KMnO4. The results indicated that there was a synergistic effect between US and KMnO4, as US greatly enhanced KMnO4 in the degradation of aromatic amines and exhibited apparent sludge disintegration and separated pollutants from the sludge. In addition to accelerating the Mn(VII) reaction with pollutants in the filtrate, US also caused Mn(VII) to enter the porous sludge and sufficiently facilitated the reaction of the strongly absorbed aromatic amines. The combined treatment of US-KMnO4 was effective in the degradation of aromatic amines in textile-dyeing sludge. On average, 58.7% of monocyclic anilines, 88.3% of other forms of aromatic amines, and 24.0% of TOC were removed under the optimal operating conditions of a KMnO4 dosage of 12mM, an US power density of 1.80W/cm(3) and pH 5. The present study proposed US-KMnO4 treatment as a practical method for the disposal of aromatic amines in textile-dyeing sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.

    Science.gov (United States)

    Radjenović, Jelena; Petrović, Mira; Barceló, Damià

    2009-02-01

    In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 microg/L) and acetaminophen (7.1-11.4 microg/L), antibiotic ofloxacin (0.89-31.7 microg/L), lipid regulators gemfibrozil (2.0-5.9 microg/L) and bezafibrate (1.9-29.8 microg/L), beta-blocker atenolol (0.84-2.8 microg/L), hypoglycaemic agent glibenclamide (0.12-15.9 microg/L) and a diuretic hydrochlorothiazide (2.3-4.8 microg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., beta-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated. Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the

  1. Batch system for study of Cr(VI) Bio sorption by dried waste activated sludge

    International Nuclear Information System (INIS)

    Farzadkia, M.; Gholami, M.; Darvishi Cheshmeh Soltani, R.; Yaghmaeian, K.; Shams Khorramabadi, G.

    2009-01-01

    Activated sludge from wastewater treatment systems contains both bacteria and protozoa. The cell wall of bacteria essentially consists of various compounds, such as carboxyl, acidic polysaccharides,lipids, amino acids and other components. (Author)

  2. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulsrud, B.; Gjerde, B.; Lundar, A.

    2003-07-01

    The Norwegian sewage sludge regulation requires disinfection (hygienisation) of all sludges for land application, and one of the criteria is that disinfected sludge should not contain viable helminth ova. All disinfection processes have to be designed and operated in order to comply with this criteria, and four processes employed in Norway (thermophilic aerobic pre-treatment, pre-pasteurisation, thermal vacuum drying in membrane filter presses and lime treatment) have been tested in full scale by inserting semipermeable bags of Ascaris suum eggs into the processes for certain limes. For lime treatment supplementary laboratory tests have been conducted. The paper presents the results of the experiments, and it could be concluded that all processes, except lime treatment, could be operated at less stringent time-temperature regimes than commonly experienced at Norwegian plants today. (author)

  3. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  4. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  5. Characterization and evaluation of potential reuse options for wastewater sludge and combined sewer system sediments in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Mendez, J.M.; Barrios, J.A.; Salgado, G.; Sheinbaum, C.

    2003-07-01

    Combined sewer systems generate sediments that have characteristics similar to those of primary sludge. Mexico City has such a system composed of a network of pipes, regulation structures (dams, basins) and open channels. The annual generation of sediments is estimated in 2.8 Mm{sup 3}, which includes 0.41 Mm{sup 3} of sludge. As a result, the total capacity for transporting water is reduced considerably, making necessary to extract yearly an approximate 0.85 Mm{sup 3} of those materials and to send them to a final disposal site with a capacity that is being exhausted. As part of the local Governmental effort, this project evaluates the quality of sediments from 6 dams, 4 regulation basins, 2 open channels, and 3 transfer stations. Also, sludge from 20 wastewater treatment plants was sampled. The results showed an important presence of lead and hydrocarbons in some sediments, and some sludge samples contained arsenic and nickel above the limits. Moreover, microbial levels exceeded the limits in all the sediments and sludge samples. Erosion was linked to the generation of an important amount of sediments based on lead concentration. A classification was established to determine the degree of contamination of the sediments as well as the required treatment to allow their potential reuse. (author)

  6. Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick

    OpenAIRE

    Yagüe, A.; Valls, S.; Vázquez, E.; Kuchinow, V.

    2002-01-01

    Dry sludge from the Sabadell Water Treatment Plant was used to prepare prefabricated concrete bricks. After characterising the sludge and the manufacturing process used to make the bricks, we define the conditions of addition of the sludges in the manufacture. Reference samples not containing sludge and samples containing 2 % of dry sludge by cement weight were prepared. The variation in density, porosity, absorption coefficient and compressive strength of the bricks with the presence of...

  7. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  8. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  9. Keynote address: Federal overview of municipal sludge management

    International Nuclear Information System (INIS)

    Hathaway, W.B.

    1979-01-01

    The proper disposal of sewage sludge is becoming an increasing problem on solid waste management systems throughout the country. Currently 18,000 municipal wastewater treatment plants are generating about 5 million tons of sludge a year. This is expected to double in the next 8 to 10 years. The environmental aspects of sludge disposal are discussed

  10. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  11. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    Wastewater discharged from the edible oil industry contains a very concentrated amalgamation of organic and inorganic materials making it a problematic effluent to treat. The aim of this study was to evaluate the activated sludge treatment of edible oil effluent from a sunflower oil processing company in KwaZulu-Natal.

  12. Potential investigation of Reusing Ardabil Municipal Wastewater Treatment Plant Sludge Based on AHP and TOPSIS Models

    Directory of Open Access Journals (Sweden)

    Bizhan Maghsoudlou Kamali

    2013-07-01

    Full Text Available Introduction :By ever-increasing of population, shortage of water resources and the necessity of wastewater treatment, huge volumes of sludge that is a byproduct of wastewater treatment, requires to be disposed in environmentally secure ways. The target of specifying strategic preferences of reuse of sludge has been to find the correct way of disposal or beneficial use of sludge. Material and methods: In this study, to select the best alternative for reuse of wastewater sludge two systematic methods are introduced, which four alternatives for reuse of sludge (use in agriculture, use in green space, biogas, desert combat are introduced and they are compared by four main parameters including: 1- physicochemical 2-biological 3 - economic, social and cultural, and 4 - environmental pollution situation, that each contains some criteria. In this study, first each of the related parameters and criteria are compared by the expert groups of and through questionnaire. Then these weights are entered into Expert Choice software for the analyze of AHP model and paired comparisons and weightings have been done on the related parameters and criteria. Ultimately, the output of the software is entered into TOPSIS software for the analyze of TOPSIS model until the best alternative is selected. Results: sludge of Ardabil municipal wastewater treatment plant, according to standards and EPA regulations is eligible to class B, and due to the chemical in terms of heavy metals have special (excellent quality and contains considerable quantities of organic substance, nutrients and micronutrients which indicates the fertilizer value of the sludge. Conclusion: The result of this comparison has shown that the application of sludge in green spaces is the most appropriate alternative and then use in agriculture, biogas alternative, and desert combat alternative are, respectively, placed in the second to fourth preference for the reuse of sludge derived from municipal

  13. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    Science.gov (United States)

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  14. Enhancement of the sludge disintegration and nutrients release by a treatment with potassium ferrate combined with an ultrasonic process.

    Science.gov (United States)

    Li, Wei; Yu, Najiaowa; Liu, Qian; Li, Yiran; Ren, Nanqi; Xing, Defeng

    2018-09-01

    Sludge disintegration by ultrasound is a promising sludge treatment method. In order to enhance the efficiency of the sludge reduction and hydrolysis, potassium ferrate (K 2 FeO 4 ) (PF) was used. A novel method was developed to improve the sludge disintegration-sludge pretreatment by using PF in combination with an ultrasonic treatment (PF + ULT). After a short-term PF + ULT treatment, 17.23% of the volatile suspended solids (VSS) were reduced after a 900-min reaction time, which is 61.3% higher than the VSS reduction for the raw sludge. The supernatant soluble chemical oxygen demand (SCOD), total nitrogen (TN), volatile fatty acids (VFAs), soluble protein and polysaccharides increased by 522.5%, 1029.4%, 878.4%, 2996.6% and 801.9%, respectively. The constituent parts of the dissolved organic matter of the sludge products were released efficiently, which demonstrated the positive effect caused by the PF + ULT. The enhanced sludge disintegration process further alleviates environmental risk and offers a more efficient and convenient method for utilizing sludge. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sewage sludge treatment and disposal in Germany. Results of the DWA Sewage Sludge Study of 2003; Stand der Klaerschlammbehandlung und -entsorgung in Deutschland. Ergebnisse der DWA-Klaerschlammerhebung 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-15

    In 2003, DWA carried out a nation-wide enquiry on sewage sludge treatment and disposal in Germany among operators of communal sewage treatment plant. Information was obtained on sewage sludge volumes and qualities as well as on methods of treatment and disposal pathways. Data were also compiled on the volumes and disposal of filtered-out material. This publication also includes results of other studies, e.g. by the Federal Office of Statistics (StBA) and Federal Environmental Office (UBA). The studies were initiated by the DWA Waste and Sewage Sludge Section. (orig.)

  16. Multi-Criteria Sustainability Assessment of Urban Sludge Treatment Technologies

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Ren, Jingzheng

    2017-01-01

    to determine the weights of the criteria for sustainability assessment, and extension theory was used to prioritize the alternative technologies for the treatment of urban sewage sludge and grade their sustainability performances. An illustrative case including three technologies (compositing, incineration...

  17. Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries

    NARCIS (Netherlands)

    Laurinonyte, Judita; Meulepas, Roel J.W.; Brink, van den Paula; Temmink, Hardy

    2017-01-01

    The potential of a membrane bioreactor (MBR) system to treat Fischer-Tropsch (FT) reaction water from gas-to-liquids (GTL) industries was investigated and compared with the current treatment system: a conventional activated sludge system followed by an ultrafiltration (CAS-UF) unit. The MBR and

  18. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Skiadas, Ioannis V.

    2003-01-01

    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic...... digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences...... between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pretreatment at 70 degreesC on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pretreatment step showed very positive effect on the methane potential and production rate upon...

  19. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-03-01

    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  20. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  1. Studying oily sludge treatment by thermo chemistry

    Directory of Open Access Journals (Sweden)

    Jing Guolin

    2016-09-01

    Full Text Available Nowadays surfactants were used to wash oily sludge and reclaim oil. This paper presents the optimum conditions for washing oily sludge with surfactant solutions using the single factor experiment. The agents tested are AEO-9, Peregal O, TritonX-100, sodium metasilicate and sodium dodecylbenzene sulfonate (DBS. In the experiments, four factors affecting residual oil rate are investigated which include liquid/solid mass rate, reaction temperature, reaction time and eluent mass fraction. Results obtained through experimental runs were compared and used to select a kind of agent, in order to get the best cleaning effect. The optimum parameters of these agents are different from others, and under the optimum conditions their treatment effects are better. And the washing effect of Na2SiO3·9H2O is best and its residual oil rate is only about 1.6%.

  2. Effect of Staged Dissolved Oxygen Optimization on In-situ sludge Reduction and Enhanced Nutrient Removal in an A2MMBR-M System

    Science.gov (United States)

    Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi

    2018-03-01

    Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.

  3. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    Science.gov (United States)

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    Science.gov (United States)

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  5. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine.

    Science.gov (United States)

    Forbis-Stokes, Aaron A; O'Meara, Patrick F; Mugo, Wangare; Simiyu, Gelas M; Deshusses, Marc A

    2016-11-01

    The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65-75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 L biogas /person/day (maximum of 20 and 15 L biogas /p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH 3 -N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment.

  6. On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine

    Science.gov (United States)

    Forbis-Stokes, Aaron A.; O'Meara, Patrick F.; Mugo, Wangare; Simiyu, Gelas M.; Deshusses, Marc A.

    2016-01-01

    Abstract The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65–75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 Lbiogas/person/day (maximum of 20 and 15 Lbiogas/p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH3-N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment. PMID:27924135

  7. Sludge storage lagoon biogas recovery and use

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  8. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  9. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  10. Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity.

    Science.gov (United States)

    Pei, Jin; Yao, Hong; Wang, Hui; Shan, Dan; Jiang, Yichen; Ma, Lanqianya; Yu, Xiaohua

    2015-09-01

    Ultrasonic and ozone pre-treatment technologies were employed in this study to improve the anaerobic digestion efficiency of pharmaceutical waste activated sludge. The sludge solubilisation achieved 30.01% (150,000 kJ/kg TS) and 28.10% (0.1g O3/g TS) after ultrasonic treatment and ozone treatment. The anaerobic biodegradability after ultrasonic treatment was higher compared to ozonation due to the higher cumulative methane volume observed after 6 days (249 ml vs 190 ml). The ozonated sludge released the highest concentration of Cu(2+) into the liquid phase (6.640 mg L(-1)) compared to 0.530 mg/L for untreated sludge and 0.991 mg/L for sonicated sludge. The acute toxicity test measured by luminescent bacteria showed that anaerobic digestion could degrade toxic compounds and result in a reduction in toxicity. The main mechanism of action led to some differences in the treated sludge exhibiting higher potential for methane production from pharmaceutical waste sludge with ultrasonic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The manufacture and use of sludge test materials for R and D purposes in the treatment and processing of magnox based sludge

    International Nuclear Information System (INIS)

    Blackburn, D.R.; Thompson, E.J.

    2013-01-01

    Among the Intermediate Level Waste materials in store and awaiting treatment and processing in the UK are quantities of magnesium hydroxide sludge. This sludge is a product of radioactive Magnox Swarf which arose from the de-canning of used magnox fuel element rods. As the Swarf was stored underwater, a corrosion reaction occurred over the course of time between the magnox and the water resulting in a magnesium hydroxide based sludge. The differing conditions and materials present in the various storage areas means that the sludge can range in consistency from that of a slurry through to a thick clay. Sludge test materials are required to underpin and validate the research and development equipment and processes that are to be used to treat the waste material. Necessary restrictions imposed on the sampling and testing of the radioactive waste means that the available data on the properties and behaviour of the sludge is limited. The raw materials used to create the sludge test materials are based upon magnesium hydroxide so that as far as possible the chemical behaviour will be similar to that of the waste material. The most representative sludge test material is manufactured by the corrosion of non-radioactive magnox or magnesium. However, time constraints make it impractical to supply this material in sufficient quantities for full scale validation trials. An alternative is to use sludge manufactured from commercially available magnesium hydroxide. The particle shape of commercially available materials differs from corrosion product magnesium hydroxide which means that properties such as the rheological behaviour cannot be replicated. Nevertheless, valuable trial data can be obtained, giving a greater degree of confidence in the waste treatment process than would be possible if only the more representative but less available corrosion product materials were to be used. Key test material parameters used in the trials have been identified as the particle size

  12. The manufacture and use of sludge test materials for R and D purposes in the treatment and processing of magnox based sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, D.R.; Thompson, E.J. [NSG Environmental Ltd, Chorley, Lancashire (United Kingdom)

    2013-07-01

    Among the Intermediate Level Waste materials in store and awaiting treatment and processing in the UK are quantities of magnesium hydroxide sludge. This sludge is a product of radioactive Magnox Swarf which arose from the de-canning of used magnox fuel element rods. As the Swarf was stored underwater, a corrosion reaction occurred over the course of time between the magnox and the water resulting in a magnesium hydroxide based sludge. The differing conditions and materials present in the various storage areas means that the sludge can range in consistency from that of a slurry through to a thick clay. Sludge test materials are required to underpin and validate the research and development equipment and processes that are to be used to treat the waste material. Necessary restrictions imposed on the sampling and testing of the radioactive waste means that the available data on the properties and behaviour of the sludge is limited. The raw materials used to create the sludge test materials are based upon magnesium hydroxide so that as far as possible the chemical behaviour will be similar to that of the waste material. The most representative sludge test material is manufactured by the corrosion of non-radioactive magnox or magnesium. However, time constraints make it impractical to supply this material in sufficient quantities for full scale validation trials. An alternative is to use sludge manufactured from commercially available magnesium hydroxide. The particle shape of commercially available materials differs from corrosion product magnesium hydroxide which means that properties such as the rheological behaviour cannot be replicated. Nevertheless, valuable trial data can be obtained, giving a greater degree of confidence in the waste treatment process than would be possible if only the more representative but less available corrosion product materials were to be used. Key test material parameters used in the trials have been identified as the particle size

  13. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlandia-MG, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Silva, Jader de [Instituto de Quimica da Universidade Federal de Uberlandia, Av. Joao Naves de Avila, 2121, CEP 38400-902, Cx. Postal 593, Uberlandia - Minas Gerais (Brazil); Departamento Municipal de Agua e Esgoto de Uberlandia (DMAE) (Brazil); Filho, Guimes Rodrigues, E-mail: guimes@ufu.br [Instituto de Quimica da Universidade Federal de Uberlandia, Av. Joao Naves de Avila, 2121, CEP 38400-902, Cx. Postal 593, Uberlandia - Minas Gerais (Brazil); Silva Meireles, Carla da; Dias Ribeiro, Sabrina; Vieira, Julia Graciele [Instituto de Quimica da Universidade Federal de Uberlandia, Av. Joao Naves de Avila, 2121, CEP 38400-902, Cx. Postal 593, Uberlandia - Minas Gerais (Brazil); Vieira da Silva, Cleuzilene [Faculdade de Engenharia Quimica da Universidade Federal de Uberlandia (Brazil); Alves Cerqueira, Daniel [Instituto de Ciencias Ambientais e Desenvolvimento Sustentavel da Universidade Federal da Bahia (Brazil)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer In this study, the sludge was characterized by thermal analyses and FTIR. Black-Right-Pointing-Pointer The superior calorific value of the sludge was 16.2 MJ kg{sup -1}. Black-Right-Pointing-Pointer The sludge showed a significant biodegradable portion of 65%. Black-Right-Pointing-Pointer The UASB sludge can be used for energy source. - Abstract: The operation of anaerobic reactors in Brazil creates a by-product, sewage sludge, for which adequate treatment is necessary to obtain a solid and stable material. The burning of sewage sludge may be an effective alternative for its management, and looking to enhance its energy potential, an environmentally friendly method of disposal is necessary. As the quantity of sludge generated has increased over the past few years, the physical chemical characterization of this waste is the first stage for its utilization as raw material. The material was characterized by thermal analyses (Thermogravimetry (TG)/Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC)) and Infrared Analysis (FTIR) in order to determine the main organic groups present in sludge. The calorific power of the anaerobically digested sludge of Uberlandia-MG, Brazil was measured, and an energy content equal to 16.2 MJ kg{sup -1} was found, which is within the range of values reported in the literature.

  15. Zinc Regime in the Sewage Sludge-Soil-Plant System of a City Waste Water Treatment Pond

    Directory of Open Access Journals (Sweden)

    Lacatusu Radu

    2014-10-01

    Full Text Available The sewage sludge from wastewater treatment plant of Iasi, a city with 300,000 inhabitants, for domestic and industrial origin, was stored in a mud pond arranged on an area of 18,920 m2. Chemical analyzes of the sludge showed that, of all the chemical elements determined, only Zn is found at pollutant level (5739 mg∙kg-1, i.e. almost 30 times more than the maximum allowable limit for Zn in soil and 45 times more than the Zn content of the soil on which the mud pond has been set. Over time, the content of Zn in the mud pond, but also from soil to which it has been placed, has become upper the normal content of the surrounding soil up to a depth of 260 cm. On the other hand, the vegetation installed on sewage sludge in the process of mineralization, composed predominantly of Phragmites, Rumex, Chenopodium, and Aster species had accumulated in roots, stems and leaves Zn quantities equivalent to 1463 mg Kg-1, 3988 mg Kg-1, 1463 mg Kg-1, respectively, 1120 mg∙Kg-1. The plants in question represents the natural means of phytoremediation, and sewage sludge as such may constitute a fertilizer material for soils in the area, on which Zn deficiency in maize has been recorded. In addition, the ash resulted from the incineration of plants loaded with zinc may constitute, in its turn, a good material for fertilizing of the soils that are deficient in zinc.

  16. Types and treatment of sewage sludges: Practice in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Tabasaran, M.O.

    1975-01-01

    The sludge that is formed by the various processes in the sewage treatment plant consists mainly of water with a small amount of organic and inorganic suspended solids. It contains pathogenic agents and biological inhibitors, and must be prepared and brought into a form where it is less dangerous to the environment. The de-watering of the sludge is the first step in sludge handling. The solids content of the raw sludge, which is usually between 5 and 10%, can be increased by gravity thickening to 15%, by centrifuging or straining-band-pressing up to 30%, and by pressure-filtration up to 40%. The process of drying enables a substance with almost no moisture to be obtained. Generally the sludge will be either mixed before de-watering with coagulation agencies, or preheated, or its colloidal components biochemically oxidized in order to accelerate the withdrawal of the water. One of the most common methods of disposal is the transport of sludge to a land filling, usually together with the solid refuse of the community. For this purpose the moisture content of the sludge should not be more than 60 to 70 percent. The disposal of sludge into the sea can be practised in coastal towns, but the ecological effects of this kind of sludge removal are still disputed. More expedient is the agricultural utilization of sludge, particularly if the sludge is composted together with a carbon carrier such as city refuse which would make it a very suitable soil improver. In the Federal Republic of Germany the wet oxidation of sludge is applied in a few cases. The most common process is anaerobic alkaline digestion. The incineration of sludge is more economical than drying, but still too, expensive in comparison with other approved processes. (author)

  17. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    International Nuclear Information System (INIS)

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-01-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: ► Coagulation removed cyanobacteria without an additional exertion on coagulant demand. ► During a stagnation period in direct filtration intracellular metabolites were released. ► Cyanobacterial cells were not damaged

  18. Reduction of Fecal Streptococcus and Salmonella by selected treatment methods for sludge and organic waste

    DEFF Research Database (Denmark)

    Jepsen, Svend Erik; Krause, Michael; Grüttner, Henrik

    1997-01-01

    The increasing utilization of waste water sludge and source-separated organic household waste in agriculture has brought the quality aspects into focus, among others the hygienic aspects. In this study, the reducting effect on Fecal Streptococcus (FS) and Salmonella of different methods...... for stabilization and methods for further treatment of sludge and organic waste has been investigated. The most common methods for stabilization, i.e. aerobic and anaerobic stabilization, only reduce the indicator organisms by approximately 1 logarithmic decade. Methods for further treatment of sludge and organic......) significant reductions of Salmonella were found, while the die out at low temperatures (below 10°C) was limited. FS was not reduced systematically during storage, and therefore, FS is not usable as indicator organism for the hygienic properties of sludge during storage....

  19. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  20. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    Science.gov (United States)

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  1. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    Science.gov (United States)

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.

    Science.gov (United States)

    da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard

    2015-01-01

    The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.

  3. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge.

    Science.gov (United States)

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi

    2017-11-30

    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.

  4. The role of diatomite particles in the activated sludge system for treating coal gasification wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.Q.; Rao, P.H.; Zhang, H.; Xu, J.L. [Shanghai University of Engineering Science, Shanghai (China)

    2009-02-15

    Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L{sup -1} to 4518 mg.L{sup -1} and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlated to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.

  5. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory's (ORNL) West End Treatment Facility's (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid

  6. Effects of graphite nanoparticles on nitrification in an activated sludge system.

    Science.gov (United States)

    Dong, Qian; Liu, Yanchen; Shi, Hanchang; Huang, Xia

    2017-09-01

    Graphite nanoparticles (GNPs) might result in unexpected effects during their transportation and transformation in wastewater treatment systems, including strong thermo-catalytic and catalytic effects and microbial cytotoxicity. In particular, the effects of GNPs on the nitrification process in activated sludge systems should be addressed. This study aimed to estimate the influence of GNPs on the nitrification process in a short-term nitrification reactor with exposure to different light sources. The results indicated that GNPs could only improve the efficiency of photothermal transformation slightly in the activated sludge system because of its photothermal effects under the standard illuminant (imitating 1 × sun). However, even with better photothermal effects, the nitrification efficiency still decreased significantly with GNP dosing under the standard illuminant, which might result from stronger cytotoxic effects of GNPs on the nitrifying bacteria. The disappearance of extracellular polymeric substances (EPS) around bacterial cells was observed, and the total quantity of viable bacteria decreased significantly after GNP exposuring. Variation in bacterial groups primarily occurred in nitrifying microbial communities, including Nitrosomonas sp., Nitrosospira sp., Comamonas sp. and Bradyrhizobiace sp. Nitrifiers significantly decreased, while the phyla Gammaproteobacteria, Deinocccus, and Bacteroidetes exhibited greater stability during GNP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sludge reduction by aquatic worms in wastewater treatment : with emphasis on the potential application of Lumbriculus variegatus

    NARCIS (Netherlands)

    Elissen, H.J.H.

    2007-01-01

    In wastewater treatment plants (WWTPs), large amounts of biological waste sludge are produced. In the Netherlands, the application of this sludge in agriculture or disposal in landfills is no longer allowed, mainly because of its high heavy metal content. The sludge therefore generally is

  8. Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: Science or fiction? A review

    NARCIS (Netherlands)

    Ratsak, C.H.; Verkuijlen, J.

    2006-01-01

    Biological aerobic wastewater treatment plants (WWTPs) produce a lot of excess sludge. The costs for handling this residual product are increasing, so the search for alternative techniques to reduce the amount of sludge has to be continued. Activated sludge consists of inorganic and organic

  9. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  10. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic

  11. Fate of cyanobacteria and their metabolites during water treatment sludge management processes

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Lionel, E-mail: lionel.ho@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Bustamante, Heriberto; Duker, Phil [Sydney Water, PO Box 399, Parramatta, NSW 2124 (Australia); Meli, Tass [TRILITY Pty Ltd, PO Box 86, Appin, NSW 2560 (Australia); Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3 d, even though cells remained viable up to 7 d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. - Highlights: Black-Right-Pointing-Pointer Coagulation removed cyanobacteria without an additional exertion on coagulant demand. Black-Right-Pointing-Pointer During a stagnation period in direct filtration intracellular metabolites were

  12. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms – Water, BOD, carbon and nutrient removal

    International Nuclear Information System (INIS)

    Gustavsson, L.; Engwall, M.

    2012-01-01

    Highlights: ► It is necessary to improve existing and develop new sludge management techniques. ► One method is dewatering and biodegradation of compounds in constructed wetlands. ► The result showed high reduction of all tested parameters after treatment. ► Plants improve degradation and Phragmites australis is tolerant to xenobiotics. ► The amount of sludge could be reduced by 50–70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50–70%, mainly by dewatering and biodegradation of organic compounds.

  13. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  14. Modeling of Activated Sludge Process Using Sequential Adaptive Neuro-fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Mahsa Vajedi

    2014-10-01

    Full Text Available In this study, an adaptive neuro-fuzzy inference system (ANFIS has been applied to model activated sludge wastewater treatment process of Mobin petrochemical company. The correlation coefficients between the input variables and the output variable were calculated to determine the input with the highest influence on the output (the quality of the outlet flow in order to compare three neuro-fuzzy structures with different number of parameters. The predictions of the neuro-fuzzy models were compared with those of multilayer artificial neural network models with similar structure. The comparison indicated that both methods resulted in flexible, robust and effective models for the activated sludge system. Moreover, the root mean square of the error for neuro-fuzzy and neural network models were 5.14 and 6.59, respectively, which means the former is the superior method.

  15. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    Science.gov (United States)

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    Science.gov (United States)

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  17. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    Science.gov (United States)

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    Science.gov (United States)

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  19. Chemical modeling of waste sludges

    International Nuclear Information System (INIS)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety

  20. Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil

    International Nuclear Information System (INIS)

    Oliveira Silva, Jader de; Filho, Guimes Rodrigues; Silva Meireles, Carla da; Dias Ribeiro, Sabrina; Vieira, Júlia Graciele; Vieira da Silva, Cleuzilene; Alves Cerqueira, Daniel

    2012-01-01

    Highlights: ► In this study, the sludge was characterized by thermal analyses and FTIR. ► The superior calorific value of the sludge was 16.2 MJ kg −1 . ► The sludge showed a significant biodegradable portion of 65%. ► The UASB sludge can be used for energy source. - Abstract: The operation of anaerobic reactors in Brazil creates a by-product, sewage sludge, for which adequate treatment is necessary to obtain a solid and stable material. The burning of sewage sludge may be an effective alternative for its management, and looking to enhance its energy potential, an environmentally friendly method of disposal is necessary. As the quantity of sludge generated has increased over the past few years, the physical chemical characterization of this waste is the first stage for its utilization as raw material. The material was characterized by thermal analyses (Thermogravimetry (TG)/Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC)) and Infrared Analysis (FTIR) in order to determine the main organic groups present in sludge. The calorific power of the anaerobically digested sludge of Uberlândia-MG, Brazil was measured, and an energy content equal to 16.2 MJ kg −1 was found, which is within the range of values reported in the literature.

  1. Biothane process. Methane-producing treatment of wastewaters in a granular sludge bed

    Energy Technology Data Exchange (ETDEWEB)

    Boulenger, P; Vesprille, B

    1982-01-01

    The Biothane-UASB (upflow anaerobic sludge blanket) process, an anaerobic fermentation system with 2 granular sludge beds, effectively treats wastewaters from cheese and starch manufacture and is suitable for other industrial effluents, such as sugar beet alcohol distillation wastewaters and biosynthesis wases.

  2. Reduction of excess sludge production using mechanical disintegration devices.

    Science.gov (United States)

    Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J

    2006-01-01

    The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.

  3. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  4. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  5. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  6. Present situation and objective of sewage sludge treatment and disposal; Ausgangssituation und Zielstellung der Klaerschlammbehandlung und -entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, F. [BC Berlin-Consult GmbH, Berlin (Germany); Pueschel, M. [BC Berlin-Consult GmbH, Berlin (Germany)

    1995-11-01

    Sewage sludge is a solid-liquid mixture produced in each treatment step of a waste water treatment plant. The suitable manner of sludge treatment and disposal depends on the characteristics of the sludge such as its content of heavy metals and nutrient composition. To assess the different sludge treatment and disposal options besides the economical aspects effects on the environment must be considered. The emission of CO{sub 2} can serve as a possible approach for assessment. The dewatering and thermal drying approach for assessment. The dewatering and thermal drying causes the biggest part of CO{sub 2} emissions. They are at the same level as the CO{sub 2} which would be generated directly by total oxidation of the carbon contained in the sludge. The best way of sewage sludge disposal in accordance with the legal frame work, environmental impact and financial aspects is the co-combustion of sludge in cole power plants. The agricultural use of sludge with low heavy metal concentrations, however, is cheaper. (orig.) [Deutsch] Das Fest-Fluessig-Gemisch Klaerschlamm entsteht in jeder Reinigungsstufe einer Klaeranlage und muss anschliessend einer Behandlung zugefuehrt werden. Der Entsorgungsweg ist abhaengig von den Eigenschaften des Schlammes, wie z.B. seiner Schwermetallbelastung. Den Rahmen fuer die Klaerschlammentsorgung bilden die Regelungen des Abfallgesetzes, der Klaerschlammverordnung, der Duengemittelanwendungsverordnung, der TA Siedlungsabfall, des LAGA Merkblattes 10 (Kompost) und weiterer Verordnungen des Immissionsschutz- und Abfallrechts. Zur Bewertung der verschiedenen Entsorgungswege wurden neben den oekonomischen Aspekten auch die Auswirkungen der jeweiligen Verfahren auf die Umwelt beruecksichtigt. Es wurde fuer die oekologische Bewertung die CO{sub 2}-Emission des einzelnen Verfahrens herangezogen. Das Resultat des Vergleichs zeigt, dass der Co-Verbrennung der Vorzug zu geben ist. Bei geringen Schwermetallbelastungen bietet die landwirtschaftliche

  7. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    Science.gov (United States)

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  8. Sequential pretreatment for cell disintegration of municipal sludge in a neutral Bio-electro-Fenton system.

    Science.gov (United States)

    Yu, Qilin; Jin, Xiaochen; Zhang, Yaobin

    2018-05-15

    Sludge cell disruption was generally considered as the rate-limiting step for the anaerobic digestion of waste activated sludge (WAS). Advanced oxidation processes and bio-electro-chemical systems were recently reported to enhance the hydrolysis of WAS and sludge cell disruption, while the cell-breaking processes of these systems remain unclear yet. In this study, an innovative Bio-electro-Fenton system was developed to pretreat the WAS sequentially with cathode Fenton process and anode anaerobic digestion. Significant cell disruption and dissolution intracellular organics were founded after the treatment. X-ray photoelectron spectroscopy (XPS) analysis and fourier transform infrared spectroscopy (FT-IR) spectra indicated that Gram-negative bacteria were more sensitive to free radicals yielded in cathode to induce a chain reaction that destroyed the lipid-contained outer membrane, while Gram-positive bacteria with thick peptidoglycan layer were liable to be biologically decomposed in the anode. Compared with the oxidation of organic matters in the cathode Fenton, the secretion of enzyme increased in the anode which was beneficial to break down the complex matters (peptidoglycans) into simples that were available for anode oxidation by exoelectrogens. The results also showed a possible prospect for the application of this sequential pretreatment in bio-electro-Fenton systems to disrupt sludge cells and enhance the anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  10. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  11. Acclimatization of anaerobic sludge for UASB-reactor start-up

    NARCIS (Netherlands)

    Zeeuw, de W.J.

    1984-01-01

    The Upflow Anaerobic Sludge Bed (UASB) reactor represents a high rate anaerobic wastewater treatment system. The majority of the active biomass in the reactor is present in the form of sludge granules which possess excellent settling properties.
    If no acclimatized (granular)

  12. Leachability and physical stability of solidified and stabilized pyrite cinder sludge from dye effluent treatment

    Directory of Open Access Journals (Sweden)

    Kerkez Đurđa V.

    2015-01-01

    Full Text Available This work is concerned with exploring the possibilities of using solidification/stabilization (S/S treatment for toxic sludge generated in dye effluent treatment, when pyrite cinder is used as catalytic iron source in the modified heterogeneous Fenton process. S/S treatment was performed by using different clay materials (kaolin, bentonite and native clay from the territory of Vojvodina and fly ash in order to immobilize toxic metals and arsenic presented in sludge. For the evaluation of the extraction potential of toxic metals and the effectiveness of the S/S treatment applied, four single-step leaching tests were performed. Leaching test results indicated that all applied S/S treatments were effective in immobilizing toxic metals and arsenic presented in sludge. X-ray diffraction analysis confirmed the formation of pozzolanic products, and compressive strength measurement proved the treatment efficacy. It can be concluded that the S/S technique has significant potential for solving the problem of hazardous industrial waste and its safe disposal. [Projekat Ministarstva nauke Republike Srbije, br. III43005 i br. TR37004

  13. Performance of Sandy Dry Beds for sludge dewatering

    International Nuclear Information System (INIS)

    Al-Muzaini, S.

    2003-01-01

    Sludge produced by the Jahra treatment plant was assessed. The assessment was directed at determining the performance of sand drying beds. The assessment of quality of the sludge produced was based on the standards for land application of sewage sludge. Analyses were carried out for trace heavy metals and bacteria. The results of analyses showed that the sludge produced was high in organic matter and sand content but low in heavy metals. The collected data indicated that the sand drying beds at the Jahra treatment plant are at present inadequate to handle the projected sludge production. The investigation showed that the sand drying beds are fully used and the plant will require 3-4 times the capacity of the existing drying beds when the plant becomes fully operational. In addition, these sand drying beds are subjected to uncontrollable conditions such as temperature, rainfall and sludge drainage rate. Thus, sand drying beds have become less popular as a dewatering system. This paper evaluates the performance of the existing sand drying beds and suggests the most appropriate technology to alleviate the above mentioned problems. (author)

  14. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  15. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    Science.gov (United States)

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  17. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  18. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  19. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.

    2008-01-01

    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge.

  20. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  1. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.

    Science.gov (United States)

    Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin

    2018-04-30

    The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.

  2. SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230

    Energy Technology Data Exchange (ETDEWEB)

    DEARING JI; EPSTEIN M; PLYS MG

    2009-07-16

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  3. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    Science.gov (United States)

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm 3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O 2 - /HO 2 , and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sewage Sludge Treatment for Energy Purpose in China : Waste Treatment in China

    OpenAIRE

    Nyyssönen, Ville

    2015-01-01

    This thesis is made for ANDRITZ China Technology to find out sludge incineration potential in China. ANDRITZ is looking for markets and customers for ANDRITZ sewage sludge incineration technology in China. In addition ANDRITZ China manufactures centrifuges, skeleton model filter presses, belt presses and rotatory drums to treat the sludge. Sludge in China has become a major problem. It is considered to be toxic waste, because it contains pathogens, which are dangerous for human health. Th...

  5. Treatment of petroleum industry oil sludge by Rhodotorula sp

    Energy Technology Data Exchange (ETDEWEB)

    Shailubhai, K.; Rao, N.N.; Modi, V.V.

    1984-06-01

    A Rhodotorula sp., isolated from soil, which showed a versatile capacity to degrade various aromatic and aliphatic hydrocarbons, was used to treat oil sludge. As a result of treatment, there was significant decrease in BOD, COD and contents of various petroleum fractions. The susceptibility to degradation was in the following order: saturate fraction >aromatic fraction> asphaltic fraction.

  6. Implementation of co-digestion and sludge management systems in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Di Berardino, Santino [INETI/DER, Lisboa (Portugal)

    2006-07-01

    A solution based on sludge and Olive oil mill effluent (OME) co-digestion, coupled with a management plan, has been implemented, to treat and dispose safely, the mixed residues, into the natural forest and agricultural land. The mixture of up to 25% OME to the sludge improved anaerobic degradation of phenols and fats. High density fat compounds, present in OME, enhanced aggregation, settling and acetoclastic activity of anaerobic sludge. The full scale unit, obtained by modification of a cold digester, allowed to set-up a low capital cost system. The system produced large quantity of biogas and electric energy. Anaerobic degradation of the mixture improved fertilizing properties, making feasible land application of the digested mixture. Regional plan based in Geographical Information System (GIS) selected 800 ha of adequate land area for application near the WWTP. The experience is technically and economically successful. Main incomes are provided by energy use and OME charge. Sludge application in local agriculture does not generate any income, but eliminated landfill costs and reduced transportation costs.

  7. Conversion of sewage treatment plants on sludge digestion. Energetic and economic optimization potential

    International Nuclear Information System (INIS)

    Schmitt, Theo G.; Gretzschel, Oliver

    2014-03-01

    Investigations within the framework of the state-commissioned project ''Re-evaluation of wastewater purification plants with anaerobic sludge treatment with due consideration to framework conditions in terms of the energy and the wastewater management situation in Rhineland-Palatinate'', abbreviated ''NAwaS'', have shown that due to the rise in energy prices and availability of innovative techniques and methods it can be economically efficient, from a plant capacity of 10,000 inhabitants upwards, to convert sewage treatment plants to sludge digestion. Findings from the NAwaS project show the state of Rhineland-Palatinate to have a large potential for the conversion of sewage treatment plants to sludge digestion. Depending on the rate of price increase as well as interest rates the use of digester gas could permit an increase in electricity output by up to 50% over today's levels. Moreover, converted plants would be able to almost completely cover their own heat demand and in addition permit energy savings totalling an expected 5 kWh/(inhabitant x a). If one incorporates the possibilities offered by the procurement of sludge or suitable co-substrates from outside sources, by retrofitting sewage plants with combined heat and power stations or micro gas turbines as well as by process optimisation in existing digestion plants, this gives a further significant increase in potential production capacity and hence economic efficiency. In some of the sewage plants the above measures for saving energy and boosting energy production will even lead to energy self-sufficiency. [de

  8. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  9. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    Science.gov (United States)

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  10. A conceptual proposal for an integrated system to treat radioactive waste using thermal treatment and vitrification technology

    International Nuclear Information System (INIS)

    Rohyiza Baan; Mohd Fairus Abd Farid; Khaironie Mohamed Takip; Muhammad Nizammuddin Abd Aziz; Muhd Ridwan Abd Rahim; Sivapalan Kathiravale; Mohamad Azman Che Mat Isa; Norasalwa Zakaria; Mohamad Puad Abu; Muhamat Omar

    2007-01-01

    The characteristics of crude oil sludge from the crude oil terminal are very unique because it contains both heavy metals and are inappropriate and will have long term environment effect. Due to the organic nature of the oil sludge, there is a potential and realistic method to trea also Naturally Occurring Radioactive Material (NORM). Malaysia will face a serious problem in finding space to store this sludge. The volume is increasing drastically and the space available to store is very limited. In Malaysia, there is no well-establish disposal policy of oil sludge. Current practices, for oil sludge treatment includes land farming, storing in plastic drum, recovery, etc. However, the land farming method of oil scale and sludge disposal t this sludge by using thermal treatment and vitrification technology. Therefore, WETec has taking this opportunity to develop the facility. The thermal treatment system will consists of continuous solid feeder system and Fluidized Bed Combustor, and the vitrification system will consist of high temperature burner (1600 degree C) and ash melting chamber. This paper will highlight on various functions of components in that integrated system. (Author)

  11. Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, R. [Finnmark University College, Alta (Norway). Dept. of Aquaculture and Natural Sciences

    2004-06-01

    The mesophilic anaerobic treatment of sludge from saline fish farm effluents (total solids (TS): 8.2-10.2 wt%, chemical oxygen demand (COD): 60-74 g/l, sodium (Na): 10-10.5 g/l) was carried out in continuously stirred tank reactors (CSTRs) at 35 {sup o}C. COD stabilization between 36% and 55% and methane yields between 0.114 and 0.184 l/g COD added were achieved. However, the process was strongly inhibited, presumably by sodium, and unstable, with propionic acid being the main compound of the volatile fatty acids (VFA). When diluting the sludge 1:1 with tap water (Na: 5.3 g/l), the inhibition could be overcome and a stable process with low VFA concentrations was achieved. The results of the study are used to make recommendations for the configuration of full-scale treatment plants for the collected sludge from one salmon farming licence and to estimate the energy production from these plants. (Author)

  12. Degradation of typical N-nitrosodimethylamine (NDMA) precursors and its formation potential in anoxic-aerobic (AO) activated sludge system.

    Science.gov (United States)

    Wang, Lin; Li, Yongmei; He, Guodong

    2014-01-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection byproduct. Removal of its potential precursors is considered as an effective method to control NDMA. In this study, four typical NDMA precursors (dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB)) were selected, and their removal capacities by activated sludge were investigated. Batch experiments indicated that removal of NDMA precursors was better under aerobic condition than anoxic condition; and their specific degradation rates follow the order of DMA > TMA > DMFA > DMAB. In anoxic-aerobic (AO) activated sludge system, the optimal hydraulic retention time and sludge retention time were 10 h and 20 d, respectively, for the removal of both NDMA precursors (four selected NDMA precursors and NDMA formation potential (NDMA FP)) and nutrients. Our results also suggested that there was a positive correlation between NDMA FP and dissolved organic nitrogen (DON) in wastewater. The removal efficiency of NDMA FP was in the range of 46.8-72.5% in the four surveyed wastewater treatment plants except the one which adopted chemically enhanced primary process. The results revealed that the AO system had the advantage of removing NDMA FP. Our results are helpful for the knowledge of the removals of NDMA precursors during activated sludge treatment processes.

  13. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    Science.gov (United States)

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  14. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan

    2005-01-01

    . The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter...... and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...... matter removal and methane recovery could be obtained at lower HRTs....

  15. Treatment of spent nuclear fuel L-basin sludge

    International Nuclear Information System (INIS)

    Westover, B.L.; Oji, L.N.; Martin, H.L.; Nichols, D.M.

    1997-01-01

    Each production reactor at the DOE Savannah River Site (SRS) has a disassembly basin whose primary purpose is to cool irradiated production fuel and target. The disassembly basins also provide a shielded environment for personnel. Material has historically resided in the basins for 6 to 12 months. Increases in basin storage time have occurred, and have caused the buildup of a sludge layer on the basin floors to be greater than historical levels. The sludge is composed primarily of inorganic oxide and hydroxide corrosion products. The sludge layer has increased the turbidity and conductivity of the basin water, contributed to fuel corrosion, and has impacted fuel handling operations. Initial characterization of the sludge indicates that it is a low-level radioactive aqueous waste. This evaluation looked at methods to separate the sludge into its liquid and solid phases. The experimental data obtained during this evaluation clearly shows that a filtration-based approach to dewatering using an Oberlin pressure filtration unit at SRS is possible. This research task was to identify and optimize filtration and settling parameters pursuant sludge processing. The research specifically addressed: choice of filter aid, filter aid to sludge ratio, choice and dosage of polymer flocculation and settling agents, and the determination of Kynch curve settling parameters. Two commercial perlite filter-aids were identified as the most suitable. Of 11 water soluble flocculating polymers evaluated, 3 cationic commercial types formed stable flocs in the screening tests. In low doses, the flocculating polymers also enhanced sludge particle settling and decreased filtrate turbidity. The filtration cake from the sludge can be solidified to meet waste acceptance and storage criteria. However, the conductivity of the remaining filtrate does not meet Reactor Area Return Water criteria and may require a secondary filtration process. 2 refs., 14 figs., 5 tabs

  16. Treatment of contaminated greywater using pelletised mine water sludge.

    Science.gov (United States)

    Abed, Suhail N; Almuktar, Suhad A; Scholz, Miklas

    2017-07-15

    Precipitated sludge (ochre) obtained from a mine water treatment plant was considered as an adsorbent substance for pollutants, since ochre is relatively free from problematic levels of toxic elements, which could impair on the quality of water to be treated. Artificially created ochre pellets from mixing Portland cement with raw ochre sludge were utilised to remediate either high (HC) or low (LC) contaminated synthetic greywater (SGW) in mesocosm-scale stabilisation ponds at 2-day and 7-day contact times under real weather conditions in Salford. After a specific retention time, treated SGW was agitated before sampling to evaluate pollutant removal mechanisms (other than sedimentation) such as adsorption by ochre pellets, before replacing the treated water with new inflow SGW. The results showed that cement-ochre pellets have a high ability to adsorb ortho-phosphate-phosphorous (PO 4 -P) significantly (p treatment for HC-SGW at 2- and 7-day contact times, respectively. Cadmium was still adsorbed significantly (p treatment of LC-SGW. However, the calcium (Ca) content decreased significantly (p < 0.05) within ochre pellets treating both types of greywaters due to mobilisation. The corresponding increases of Ca in greywater were significant (p < 0.05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue.

    Science.gov (United States)

    Zhu, Suiyi; Fang, Shuai; Huo, Mingxin; Yu, Yang; Chen, Yu; Yang, Xia; Geng, Zhi; Wang, Yi; Bian, Dejun; Huo, Hongliang

    2015-07-15

    Iron sludge, produced from filtration and backwash of groundwater treatment plant, has long been considered as a waste for landfill. In this study, iron sludge was reused to synthesize Fe3O4 magnetic particles (MPs) by using a novel solvothermal process. Iron sludge contained abundant amounts of silicon, iron, and aluminum and did not exhibit magnetic properties. After treatment for 4h, the amorphous Fe in iron sludge was transformed into magnetite Fe3O4, which could be easily separated from aqueous solution with a magnet. The prepared particles demonstrated the intrinsic properties of soft magnetic materials and could aggregate into a size of 1 μm. MPs treated for 10h exhibited excellent magnetic properties and a saturation magnetization value of 9 emu/g. The obtained particles presented the optimal adsorption of methylene blue under mild conditions, and the maximum adsorption capacity was 99.4 mg/g, which was higher than that of granular active carbon. The simple solvothermal method can be used to prepare Fe3O4 MPs from iron sludge, and the products could be applied to treatment of dyeing wastewater. Copyright © 2015. Published by Elsevier B.V.

  18. Rheological and electrical properties used to investigate the coagulation process during sludge treatment.

    Science.gov (United States)

    Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R

    2018-01-01

    Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.

  19. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  20. Dissinfection of municipal sludge and wastewater by energized electrons

    International Nuclear Information System (INIS)

    Trump, J.G.; Wright, K.A.; Sinskey, A.J.; Shah, D.N.; Fernald, R.

    1979-01-01

    Laboratory studies at M.I.T. and high flow rate studies at the M.D.C. Deer Island Wastewater Treatment Plant in Boston have shown the practicality and cost effectiveness of disinfecting liquid municipal sludges by injecting energized electrons. A dosage of 400 Kilorads (4 Kilograys) reduces gram-negative bacteria, including coliforms, fecal coliforms, salmonellae and shigellae, in primary raw or anaerobically digested sludges to undetectable levels. Enteric viruses are reduced by one to two orders of magnitude. This treatment also destroys parasite eggs or renders them non-infectious. Model system studies indicate that trace toxic compounds such as PCBs in water are degraded. The estimated cost of sludge disinfection by electron treatment is about $0.80 per liquid tonne for modular systems of 650 liquid tonnes per day capacity. About 6 Kilowatt-hours of input electric power per tonne is required. The temperature rise of the disinfected watery sludge is about 2 0 C. Electron disinfection combined with subsurface soil injection offers an environmentally attractive, energy-efficient, and economic two -step process for land disposal of municipal sludges with water conservation and soil improvement benefits. Combined with widely-distributed ocean feeding, electron disinfection of the municipal sludge of coastal communities offers a safe marine nutrient for increasing fish population in treated ocean areas. The electron disinfection of effluent wastewater, in lieu of chlorination, is a future application which avoids the production of potentially toxic chlorinated hydrocarbons. (Author) [pt

  1. Sludge storage lagoon biogas recovery and use. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  2. Radioactive sludge and wastewater analysis and treatment in the Hungarian VVER-440/213-type NPP

    International Nuclear Information System (INIS)

    Patzay, G.; Weiser, L.; Feil, F.; Schunk, J.; Patek, G.; Pinter, T.

    2010-01-01

    It is well known that in the Hungarian VVER-type nuclear power plant Paks the radioactive waste waters are collected in common tanks. These water streams contain radioactive isotopes in ultra-low concentration and inactive compounds as major components (borate 1.7 g/dm 3 , sodium-nitrate 0.4 g/dm 3 , sodium-hydroxide 0.16 g/dm 3 , and oxalate 0.25 g/dm 3 ). These low salinity solutions were evaporated by adding sodium-hydroxide, until 400 g/dm 3 salt content is reached. There is about 6000 m 3 concentrated evaporator bottom residues in the tanks of the reactor. There are some tanks at the power plant containing sludge type radioactive waste containing more or less liquid phase too. The general physical and chemical characteristics (density, pH, total solid, dissolved solid etc.) and chemical and radiochemical composition are important information for volume reduction and solidification treatment of these wastes. We have investigated and constructed a complex analysis system for the radioactive sludge and supernatant analysis, including the physical, as well as the chemical and radiochemical analysis methods. Using well known analysis techniques as ion chromatography, ICP-MS, AAS, gamma-and alpha-spectrometry and chemical alkaline fusion digestion and acidic dissolution methods we could analyze the main inorganic, organic and radioactive components of the sludges and supernatants. Determination of the mass and charge balance for the sludge samples were more difficult then for the supernatant samples. Not only are there assumptions required about the chemical form and the oxidation state of the species present in the sludge, but many of the compounds in the sludge are mixed oxides which are not directly measured. Also, the sludge is actually a slurry with a high water content. The interstitial liquid is in close contact with the sludge, and there are many ionic solubility equilibriums. The anion data for the sludge samples are based on the water soluble anions that

  3. Treatment of Lagoon sludge waste generated from Uranium Conversion Plant

    International Nuclear Information System (INIS)

    Hwang, D.S.; Oh, J.H.; Lee, K.I.; Choi, Y.D.; Hwang, S.T.; Park, J.H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the desalination process by water and the drying property of residual solid after separating nitrates in a series of processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97 % at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue. These were decomposed over 600 deg. C while calcium carbonate, which was a main compound of residual solid, was decomposed into calcium oxide over 750 deg. C. The residual solid has to be decomposed over 800 deg. C to converse uranyl nitrate of six values into the stable U 3 O 8 of four values. As a result of removing the nitrates at the adding ratio of 2.5 and drying the residue over 900 deg. C, volume of the sludge waste decreased over 80 %. (authors)

  4. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  5. Radiological study of the sludge generated in a station drinking water treatment

    International Nuclear Information System (INIS)

    Baeza, A.; Salas, A.; Gragera, J.

    2011-01-01

    The purification process involves removing the water or at least reducing the legally permitted levels of undesirable substances that become part of the precipitates that originate, called sludge. The importance of the study is given because it will find, in the event that the process effectively reduce its radioactive contents, significant activities of the radionuclides eliminated. In this sense, the concentration of radioactive sludge and, above all, the chemical forms in which these radionuclides are retained condition the danger of the waste produced on the basis of their potential availability. In this study, we analyzed the sludge generated in a water treatment plant that has operated under both routine operation and in conditions designed to optimize the reduction of the radioactive contents for uranium and radium present in the treated water. (Author)

  6. Treatment of supernatant from sewage sludge by elctron beam irradiation

    International Nuclear Information System (INIS)

    Arai, Hidehiko; Sugiyama, Masashi; Shimizu, Ken.

    1988-01-01

    Part of the results was presented on the investigation of treatment of supernatant from sewage sludge by combination of electron beam irradiation and microbiological treatment. Supernatant is electron-beam irradiated after microbiologically treated, and then treated microbiologically again. Based this method, by irradiation of 10 kGy, chemical oxygen demand (COD) in supernatant can be decreased lower than 30 ppm. Moreover, electron-beam irradiation induces remarkable decolorization and deodorization. (author)

  7. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment.

    Science.gov (United States)

    Yu, Yaqin; Lu, Xiwu

    2017-09-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  8. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    Science.gov (United States)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  9. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  10. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.

    Science.gov (United States)

    Aydin, Sevcan

    2016-07-01

    While anaerobic treatment is capable of treating pharmaceutical wastewater and removing antibiotics in liquid phases, solid phases may still contain significant amounts of antibiotics following this treatment. The main goal of this study was to evaluate the use of white-rot fungi to remove erythromycin, sulfamethoxazole, and tetracycline combinations from biosolids. The degradation potential of Trametes versicolor and Bjerkandera adusta was evaluated via the sequential treatment of anaerobic sludge. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used to identify competition between the autochthonous microbial communities and white-rot fungi. Solid-phase treatment using white-rot fungi substantially reduced antibiotic concentrations and toxicity in sludge. According to PCR-DGGE results, there is an association between species of fungus and antibiotic type as a result of the different transformation pathways of fungal strains. Fungal post-treatment of sludge represents a promising method of removing antibiotic combinations, therefore holding a significant promise as an environmentally friendly means of degrading the antibiotics present in sludge.

  11. The production of sludge in anaerobic purification treatments; Produccion de fangos en la depuracion anaerobica

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E. del R.; Mejia Sanchez, G.M. [Departamento de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Autonoma de Yucatan (Mexico)

    1996-04-01

    One of the characteristics of anaerobic processes is the low level of sludge production. However it is important to maintain a certain concentration of biomass in the system to ensure sufficient removal of organic matter. As organic matter degrades, part of it is transformed into gas while the rest remains in the system as biomass, it is important to control the concentration of sludge in the system as a way of enchaincing process efficiency. The quality of sludge produced during the anaerobic digestion process is related to the amount of substrate consumed and the amount of gas generated and particularly to the concentration of volatile suspended solids (active biomass). nevertheless, the operating conditions of the digester can modify the distribution of the results of the bacterial metabolism. The present study examines the influence of hydraulic resistance time, organic, load and substrate concentration on sludge production and the relation between sludge production and the amount of substrate consumed by the system for each set of cinditions. The findings were obtained from a experiment in which a modified UASB digester was operated with a slow mixing system. (Author) 7 refs.

  12. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Vieira, J.M.

    1998-01-01

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m 3 /h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  13. Application of soil washing system to the volume reduction of radioactively contaminated soils and automated treatment of sludge cake

    International Nuclear Information System (INIS)

    Mouri, Mitsuo; Tsuchida, Mitsuru; Baba, Naoki; Nakajima, Takuma

    2013-01-01

    The pilot plant study was intended to evaluate; a) the removal efficiency of radioactive Cs, b) the volume reduction rate of feed soils, c) the volumetric rate and concentration rate of discharged sludge cake, and d) the effect of radiation exposure reduction by automated filter press unit and automated packing unit of sludge cake. As a result of this study, following observations were made; 1) the radioactive Cs content of clean sands ranged 882∼2,940 Bq/kg as compared to the feed soils of 8,790 to 26,270 Bq/kg, 2) the removal efficiency of radioactive Cs ranged 84∼92% of feed soils, 3) the volume reduction rate of feed soils ranged 70∼86% (ave. 82%), and 4) the automated filter press unit and the automated packing system of sludge cake were helpful for workers in reducing radiation exposure. It is concluded that soil washing system can effectively reduce volume of radioactively contaminated soils and can be practically used in Fukushima for remediation of soils. (author)

  14. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    Science.gov (United States)

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  15. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    Science.gov (United States)

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  16. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    Directory of Open Access Journals (Sweden)

    Na Wei

    2012-01-01

    Full Text Available A sludge composite modifier (SCM which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The results showed that the optimum ratio of modifier component was slag/cement clinker/dihydrate gypsum = 0.64/0.292/0.068 and the moisture content of SCM-stabilized sludge decreased with the increasing material content and extending curing time. Besides, the experimental results showed that optimized SCM behaved better than quicklime and Portland cement in sludge semi-drying and XRD analysis revealed that the main hydrated product of stabilization was ettringite, which played an important role in the effective drying process. Sewage sludge stabilized using SCM could be used as an effective landfill cover.

  17. Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF) System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay

    OpenAIRE

    Mohammad Javad Ghannadzadeh; Ahmad Jonidi Jafari; Abbas Rezaee; Fatemeh Eftekharian; Ali Koolivand

    2016-01-01

    Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF) system in elimination of phenolic compounds from water. Methods: D. magna cultures were used as toxicity index of phenol and 2,4-DNP mixtures after treatment by a pilot BFUSBF system which...

  18. Comparison of bioindicator eukaryotes of activated sludge biocenoses on two water-treatment plants: a case study

    Directory of Open Access Journals (Sweden)

    Achmadulina Farida Y.

    2017-06-01

    Full Text Available Activated sludge biocenoses were compared on waste-water treatment plants in the city of Kazan, Russian Federation and the city of Teplice, Czech Republic. Based on Palia-Kovnatski index, Acanthamoeba in Kazan, Epistylis in Teplice, and Acanthamoeba and Centropyxis were dominant genera in both plants. The major subdominant generas identified were Arcella, Opercularia and Aspidisca. This indicates high nitrification ability, high water purification potential and matured activated sludge. Chemical composition of the waste-water was identified as the main factor determining the sludge biocenoses diversity. Higher sludge biodiversity (Shannon, Margalef, and Sorensen indexes was found in Kazan corresponding to more concentrated inflow water.

  19. Legislation concerning the energy reuse of sludge from waste water treatment plant in the region of Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Mislej, V. (Vodovod-Kanalizacija, Ljubljana (Slovenia)), Email: vmislej@vo-ka.si; Grilc, V. (National Inst. of Chemistry, Ljubljana (Slovenia)), Email: viktor.grilc@ki.si

    2009-07-01

    The legislation on waste management in Slovenia was markedly renovated in the year 2008. The main changes were related to the treatment of biologically degradable wastes, which was extended to the energy-from-waste option. New regulations in Slovenia have set criteria on which wastes can be processed and transformed into a solid recovered fuel and the conditions concerning its quality and use. The legislation also outlines other process conditions for placing sewage sludge on the market as a secondary solid fuel and its application in various thermal processes. Sewage sludge represents the largest share of wastes. generated at biological wastewater treatment plants (BWWTP). In fresh form it is formed as excess active sludge formed during biological treatment of municipal wastewater and may be consecutive stabilized by an aerobic or anaerobic process. Anaerobic stabilization (digestion)of the raw gravity thickened sludge, followed by mechanical and thermal dehydration transform the fresh sludge into stable dry granules. In this form it is suitable for marketing and utilization in thermal processes. The main problems may be low calorific value and relative high metals content (especially mercury) and sulphur. Sulphur and cadmium are not among the limiting parameters of the noted technical specification for alternative fuels, so the new regulation in Slovenia will be appealed. (orig.)

  20. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.

    Science.gov (United States)

    Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas

    2017-03-01

    Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies

  1. Synchronous municipal sewerage-sludge stabilization.

    Science.gov (United States)

    Bukuru, Godefroid; Jian, Yang

    2005-01-01

    A study on a pilot plant accomplishing synchronous municipal sewerage-sludge stabilization was conducted at a municipal sewerage treatment plant. Stabilization of sewerage and sludge is achieved in three-step process: anaerobic reactor, roughing filter and a microbial-earthworm-ecofilter. The integrated ecofilter utilizes an artificial ecosystem to degrade and stabilize the sewerage and sludge. When the hydraulic retention time(HRT) of the anaerobic reactor is 6 h, the hydraulic load(HL) of the bio-filter is 16 m3/(m2 x d), the HL of the eco-filter is 5 m3/(m2 x d), the recycle ratio of nitrified liquor is 1.5, the removal efficiency is 83%-89% for COD(Cr), 94%-96% for BOD5, 96%-98% for SS, and 76%-95% for NH3-N. The whole system realizes the zero emission of sludge, and has the characteristics of saving energy consumption and operational costs.

  2. Use of sludge as ceramic materials

    International Nuclear Information System (INIS)

    Morais, L.C.; Vianna, R.S.C.; Campos, V.; Rosa, A.H.; Buechler, P.M.

    2009-01-01

    Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves. (author)

  3. Avaliação das unidades de tratamento do lodo em uma ete de lodos ativados convencional submetida a distintas estratégias operacionais Evaluation of the sludge treatment units in an activated sludge treatment plant subjected to different operational strategies

    Directory of Open Access Journals (Sweden)

    Alessandra Valadares Álvares da Silva

    2007-06-01

    Full Text Available A finalidade deste trabalho é apresentar uma avaliação da etapa de tratamento de lodos da Estação de Tratamento de Esgotos do Arrudas (Belo Horizonte, em especial os teores de sólidos ao longo do sistema, as principais variáveis de projeto e operação. O processo de tratamento é o de lodos ativados convencional com adensamento por gravidade, digestão anaeróbia e desidratação mecânica. Desde sua entrada em operação até o momento, a estação passou por três fases operacionais quanto ao adensamento dos lodos. A maior concentração média do lodo primário (4,8% foi atingida no adensador por gravidade quando esse recebia apenas lodo primário. O lodo misto alcançou uma concentração média de 2,7% enquanto o valor esperado de projeto era 5,0%. O lodo secundário excedente, concentrado no adensador por gravidade não ultrapassou 1,8%. A maior concentração média da torta do lodo desidratado (28,3% foi obtida quando o lodo digerido era proveniente do tratamento primário.This paper aims to evaluate the sludge treatment stage at the Arrudas Wastewater Treatment Plant (Belo Horizonte, Brazil, especially the solids contents throughout the sludge treatment line, as well as the main design and operating variables. The conventional activated sludge plant has a typical solids-line flowsheet: gravity thickening, anaerobic digestion and mechanical dewatering. Three main operational phases have been identified, whose implications in the plant behaviour are analysed in the paper. The highest concentration of primary sludge (mean value of 4.8% was reached in the gravitational thickening when it was fed with primary sludge only. The mixed sludge concentrated in the gravitational thickening reached only a mean concentration of 2.7%, whereas the expected result was 5.0%. The excess secondary sludge concentrated in the gravitational thickener did not reach 1.8%. The largest concentration of the dewatered sludge cake (means value of 28.3% was

  4. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    OpenAIRE

    Na Wei

    2012-01-01

    A sludge composite modifier (SCM) which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The res...

  5. THE INFLUENCE OF CALCIUM HYPOCHLORITE DOSAGE ADJUSTMENT ON TAPIOCA WASTEWATER PRE-CHLORINATION TOWARD EFFICIENCY OF ACTIVATED SLUDGE TREATMENT

    Directory of Open Access Journals (Sweden)

    Happy Mulyani

    2016-11-01

    Full Text Available The objectives of this research are to study about influence of calcium hypochlorite dosage adjustment on tapioca wastewater chlorination toward efficiency of activated sludge treatment especially at MLVSS profile and percentage of COD removal. This research mainly divided into pre-chlorination and activated sludge treatment. Pre-chlorination taken place for 60 minutes at pH 8. The variation of calcium hypochlorite dosages which used are 58, 59, and 60 mg/L. Pre-chlorination effluent with no free chlorine residual then becomes activated sludge treatment influent. Sampling has done each aeration time interval 0, 2, 4, and 6 hour for analysis of COD and MLVSS content. Research result generally shows that addition of aeration time for each variation of calcium hypochlorite dosage will increase MLVSS and decrease COD content. Smallest value of COD effluent could achieved in the activated sludge treatment with calcium hipochlorite dosage 60 mg/L addition at influent during 4 hours aeration time. Addition of 58 mg/l calcium hypochlorite results highest MLVSS and percentage of COD removal.

  6. Radioactivity of sludge in Finland in 1987

    International Nuclear Information System (INIS)

    Puhakainen, M.; Rahola, T.

    1989-05-01

    Sewage sludge from municipal wastewater treatment plants was studied to determine its radionuclide concentrations. Measurements were made to find out whether any radionuclides from the nuclear power stations at Loviisa and Olkiluoto and from hospitals and medical laboratories could be detected in sludge additional to those originating from global and Chernobyl fallout. In the treatment process of water, aluminium sulphate sludge is developed at treatment plants using surface water. This kind of sludge was measured since it also concentrates radionuclides. Fallout nuclides from the Chernobyl nuclear power station after the accident predominated in all sewage sludge samples in Finland. In 1987 six different radionuclides originating from the Chernobyl fallout were detected in sewage sludge. In spring when the snow melted and large quantities of run off water flowed into the treatment plants, the activity concentrations clearly increased, but then started decreasing again. At the end of the year the highest measured 137 Cs activity concentrations were below 1000 Bq kg -1 dry weight. The highest activity concentration in sludge originated from iodine used fro medical purposes

  7. Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions

    NARCIS (Netherlands)

    Seghezzo, L.; Cuevas, C.M.; Trupiano, A.P.; Guerra, R.G.; Gonzalez, S.M.; Zeeman, G.; Lettinga, G.

    2006-01-01

    The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical

  8. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    Science.gov (United States)

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  9. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30–100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas pr...... experiments indicated that pre-treated sludge (microwave irradiation: 900W, temperature: 60–70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation....

  10. Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries.

    Science.gov (United States)

    Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan

    2012-09-01

    The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.

  11. Urban Sewage Sludge, Sustainability, and Transition for Eco-City

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Chan, Felix T. S.

    2017-01-01

    The treatment of urban sewage sludge is of vital importance for mitigating the risks of environmental contaminations, and the negative effects on human health. However, there are usually various different technologies for the treatment of urban sewage sludge; thus, it is difficult for decision......-makers/stakeholders to select the most sustainable technology among multiple alternatives. This study aims at developing a generic multi-criteria decision support framework for sustainability assessment of the technologies for the treatment of urban sewage sludge. A generic criteria system including both hard and soft criteria...... in economic, environmental, social and technological aspects was developed for sustainability assessment. The improved analytic hierarchy process method, namely Best-Worst method, was employed to determine the weights of the criteria and the relative priorities of the technologies with respect to the soft...

  12. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    Science.gov (United States)

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  13. Sanitizing effects of sewage sludge irradiation treatment

    International Nuclear Information System (INIS)

    Zhao Yongfu

    2005-01-01

    A large quantity of pathogenic organisms were found in sewage sludge. An investigation was carried out on the relationship in the chain of sludge-soil-vegetable between the survival of pathogenic organisms and the irradiation dosage. After irradiation with 5-6 kGy, coliform group reduced 3 log cycles, and ascarid ova were completely eliminated with a dose of 1 kGy, making the water matched the standard quality of irrigating water. In the soil applied with irradiated sewage sludge, the total bacteria and coliforms group count reduced to one tenth, and alive ascarid ova was not detected. The coliform group on the Chinese cabbage was extremely low and reached the standard of fresh eating. (authors)

  14. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  15. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    Science.gov (United States)

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  17. K Basin Sludge Conditioning Testing. Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    International Nuclear Information System (INIS)

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1998-01-01

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with approximately2.5 g of sludge (dry basis). The high solids loading test was conducted with approximately7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale

  18. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water.

    Science.gov (United States)

    Mackie, Allison L; Walsh, Margaret E

    2015-11-15

    The purpose of this study was to investigate the potential to replace lime with cement kiln dust (CKD) in high density sludge (HDS) treatment of acid mine drainage (AMD). The bench-scale study used two water samples: AMD sampled from a lead-zinc mine with high concentrations of iron (Fe), zinc (Zn), and arsenic (As) (Fe/Zn-AMD) and a synthetic AMD solution (Syn-AMD) spiked with ferric sulfate (Fe2(SO4)3). Arsenic was found to be significantly reduced with CKD-HDS treatment of Fe/Zn-AMD compared to lime-HDS treatment, to concentrations below the stringent mine effluent discharge regulation of 0.10 mg As/L (i.e., 0.04 ± 0.02 mg/L). Both CKD- and lime-HDS treatment of the two AMD samples resulted in settled water Fe concentrations above the stringent discharge guideline of 0.3 mg Fe/L. CKD addition in the HDS process also resulted in high settled water turbidity, above typical discharge guidelines of 15 mg TSS/L. CKD-HDS treatment was found to result in significantly improved settled solids (i.e., sludge) quality compared to that generated in the lime-HDS process. HDS treatment with CKD resulted in 25-88% lower sludge volume indices, 2 to 9 times higher % wet solids, and 10 to 20 times higher % dry solids compared to lime addition. XRD and XPS testing indicated that CKD-HDS sludge consisted of mainly CaCO3 and SiO2 with Fe(3+) precipitates attached at particle surfaces. XRD and XPS testing of the lime-HDS generated sludge showed that it consisted of non-crystalline Fe oxides typical of sludge formed from precipitates with a high water concentration. Increased sedimentation rates were also found for CKD (1.3 cm/s) compared to lime (0.3 cm/s). The increased solids loading with CKD addition compared to lime addition in the HDS process was suggested to both promote surface complexation of metal precipitates with insoluble CKD particles and increase compression effects during Type IV sedimentation. These mechanisms collectively contributed to the reduced water content of

  19. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  20. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  1. MiDAS: the field guide to the microbes of activated sludge.

    Science.gov (United States)

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.

  2. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  4. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  5. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  6. Aquatic worms eating waste sludge in a continuous system

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2009-01-01

    Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes

  7. Integral study of sewage sludges

    International Nuclear Information System (INIS)

    1994-01-01

    Sewage sludges are the by-product generated during the treatment process of waste water, and they are conformed by a solid phase which origin is the accumulation of pollutant materials which has been added to water during natural and anthropogenic activities. Its handling is one of the most serious problems faced by water treatment plants which involve the production, gathering, transportation, re utilization and final disposal of sewage sludges. The main purpose of this project is to perform a technical evaluation of the process of sewage sludge irradiation for its possible application as a choice for treatment and final disposal. Irradiation with gammas from Cobalt-60 shows effectiveness in disinfestation of sewage sludges, since they reduce six times the microbial population with a 7 KGy dose. In like manners with doses of 10 KGy is possible to bring down in 70 % the concentration of organic compounds, as well as to eliminate the presence of 6 to 22 organic compounds on samples of sewage sludges. The whole content of this work is presented in six sections: Introduction, Antecedents, Methodology, Conclusions, Suggestions and Bibliography. (Author)

  8. Activated sludge and activated carbon treatment of a wood preserving effluent containing pentachlorophenol

    National Research Council Canada - National Science Library

    Guo, P. H. M

    1980-01-01

    ...; however, PCP removal averaged only 35% and the effluent was toxic to rainbow trout. Treatment of the activated sludge effluent by carbon adsorption resulted in effective PCP removal and non-toxic effluents...

  9. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  10. Enhanced sludge washing evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  11. Enhanced sludge washing evaluation plan

    International Nuclear Information System (INIS)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices

  12. Life cycle assessment of biogas from sewage treatment sludge; Livscykelanalys av biogas fraan avloppsreningsverksslam

    Energy Technology Data Exchange (ETDEWEB)

    Palm, David; Ek, Mats (IVL Swedish Environmental Research Inst., Stockholm (Sweden))

    2010-08-15

    This report analyses the environmental impact from 1MJ of biogas (as vehicle fuel) produced by anaerobic digestion of sewage sludge. Data are primarily taken from Kaeppala sewage treatment plant, but have been complemented with data from literature. As a base case, the biogas has only been given the environmental burden from upgrading and purification of raw gas. This is because the anaerobic digestion is an inherent part of the waste water treatment in Sweden, biogas being produced regardless of its chosen end utilization. Calculations have also been performed with system expansion where the anaerobic digestion, sludge treatment and replaced mineral fertilizer have been included in the analysis, as well as calculations based on economic and energy allocation. The results have been characterised in accordance to CML (2007) for the potential of global warming on a 100 year perspective, eutrophication, acidification, photochemical oxidation creation and particles. The study represents a Swedish state-of-the-art plant for biogas production but also includes a sensitivity analysis that cover a Swedish average plant and a worst case plant. The sensitivity analysis shows a major impact on the results from methane leakage during anaerobic digestion and upgrading. The electricity consumption and choice of Swedish average electricity versus Swedish marginal electricity is of less importance for the outcome of the study

  13. Recycling technologies for sewarage systems. Reuse of water, heat, and sludge in Tokyo; Gesuido wo meguru risaikuru gijutsu. Tokyoto ni okeru mizu/netsu/odei no sairiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mino, T. [Tokyo Univ. (Japan)

    1996-03-10

    The recycling technology employed in Tokyo were reported. It will be useful for developing and introducing the recycling technology for water, heat, and sludge in the sewage treatment. Among various kinds of recycling technology, one of the most peculiar technology is the district heating and cooling system using the heat of sewage. The Japan`s first practical plant which uses the untreated sewage as the heat source was installed and is now operating in Korakuen pump station. In the station, the energy contained in the sewage is recovered by a heat exchanger. The heat pump produces warm water of 45{degree}C and cold water of 7{degree}C as well. Both are supplied to the area near by through the heat source supply pipeline. The Nanbu sludge plant has a sludge-resourcing plant, in which the sludge is converted into fuel, metro-bricks, and light-weight granules, as well as a conventional sludge treatment plant carrying out the concentration, dehydration, and incineration of sludge. The Ochiai sewage treatment plant reuses water after cleaning. The clean water is used as for the service water in addition to being discharged into the river stream. 7 figs., 1 tab.

  14. Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB Digester system

    NARCIS (Netherlands)

    Mahmoud, N.A.; Zeeman, G.; Gijzen, H.J.; Lettinga, G.

    2004-01-01

    The treatment of sewage at 15°C was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-Digester system. The latter consists of a UASB reactor complemented with a digester for mutual sewage treatment and sludge stabilisation. The UASB reactor was operated at a

  15. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Zeng Lixi; Wang Thanh; Ruan Ting; Liu Qian; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80–52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C 11 and Cl 7,8 were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r 2 ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. - Highlights: ► Levels and distribution patterns of SCCPs were studied in sewage sludge in China. ► Concentrations of total SCCPs in sludge ranged from 0.8 to 52.7 μg/g dry weight. ► C 11 and Cl 7,8 were identified as the dominant congener groups within SCCPs. ► Significant linear relationships were found among SCCP congener groups (r 2 ≥ 0.9). ► SCCPs are present in household products and can be exposing to human. - High levels of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China have been found.

  16. The existing state of sewage sludge containing radioactive substances

    International Nuclear Information System (INIS)

    Shirasaki, Makoto; Hisaoka, Natsuki

    2012-01-01

    Radioactive substances were discharged over a wide range from the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company. As a result, in sewer system, especially in the combined sewer system that jointly collects rainwater and sewage, radioactive substances accumulated on the surface of urban areas were transferred together with rainwater to sewage plants and accumulated there. In the process of further treatment, radioactive substances were transferred to and concentrated in sewage sludge, and a high concentration of radioactive substances were detected in incineration ash. For this reason, some sewage plants still continuously store dewatered sludge, incinerator ash, etc. This paper introduces the current state of waste treatment from the published data from each local government in Tohoku and Kanto districts. As for the sewer, which is essential as a lifeline, the Ministry of Land, Infrastructure, Transport and Tourism, together with the Japan Sewage Works Association, established 'Investigative Commission on Radioactive Substance Countermeasures in Sewerage System.' This group grasped the damage situation due to radioactive substances, and summarized the measures to be taken by sewage managers, such as the storage method for sewage sludge containing radioactive substances as well as the method for the volume reduction of sewage sludge. (O.A.)

  17. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin, E-mail: jxliu@rcees.ac.cn

    2015-01-15

    Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.

  18. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis

    International Nuclear Information System (INIS)

    Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin

    2015-01-01

    Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others

  19. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    International Nuclear Information System (INIS)

    Ongen, Atakan; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-01-01

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m 3 . • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity

  20. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ongen, Atakan, E-mail: aongen@istanbul.edu.tr; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-12-15

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m{sup 3}. • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

  1. Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Municipal wastewater and sewage sludge is an abundant source of phosphorus (P), but its usage is often limited due to wastewater treatment methods and contaminants, mostly heavy metals (HM's). Three compartment (3C) electrodialysis (ED) was used to simultaneously extract HM's (Cd, Cr, Cu, Ni, Pb...... of heavy metals or recovery of phosphorus using ED, the end-products in wastewater treatment, like anaerobically digested sludge and reject-water streams, are therefore best to be treated....... pH using anaerobically digested sludge. The hydrolysis of OM during anaerobic digestion and the anaerobic conditions allowed for easier extraction of HM's such as Cd, Ni and Zn as they had fewer adsorption places, and improved P availability and extractability. Extraction of P from high...

  2. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    Science.gov (United States)

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  3. Preliminary studies on the use of irradiation for decontaminating water and sludge in wastewater treatment plants in Chile

    International Nuclear Information System (INIS)

    Villanueva, Loreto; Schrader, Rosemarie

    1999-01-01

    This work describes the activities carried out to date by the Chilean Nuclear Energy Commission, CCHEN, in prospecting the application of gamma and electron beam irradiation to the decontamination of sewage water and sludge in the country. Sludge, in particular, will become a relevant environmental problem in the coming years, because of the large amounts that will be generated, due to the construction of many wastewater treatment plants in the country. The main study consisted of experimental gamma irradiation tests on representative samples of digested sludge from two pilot wastewater treatment plants operating in Santiago. This study showed the technical feasibility of using low irradiation doses, of around 2-3 kGy to significantly reduce the pathogen content in this sludge. Preliminary tests were also carried out to determine that the disinfected sludge was fit for agricultural use due to its nutrient content. A preliminary technical and economic evaluation is being prepared on the use of gamma irradiation for sludge disinfection, as a complement to the experimental studies. With this evaluation a feasible process has been outlined for using gamma irradiation in conjunction with conventional processes for the sludge disinfection or hygienization in domestic wastewater treatment plants, in order to produce a useful material for agricultural use that meets the demanding EPA standards when classified as class A sludge, which permits agricultural use without sanitary restrictions. Several evaluations have been made to determine the potential use of irradiation for water and industrial wastewater effluents decontamination, considering normative standards as well as technical and economic aspects. One of these has been the preliminary evaluation of using electron beam irradiation for disinfecting drinking water, which has the technical advantage of preventing the formation of trihalomethanes, that occur in water chlorination due to the presence of natural humic

  4. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  5. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    Swinwood, J.F.; Kotler, J.

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  7. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swinwood, J.F.; Kotler, J. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author).

  8. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    Science.gov (United States)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  9. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Leshikar, G.A.

    2011-01-01

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  10. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  11. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  12. Extraction of bioflocculants from activated sludge and their application to wastewater treatment

    Directory of Open Access Journals (Sweden)

    Vasilieva Zh. V.

    2018-03-01

    Full Text Available Extracellular polymeric substances (EPS – biopolymers produced by the microorganisms – are effective flocculants of wastewater pollution and lack the shortcomings of traditional coagulants and flocculants, which can pose direct threat to health and human life, as well as to the sustainable existence of aquatic and terrestrial ecosystems. EPS do not form secondary contamination of their degradation intermediates, are biodegradable and eco-friendly. Industrial production of bacterial EPS is associated with high cost of growing specific microbial biomass and the functioning of technologies for the synthesis of microbial products. At the same time, there is an underused resource of excess activated sludge, which can be used as cheap substrate for producing bioflocculants and a possible measure to reduce costs. The conducted researches have shown the prospects of extracting EPS from excess activated sludge for their subsequent use as wastewater treatment bioflocculants. EPS extraction has been conducted using three methods: combination of centrifugation processes, extraction using the aqueous solution of disodium ethylenediaminetetraacetic acid, and precipitation with isopropyl alcohol (the EDTA method; combination of centrifugation, extraction with (NH22CO, precipitation and ethanol reprecipitation (the (NH22CO method; combination of activated sludge ultrasonic treatment, centrifugation, extraction with glacial acetic acid, and precipitation with acetone (the CH3COOH method. The research has shown that the extraction method affects not only the efficiency of EPS extraction, but also the possibility of EPS application for the purification of certain types of sewage. The (NH22CO method has shown the best extraction efficiency, but at the same time EPSs produced have not be able to perform fish processing wastewater treatment. The EDTA and CH3COOH methods are more preferable for producing efficient bioflocculants for fish processing wastewater

  13. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  14. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    Science.gov (United States)

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  15. Steam reforming as an alternative technique for treatment of oil sludge containing naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Muhd Noor Muhd Yunus; Mohd Khairi Muhd Said; Mohamad Azman Che Mat Isa; Mohd Puad Abu

    2004-01-01

    Steam reforming treatment system is an innovative technology that holds a potential to treat mixed waste containing radioactive material. The system is utilizing the thermal heat of the superheated steam at 500 degree C to produce combustible gases and integrates it with ash melting at 1400 degree C for final destruction. In this system, liquids are evaporated, organics are converted into a hydrogen-rich gas, chlorinated compounds are converted in hydrochloric acid, and reactive chemicals in the waste containing radionuclide and heavy metals are converted into the stable product through ash melting dioxins and furans are not formed, but instead are destroyed in the reducing environment of the system. No secondary pollutants are produced from the system that requires subsequent treatment. The system is divided into three development stages, and currently the project is progressing at development stage 1. This project is an entailment of a concentrated effort to solve oil sludge containing radioactive material treatment issue. (Author)

  16. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  17. ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS

    International Nuclear Information System (INIS)

    Nelsen, L.A.

    2009-01-01

    The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining

  18. ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS

    Energy Technology Data Exchange (ETDEWEB)

    NELSEN LA

    2009-01-30

    The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

  19. INVESTIGATION OF BIOFLOCCULANT AS RENEWABLE DEWATERING AID IN SLUDGE TREATMENT

    Directory of Open Access Journals (Sweden)

    MOHAMMED SAEDI JAMI

    2018-06-01

    Full Text Available Sludge treatment is one of the most important and expensive steps in water and wastewater treatment plants. Chemical conditioners such as polyaluminum chloride, aluminum sulfate, Fenton’s reagent, gypsum, and polyacrylamide can produce byproducts that cause health and environmental problems. Moringa oleifera (MO seeds can be used as a natural alternative to chemical conditioners. The bioactive materials have to be extracted from MO seeds for better performance. In this study, the treatment methods of MO seeds were the bioactive extraction by NaCl (1 M and oil extraction by hexane solvent, as well as the untreated (crude seeds powder. Synthetic sludge samples were prepared using kaolin suspension (5% w/v. The most effective coagulant-form was determined based on the values of settling velocity (Vs and sludge volume index (SVI. Results showed that extraction by NaCl gave the best results of 0.41 cm/min of settling velocity and 63.39 ml/g of SVI. A SVI value greater than 150 ml/g indicates poor settling qualities whereas the control sludge of the current study was 100 ml/g. The most effective coagulant-form was optimized with respect to three process conditions: MO seeds dosage, mixing speed, and contact time. The experiments were designed using 2 Level Factorial-Design by Design-Expert software. The optimum process conditions were seeds dosage of 3246 mg/l, mixing speed of 102 rpm, and mixing time of 29 min. MO seeds can be considered as a natural coagulant that can be used as main sludge conditioner. ABSTRAK: Rawatan kotoran mendapan adalah salah satu rawatan penting dan termahal dalam merawat air dan sisa­ kumbahan loji. Perapi kimia seperti poli-aluminium klorida, aluminium sulfida, reagen Fenton, gipsum, dan poli-akrilamida menghasilkan sisa, di mana memberi kesan kepada kesihatan dan alam sekitar. Benih Moringa oleifera (MO boleh digunakan sebagai bahan ganti semula jadi kepada perapi kimia. Bahan bio-aktif perlu diekstrak daripada benih

  20. Radioactivity of sludge in Finland in 1988-1990

    International Nuclear Information System (INIS)

    Puhakainen, M.; Rahola, T.

    1991-06-01

    Sludge samples from wastewater treatment plants were studied by the Finnish Centre for Radiation and Nuclear Safety from 1979 onwards. Sampling of sludge was extended to include more sewage treatment plants after the accident at the Chernobyl nuclear power station. The study was continued in some of the wastewater treatment plants in order to continuously follow the level of and changes in the fallout radioactivity. Sludge samples were also taken from treatment plants in communities close to the nuclear power stations at Loviisa and Olkiluoto. For a long time the most frequently detected nuclide in sewage sludge was 137 Cs originating from Chemobyl. The 137 Cs activity concentration in sludge varied in 1988 from 68 to 750, in 1989 from 16 to 480 and in 1990 from 11 to 300 Bq kg - 1 dry weight. The activation products in sludge originating from nuclear power stations in Finland were some becquerels per kilo, at the most about twenty becquerels per kilo dry weight. The most frequently detected medical radionuclide was 131 I, frequently detected in almost all wastewater treatment plants

  1. Treatment of wastewater and sludge, and decomposition of endocrine disrupting chemicals with radiation

    International Nuclear Information System (INIS)

    Kudo, Hisaaki

    2006-01-01

    This country report describes the past and current research activities in Japan on radiation treatment of wastewater and sludge carried out by early 90s, and decomposition of endocrine disrupting chemicals that is going-on. (author)

  2. [Effect of bio-charcoal on the trans of polycyclic aromatic hydrocarbons in soil-plant system with composted sludge application].

    Science.gov (United States)

    Hua, Li; Chen, Ying-xu; Wu, Wei-xiang; Ma, Hong-rui

    2009-08-15

    The effects of bio-charcoal acted as sludge-composting additive on soil characteristics and plant growth were studied. Compared with the treatment of composted sludge without bio-charcoal, soil cation exchange capacity in treatment of composted sludge with bio-charcoal increased over 5% and 10% respectively and soil nitrogen content increased 13% and 18% respectively for two kind soils. The composted sludge with bio-charcoal also resulted in 23% higher enhancement on ryegrass biomass and 8%-10% higher enhancement on ryegrass chlorophyll content. In addition, with the amendment of bio-charcoal, the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in composted sludge was decreased, which resulted in the lower absorption and accumulation of ryegrass to PAHs. Compared with the control, the PAHs concentration in ryegrass amended composted sludge with bio-charcoal decreased 27%-34%. The results indicated that composted sludge with bio-charcoal resulted in much more improvement on the plant growth as well as less negative effect on environment. Therefore, biocharcoal was in favor of the safe land application of sewage sludge.

  3. Development of bricks with incorporation of coal ash and sludge from water treatment plant

    International Nuclear Information System (INIS)

    Silva, Mauro Valerio da

    2011-01-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  4. Energy-positive sewage sludge pre-treatment with a novel ultrasonic flatbed reactor at low energy input.

    Science.gov (United States)

    Lippert, Thomas; Bandelin, Jochen; Musch, Alexandra; Drewes, Jörg E; Koch, Konrad

    2018-05-20

    The performance of a novel ultrasonic flatbed reactor for sewage sludge pre-treatment was assessed for three different waste activated sludges. The study systematically investigated the impact of specific energy input (200 - 3,000 kJ/kg TS ) on the degree of disintegration (DD COD , i.e. ratio between ultrasonically and maximum chemically solubilized COD) and methane production enhancement. Relationship between DD COD and energy input was linear, for all sludges tested. Methane yields were significantly increased for both low (200 kJ/kg TS ) and high (2,000 - 3,000 kJ/kg TS ) energy inputs, while intermediate inputs (400 - 1,000 kJ/kg TS ) showed no significant improvement. High inputs additionally accelerated reaction kinetics, but were limited to similar gains as low inputs (max. 12%), despite the considerably higher DD COD values. Energy balance was only positive for 200 kJ/kg TS -treatments, with a maximum energy recovery of 122%. Results suggest that floc deagglomeration rather than cell lysis (DD COD =1% - 5% at 200 kJ/kg TS ) is the key principle of energy-positive sludge sonication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. PBDEs versus NBFR in wastewater treatment plants: occurrence and partitioning in water and sludge

    Directory of Open Access Journals (Sweden)

    Joyce Cristale

    2015-06-01

    Full Text Available This study evaluates the occurrence of flame retardants (FR in five wastewater treatment plants (WWTPs located close to Barcelona (NE Spain, an area with high urban and industrial pressures. Compounds studied include eight polybromodiphenyl ethers (PBDEs and eight New Brominated Flame Retardants (NBFRs, for which little information regarding their presence, partitioning and fate within the WWTPs is available. In unfiltered influent samples, PBDEs were not detected and bis(2-ethyl-1-hexyltetrabromophthalate was the only NBFR detected, and all WWTPs were efficient in eliminating this compound as no residues were found in the effluents. However, primary sludge contained from 279 to 2299 ng/g dry weight of ΣFR and the concentration increased in secondary (biological sludge. NBFRs accounted for the main FR detected in sludge, representing a 63-97% of the total load, and among PBDEs, BDE-209 was the most ubiquitous congener. Considering the amount of sludge generated in each WWTP, it was estimated that 0.34-17.2 kg of FR are released annually through the sludge, which can have negative environmental and health implications if sludge is used as biosolid in agriculture. Overall, this study provides a sampling design and analytical protocol to be used to determine the evolution of FR in WWTPs and compares the levels detected, considering that PBDEs are being phased out to be substituted by other compounds which also have high accumulative and recalcitrant properties.

  6. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability

    International Nuclear Information System (INIS)

    Li Huan; Jin Yiying; Mahar, Rasool Bux; Wang Zhiyu; Nie Yongfeng

    2009-01-01

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl 3 . It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration

  7. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

    Science.gov (United States)

    Huan, Li; Yiying, Jin; Mahar, Rasool Bux; Zhiyu, Wang; Yongfeng, Nie

    2009-01-30

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl(3). It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration.

  8. Evaluation of sludge management alternatives in Istanbul metropolitan area.

    Science.gov (United States)

    Cakmakci, M; Erdim, E; Kinaci, C; Akca, L

    2005-01-01

    The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the "Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan", 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in Istanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.

  9. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  10. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Science.gov (United States)

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize

  11. Sludge disinfection using gamma radiation: a sound option for Albuquerque

    International Nuclear Information System (INIS)

    Noland, P.D.; Khera, A.K.

    1980-01-01

    The City of Albuquerque has disposed of its anaerobically digested dried sludge cake on City and county parks for many years. If the City is to continue such beneficial use of sludge, it must now provide a supplementary disinfection process in order to meet the recent EPA regulations governing land application of sewage sludges. In light of these recent regulations and soaring costs of electrical energy, the City of Albuquerque recently completed a comprehensive sludge management study. This study is intended to supplement the areawide facilities plan completed in 1976. Among the various alternatives evaluated, the most feasible was the continued use of dried sludge cake on City parks and sale of excess sludge cake as an unlimited use soil conditioner and fertilizer. This sludge would be disinfected by gamma irradiation. The proposed solids management system would consist of two-stage anaerobic digestion and pipeline transfer to dewatering, disinfection, and stockpiling facilities at a remote tract approximately 5 miles from the treatment plant

  12. Sewage Sludge Disposal with Energy Recovery by Fluidized Bed Gasification and CHP-Units

    Energy Technology Data Exchange (ETDEWEB)

    Horst, J.; Gross, B.; Kimmerle, K. [Inst. fuer ZukunftsEnergieSysteme, Saarbruecken (Germany); Eder, C. [Christian Eder Technology e.K., Neunkirchen (Germany)

    2006-07-15

    Sewage sludge is a composition of by-products collected during the different stages of the waste water cleaning process of communal and industrial treatment plants. Because of its harmful impacts on environment as well as animals - and mankind - health sewage sludge has become a problem. Therefore disposal of sludge is today on a crossroad depending on the discussion about soil contamination by using the sludge as fertiliser. Some countries are now abandoning disposal to agriculture and are entering into thermal treatment with the argument: 'Harmful substances already separated with high financial effort should definitely be removed from the food cycle and should not return indirectly via the fields to food and water'. The SEDIS project - a project funded by the European Commission under the specific research and technological development programme 'Promotion of innovation and encouragement of SME participation' - is aimed at eliminating the rising disposal problem of sewage sludge by an energy-related use of the raw sludge directly on site of wastewater treatment plants. SEDIS is developing an innovative, self-sustaining system to process liquid and pasty waste such as sewage sludge and solid biomass to utilise product-gas for power-generation direct on site. This process is called ETVS-process and is patented by Christian Eder Technology e.K. Today, where each company has to look for sustainable savings, the SEDIS concept offers a decentralised process, self-sustaining from other energy sources and able to provide the whole treatment plant with energy. Furthermore the treatment plant would be independent of price policy of sludge disposers.

  13. Safety in wastewater treatment: the pure oxygen system

    International Nuclear Information System (INIS)

    Giagnoni, L.

    1998-01-01

    Though the active sludge process represent, nowadays, the main reference system referring to installations for wastewater treatments, nevertheless systems that exploit the pure oxygen properties constitute an alternative method to the traditional cycle. The following essay is divided into two parts: the first one deals with the fundamental concepts related to the active sludge process and to the alternative system proposed, mentioned before, and includes a short account of the functional characteristics and a brief comparison with traditional methods; the second part represents the head corpus of the work and deals with the problems related to the safety with particular reference to the risk of an explosion meanwhile the process. Moreover, it's drawn attention to the fundamental role of security systems that, nowadays, get frequently used in such kind of installations. On this subject, furthermore, it's pointed out the great importance of the whole preliminary treatments in the planning phase, with particular reference to the processes used for stripping [it

  14. Sewage sludge stabilisation and fertiliser value in a silvopastoral system developed with Eucalyptus nitens Maiden in Lugo (Spain).

    Science.gov (United States)

    Mosquera-Losada, M R; Ferreiro-Domínguez, N; Daboussi, S; Rigueiro-Rodríguez, A

    2016-10-01

    Copper (Cu) is one of the heavy metals with highest proportion in sewage sludge. In Europe, sewage sludge should be stabilised before using it as a fertiliser in agriculture. Depending on the stabilisation process, sewage sludge has different Cu contents, and soil Cu incorporation rates. This study was undertaken to examine the effect of fertilisation with different types of sewage sludge (anaerobic, composted, and pelletised) on the concentration of total and available Cu in the soil, the tree growth, the pasture production, and the concentration of Cu in the pasture when compared with control treatments (i.e. no fertilisation and mineral fertilisation) in a silvopastoral system under Eucalyptus nitens Maiden. The results of this experiment show that an improvement of the soil pH increased the incorporation and the mineralisation of the sewage sludge and litter, and therefore, the release of Cu from the soil. Moreover, the concentration of Cu in the pasture and the levels of Cu extracted by the pasture improved when the soil organic matter decreased because the high levels of organic matter in the soil could have formed Cu complex. The composted sewage sludge (COM) increased a) the soil variables studied (pH, total Cu, and available Cu) and b) the Cu extracted by the pasture, both probably due to the higher inputs of cations made with it. In any case, the levels of Cu found in the soil never exceeded the maximums as set by Spanish regulations and did not cause harmful effects on the plants and animals. Therefore, the use of COM as an organic fertiliser should be promoted in silvopastoral systems established in edaphoclimatic conditions similar to this study because COM enhanced the productivity of the system from a viewpoint of the soil and the pasture, without causing any environmental damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chengyuan, E-mail: suchengyuan2008@126.com [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Li, Weiguang [School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090 (China); Lu, Yuxiang; Chen, Menglin; Huang, Zhi [School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004 (China)

    2016-08-15

    Highlights: • Rhein has metabolic or physiological toxicity on methanogens in anaerobic granular sludge. • TCM wastewater containing rhein can be successfully treated by the combined treatment. • The productions of the EPS of granular sludge increased after pre-treatment. • Methanoregula, Methanobacterium, Methanosphaerula were predominant in the DC reactor after pre-treatment. - Abstract: The effect of a heterogeneous Fenton-like pre-treatment on the anaerobic processes, characteristics and microbial community of sludge was investigated for traditional Chinese medicine (TCM) wastewater containing rhein. When the concentrations of rhein were 50 mg/L and 100 mg/L, the toxic effect was physiological toxicity for anaerobic granular sludge. Using a single double circle (DC) reactor for the treatment of TCM wastewater containing rhein at concentrations of 15–20 mg/L, the chemical oxygen demand (COD) removal rate was 69%, and coenzyme F{sub 420} was nearly undetectable in the 3D-excitation-emission matrix (EEM) spectra of soluble microbial products (SMP). The abundances of Methanoregula, Methanobacterium, Methanosphaerula were only 5.57%, 2.39% and 1.08% in the DC reactor, respectively. TCM wastewater containing rhein could be successfully treated by the combination of the heterogeneous Fenton-like pre-treatment and the DC reactor processes, and the COD removal rate reached 95%. Meanwhile, the abundances of Methanoregula, Methanobacterium, Methanosphaerula increased to 22.5%, 18.5%, and 13.87%, respectively. For the bacterial community, the abundance of Acidobacteria-Gp6 decreased from 6.99% to 1.07%, while the abundances of Acidobacteria-Gp1 and Acidobacteria-Gp2 increased from 1.61% to 6.55% and from 1.28% to 5.87%, respectively.

  16. The Assessment of Water Treatment Plant Sludge Properties and the Feasibility of Its Re-use according to Environmental Standards: Shahid Beheshti Water Treatment Plant Case Study, Hamadan

    Directory of Open Access Journals (Sweden)

    H. Pourmand

    2016-04-01

    Full Text Available Introduction & Objectives: Water treatment leads to produce large volumes of sludges in water treatment plants which are considered as solid waste, and should be managed appropriately and logically to avoid bioenvironmental effects. Materials & Methods: In this cross-sectional study, the required samples were taken from the sludge of Shahid Beheshti water treatment plant to assay physical and chemical characteristics during one year from summer, autumn and winter 93 until spring 94. Sampling and testing procedures were full fit according to standard methods. Results: The average concentration of total solids parameters (TSS, total suspended solids (TSS, and total dissolved solids (TDS were 22346, 21350 and 1005 mg/L, respectively. Among the heavy metals, aluminum, iron, manganese and zinc have the highest concentrations with the values of 1400, 956, 588 and 100 mg per kg of dry solids, respectively. The measured concentrations for cadmium were also higher than the permissible limits for agricultural purposes and discharges into the environment. The average concentrations of nickel were more than the recommended standard for industrial, agricultural and parkland application purposes. The concentrations were also slurry higher than the dry sludge. Conclusion: According to the past studies and results of this study, it could be concluded that contamination of heavy metals in sludge and slurry samples are more than dried sludge, .Therefore, if they are discharged into the environment, it is better to be disposed as dry sludges. Furthermore, because these types of waste sludges are routinely disposed in the environment, it is recommended to take the routine samples in order to measure the heavy metals and other relevant parameters contents of sludge before discharging it. (Sci J Hamadan Univ Med Sci 2016; 23 (1:57-64

  17. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effect of bioleaching on sewage sludge pyrolysis.

    Science.gov (United States)

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    Science.gov (United States)

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  20. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    Science.gov (United States)

    Jafarinejad, Shahryar

    2017-09-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  1. Capital and Operating Costs of Full-Scale Fecal Sludge Management and Wastewater Treatment Systems in Dakar, Senegal

    Science.gov (United States)

    2012-01-01

    A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita–1 year–1) was ten times higher than the FSM ($4.05 capita–1 year–1), the annual operating cost for the SB ($11.98 capita–1 year–1) was 1.5 times higher than the FSM ($7.58 capita–1 year–1), and the combined capital and operating for the SB ($54.64 capita–1 year–1) was five times higher than FSM ($11.63 capita–1 year–1). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive. PMID:22413875

  2. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal.

    Science.gov (United States)

    Dodane, Pierre-Henri; Mbéguéré, Mbaye; Sow, Ousmane; Strande, Linda

    2012-04-03

    A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita(-1) year(-1)) was ten times higher than the FSM ($4.05 capita(-1) year(-1)), the annual operating cost for the SB ($11.98 capita(-1) year(-1)) was 1.5 times higher than the FSM ($7.58 capita(-1) year(-1)), and the combined capital and operating for the SB ($54.64 capita(-1) year(-1)) was five times higher than FSM ($11.63 capita(-1) year(-1)). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive.

  3. Irradiation of sewage sludge using cesium-137: a comparative assessment

    International Nuclear Information System (INIS)

    1980-06-01

    Irradiation using 137 CS is a recently developed process for disinfecting sewage sludge before applying it to the land. Irradiation, composting, and heat drying are Processes to Further Reduce Pathogens (PFRP) when operated to meet the guidelines set forth under Title 40, Code of the Federal Register, Part 257 (40 CFR 257). This report identifies and develops technical, operational, and environmental considerations for sludge handling systems incorporating these PFRP to determine the economic advantages of each process. The results indicate that sludge irradiation systems are cost-competitive with composting and heat drying systems for wastewater treatment plants with or without existing anaerobic digesters. Irradiation can thus be considered for new as well as upgrading existing facilities for sludge disinfection. An attractive aspect of the irradiation process is that significantly less conventional energy is used for operation when compared to composting and heat drying. In the final analysis, however, the applicability and desirability of any process is best determined by more evaluations specific to a given community

  4. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    Science.gov (United States)

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L -1 and from 11.8 to 792.9 μg kg -1 dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  5. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  6. Cs-137 for irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Lessel, T.

    1986-01-01

    Since 1973, the Geiselbullach sewage treatment works have been continuously operating their first system for gamma irradiation of sewage sludge. Within the framework of a German-American agreement, nine Cs-137 sources with a total activity of 56.000 Ci have been made available to the works free of charge in 1983, in order to test in practice and to demonstrate the applicability of these radiation sources in comparison to the Co-60 sources exclusively used up to then. This first study on the applicability of Cs-137 as a radiation source for sewage sludge treatment revealed no findings or effects speaking against Cs-137 as a radiation source for this purpose. (orig./RB) [de

  7. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank

  8. DESIGN OF A SYSTEM TO RETRIEVE SLUDGE FROM THE K EAST SPENT FUEL BASIN AT HANFORD

    International Nuclear Information System (INIS)

    Twitchell, A.L.; MacLean, G.T.; Ho, Q.T.; Fort, D.L.

    2003-01-01

    This paper describes the Sludge Retrieval System (SRS), which was designed to safely remove radioactive sludge from the K East spent fuel basin at the 100 K Area of the Hanford Site. Basin water and sludge have the potential to leak to the environment due to the age and condition of the basins. Since the 100 K Area spent fuel basins are located next to the Columbia River, the Spent Nuclear Fuel Project mission includes the safe removal, containment, and transportation of sludge from the basins to a secure storage location. The scope of the SRS includes: A system capable of retrieving sludge from the K East basin floor, pits, and fuel canisters; Separation of debris from sludge, where debris is defined as any material greater than 0.64 cm (0.25 in.) in diameter; Collection of sludge particles in a container that can be transported away from the basin; Modifications to the K East basin to allow installation of the SRS. The SRS was designed by Fluor Federal Services. Changes to the designed system were made by Fluor Hanford as a result of full-scale testing performed after design. This paper discusses this testing, as well as operation and control of the system. Construction and startup testing was initially scheduled to be complete by the end of December 2002. Startup of the system is now expected in April 2003

  9. Evaluation of sludge properties in a pilot-scale UASB reactor for sewage treatment in a temperate region.

    Science.gov (United States)

    Syutsubo, K; Yoochatchaval, W; Tsushima, I; Araki, N; Kubota, K; Onodera, T; Takahashi, M; Yamaguchi, T; Yoneyama, Y

    2011-01-01

    In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m(3) was operated at ambient temperature (16-29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.

  10. Joint stabilization of sewage sludge and separated manure fluid. Treatment and utilization of manure. Final report; Gemeinsame Stabilisierung von Klaerschlamm und separierter Guellefluessigkeit. Guellebehandlung und -verwertung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, W.F.; Kolisch, G.

    1994-12-01

    As an alternative to separate manure processing, anaerobic stabilization of surplus manure and sewage sludge in combination is possible at municipal sewage treatment plants. Subsequently to the removal of solids, pig manure is fed into existing digesters. The process concept comprises the following partial steps: preliminary treatment of crude manure, anarobic stabilization of the separated manure fluid, biological nitrogen elimination from the digested mixture of sewage sludge and manure, and dewatering of the mixed sludge in the dewatering systems of the sewage treatment plant. (orig./SR) [Deutsch] Eine Alternative zu den Verfahren einer separaten Guelleaufbereitung stellt die gemeinsame anaerobe Stabilisierung von Ueberschussguelle und Klaerschlamm auf kommunalen Klaeranlagen dar, die eine Einspeisung feststoffseparierter Schweineguelle in bereits vorhandene Faulbehaelter vorsieht. Das Verfahrenskonzept besteht aus den Teilschritten Vorseparierung der Rohguelle, anaerobe Stabiliserung der separierten Guellefluessigkeit, biologische Stickstoffelimination aus dem ausgefaulten Klaerschlamm-Guelle-Gemisch sowie Entwaesserung der Mischschlaemme auf den Entwaesserungsaggregaten der Klaeranlage. (orig./SR)

  11. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Science.gov (United States)

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    International Nuclear Information System (INIS)

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions

  13. Sustainable sludge management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Barrios, J.A.; Mendez, J.M.; Diaz, J.

    2003-07-01

    Worldwide, unsanitary conditions are responsible of more than three million deaths annually. One of the reasons is the low level of sanitation in developing countries. Particularly, sludge from these regions has a high parasite concentration and low heavy metal content even though the available information is limited. Different issues needed to achieve a sustainable sludge management in developing nations are analysed. Based on this analysis some conclusions arise: sludge management plays an important role in sanitation programs by helping reduce health problems and associated risks; investments in sanitation should consider sludge management within the overall projects; the main restriction for reusing sludge is the high microbial concentration, which requires a science-based decision of the treatment process, while heavy metals are generally low; the adequate sludge management needs the commitment of those sectors involved in the development and enforcement of the regulations as well as those that are directly related to its generation, treatment, reuse or disposal; current regulations have followed different approaches, based mainly on local conditions, but they favour sludge reuse to fight problems like soil degradation, reduced crop production, and the increased use of inorganic fertilizers. This paper summarises an overview of theses issues. (author)

  14. Reduction of heavy metals in refinery waste sludge using em treatment

    International Nuclear Information System (INIS)

    Ahmad, J.; Ahmad, F.; Saleemi, A.R.; Ahmad, I.

    2005-01-01

    This paper presents the efforts of National Cleaner Production Center (NCPC) and Attock Refinery Limited (ARL) Rawalpindi, to address the problem of refinery solid waste. A trial project was designed to treat and convert 1.7 m ton to oil sludge into environmental friendly residue (compost) under anaerobic conditions. The residue can be treated as bio fertilizer for agricultural purpose. The trial on bio remediation (anaerobic) of oily sludge of ARL, Rawalpindi within its premises using EM technology was successfully completed with the collaboration of effective microorganism research organization (EMRO), NCPC and ARL between 29th October to 10th December, 2002. The effective microorganisms transformed the undiluted oily sludge from ARL into bioactive sludge; which may be called as bio sludge. For heavy metal breakdown the trial data shows that Ba has been reduced by 85% in the EM. Treated oily sludge as compared to original ARL sludge, and Pb, Fe, Zn and Ni have been reduced by about 50% in the treated bio sludge. The contents of As, Cr, Cu and Mn showed no change. The residue obtained can be used as a bio fertilizer. (author)

  15. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge.

    Science.gov (United States)

    Jang, Hyun Min; Shin, Jingyeong; Choi, Sangki; Shin, Seung Gu; Park, Ki Young; Cho, Jinwoo; Kim, Young Mo

    2017-11-01

    Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH 4 /g VS removed in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Guildal, T.

    2015-01-01

    The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl...... on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while...

  17. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  18. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    Science.gov (United States)

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  19. PENERAPAN ELEKTROOSMOSIS UNTUK PENGERINGAN SLUDGE DARI PENGOLAHAN LIMBAH CAIR

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2013-11-01

    Full Text Available APPLICATION OF ELECTROOSMOSIS FOR DEWATERING OF SLUDGE FROM WASTE WATER TREATMENT. Wastewater treatment produces semi-solid residue (sludge that must be handled carefully during dumping and discharge to avoid polluting the environment. A low cost and easy treatment of dewatering is needed. This research aimed to apply electroosmosis technique for dewatering sludge in order to seek for parameters that can efficiently reduce water content of sludge, including range of voltage, type of electrodes, and distance between electrodes; and to determine the effect of electroosmosis processes on changes of chemical characteristics of sludge. The results showed that: (1 electroosmosis dewatering occurred on the sludge taken from waste water treatment of landfill but not on sludge from water purification plant (PDAM, (2 direct current voltage of 30 volts was the optimum voltage, (3 copper rod cathode provided electroosmosis process as good as stainless steel cathode and both were better than the woven stainless steel cathode, (4 the dewatering time to reduce 1200% (w/w water content to about 400% was about 40 hours for sludge of 2500 cm3 in volume (laboratory bench scale, (5 the anode need to reinserted gradually approaching the cathode due to current lost when the water content at the anode point reached 400% and sludge at the point shrink, and (6 some chemical elements in the sludge decreased significantly after treatment. Pengolahan limbah cair menghasilkan residu berupa bahan semi padat yang dikenal sebagai sludge. Sludge tersebut juga perlu dikelola penyimpanan dan pembuangannya agar tidak mencemari lingkungan. Salah satu pengelolaan sludge yang perlu dilakukan adalah pengeringan (dewatering. Salahsatu teknik dewatering yang mungkin diterapkan ialah teknik elektroosmosis, yaitu teknik yang memanfaatkan adanya pergerakan air pada media poros di dalam medan istrik searah. Penelitian ini bertujuan untuk mencari parameter sistem dewatering secara

  20. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    Lavale, D.S.; George, J.R.; Shah, M.R.; Rawat, K.P.

    1998-01-01

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60 Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60 Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60 Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  1. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  2. SLUDGE TREATMENT PROJECT ALTERNATIVES ANALYSIS SUMMARY REPORT (VOLUME 1)

    International Nuclear Information System (INIS)

    Fredrickson, J.R.; Rourk, R.J.; Honeyman, J.O.; Johnson, M.E.; Raymond, R.E.

    2009-01-01

    Highly radioactive sludge (containing up to 300,000 curies of actinides and fission products) resulting from the storage of degraded spent nuclear fuel is currently stored in temporary containers located in the 105-K West storage basin near the Columbia River. The background, history, and known characteristics of this sludge are discussed in Section 2 of this report. There are many compelling reasons to remove this sludge from the K-Basin. These reasons are discussed in detail in Section1, and they include the following: (1) Reduce the risk to the public (from a potential release of highly radioactive material as fine respirable particles by airborne or waterborn pathways); (2) Reduce the risk overall to the Hanford worker; and (3) Reduce the risk to the environment (the K-Basin is situated above a hazardous chemical contaminant plume and hinders remediation of the plume until the sludge is removed). The DOE-RL has stated that a key DOE objective is to remove the sludge from the K-West Basin and River Corridor as soon as possible, which will reduce risks to the environment, allow for remediation of contaminated areas underlying the basins, and support closure of the 100-KR-4 operable unit. The environmental and nuclear safety risks associated with this sludge have resulted in multiple legal and regulatory remedial action decisions, plans,and commitments that are summarized in Table ES-1 and discussed in more detail in Volume 2, Section 9

  3. SLUDGE TREATMENT PROJECT ALTERNATIVES ANALYSIS SUMMARY REPORT [VOLUME 1

    Energy Technology Data Exchange (ETDEWEB)

    FREDERICKSON JR; ROURK RJ; HONEYMAN JO; JOHNSON ME; RAYMOND RE

    2009-01-19

    Highly radioactive sludge (containing up to 300,000 curies of actinides and fission products) resulting from the storage of degraded spent nuclear fuel is currently stored in temporary containers located in the 105-K West storage basin near the Columbia River. The background, history, and known characteristics of this sludge are discussed in Section 2 of this report. There are many compelling reasons to remove this sludge from the K-Basin. These reasons are discussed in detail in Section1, and they include the following: (1) Reduce the risk to the public (from a potential release of highly radioactive material as fine respirable particles by airborne or waterborn pathways); (2) Reduce the risk overall to the Hanford worker; and (3) Reduce the risk to the environment (the K-Basin is situated above a hazardous chemical contaminant plume and hinders remediation of the plume until the sludge is removed). The DOE-RL has stated that a key DOE objective is to remove the sludge from the K-West Basin and River Corridor as soon as possible, which will reduce risks to the environment, allow for remediation of contaminated areas underlying the basins, and support closure of the 100-KR-4 operable unit. The environmental and nuclear safety risks associated with this sludge have resulted in multiple legal and regulatory remedial action decisions, plans,and commitments that are summarized in Table ES-1 and discussed in more detail in Volume 2, Section 9.

  4. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    Science.gov (United States)

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  5. Fate of nanosilver in wastewater treatment plants and their impact on nitrification activity in sewage sludge; Verhalten von Nanosilber in Klaeranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, Michael [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); HSR Hochschule fuer Technik, Rapperswil (CH). Inst. fuer Umwelt- und Verfahrenstechnik (UMTEC); Zuleeg, Steffen [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland); KUSTER + HAGER Ingenieurbuero AG, St. Gallen (Switzerland); Kaegi, Ralf; Sinnet, Brian; Eugster, Jakob; Boller, Markus; Siegrist, Hansruedi [Eawag: Das Wasserforschungs-Institut des ETH-Bereichs, Duebendorf (Switzerland)

    2010-10-15

    The application of nanosilver is increasing. Knowledge on the fate and behavior of nanosilver in wastewater and wastewater treatment plants is scarce. Studies under real world conditions are completely lacking. We studied (1) the impact of nanosilver on the nitrification of sewage sludge, (2) quantified the mass flow of nanosilver in a pilot-plant, and (3) verified the mass balance in a full-scale municipal wastewater treatment plant where nanosilver is introduced to the municipal plant by an indirect discharger. The addition of four different nanosilver additives on ammonia oxidation in activated sludge has been studied in batch-reactors at two concentrations (1, 100 mg/L Ag) with two exposure times (2 h, 6 days). The pilot-plant treating 70 population equivalents of domestic wastewater is operated with a 12 day sludge age. Nanosilver was applied to the activated sludge tank within two sludge ages. The silver concentrations were measured in sludge and effluent samples during dosing and the following two sludge ages. The adsorption and speciation of silver particles has been analyzed using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Influent, effluent and sludge were sampled on a full-scale plant (60 000 equivalent inhabitants) and analyzed for silver. Silver nitrate, metallic nanosilver, nano-scaled silver chloride and microcomposite silver did not show any effect on ammonia oxidation after the addition of 1 mg/L Ag to the activated sludge (corresponding to 250 mg Ag per kg solids). In contrast, 100 mg/L Ag inhibited the nitrification process by 100 % after the addition of silver nitrate and 20-30 % after addition of colloidal polymer-coated nanosilver. A complete mass balance of the pilot-plant, a steady-state system with known fluxes, demonstrates significant enrichment of silver in the sewage sludge (96 %) after the addition of silver chloride to the plant and small losses of silver into the secondary effluent (4

  6. Ensured waste disposal without thermal treatment of sewage sludge?; Entsorgungssicherheit ohne thermische Klaerschlammbehandlung?

    Energy Technology Data Exchange (ETDEWEB)

    Melsa, A.K. [Niersverband, Viersen (Germany)

    1998-07-01

    The Technical Rule on Domestic Waste Management (TASi) specifies that from 2005, sewage sludge containing more than 5% of organic dry matter must no longer be dumped. This means that sewage sludge combustion will be the only means of disposal, apart from using sewage sludge as a fertilizer. The author's employer ('Niersverband' utility) was among the first to develop a future-oriented sewage sludge disposal strategy, and a drying plant was construct which is to reduce the weight and volume of sewage sludge in order to obtain a fuel of high calorific value. Further, a contract was closed for combustion of sewage sludge as fuel in a combustion system. [German] Unter Beruecksichtigung der TASi, die verlangt, dass spaetestens ab dem Jahr 2005 Klaerschlaemme mit einem hoeheren organischen Feststoffgehalt als 5% nicht mehr abgelagert werden duerfen, verbleibt uns neben der stofflichen Verwertung in der Landwirtschaft als massgeblicher Entsorgungsweg die Verbrennung, und zwar nicht - und das ist zu unterstreichen - um die Schadstoffe im Klaerschlamm zu beseitigen, sondern um den Klaerschlamm zu entsorgen. Eine betriebssichere Klaerschlammverbrennung stellt dabei die hoechste erreichbare Stufe der Entsorgungssicherheit dar. Der Niersverband hat sich fruehzeitig mit der Aufstellung einer zukunftsfaehigen Klaerschlammentsorgungsstrategie befasst und eine Trocknungsanlage geplant, die eine weitgehende Gewichts- und Volumenreduktion des Klaerschlamms sowie die Erzeugung eines heizwertreichen Brennstoffs gewaehrleistet und damit die Entsorgungsmoeglichkeiten deutlich verbessert. Des weiteren wurde ein erster Vertrag zur energetischen Klaerschlammverwertung in einer Verbrennungsanlage abgeschlossen. (orig.)

  7. Compressibility of the fouling layer formed by membrane bioreactor sludge and supernatant

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Poorasgari, Eskandar; Christensen, Morten Lykkegaard

    Membrane bioreactors (MBR) are increasingly used for wastewater treatment as they give high effluent quality, low footprint and efficient sludge degradation. However, the accumulation and deposition of sludge components on and within the membrane (fouling) limits the widespread application of MBR....... Compressibility of the gel layer was studied in a dead-end filtration system, whereas the compressibility of a fouling layer formed by MBR sludge was studied in a submerged system hollow sheet membrane by TMP stepping. It was shown that the fouling layer formed by the MBR sludge was highly compressible within....... Hence, for MBR systems operated at constant flux mode, the applied pressure should be increased over time, to compensate for the lower permeability. Increasing applied pressure causes compression of the fouling layer and results in a more severe permeability decline [1]. In a general view, the fouling...

  8. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    Science.gov (United States)

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the

  9. Performance of a system with full- and pilot-scale sludge drying reed bed units treating septic tank sludge in Brazil.

    Science.gov (United States)

    Calderón-Vallejo, Luisa Fernanda; Andrade, Cynthia Franco; Manjate, Elias Sete; Madera-Parra, Carlos Arturo; von Sperling, Marcos

    2015-01-01

    This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m(-2) year(-1)). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.

  10. Design of a System to Retrieve Sludge from the K East Spent Fuel Basin at Hanford

    International Nuclear Information System (INIS)

    TWITCHELL, A.L.

    2003-01-01

    This paper describes the Sludge Retrieval System (SRS), which was designed to safely remove radioactive sludge from the K East spent fuel basin at the 100 K Area of the Hanford Site. Basin water and sludge have the potential to leak to the environment due to the age and condition of the basins. Since the 100 K Area spent fuel basins are located next to the Columbia River, the Spent Nuclear Fuel Project mission includes the safe removal, containment, and transportation of sludge from the basins to a secure storage location. The scope of the SRS includes: (1) a system capable of retrieving sludge from the K East basin floor, pits, and fuel canisters; (2) separation of debris from sludge, where debris is defined as any material greater than 0.64 cm (0.25 in.) in diameter; (3) collection of sludge particles in a container that can be transported away from the basin; and (4) modifications to the K East basin to allow installation of the SRS. The SRS was designed by Fluor Federal Services. Changes to the designed system were made by Fluor Hanford as a result of full-scale testing performed after design. This paper discusses this testing, as well as operation and control of the system. Construction and startup testing was initially scheduled to be complete by the end of December 2002. Startup of the system is now expected in April 2003

  11. Heavy-metal removal from petroleum oily sludge using lemon- scented geraniums[General Conference

    Energy Technology Data Exchange (ETDEWEB)

    Badawieh, A.; Elektorowicz, M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2006-07-01

    Finding an acceptable method to manage oily sludge generated during petroleum processes is one of the challenges currently facing the petroleum industry. This study investigated the response of plants to heavy-metal removal from oily sludge to determine the feasibility of using phytoremediation technologies as a treatment method for oily sludge. In particular, scented geraniums (Pelargonium sp. Frensham) have shown a strong capability to survive harsh conditions such as poor soil, high/low temperatures, high heavy-metal concentrations and low water content. In response to this observation, this feasibility study placed scented geraniums in a series of pots containing oily sludge where heavy-metal concentrations were artificially increased up to 2000 ppm. Plants were grown in two systems over a period of 50 days. The first system included oily sludge and soil while the second system included oily sludge, soil and compost. The study revealed that the scented geraniums accumulated up to 1600 mg, 1000 mg, and 1200 mg, of cadmium, nickel and vanadium respectively per 1 kg of the plant's dry weight. The results suggest that phytoremediation technology may be a potential method for successfully treating or pretreating oily sludge in the field.

  12. Emissions of CO2 and CH4 from sludge treatment reed beds depend on system management and sludge loading

    DEFF Research Database (Denmark)

    Olsson, Linda; Dam Larsen, Julie; Ye, Siyuan

    2014-01-01

    , the SD had no vegetation and a poor dewatering capacity, which resulted in anaerobic conditions favoring CH4 emission. In contrast, the well-managed STRB had more aerobic conditions in the sludge residue resulting in low CH4 emission rates. We conclude that well-designed and well-managed STRBs have a low...

  13. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  14. Design and evaluation of in situ biorestoration methods for the treatment of sludges and soils at waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Berry-Spark, K L; Barker, J F; Mayfield, C I

    1990-12-31

    In-situ methods for treatment of waste sludges hold great promise for efficient remediation of sludge at waste disposal sites, such as the diverse and complex sludges from the O.E. MacDougall site near Brockville, Ontario. This report presents results of laboratory testing of natural bioremediation techniques using six representative soils and sludges obtained from the MacDougall site. Four of six samples contained concentrations of hydrocarbons typical of petroleum products and solvents. The report includes descriptions of the characterisation of the organic chemistry and microbial populations of the soils, as well as of the experiments conducted under aerobic, methane oxidising, anaerobic-denitrifying, sulphate reducing, and methanogenic conditions.

  15. Fate of emerging and priority micropollutants during the sewage sludge treatment: Case study of Paris conurbation. Part 1: Contamination of the different types of sewage sludge.

    Science.gov (United States)

    Mailler, R; Gasperi, J; Patureau, D; Vulliet, E; Delgenes, N; Danel, A; Deshayes, S; Eudes, V; Guerin, S; Moilleron, R; Chebbo, G; Rocher, V

    2017-01-01

    This article provides data on the contamination of different kinds of sludge (raw, centrifuged, digested, thermally dried sludge and sludge cake) from Paris conurbation by 71 various pollutants including pharmaceutical products (PHPs), hormones, perfluorinated acids (PFAs), linear alkylbenzene sulfonate (LAS), alkylphenols (APs), phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Very high contents of LAS (0.1-10g/kg dry matter - DM) compared to other compounds were found in all types of sludge followed by DEHP (10-100mg/kg DM) and fluoroquinolones (1-100mg/kg DM). APs were measured at intermediary contents in Parisian sludge, lying in the 2-20mg/kg DM range. Finally, hormones, PAHs, PCBs, PAEs, PFAs and the remaining PHPs were all found at contents lower than 1mg/kg DM. For most compounds (PHPs, PFOS, DEHP, PAHs), no significant differences in the micropollutant contents were found for similar types of sludge from different WWTP in Paris, highlighting the homogeneity of sludge contamination in downstream Paris catchment. The variability of concentration is rather high (coefficient of variation >100%) for several PHPs, PFAs or PCBs while it is moderate (PFAs, APs and PCBs. During sludge treatment (centrifugation, digestion, thermal drying, sludge conditioning+press filtration), the hormones, LAS, APs, PAHs, DEHP and PCBs concentrations increased, while those of PHPs and PFAs decreased. In the case of digestion, the increase of content can be explained by no pollutant removal or a lower removal than DM removal (concentration phenomenon) whereas the decrease underlines that the compound is more removed than the DM. In any case, these concentration variations presuppose the mechanisms of dissipation that could be attributed to volatilization, biotic or abiotic transformation (complete or with metabolites production), bound residues formation. In addition, data on sludge liquors - centrifuged (CW) and condensed (TDW) waters

  16. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  17. Sludge granulation during anaerobic treatment of pre-hydrolysed ...

    African Journals Online (AJOL)

    An upflow anaerobic sludge bed (UASB) digester was operated at different hydraulic retention times (HRT) ranging from 26.7 h to 2.2 h, while the organic load rate (OLR) ranged from 0.9 to 7.3 kgCOD/m3·d. Sludge granulation was observed after day 150 of operation, at an HRT of 3.4 h, when small granules of less than 2 ...

  18. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  19. Acid fermentation of municipal sludge: the effect of sludge type and origin on the production and composition of volatile fatty acids

    International Nuclear Information System (INIS)

    Ucisik, A. S.; Schmidit, J. E.; Henze, M.

    2009-01-01

    Due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production, new wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment would be of great value. In this study, the feasibility of implementing acid fermentation process on different types of municipal sludge to increase soluble chemical oxygen demand (SCOD), especially short-chain volatile fatty acids (VFAs) was investigated by batch and semi-continuous experiments. (Author)

  20. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    Science.gov (United States)

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  1. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  2. Parameters affecting the degradation of benzothiazoles and benzimidazoles in activated sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vos, D de [Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Industrial Microbiology and Biochemistry; Wever, H de [Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Industrial Microbiology and Biochemistry; Verachtert, H [Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Industrial Microbiology and Biochemistry

    1993-07-01

    It was found that benzothiazole, 2-oxybenzothiazole and 2-benzothiazolesulphonate were degraded in activated sludge systems. 2-Mercaptobenzothiazole (MBT) was more resistant, although the first step in MBT degradation seemed to be transformation to the sulphonate form. At higher MBT concentrations, it was transformed into a disulphide, which accumulated in the sludge. MBT was also found to be mainly responsible for the toxicity of rubber chemical waste-water towards activated sludges. It inhibited the degradation of the other heterocycles. Only at concentrations of around 20 ppm was MBT degraded. Mercaptobenzimidazole ranked second in resistance to degradation. (orig.)

  3. Composting. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    Composting is a lesson developed for a sludge treatment and disposal course. The lesson discusses the basic theory of composting and the basic operation, in a step-by-step sequence, of the two typical composting procedures: windrow and forced air static pile. The lesson then covers basic monitoring and operational procedures. The instructor's…

  4. Effects of Amended Sewage Sludge Application on Yield and Heavy Metal Uptake of Barley: A Case Study of Ahvaz Sewage Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mostafa Chorom

    2007-06-01

    Full Text Available One aspect of sewage sludge application as an organic fertilizer on agricultural farms is environmental pollution concerns such as heavy metals uptake by plants. The aim of this study was to investigate the influence of amended sewage sludge application on yield and heavy metal uptake of Barley. This study was carried out over a period of barley growth with two treatments of sewage sludge (50 and 100 ton/ha and control treatment with four replicates arranged in a randomized complete block design. Plant samples were taken at three intervals (50, 90, and 180 days after sowing. The samples were prepared for measuring nutrients and heavy metals in stem, leaf, straw, and grain. Results of plant analysis showed that application of sewage sludge increased nitrogen, phosphorous, potassium and cadmium in vegetative parts compared to control. Grain analysis showed that application of sewage sludge significantly increased nitrogen, phosphorous, potassium, iron, and zinc. Grass yield significantly increased in the plot treated with 100 ton/ha sewage sludge. Grain yield in the two treatments significantly increased. The results revealed that the sewage sludge increased heavy metals uptake by plants but still below standard levels. It is, therefore, necessary to use the quantities of the elements introduced into soil and absorbed by plants in order to determine the toxicity level for each metal taking into account factors such as plant and soil types as well as environmental conditions. This information can then be used to determine sludge application quantities in each case. Meanwhile, sludge application may only be recommended for irrigated crops receiving adequate irrigation water due to its salinity. Moreover, it cannot be recommended for irrigated crops directly consumed by man.

  5. A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats

    International Nuclear Information System (INIS)

    Dickerson, K.S.

    1995-01-01

    This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other

  6. A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, K.S.

    1995-12-31

    This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other.

  7. Characterization of oily sludge from a Tehran oil refinery.

    Science.gov (United States)

    Heidarzadeh, Nima; Gitipour, Saeid; Abdoli, Mohammad Ali

    2010-10-01

    In this study, oily sludge samples generated from a Tehran oil refinery (Pond I) were evaluated for their contamination levels and to propose an adequate remediation technique for the wastes. A simple, random, sampling method was used to collect the samples. The samples were analyzed to measure Total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH) and heavy metal concentrations in the sludge. Statistical analysis showed that seven samples were adequate to assess the sludge with respect to TPH analyses. The mean concentration of TPHs in the samples was 265,600 mg kg⁻¹. A composite sample prepared from a mix of the seven samples was used to determine the sludge's additional characteristics. Composite sample analysis showed that there were no detectable amounts of PAHs in the sludge. In addition, mean concentrations of the selected heavy metals Ni, Pb, Cd and Zn were 2700, 850, 100, 6100 mg kg⁻¹, respectively. To assess the sludge contamination level, the results from the analysis above were compared with soil clean-up levels. Due to a lack of national standards for soil clean-up levels in Iran, sludge pollutant concentrations were compared with standards set in developed countries. According to these standards, the sludge was highly polluted with petroleum hydrocarbons. The results indicated that incineration, biological treatment and solidification/stabilization treatments would be the most appropriate methods for treatment of the sludges. In the case of solidification/stabilization, due to the high organic content of the sludge, it is recommended to use organophilic clays prior to treatment of the wastes.

  8. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

  9. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    International Nuclear Information System (INIS)

    Samolada, M.C.; Zabaniotou, A.A.

    2014-01-01

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated

  10. Microbial activities in a vertical-flow wetland system treating sewage sludge with high organic loads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.

    2009-07-01

    The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)

  11. Enhancement of sludge granulation in anaerobic treatment of concentrated latex wastewater

    Directory of Open Access Journals (Sweden)

    Nugul Intrasungkha

    2008-04-01

    Full Text Available Recently, the upflow anaerobic sludge blanket (UASB reactor has become attractive for wastewater treatment with low energy requirement and biogas production. However, the start-up of an UASB reactor depends on the formation of granules. Therefore, this research aims to study the effect of AlCl3, CaCl2 and temperature on the granule formation process using real concentrated latex wastewater. The result shows that the optimum chemicals concentration of AlCl3 at 300 mg/l enhanced the biomass accumulation and sludge formation process. Approximately 50% of large granular size (0.5 mm 0.8 mm within 35 days, whereas the large granular sizes in reactorwithout AlCl3 supplement (R2 became visible within 63 days. Moreover, this experiment found that R1, R2 and R3 could reach steady state within 40, 55 and 45 days, respectively.

  12. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C

    NARCIS (Netherlands)

    Zhang, L.; Hendrickx, T.L.G.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Weiguang Li,; Buisman, C.J.N.

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate

  13. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    Science.gov (United States)

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Sewage sludge - What can be done with it?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2002-01-01

    This article presents a review of the state-of-the-art in the disposal of the sewage sludge that is left over after treatment of wastewater. Also, developments over the past ten years both in market structures and in legislation are discussed and future developments are reviewed. On account of legislation and political influences on the market, the thermal exploitation of sewage sludge is looked at in depth. The ecological and economic aspects of sewage sludge disposal are examined and the costs of different methods of sewage sludge treatment are compared. Various methods of disposal including dumping, composting, incineration in cement ovens, coal-fired power stations and waste incineration facilities are discussed, as is burning in special sludge incineration plant. A prognosis is made on the development of sewage sludge quantities for Germany, Switzerland and Austria over the next years

  15. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  17. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  18. Winery wastewater treatment by heterogeneous Photo-Fenton process and activated sludges; Depuracion de efluentes vinicolas ediante tratamientos Foto-Fenton en fase heterogenea y lodos activos

    Energy Technology Data Exchange (ETDEWEB)

    Mosteo, R.; Lalinde, N.; Ormad, Maria O. M.; Ovelleiro, J. L.

    2007-07-01

    The system composed by heterogeneous Photon-Fenton assisted by solar light and biological treatment based on activated sludge process treats adequately real winery wastewaters. the previous stage based on heterogeneous Photo-Fenton process produces a partial degradation of winery wastewaters and achieves a yield of degradation of organic matter (measured as TOC) close to 50%. The activated sludge process in simple stage doesn't present any operation problems (bulking phenomenon) and achieves a yield of degradation of organic matter of 90%. (Author) 16 refs.

  19. Relationships between physical forms of cesium or strontium and their behavior in a sewage treatment system

    International Nuclear Information System (INIS)

    Ishikawa, Nao; Umita, Teruyuki; Hatanaka, Takuma; Ito, Ayumi

    2014-01-01

    The nuclear accident at Fukushima Daiichi Nuclear Power Plant resulted in the release of radionuclides to the environment. Accident-derived radionuclides have been detected in sewage sludge produced in northern east of Japan. We observed the fate of stable Cs and Sr in sewage treatment process in order to know a fate of radionuclide such as "1"3"4Cs, "1"3"7Cs, and "9"0Sr in the process. For both of Cs and Sr, their transfer ratios to primary sludge from the influent sewage were similar levels of the ratios to excess activated sludge to the influent sewage. Transfer ratios to dewatered sludge from influent were 20% for Cs and 9.1% for Sr, respectively. Additionally, it was suggested that particulate Cs and Sr which were sorbed by mineral solids could be transferred to the primary sludge in the primary settling tank, then in the following treatment system; aeration tank, Sr sorbed by organic materials such as activated sludge could be transferred to the excessive sludge. (author)

  20. Degradation of organic pollutants in sewage sludge by aerobic-thermophilic sludge treatment. Final report; Abbau organischer Schadstoffe im Klaerschlamm durch aerob-thermophile Schlammbehandlung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Prechtl, S.

    1999-07-01

    A process for reduction of organic polllutants in sewage sludge was to be developed and optimized. The organic fraction of the solid matter in sewage sludge containes more than 300 different pollutant. Apart from the substances classified in the Sewage Sludge Ordinance (dioxins/furans, PCB), there are others that have been considered relevant as well but for which no sufficient data base is available. The research project investigated whether aerobic-thermophilic treatment (AT) would improve the sewage sludge quality with regard to phthalates (di(2-ethylhexyl)phthalate, DEHP), PAH and 4-nonylphenol (4-NP, a degradation product of nonionic tensides). Pollutants were analzyed by HPLC and GC/MS. The concentration of DEHP and 4-NP was reduced by 70% resp. 50% in laboratory experiments with doped sludges and by 61% resp. 53% in undoped sludges. In semi-industrial tests, a 14% reduction was achieved for DEHP and a 68% reduction for 4-NP. In the case of pyrene, the degradation was up to 57% in the laboratory experiments and 22% in semi-industrial tests. A combined process of short-term anaerobic digestion and AT resulted in a 60% reduction in the case of DEHP. Up to anthracene, PAH were reduced as well. In the case of higher-condensed PAH (basic load in the ppb range) there was no clear result. In the case of 4-NP, the degradation effect was counterbalanced by the formation of new 4-NP from alkylphenol ethoxylates in both anaerobic and aerobic conditions. The results prove the correlation between sewage sludge hygienisation and the time of residue in the reactor system. No enterobacteriaceae were found after a treatment of 96 h, both in the semi-industrial and the laboratory reactors. In activated sludge, a phenol-degrading mixed bacteria culture could be isolated which was also capable of degrading 4-NP in thermophilic conditions. [German] Das Ziel des Forschungsvorhabens war die Entwicklung/Optimierung eines Verfahrens zur Reduktion organischer Schadstoffe im